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PREFACE 

The present dissertation is related to a set of important research fields: theory of 
defects in solid matter, nanotribology and nanomechanics. Nevertheless, the to-
pics of the research are strongly linked together. Each part is dedicated to the 
common goal of investigation of external and internal mechanical properties of 
nanocrystals (NCs). Therefore the research can be considered as multidiscipli-
nary. 

The “pivot” connecting all the topics are crystalline objects having 3 nano-
meter sized dimensions (so-called 0D nanocrystal, nanoparticle) and 2 nano-
meter sized dimensions (1D nanocrystal, nanorod, nanowire), whereas the other 
dimensions are macroscopic. Intrinsic and exterior properties of the both kinds 
are often closely related to each other. Thus the consideration of 0D and 1D 
nanostructures in a pair is rather reasonable. 

Among various kinds of nanostructures, so-called multiply-twinned penta-
gonal nanoparticles and nanorods appealed the author’s interest. Due to specific 
internal crystalline structure and morphology, these objects possess remarkable 
properties that are important from both fundamental and practical points of 
view. In particular, structural transformations in pentagonal nanocrystals 
(PNCs) had been theoretically predicted in 80’s and then experimentally ob-
served. The first part of the thesis is dedicated to the theoretical analysis of 
certain pathways of such structural transformations. 

Nanoscale materials have extremely high surface-to-volume ratio in com-
parison with bulk materials. The influence of NC’s surface on physical pro-
perties can hardly be overestimated. Therefore investigation of interfacial and 
surface phenomena in 0D and 1D NCs is of crucial importance for modern 
materials science and technology. Particularly, friction at the nanoscale (i.e. 
nanotribology) is one of the most significant fields of research in nanoscience 
and nanotechnology. The attention in the second part of the thesis is called to 
the problems of nanotribology in application to nanoparticles and nanowires. 
Frictional properties were investigated by various methods – numerical simu-
lation, experiments and consequent theoretical interpretation of the results with 
use of ad hoc models. 

The dissertation is divided into 4 chapters. 
The first chapter gives a brief overview of experimental methods and 

theoretical models that lie in the basement of the conducted research. That 
includes the experimental observation of PNCs, the disclination model, nano-
scale friction and nanomanipulations, elastic beam theory used for modeling of 
nanowires. 

The chapter 2 presents the aims of the research described in the dissertation. 
The chapter 3 invokes the properties of pentagonal zero- and one-dimen-

sional nanocrystals related to their specific structure. In particular, PNRs and 
INPs are theoretically investigated in the framework of the disclination model. 
Two possible mechanism of stress relaxation in them are proposed: formation 
crystal lattice mismatch layer and growth of a whisker on the surface. 
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The chapter 4 deals with certain tribological properties of zero- and one-
dimensional nanocrystals. Theoretical simulation of INP during manipulation is 
discussed. Then the nanomanipulation experimental setup elaborated in the 
Institute of Physics is presented, followed by description of the manipulation 
experiments performed. The experimental manipulations of both NPs and NWs 
are presented together with theoretical models and discussions. 

Finally, the last section summarizes all the results and provides the con-
clusions for the thesis. 

 
  



12 

1. BACKGROUND 

1.1. Experimental observation, structure and morphology 
of pentagonal multiply-twinned nanocrystals 

In physics of solid state matter it is well known that the size of the physical 
object is an important characteristic substantially determining its properties. 
Nearly each physical phenomenon has its own critical size beyond which the 
main characteristics of the observed phenomenon start to change drastically. 
Such properties are usually considered to be size effects. In this section one of 
the most specific size effects is considered, i.e. the formation of five-fold sym-
metry axis in NCs, which is forbidden according to the classic laws of crystallo-
graphy [1]. 

Crystalline materials with face-centered cubic (FCC) crystal structure often 
demonstrate morphologies with axes of five-fold (pentagonal) symmetry. 
Micro- and nano-size crystals with such morphologies are under investigation 
for more than four decades. The most recent experimental results can be found 
in [2–6]. For example, Hofmeister in [2] studied the structure of silver penta-
gonal nanorods and nanoparticles, whereas Koga and Sugawara [4] showed a 
large fraction of decahedral and icosahedral gold particles against usual FCC 
morphology at the nanoscale range of sizes. 

The origin of pentagonal symmetry in PNRs and PNPs follows from the 
schematics given in Fig. 1. As shown in Fig. 1a PNR is a polycrystal consisting 
of five FCC monocrystalline regions divided by five twin boundaries (TBs). 
Lateral faces of this multiple-twinned PNR are crystallographic planes of 
{100}-type, whereas cup faces are of {111}-type. The axis of fivefold sym-
metry is parallel to <100>-type direction. The internal structure of PNRs can be 
understood from the schematics of Figs. 1b,c [7]. In the top-view of Fig. 1b five 
undistorted parts of the PNR are aligned along four TBs, which in FCC crystals 
are {111}-type planes, see, for example [1]. Because of FCC crystal geometry 
there is a small angular gap ω preventing the formation of a completely con-
nected and undistorted PNR. This angular gap however can be eliminated by 
mutual rotation of the gap faces with the formation of the fifth TB. It leads to 
the so-called disclination model of PNR [1, 7–9] that will be considered in 
details below. 

In the case of PNPs, the standard morphology is an icosahedra with {111}-
type crystallographic facets only [8, 9]. Here and below PNP will be considered 
only icosahedral and referred to as an icosahedral nanoparticle. The intrinsic 
structure of INP is comprised of 20 monocrystalline regions divided by TBs. 
FCC crystallographic structure requires those regions to be strictly tetrahedral to 
form TBs. However the icosahedral shape dictates the regions to be slightly 
different from tetrahedrons. The geometry of icosahedron and 20 exact tetra-
hedron assembled to form an icosahedron are depicted in Fig. 1e and 1f. Appea-
rance of a solid angular gap is obvious. The angular gap can be eliminated by 
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rotational procedures in a way similar to PNRs in the framework of the discli-
nation model. 

PNRs and PNPs share the property of having “inconsistency” of the crystal-
lographic structure and morphology that was evidenced by the appearance of 
angular gaps. Since PNCs have a closed structure and the angular gaps are not 
present, and if one assumes that monocrystalline regions preserve FCC crystal 
lattice, PNCs must be strained in order to eliminate the angular gaps. The 
procedure of elimination of angular gaps by rotations of gap faces is equivalent 
to the introducing a disclination defect into the crystal. The disclination model 
enables to explain the morphology and structure of PNCs and investigate their 
mechanical properties. 

 

 
 

Figure 1. Disclination models for PNRs and PNPs: (a) PNR with internal twin 
boundaries, (b) angular gap ω in a PNR, (c) twinned crystal lattice of PNR, (d) PNR 
modeled as cylinder of radius RP having positive wedge disclination of strength ω, (e) 
icosahedral NP, (f) INP with solid angle deficiency, (g) INP with six wedge discli-
nations of strength ω, (h) INP with infinitesimal solid cones d, (i) INP modeled as 
spheroid with eigenstrain components  of magnitude . 
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1.2. Disclination model of pentagonal nanocrystals 

1.2.1. Disclination model of pentagonal nanorod 

Disclination is a linear defect in solid materials. Together with dislocation it 
belongs to the 6 elementary distortions introduced by Vito Volterra back in 
1905. In the Fig. 2 the entire set of Volterra’s distortions is presented and the 
corresponding types of defect are named. The procedure of making a Volterra’s 
defect starts from an undistorted hollowed cylinder. Then a cut is done in 
through the cylinder’s axis. The axis of the cylinder defines the defect line l. 
The faces of the cut may undergo different kinds of displacements which deter-
mine the type of the defect. 

Three translational displacements along the vector b are possible (Fig. 2a-c) 
that correspond to edge and screw dislocation with Burgers vector b. In addi-
tion, three rotational displacements can be made as shown in Fig. 2d-f. They are 
called disclinations and characterized by vector ω (Frank’s vector). Burgers 
vector b together with the line vector l, or Frank vector ω together with the line 
vector l define a dislocation or disclination, respectively. The concept of wedge 
disclination (Fig. 2f) is primarily important for the disclination model of PNCs 
and used throughout the dissertation. 

 
Figure 2. Six elementary Volterra’s distortions in a hollowed elastic cylinder by the line 
l: edge (a, b) and screw (c) dislocations with Burgers vector b, twist (d, e) and wedge (f) 
disclinations with Frank vector ω. 
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The closing of the angular gap in PNR (Fig. 1b) is equivalent to the introduction 
of the positive wedge disclination of the strength ω along the PNR axis [7, 10]. 
The resulting configuration of the crystal lattice in the PNR cross-section 
(which is the plane of the {110}-type) is shown in Fig. 1c where a triangle 
designates a wedge disclination. The disclination strength  is related to the 
twinning angle twin in FCC lattice (see, for example, [7]):  
 

.027128.0
3

3
sin10252 01 
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The presence of the disclination leads to elastic distortions of the crystal lattice 
in the bulk of PNR (Fig. 1a). In the continuum mechanics model, which is 
suitable for the calculation of elastic fields and energies, a PNR can be 
described as an elastic cylinder of radius RP with coaxial positive wedge 
disclination as shown in Fig. 1d. For experimentally observed PNRs RP varies 
from 10 nm to 1 µm [1, 3, 11]. 

Elastic fields can be analytically found in the framework of linear isotropic 
model. Non-zero components of stress tensor in cylindrical coordinate system 
(r,,z) associated with axis of PNR are [7]:  
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where G is a shear modulus, is Poison’s ratio. 

The elastic energy per unit length of PNR is [7]: 
 

.
)1(16

22




 
 PGR

E  (3) 

 
The energy given by Eq. (3) rapidly increases with the PNR radius. Therefore 
the development of relaxation processes, which can diminish the stored energy, 
should be expected. Those relaxation processes include formation of crystal 
lattice defects such as dislocations, disclinations, pores and other [1–3, 9, 12]. 
Some of possible mechanism of stress relaxation in PNR is studied in the 
framework of the present dissertation and considered in chapter 3.  
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1.2.2. Disclination model of icosahedral nanoparticle 

A similar approach can be applied to the modeling of INP internal structure 
(Fig. 1e-i). INP crystal geometry includes FCC monocrystalline regions divided 
by TBs confined by 20 tetrahedrons. Due to the FCC crystal geometry an 
angular gap exists (Fig. 1f). The gap is of more complicated shape than in the 
case of PNR. This gap can be closed by introducing 6 positive wedge disclina-
tions of strength  like shown in Fig. 1g. 

Since consideration of a finite size body with 6 disclinations is mathema-
tically difficult, a special kind of a defect can be used instead as an approxi-
mation. This defect occupies the whole region of the particle. It is also referred 
to as Marks-Yoffe disclination [8]. 

The procedure of constructing Marks-Yoffe disclination can be started with 
an infinite set of small radial cones with solid angle dω filling uniformly the 
volume of spheroid. Then those cones are used to remove material from within 
the cones, and surfaces of them are “glued” to form a solid spheroid again. In 
the limit 0d as the eigenstrain is uniformly distributed and described by 
the following tensor: 

 

   **

 
0****  rrrr    
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2

3
 


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(4a,b,c) 

 
in spherical coordinate ( ),, r  with the origin in center of the INP. 

Note that it would be convenient to use term “inclusion” for Marks-Yoffe 
disclination. In such approach it is possible to consider an inclusion having the 
eigenstrain defined as , where  is delta-function 
determined in the volume of inclusion . 

The elastic strains of the Marks-Yoffe disclination can be written as: 
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where ur is the radial displacement field. The components of the stress tensor 
corresponding to those strains must satisfy the equations of equilibrium: 
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That gives for the total displacements ur: 
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where constants B and С are determined from the boundary conditions at free 
surfaces and absence of displacement in the center. The displacement field in 
Eq. (7) must be used to calculate strain and stress fields (see Appendix A1 for 
details) and conform the boundary conditions: 
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That yields for the coefficients B and C: 
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where pR  is radius of the spheroid. 

Finally, non-zero components of the elastic strains [8] 
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Stress components are [8]: 
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The elastic energy of INP is [8]: 
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In Eqs. (11), (12) we use the same notations as in Eqs. (3). 
It is easy to see that the stress components of the PNR and INP in Eqs. 

(2),(11) change sign with the radius, so in the surface region of the PNR and 
INP a tensile stress takes place and in the core region there is a compressive 
stress. The distributions of the stress components are shown schematically in 
Fig. 3. 

 

 
 
Figure 3. Stress distributions in PNRs and INPs schematically. (a) Stress components 
rr,  and zz in PNR in cylindrical coordinate system (r,,z) associated with PNR 
axis; (b) Stress components rr,  and  in INP in spherical coordinate system 
(r,,) associated with INP center. The radii r of a sign change of stresses are shown; RP 
is the radius of PNR or INP. 

 
 

1.3. Relaxation of mechanical stresses  
in pentagonal nanocrystals 

The relaxation of elastic stresses due to disclinations is the cause of the 
transformations of PNR and PNP internal structure that occur as they grow [1, 
13]. One of the aims of this dissertation is to demonstrate the possibility of 
particular relaxation processes in PNRs and PNPs and to provide disclination 
models describing the observed phenomena. 

Over the past two decades stress relaxation models for PNRs and PNPs have 
been developed and designed. Fig. 4 presents schematics of these models. In the 
analysis of the models the energy criterion for starting the relaxation process is 
used: 

 

initialfinal EE  , (13) 
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where Einitial and Efinal are the energies of PNP or PNR before relaxation and 
after relaxation, respectively. 
 

 
Figure 4. The channels of stress relaxation in PNRs and PNPs: (a) appearance of a 
hollow center; (b) formation of the straight-line dislocation; (c) formation of the 
vacancy-type dislocation loop; (d) opening of a gap; (e) origination of a negative 
disclination of power 

1  with a system of stacking faults; (f, g) different ways of 

decomposing the disclination of power   into two others linked by a “disclinational” 
stacking fault; (h) formation of a region without a disclination; (i) shifting of the 
pentagonal axis towards the periphery. For simplicity, the channels of relaxation are 
depicted for the case of PNRs. 

 
 

It has been shown that the following processes contribute to diminishing elastic 
energy of PNRs and PNPs: appearance of an empty channel (Fig. 4a) [10, 14]; 
formation of a straight-line dislocation (Fig. 4b) [1, 15] or vacancy-type 
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dislocation loop (Fig. 4c) [12]; opening of a crack-like gap (Fig. 4d) [1]; 
appearance of a negative disclination of power ω1 with a system of stacking 
faults (Fig. 4e) [1]; different ways of decomposing the disclination with power 
ω into two others linked by a “disclinational” stacking fault (Fig. 4f,g) [1]; 
formation of a region without a disclination (Fig. 4h) [1]; shifting of the penta-
gonal axis towards the periphery (Fig. 4i) [1]. In addition, molecular dynamics 
simulation showed that the core of a disclination in a crystal has a “loose” 
structure, leading to the formation of an empty channel [16]. 

For several models, critical size of pentagonal particles was evaluated (see, 
for example [12, 15, 17]). Starting from the critical size the relaxation processes 
in PNRs and PNPs are triggered by disclinations. 

Consistency of the proposed relaxation models with experimental obser-
vations was discussed in detail in [1]. 

Let us now consider some results of experimental studies of nano-and 
microscale PNRs and PNPs made by electrodeposition of copper in Togliatti 
State University (method described in [18]). In Fig. 5 pentagonal Cu microrods 
and microparticles are presented. It also shows the microparticles with a 
defective external shape: with a hole inside the PR or PP and the nanowhisker 
growing from the particle. These imperfections are formed during the electro-
deposition of the particles with subsequent heating to 400 oC and above in air, 
which can lead to the formation of cavities, channels and the growth of different 
whiskers on the surface of the initially seemingly perfect particles.  

The following observations should be noted:  
 During the electrodeposition nanowhiskers are often formed in the places, 

where TBs junctions emerge from the surface. These nanowhiskers have 
mainly pentagonal symmetry, i.e. nanowhiskers are PNRs.  

 The holes and empty channels are formed during the PP and PR growth.  
The growth and formation of the nanowhisker from the particle is 
accompanied by the formation of internal cavities within the particle. 

 After annealing in air or in vacuum, all microparticles tend to lose faceting. 
Icosahedra annealed in air become overgrown by numerous nanowhiskers, 
but pentagonal rods do not. 

Formation of metallic nanowhiskers on the surface of polycrystals is often 
referred to as a relaxation of mechanical stresses stored in the material. Various 
theoretical models of metallic one-dimension nanowhisker growth have been 
proposed [19–24]. However in only one of those works, namely in [21], were 
prismatic dislocation loops taken into consideration. One should note that 
namely prismatic dislocation loops (on the contrary to the case of shear dis-
location loops) are related to the condensation of point defects, e.g. in the form 
of vacancy or interstitial disks. In a new model proposed below in the section 
3.3 is combined this idea with the advantages of the disclination approach. 
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Figure 5. Pentagonal microrods and microparticles with cavities (a, b) and whiskers (c, 
d) obtained by electrodeposition of Cu. 

 
 
1.4. Friction at the nanoscale and experimental 

manipulation of nanocrystals 

Friction had been a big challenge for physicists of all times starting from Leo-
nardo Da Vinci and till modern advanced studies. Various theoretical and ex-
perimental approaches were employed to get an insight to the friction pheno-
menon. The theoretical methods ranged from primitive Amontons’ laws further 
to Prandt-Tomlinson model [25, 26] and computer simulations. Incredible 
amount of experimental data on friction had been collected for tribological 
databases and usage in industry. However the prediction and explanation of 
friction forces still have not been fully accomplished. The reason for that is 
natural complexity of the phenomenon involving large amounts of materials and 
many degrees of freedom. Ordinary statistical mechanical approaches are not 
sufficient due to essential nonequilibrium of the system and presence of the 
interface. On the other hand, friction is important in everyday life and crucial in 
most of engineering problems. Controlling of friction at different scales is be-
coming more and more significant in the prospects of miniaturization of de-
vices. Particularly, manipulation experiments at the nanoscale are an appealing 
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technique in order to give an insight on the friction processes at the most 
fundamental level. 

Nanoparticle manipulation experiments have two general purposes: contri-
buting to the understanding of friction mechanisms by providing information 
about interactions at the nanoscale and practical benefits such as the develop-
ment of precise positioning and assembly methods for applications in nano-
electronics, digital information storage [27], etc. 

The most commonly used tool for the manipulation of nanoparticles is the 
atomic force microscope (AFM, see Fig. 6). The basic principle of AFM is 
illustrated in Fig. 6 and for more details the reader is referred to [28, 29]. 
Several different approaches have been applied in AFM manipulation strategies. 
In dynamic mode, particles can be moved during the scanning process when 
amplitude of the tip oscillations is increased above a certain threshold value 
[30], and the frictional force is estimated from the dissipated power [31]. 
Increasing the scan rate above a certain value rather than increasing oscillation 
amplitude yields similar results [32]. Another approach consists of switching 
the feedback off during manipulation [33]. In this case, the tip pushes particles 
and oscillations are not essential for the manipulation process; cantilever 
deflection is recorded. 

 
 

 
 

Figure 6. Illustration of the basic principle of AFM. Interaction between the sample and 
the tip affects the motion of the cantilever (in contact or non-contact mode). The 
deflection of the cantilever is detected by 4-quadrant photo diode capturing the reflected 
laser beam. The sample is moved relative to the tip via a precise 3D scanning system. 
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Particles can also be moved in the contact mode. For example, Dietzel et al. 
[34] introduced a so-called “tip-on-top” strategy. In this method, the tip is first 
positioned on top of the nanoparticle approximately at its center. The nano-
particle then follows the tip motion. The measured torsional signal is directly 
proportional to the interfacial friction between the particle and the substrate.  

AFM manipulations have certain limitations. First, there is no real-time 
visual feedback concerning the contact geometry or the particle position and 
behavior during manipulation (i.e., whether it is rolling or sliding). Only in-
direct conclusions can be drawn based on the shape of the force curves [35]. 
Additionally, many AFM experiments are made in ambient conditions, meaning 
that a considerable amount of water is present on all surfaces under investi-
gation, complicating the interpretation of the forces.  

Another problem is the “aging” of a sample exposed to ambient conditions, 
resulting in sticking of the particles to the substrate [36]. Sticking increases 
significantly with time. Given that AFM manipulation experiments are time 
consuming, adhesion can increase even within single experimental series.  

To overcome these obstacles, manipulation experiments should be per-
formed in a vacuum environment with real-time visual control. Such conditions 
require more advanced equipment and competence than regular AFM mani-
pulations, however enable to achieve more defined results and ease their 
interpretation. It is important to note that the above described methods are 
applicable and widely used also for nanorods and nanowires. 

NWs are defined to be 1D crystalline structures with characteristic diameter 
ranging from 1 to 100 nm. Semiconducting nanowires (NWs) are an important 
class of nanoscale materials for modern industry. For instance, zinc oxide NWs 
possess piezoelectric and piezoresistive properties [37, 38], they are a promising 
material for energy harvesting and micro-/nano- electromechanical systems. 
Investigation of elastic properties of NWs is therefore crucial for development 
of innovative devices. 

The simplest possible physical system for studies of NW mechanical 
properties consists of a NW upon a flat surface (substrate) and external mani-
pulator. Physical phenomena in such system may include elasticity of NW (and 
substrate), adhesion and friction between NW and substrate, static electric 
forces [39] and conductivity [38]. Despite the simplicity, this system addresses 
many real-world cases in application scope. However, the state of the art still 
shows a plenty of “white spots” in the interpretation of the experimental data. 
Large scattering of experimental data, lack of theoretical explanations, in some 
cases unpredictable behavior of the system are common for the present. Since 
the objects are classical, this can be referred to as indefiniteness of the physical 
system. NWs inherit some degree of “bad” properties of macro- and microscales 
such as surface defects, possible contaminations and impurities. 

Theoretical methods used for investigation of NW’s mechanical and tribo-
logical properties range from classical approach continuum models [40], finite 
element method (FEM) calculations [41] to molecular dynamics simulations 
[42]. In the studies dedicated to elastic deformation of NWs Timoshenko elastic 
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beam theory [43, 44] has shown to be fruitful for modeling of elastic strains and 
interpretation of experimental data [40, 45]. 

 
 

1.5. Simulation of nanomanipulations  
for tribological studies 

Control of friction at the nanoscale is of a great importance for science and 
technology. In some technological applications an sage of conventional 
lubricants is limited and for this purpose Feynman’s concept of nanobearings 
that “run dry” [46] comes into play. In particular, a simple system where a 
nanoparticle is clutched between two flat surfaces and the nanoparticle may 
exhibit rolling motion with low friction seems perspective from applications 
point of view. One possible system of this kind was proposed by Evstigneev et 
al. in  [47], where rolling and sliding of a nanoparticle between two planes was 
investigated numerically in the framework of a planar model. Let us now briefly 
consider that model generalized to 3D space since it will be used later on in the 
paragraph 4.1. 

The physical system for a nanoparticle clutched between two planes is 
depicted in the Fig. 7. The overall geometric configuration is determined by the 
nanoparticle’s center of mass r=xex+yey+zez, its rotation that can be represented 
by an unit quaternion q (see Appendix A2), and the position R=Xex+Yey+Zez of 
some reference atom from the top plane, where ex,y,z are the unit vectors in the x, 
y and z directions. The top plane is assumed to be horizontal in each moment of 
time. If the nanoparticle and the planes are assumed to be rigid bodies, than the 
state of the entire system is described by r, q, momentum p and angular 
momentum l of the nanoparticle and momentum P of the top plane. The 

momenta yield rp m  and RP M , where m and M are nanoparticle and top 
plane masses, respectively. The angular momentum l is connected to the angular 
velocity ω 

 
ωl I , (14) 

 
where I is the tensor of inertia. 

The complete system of equations of motion can be written as: 
 

BT ffp   

BT ττl   
.)( zNxT fVtX eefP    

(15a,b,c) 

 
Here fT and fB are external forces acting on a nanoparticle from the top and 
bottom planes, τT and τB are corresponding torques. 
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The spring is pulled at the constant velocity V. The last term describes the 
upper plane under the normal load fN. Let us define the instantaneous friction 
equal to the elastic force of the spring: 

 
)( VtXf   . (16) 

 
In the present model it is also assumed that the separation between the two 

planes is sufficiently large, so that the interaction energy between them is 
negligibly small. 

One special case, when there is no top plane can be considered. Then the 
nanoparticle is driven by a point force fP acting on a point rP and torque 
τP=rP×fP. Thus the equations of motion are rewritten as 

 

BP ffp   

BP ττl  . 
 (17a,b) 

 
Below in the text of this paragraph only the main case with two planes is 
considered, however all the equations can be easily adapted for the point force 
case. 

Actually the atoms of the nanoparticle and the planes are not rigidly coupled, 
and they exhibit certain complicated kind of stochastic motion. If the time scale 
of individual atom’s motion is much faster than the time scale of the global 
degrees of freedom r, q and R, then the effect of atomistic motion can be taken 
into account by the following modifications of the equations of motion (see 
[48]): (a) renormalization of the forces and torques acting on the global degrees 
of freedom; (b) introduction of velocity-dependent dissipation forces correspon-
ding to energy loss in form of heat; (c) introduction of noise force cor-
responding to energy transfer from atomistic vibrations into the global degrees 
of freedom. 

First modification (a) can be realized by reinterpreting of the interaction 
energies UB,T as free energies. This incorporates the system with global degrees 
of freedom into a statistical ensemble with defined temperature and chemical 
potential. 

Consider the interaction of each atom of the nanoparticle. The interaction 
potential of the bottom and top planes, respectively 
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These potential are specially constructed to reflect the total potential force of the 
whole surface acting on a particular single atom in the nanoparticle. To account 
for the possibility of adhesion, the zero-order term is taken to be the Lennard-
Jones potential 
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where ε is the adhesion energy and σ the equilibrium separation of the atom 
from the surface. 

The function u1(z) in Eq. (18) corresponds to the corrugation amplitude in x 
and y directions. That is assumed to decrease exponentially upon detaching the 
surface: 
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Uzu   (20) 

 
where ΔU is corrugation amplitude and decay length is λ. Other components of 
the force are dissipative forces (b) due to the internal degrees of freedom. They 
are proportional to corresponding relative velocities of the nanoparticle’s atom 
to a surface, with coefficients represented by  
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where η0 is damping coefficient and ξ is damping decay length. The external 
forces fB, fT or fP and their corresponding torques are the sum over pairwise 
interaction of each atom of the nanoparticle:  
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Finally, the external forces fB and fT are constructed as a superposition of 

conservative forces 
)(i

Bf  and 
)(i

Tf
 
described by potentials UB and UT, and 

dissipative forces described by ηB and ηT. 
In our numerical calculations, we assume that the dissipation effects are 

much stronger than the inertia effects, allowing us to consider the overdamped 
limit by formally setting the nanoparticle’s mass and moment of inertia to zero: 
m=0, I=0. Likewise, we assume that the spring attached to the upper plane is 
overdamped, allowing us to set M=0. Finally, since the potential energies from 
Eq. (18) represent an effect of many atoms, noise effects can be assumed 
extremely small in comparison to the interaction forces and the normal load. 
Therefore, we neglect thermal noise and in the overdamped zero-temperature 
limit equation of motions: 

 
0 BT ff  

.0 BT ττ  
(23a,b) 

 

Keeping in mind Eqs. (22) and ii rωrr   , we yield 
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These Eqs. (24) are a system of vector equations of motion that can be solved 
numerically. At any moment of time, they are a linear algebraic system for r ,ω  

and R  given a nanoparticle’s position r, rotation q and top plane’s position R. 
The system of equations of motion for a nanoparticle on a bottom plane and 

manipulated by a point force: 
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Figure 7. Schematics of the physical system: a nanorod is clutched between the fixed 
lower plan and the upper plane pressed down by the normal load force fN and attached to 
a spring of stiffness κ, the other end of that is pulled with the velocity V. The friction 
force f corresponds to the force of elastic deformation in the spring κ. 
 
 

1.6. Elastic beam theory for modeling of nanowires 

Crystalline NWs possess elastic properties and may exhibit flexure. The 
elasticity of NWs can be considered in the framework of the continuum theory 
of elasticity. However the exact analytic solution of the elasticity problem in 
most practical cases is hardly achievable due to complicated boundary 
conditions. The necessity to account for elastic effects in prolonged objects has 
also arisen in engineering problems such as building construction. That gave a 
strong incentive to development of a theory for approximate solutions of 
elasticity problems, i.e. the elastic beam theory (EBT) [43, 44]. The recall of 
certain models from the EBT helps to model the elastic behavior of NWs. In the 
present paragraph we will go through the basic statements of the EBT that will 
be used further in the study. 

Let us consider a prismatic-shaped NW of length L and diameter D, bent 
under external lateral forces (see Fig. 8). The external forces may include 
distributed (such as friction) forces as well as concentrated forces (such as 
driving force from the tip). The state of NW is sustained in equilibrium due to 
interplay of intrinsic elastic force in the NW and the external forces of various 
origins. 

We will designate the force and momentum of elastic stresses in a cross 
section of the NW as F and M, respectively. Their components can be written as 
an integral by the cross section area S at any given point l of NW axis [43, 44]:  
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S
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S

ii dSnreM   , 

  (26a, b) 

 
where σαβ are the components of stress tensor, nγ are the components of the 
normal vector to the element of cross section area dS, rα are the components of 
the radius vector from the axial point l and eαβγ represents the unit anti-
symmetric tensor. Both the elastic force F and the momentum M are considered 
as functions of the coordinate l along the NW’s axis (Fig. 8).  

The full system of equilibrium equations for the NW consists of the 
equations for elastic force F and momentum M [44]: 

 

f
F


dl

d
 

tF
M


dl

d
, 

(27a,b) 

 
where f is the distributed external force acting on the NW per unit length and t 
is the tangent vector of the NW axis. 

Here and below we limit the consideration to a particular assumption that the 
NW is undergoing a pure bending deformation. This can be a good approxi-
mation for the given problem as long as one assumes that the external forces act 
to the direction normal of the NW. The case of pure bending of prismatic 
shaped NW yields the following equation for momentum in the framework of 
linear isotropic elasticity [44]: 

 

dl

d
EI

t
tM  , (28) 

 
where E is the Young modulus of the NW and I is the area moment of inertia of 
the NW. Eq. (10) describes the momentum of elastic forces inside a NW bent 
purely with the given curvature. It can be projected to the Oz axis and rewritten 
as  
 


EI

dl

d
EIM  , (29) 

 
where φ(l) is the tangent angle function over the length of the NW and κ(l) = 
1/R(l) = dφ/dl is the curvature function related to the local radius of curvature 
R(l). 
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The equations of equilibrium Eqs. (27) and “pure bending” Eq. (28) comprise 
the full system of equations that determine the state of the NW. Boundary 
conditions on F and/or M have to be defined in order to solve this system. The 
choice of boundary conditions is dictated by the problem statement and may 
include, e.g. the condition of free end or “walled” end (see the examples in [44]). 

 

 
Figure 8. Schematics of a nanowire of length L and diameter D held in bent state by in-
plane distributed lateral force f. Fixed coordinates system Oxyz and local coordinate 
basis (t,n) along the nanowire axis l are used. Angle between the tangent vector t and 
axis Ox is denoted as φ. 
 
 

1.7. Coupling of elastic and tribological properties of 
nanowires on flat substrate 

Elastically deformed NWs are appealing objects for investigation due to 
possibility of measurements of NW’s elastic properties and coupling with other 
phenomena such as piezoresistivity [38, 49], piezoelectricity [50] and friction. 
For the latter case NW is maintained in deformed state by external force of 
friction between the NW, substrate and optionally external concentrated force 
originating from AFM tip. 

A simple approach, which utilizes the bent shape of a nanowire on a 
substrate to estimate the nanowire-substrate friction, was proposed by Bordag et 
al. [45]. The profile of bent NW comes as a result of the interplay between 
elastic and friction forces. The modeled NW was assumed to form a circle with 
uniform distribution of elastic and friction forces along the NW. This method 
was applied for the study of static and kinetic friction, and for determination of 
local strain in individual semiconductor NWs [39, 51, 52]. However, the model 
neglected the role of free NW ends and did not take into account the fact that 
the actual friction force vector may vary significantly along the NW’s length. 

Strus et al. introduced a more sophisticated method, which also utilizes the 
shape of a carbon nanotube (CNT) bent by AFM on substrate to compute static 
friction and flexural strain energy [40]. Unfortunately, this method is highly 
sensitive to any inaccuracy in determination of the bent CNT or NW profile due 
to use of high order derivatives. Furthermore, unconsidered boundary condi-
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tions of zero force and momentum at the ends of the CNT may contribute 
significant error to the results. 

Therefore an alternative model of elastically bent NW lying on a flat 
substrate has to be proposed, which enables determination of friction forces 
between NW and substrate. Appropriate skeletonization and fitting algorithm 
must be elaborated that conforms to the boundary conditions. 

Let us consider some of important peculiarities related to flexure-friction 
coupling. As it was described in the previous paragraph, elastic properties of 
purely bent NW are determined by its Young modulus E and area moment of 
inertia I which is directly related to geometry of the NW (cross section), 
particularly the diameter D. In one’s turn cross section of NW defines the NW-
substrate contact area and the area in the vicinity of the contact that essentially 
influence the NW-substrate friction. 

Several geometries of cross section characteristic for NWs are presented in 
Fig. 9. Contact regions for first two – hexagonal and rectangular (belt) shapes 
are easily defined. Determination of contact region for circular cross section is a 
non-trivial problem that requires employment of contact mechanics models such 
as Johnson-Kendall-Roberts (JKR) or Derjaguin-Muller-Toporov (DMT) [53, 
54]. The hexagonal cross section is intermediate between the rectangular, where 
contact line is equal to the whole diameter and the circular case, where the 
contact line is a small fraction of the diameter. In the present work the hexa-
gonal cross section was chosen for the calculations in the experimental part for 
ZnO NWs.  

The maximal tensile stress σmax that apparently occurs on the outermost side 
of NW, can be expressed as a function of local NW curvature κ: 

 

2/max  ED . (30) 
 

Equation (30) can be used furthermore in order to estimate the tensile strength 
of the NW when the manipulation ended up with a fracture. 
 

 
Figure 9. Schematics of cross sections of NWs, corresponding contact region with 
substrate and area moment of inertia. Hexagonal cross section of diameter Dhex (a). 
Rectangular cross section of width Drect and height Brect (b). Circular cross section of 
diameter Dcirc (c). 
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2. AIM OF THE STUDY 

The main goal of the study is contribution to understanding of the properties 
and phenomena specific for nanoscale objects such as nanoparticles and nano-
wires. A number of objectives were identified in order to achieve this goal. Both 
theoretical and experimental methods were utilized to realize the objectives. 

The primary list of the objectives included: 
 Elaboration of a theoretical model of stress relaxation in pentagonal 

multiply-twinned nanoparticles and nanorods related to formation of shell 
layer with crystal lattice mismatch in the framework of the disclination 
approach; 

 Development of a theoretical model for explanation of formation of micro- 
and nano- whiskers in presence of mechanical stresses that can be originated 
from specific structure of pentagonal nanocrystals; 

 Proposing a theoretical model and conducting numerical experiments on 
simulation of manipulation of pentagonal (icosahedral) nanoparticles by 
means of specific driving forces; 

 Implementation of an experimental setup for real-time in situ manipulation 
of nanoparticles and nanowires inside a scanning electron microscope 
(SEM); 

 Analysis of tribological properties of nanoparticles via conducting of nano-
manipulation experiments of gold nanoparticles on flat substrates such as 
oxidized Si wafer; 

 Analysis of tribological and elastic properties of nanowires via conducting of 
nanomanipulation experiments of zinc oxide nanowires on a flat substrate 
like in the former case of nanoparticles; 
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3. STRUCTURAL PROPERTIES  
OF PENTAGONAL 0D AND 1D NANOCRYSTALS 

3.1. Pentagonal nanorods with  
crystal lattice mismatch layer 

As we have already revealed in paragraphs 1.2 and 1.3, PNCs possess internal 
mechanical stresses in them. Those stresses have to be released via relaxation 
mechanisms. By taking a closer look at the Fig. 3, one may notice that the PNCs 
share a common properties of having tensile stresses in the outer region and 
compressing stress in the inner region. Now let us propose a new mechanism of 
stress relaxation: the tensile stress in the surface region of PNR and INP can be 
diminished by increasing the crystal lattice constant in this region. This means 
the formation of so-called mismatched (misfit) layer. One can expect that stres-
ses and elastic energy of PNR and PNP can be diminished during formation of 
mismatched shell layer. 

Let us consider a model for non-uniform PNR consisting of two phases, i.e. 
core and shell, with different crystal lattice parameters and elastic modules as it 
shown in the Fig. 10. In this figure shear modules and Poisson’s ratios are 
designed as G1,  for core and G2,  for shell respectively. The lattice misfit 
parameter  is defined as 

 

,
core

shellcore*

a

aa 
      (31) 

 
where acore and ashell are the lattice parameters of the core and shell. 
 

 
 

Figure 10. Formation of mismatched shell layer in PNRs. 
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As a result a shelled PNR is described as a two-phase infinite cylinder, 
including co-axial positive wedge disclination of strength  and co-axial 
cylindrical inclusion with eigenstrain. In this way the elastic field in shelled 
PNR, for example stressesij, can be calculated as a superposition of the discli-

nation field ij() and the field ij() due to inclusion. On the other hand stresses 

ij() can be considered as caused by mismatched layer. Note that shelled PNR 
is a typical core/shell cylindrical structure complicated by disclination. For 
these reasons we use terms “inclusion”, “core”, “layer”, and “shell” in the 
following. 

Elasticity boundary-value problem for non-uniform PNR assumes standard 
Hook’s law relations for both phases, equations of equilibrium for the bulk of 
the core and the shell, and following boundary conditions: 

 

0)2( 
 sRrrj

 

cc RrrjRrrj 
 )2()1( 

 
,)2()1(

cc RrjRrj uu


 ,,, zrj   

(32a,b,c) 

 
where ui are displacements in cylindrical coordinate system (r,,z) associated 
with axis of PNR, upper indexes (1) and (2) mean core and shell correspon-
dingly, RC is a core radius of PNR and RS is shell radius of PNR. In the cross-
section of PNR the condition of zero axial load must be fulfilled: 
 

.0 ds
S

zj     (33) 

 
The Eq. (33) reflects that no external stress is applied to the butt-ends of the 
PNR when modeling it as an infinite cylinder. Here S is the area of cylinder 
cross-section.  

The solutions of boundary-value problem for ij() and ij() are given sepa-
rately in the paragraphs 3.1.1 and 3.1.2. In the framework of the linear theory of 
elasticity it is possible to find the total elastic energy of PNR with mismatched 
layer ECP() as the sum of three terms: 

 

,**)(  
 EEEECP     (34) 

 

where E  is the energy of disclination in two-phase cylinder, E is the energy 
of two-phase cylinder with mismatched layer, or cylindrical inclusion in 

cylinder, and E  is the energy of interaction between the disclination and 
cylindrical inclusion. 
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3.1.1. Solution for disclination in two-phase cylinder.  
Stresses and energy 

 

Let us take the displacement field for a wedge disclination ω in a two-phase 
cylinder in the both regions in the following form: 
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for the total displacement in the core and the shell, respectively. B1, B2, C2 and 
D are unknown constants determined by boundary conditions for the displace-
ments and stresses: 
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(36a,b,c,d) 

 
The system of Eqs. (36) solved for B1, B2, C2 and D is described in Appendix 
A3. Finally, the mechanical stresses of the positive wedge disclination ij() in 
the two-phase cylinder in a closed analytical form:  
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Here upper indexes (1) and (2) designate core and shell correspondingly; 
t=RC/RS.  

The elastic energy of disclination in two-phase cylinder per unit length is: 
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Formation of mismatched shell layer in PNR leads to eigenstrain in the shell 
region * . Thus, plastic displacements in the cylinder representing the PNR can 

be written as: 
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(39a,b) 

 
Elastic displacements are: 
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Here B1, D1, B2, C2 and D2 are unknown constants. Boundary conditions for the 
total displacements will be same as in Eqs. (36). The solution for them and 
strain tensor components are described in Appendix A4. The stresses of two-
phase cylinder with mismatched shell layer have been found as following: 
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3.1.2. Solution for cylinder with mismatched phases.  
Stresses and energy 
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Here all designations are as those used in Eqs. (37). 

The elastic energy E of a two-phase cylinder with mismatched layer per 
unit length is: 
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On the base of elastic fields Eqs. (37) or Eqs. (41) one can calculate the energy 
of interaction between the disclination and cylindrical inclusion: 
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Energy release in the result of formation of the mismatched layer in PNR is 
defined as: 
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where E

 is the energy of unshelled PNR with radius RS. 
Diagrams for energy release per unit length for PNR are shown in Fig. 11. 

One can see areas where ECP()<0. It means that formation of such layer is 
energetically favorable. Fig. 11a and 11b demonstrates the energy release 
ECP() as a function of the core/shell radii ratio t at different misfit parameters 
 and ratio of shear moduli Γ. The contours of the energy release ECP() as a 
function of t and mismatch parameter  are shown in Fig. 11c.  

Optimal misfit parameter opt  and radii ratio topt  are defined as the para-
meters which give the global maximum of elastic energy release. For shelled 
PNR at equal elastic modules of core and shell the optimal parameters are 
obtained numerically: opt; topt. 

3.1.3. Conditions for mismatched crystal lattice  
layer formation in PNR 
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The case of elastically softer shell, i.e. for elastic modules ratio =G2/G1<1 
(see the top of Fig. 11b), is of special interest. Under such conditions the gain in 
energy exists for  >0, i.e. for the lattice parameter of the shell being smaller 
than that of the core. On the contrary, for  >1 (see the bottom of Fig. 11b) even 
for optimal misfit parameter opt  there is the region for the parameter t with no 
energy release. It is useful to note that optimal misfit parameter opt does not 
vary much with the change of In the same time the radii ratio t giving the 
maximum energy release at optimal opt varies substantially with 



 
 

Figure 11. Formation of mismatched shell layer in pentagonal nanorods (PNRs): (a) 
energy release per unit length ECP() as a function of the core/shell radii ratio t with 
different misfit parameters  and ratios of shear modules . Here . Energy 
release per unit length ECP() for shelled PNR with different=G2/G1: (b) energy 
release ECP() as a function of the core/shell radii ratio t with different misfit 
parameters ; (c) contours of equal energy release ECP() as a function of t and . G1, 
, G2,  are the shear modules and Poisson’s ratios of the core and shell 
correspondingly, varies from 0.5 to 2 and . 
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3.1.4. The role of core/shell interface energy 
 

Let us introduce now the energies of free surface and interface in core/shell 
PNR (or INP): 
 

,SE   (45) 
 
where 

 
is a free surface energy per unit area or an interface energy per unit area 

and S is an area of the free surface or interface. It will be demonstrated that the 
introduction of surface energy terms enables to define the threshold radius of 
PNR(or INP), at which the formation of lattice mismatched shell becomes 
energetically favorable.  

 
 

3.1.5. Threshold radius for mismatched crystal lattice  
layer formation in PNR 

 

Assuming the energies of free surface for shelled PNR and unshelled PNR 
being equal there will be only one additional term in the energy balance caused 
by the interface energy: 
 

.2)( CRE   (46) 
 

As a result, the energy release ECP() from Eq. (44) transforms to 
 )(CPE : 
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where all energies are per unit length of PNR.  

The criteria for determining the threshold radius ŘS can be written as 
following: 
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The value of threshold radius depends on the elastic modules of the core and 
shell (Fig. 12). For the system with  the threshold radius defined by Eqs. 
(48) does not appear at all. For > 1 it increases with . The reason of that can 
be understood as “predefined” energetically favorability of a PNR to transform 
into a PNR with lower shear modulus. From Eq. (48), for example, for Cu PNR 
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( =0.625 Jm–2, G=5.46×1010 Pa, [55]) the threshold radii are ŘS108 nm (Fig. 
12b) and ŘS320 nm (Fig. 12c), respectively. The formation of shell layer with 
the mismatch parameter  close to the optimal value is energetically favorable 
for PNRs with RP >ŘS. 
 

     
 

Figure 12. Typical diagram of the energy release in PNR (a,b,c) per unit length 


 )(CPE  and INP (d,e,f) 
 )(CPE in the units of the initial energy of PNR 

0
E  and 

INP 0
E  for shelled pentagonal nanocrystals with the interface energy  taken into 

account with different =G2/G1: (a) misfit parameter 0.019, =1; (b) 0.0112, 
=0.5; (c) 0.011, =2, (d) 0.121, =1; (e) 0.049, =0.5; (f) 0.045, 
=2. For these plots J×m–2, shear module of core G1=5.46×1010 Pa, Poisson’s 
ratio of core and shell . 
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3.2. Pentagonal nanoparticles with crystal lattice 
mismatch layer 

Fig. 13 represents mechanical model of shelled INP as a two-phase spheroid, 
including the distributed Marks-Yoffe disclination with strength  and 
dilatational spherical inclusion with eigenstrain that corresponds to the crystal 
lattice mismatch layer. The elastic field generated in shelled INP, for example 
stresses ij, can be considered as a superposition of the disclination field ij() 

and the field ij() due to the mismatched layer.  
In order to find the elastic fields and energy of the INP with lattice 

mismatched layer, the boundary value problem similar to the problem for PNR 
must be solved. 

The total elastic energy of the shelled INP consists of the following terms: 
 

,**)(  
 EEEECP (49) 

 

where E is the energy of the distributed disclination in two-phase spheroid,  
is the energy of two-phase spheroid with mismatched layer (spherical inclusion 

with eigenstrain ) in a free spheroid, and  
 is an interaction energy 

between the distributed disclination and the mismatched layer. 
 
 

 
 

Figure 13. Formation of the shell layer with crystal lattice mismatch in INPs. INP with 
mismatched shell layer. G1, , G2,  are the shear modules and Poisson’s ratios of the 
core and shell correspondingly; RC is a core radius; RS is a shell radius and  is a lattice 
misfit parameter. 
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The overall idea for the calculation is similar to described in the paragraph 
1.2.2. But in this case we give the displacement field in the both regions as 
following: 
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for the total displacement in the core and the shell, respectively. 

Boundary conditions for the displacements and stresses are written as: 
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Now the system of Eqs. (51) can be solved for coefficients B1,C1,B2 and C2 (see 
the Appendix A5 for details).The expressions found for mechanical stresses 
ij() due to the distributed disclination in the two-phase spheroid are: 
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3.2.1. Solution for distributed disclination  
in two-phase spheroid. Stresses and energy 
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  (52d) 

 
Here upper indexes (1) and (2) mean core and shell correspondingly; t=RC/RS, 
RC is a core radius of spheroid and RS is shell radius of spheroid; r is a radial 
coordinate of spheroid. 

Elastic energy E of the distributed disclination of two-phase spheroid can 
be written in following form: 
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Let us consider a practically important case   21 . Then the energy 
of Marks-Yoffe disclination yields: 
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3.2.2. Solution for spheroid with crystal lattice mismatched layer. 
Stresses and energy 

Formation of mismatched shell layer in INP leads to eigenstrain in the shell 
region * . Consequently, plastic displacements in the spheroid representing the 

INP are written as: 
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Elastic displacements are: 
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The corresponding strain tensor components have the form: 
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The stresses of spheroid with mismatched layer or, as we noted above, spherical 
inclusion with eigenstrain  in free spheroid, are: 
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The elastic energy of two-phase spheroid with mismatched layer E  is: 
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Thus, the energy of interaction between the distributed disclination and mis-
matched layer in INP has a following simple expression: 
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3.2.3. Conditions for mismatched layer formation in INP 

Energy release ECP after formation of the mismatching layer in INP is 
defined as: 
 

,)( 0
)( **  EEEEECP 

 (62) 
 
where E

  is the energy of the unshelled INP with radius RS. Fig. 14 gives the 
energy release for INPs calculated in accordance with Eq. (62). The optimal 
parameters opt and topt at which the energy release is maximal have been found 
numerically and, for example, for equal elastic modules of core and shell are 
opt and topt. All observations we made about the role of parameter 
  for PNRs (see section 3.1) remain true for INPs. 

It should be noted that the core-shell model justifies the hollow-core model 
of relaxation in pentagonal crystals suggested by Romanov et al. in [14]. 
Hollow-core can be treated as a material with shear model G1 equal to 0. In the 
terms of our model the definition of initial state PNR or INP would need to be 
changed correspondingly to have elastic modules G2 and . The resulted 
expression for energy release for both PNR and INP shows energetic favorabi-
lity of formation of hollow-core in all the range of core radius parameter. 



48 

 
 

Figure 14. Energy release ECP() in a INP as a function of the core/shell radii ratio t 
with different misfit parameters  and ratios of shear modules , where (a). 
Energy release per unit length ECP() for shelled INP with different=G2/G1: (b) 
energy release ECP() as a function of the core/shell radii ratio t with different misfit 
parameters ; (c) contours of equal energy release ECP() as function of t and . G1, 
, G2,  are the shear modules and Poisson’s ratios of the core and shell correspon-
dingly, varies from 0.5 to 2 and . 

 
 

3.2.4. Threshold radius for mismatched crystal lattice 
 layer formation in INP 

 
The interface energy term for INPs can be introduced in the same manner as it 
was done in the paragraph 3.1.5: 
 

.4 2
)( cRE       (63) 

 
Hence, the energy release ECP() for INP with the additional interface energy 
from Eq. (63) yields: 
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For Cu INP (=0.625 J×m–2, G=5.46·1010 Pa, [55]) the threshold radii obtained 
from Eqs. (48) and (64) are ŘSnm (see Fig. 12e) and ŘSnm, for Ag INP 
(=0.780 J×m–2, G=3.38·1010 Pa, [55])  ŘS14 nm. The formation of shell layer 
with the mismatch parameter  close to the optimal value is energetically 
favorable for INPs with RP > ŘS. 

In order to estimate the threshold radii of PNR and INP we took into account 
the interface energies only. In general case the difference in surface energies of 
unshelled and shelled PNR or INP should be considered. 

It is worth noting that the core/shell pentagonal nanoparticles had been 
investigated by molecular dynamics simulation method [56, 57]. It was shown 
that for Cu-Ni and Cu-Pd systems [56] the location of “smaller” atoms of Cu in 
the core of icosahedral nanoclusters reduces the energy of the system. The Ag-
Pd and Ag-Cu systems considered in [57] also confirmed that formation of shell 
with larger lattice parameter is energetically favorable. 
 
 

3.3. Nanowhisker growth triggered by disclination 

Grain boundary junctions in polycrystals possess elastic fields characteristic of 
disclinations [10, 58]. These fields become a source for such structural 
transformations associated with defect formation and defect motion. Formation 
of metallic nanowhiskers on the surface of polycrystals is often referred to as a 
relaxation of mechanical stresses stored in the material. One the other hand, as 
was described in the paragraph 1.3 PNCs are subject to relaxation processes due 
to mechanical stress in them as well. I would like to propose a new model that 
combines this idea with the advantages of the disclination approach. The model 
of nanowhisker growth proposed below is suitable for pentagonal crystals and 
bulk polycrystalline materials with micrograins and nanograins, junctions of 
which are known to form disclination-type structures [17]. 

This model of nanowhisker formation operates with prismatic dislocation 
loops that condensate on the disclination in the TB junction or in the grain 
boundaries of a polycrystal. Due to the formation of vacancy-type dislocation 
loops or pores in the bulk the excess material is then extruded at the surface in 
the form of nanowhiskers (Fig. 15). The model will be described in 2 steps. For 
the first of all, a system with single prismatic dislocation loop in the field of 
disclination is considered. Then one more prismatic dislocation loop of opposite 
sign is introduced. Calculation of elastic fields and energies is demonstrated for 
the both cases. 
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Figure 15. Schematics of the nanowhisker growth model. Sketch of the atom’s flow 
motion to nanowhisker formation in the grain boundary junction. 

 
 

3.3.1 Single dislocation loop in presence  
of a disclination source 

 
Figure 16. Half-space body with disclination dipole and prismatic dislocation loop 
PDL1 coaxial with one of the disclinations. 

 
 
Let us consider a half-space body with 2 wedge disclinations of powers ω and –
ω (i.e. disclination dipole) perpendicular to the surface. The distance between 
the disclinations is q. The first disclination ω (shown in Fig. 16) serves as a 
source of compressive stresses and is located coaxial to the growing nano-
whisker, while the other is placed enough far, i.e. at a distance much greater 
than any size parameters used in the problem and used for “screening”. The 
elastic fields of a disclination dipole are well-known from [59]. The vertical 
component of the stress σzz field near the disclination line OZ (r<<q) can be 
written as (see Fig. 16): 
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where G is the shear modulus and ν is the Poisson’s ratio of the body. 
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A prismatic dislocation loop PDL1 with Burger’s vector b and radius a 
coaxial with the disclination line OZ is now introduced. Total elastic energy 
Etotal of the system can be then expressed: 

 
,L1L1-ddcltotal EEEE   (66) 

 
where Edcl is the elastic energy of the disclination dipole, EL1 is the elastic 
energy of the prismatic dislocation loop and Ed-L1 is the interaction energy 
between them. 

Therefore, the energy release Erel after formation of the dislocation loop is: 
 

.L1L1-ddcltotalrel EEEEE   (67) 

 
The interaction energy Eint can be calculated as a work done by the elastic forces 
of the disclination dipole for inserting (removing) a disk of radius a and of 
thickness b: 
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The elastic energy EL1 has the following form [60]: 
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Here rcore is the core cutoff radius of the loop and Lipshitz-Hankel integrals 
J**(m,n;p) are defined as: 
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where Jm(κ) is the Bessel function. 

The Lipshitz-Hankel integrals J**(m,n;p) used in the Eq. (69) can be 
rewritten in terms of complete elliptic integrals according to [61]: 
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where  1/1 22  ahk , K(k) and E(k) are complete elliptic integrals defined as: 
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The energy release Erel after formation of the dislocation loop has been 
calculated numerically for a sample set of parameters (see Fig. 17). There is an 
area where Erel<0 meaning that the formation of such dislocation loop is 
energetically favorable. One can notice that the radius of the loop a at the local 
negative minimum of Erel<0 is of the same order as h. 
 

 
 

Figure 17. Diagrams of the energy of the dislocation loop EL1, interaction energy Ed-L1 
and energy release Erel as a function of radius of the dislocation loop a given in arbitrary 
units in different scales of a. Calculated for the case b=0.5 nm, ω=0.1, ν=0.3, h=300 
nm, q=1 m, rcore=0.4 nm. 

 
 
On the other hand, from the Fig. 18 one can see that formation of a dislocation 
loop of a given radius a becomes energetically favorable in distance of h>h* 
where Erel(h

*)=0. 
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Figure 18. Diagrams of the energy of the dislocation loop EL1, interaction energy Ed-L1 
and energy release Erel as a function of the distance of the dislocation loop from the 
surface h given in arbitrary units with different radii of the dislocation loop a. 
Calculated for the case b=0.5 nm, ω=0.1, ν=0.3, q=1 m, rcore=0.4 nm. 

 
One should note that dependence of the energy release Erel and its components 
from the distance q is negligible keeping the conditions a<<q and h<<q, i.e. dis-
location loop is formed in a field of a “screened” disclination. 
 
 

3.3.2. A pair of dislocation loops in presence  
of a disclination source 

Let us now in addition to the system considered in the previous paragraph 
introduce another prismatic dislocation loop PDL2 of radius a with Burgers 
vector -b is coaxial with the former dislocation loop and situated at the distance 
j from the surface (Fig. 19). The loop PDL2 is of interstitial type and represents 
the collective flow of excess atoms towards the surface (Fig. 19). 

 

Figure 19. Half-space body with disclination dipole and two prismatic dislocation 
loops PDL1 and PDL2 coaxial with one of the disclinations. 
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Total elastic energy Etotal of the body containing a disclination dipole and 
dislocation loops, PDL1 and PDL2, can be expressed as the sum: 
 

L2L1L2dL1dL2L1dcltotal   EEEEEEE  (73) 
 

where Edcl is the elastic energy of disclination dipole, EL1 and EL2 are the elastic 
energy of PDL1 and PDL2 correspondingly, interaction energy between the 
disclination dipole and PDL1 (PDL2) is denoted as Ed-L1 (Ed-L2), and EL1-L2 is 
interaction energy between PDL1 and PDL2. 

The energy release, Erel, is defined as a difference between the initial elastic 
energy of a bare disclination dipole and the total elastic energy of the system 
after the formation of the dislocation loops PDL1 and PDL2: 

 

L2L1L2dL1dL2L1dcltotalrel   EEEEEEEE  (74) 

 
EL1 and EL2 can be found in analytical form in [59]. The interaction energies Ed-

L1 and Ed-L2 are calculated as a work done by the elastic forces of the 
disclination dipole for removing or inserting a disk of radius a and thickness b 
at the position of PDL1 or PDL2. The term EL1-L2 is determined as a work done 
by elastic forces of PDL1 for inserting the same disk (or vice versa) at the 
position of PDL2. The expressions for the stress field of PDL1 (PDL2) are 
given, for example, in [60]. 

Calculation of Ed-L2 and EL2 follows directly from Eqs. (68) and (69) by 
substitution of h with j and b with -b. 

The term EL1-L2 involving elastic stress fields of PDL1 
L1
zz  is expressed by: 
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The very expression for the stress component 
L1
zz  can be found in [60]: 
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where Lipshitz-Hankel integrals J*(m,n;p). 

We use [62] to rewrite the Lipshitz-Hankel integrals in terms of complete 
elliptic integrals that are more suitable for numeric computations. 

In the Fig. 20a,b the diagrams demonstrate general behavior of the system 
with certain sample set of parameters. Both PDL1 and PDL2 are attracted to the 
free surface (see EL1 and EL2), although PDL1 is also attracted deep into the 
body by the compressive stresses of the disclination and PDL2 is extruded by 
them. Attraction between PDL1 and PDL2 follows from their opposite Burger’s 
vectors. Interplay of these forces is described by the energy release Erel as 
functions of j and h (Fig. 20). The diagrams clearly show a range of parameters 
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where Erel<0, which means that formation of PDL1 and PDL2 is energetically 
favorable versus the initial state of the body without them.  

However in other cases, their formation requires overcoming of an energy 
barrier. Rearrangement of the separated dislocation loops is followed by gliding 
of PDL1 downward to a vacancy reservoir (e.g. pore), and PDL2 towards the 
surface contributing to the growth of the nanowhisker. 

 
 

Figure 20. Diagrams of the energy of the dislocation loops EL1 and EL2, the interaction 
energies Ed-L1,and Ed-L2 and their sum, and the energy release Erel as a functions of 
distance j in units of b with fixed h=500·b (a), as function of distance h in units of b 
with fixed j=500·b (b). The energy is given in arbitrary units, calculated for the case 
b=0.5 nm, ω=0.1, a=500 nm, rcore=0.4 nm and typical values of the materials elastic 
properties. 

 

3.4. Summary 

In the chapter 3 a new mechanism of stress relaxation in PNRs (section 3.1) and 
INPs (section 3.2) was proposed in the framework of the disclination approach. 
On the base of our modeling and calculations it has been proved that formation 
of a shell layer with crystal lattice mismatch can diminish the internal energy of 
PNRs or INPs. Solution for the boundary value problem of elasticity was 
obtained for a wedge disclination (Marks-Yoffe disclination) in a core-shell 
cylinder and spheroid with different elastic moduli of core and shell. The elastic 
fields and energy of core-shell mismatch were solved for undisclinated cylinder 
and spheroid. Then the conditions of mismatch layer formation were proposed 
on the base of the two elastic fields and corresponding diagrams were 
demonstrated. Then the core/shell interface energy was introduced into consi-
deration and the threshold radius for PNRs and INPs. The optimal mismatch 
parameter opt  giving the maximal energy release was determined as 
opt for PNR and opt for INP. The threshold radius as the 
minimal radius of nanorods or nanoparticles, for which the formation of the 
layer is energetically favorable was found to be approximately 10 nm for 
nanoparticles and 100 nm for nanorods of typical FCC metals. 
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In the section 3.3 a new model for nanowhisker growth was proposed. In this 
model the nanowhisker extruded from the material having compressing stresses 
originated from a disclination that might reside in a PNCs or grain boundary 
junction. For simplicity half-space with a wedge disclination dipole 
perpendicular to the surface was considered. The elastic fields and energy of a 
half-space with the disclination dipole is described. Then a single dislocation 
loop is introduced coaxial to the disclination line, elastic fields and energy are 
revealed. And finally, a second dislocation loop is invoked that is responsible 
for the extruding of the material in a form of nanowhisker. The elastic energy of 
the system with a pair of dislocation loops as a function of location and size of 
the loops. 
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4. TRIBOLOGICAL PROPERTIES OF 0D AND  
1D NANOCRYSTALS 

4.1. Simulation of icosahedral nanoparticles manipulation 

4.1.1. Computer program for numerical simulation 

In the present paragraph a model of simulation of INP manipulation is 
demonstrated. The necessary theoretical background is described in the 
paragraph 1.5. The simulation comprises numerical solution of the equations of 
motion in the overdamped zero-temperature case. Two cases are considered: (a) 
nanoparticle on a plane is being manipulated by a concentrated force fP at the 
point rP; (b) nanoparticle clutched between two planes, while the top plane is 
pressed by normal load fN and pulled by a spring κ with a constant velocity V. 

In order to perform the calculations and present the results a computer 
program was developed. The main components of that program must be as 
following: 
1. Integration algorithm for numerical solving of the equations of motion, 

therefore generating the state of the system at each moment t with time 
interval Δt. The state of the system includes the position of nanoparticle’s 
center of mass r, its rotation q for the both cases (a) and (b), and position of 
the top plane R for the case (b). 

2. Physical system’s subroutines for calculation of the dissipation coefficients 

ηB,T, forces )(
,
i
TBf  atom’s positions ir . The latter will account for the nano-

particle shape. In our case, only INPs are considered. However the size of 
the nanoparticle, i.e. number of icosahedral “layers” can be different. 

3. Control panel for setting the physical parameters of the system: lattice 
constant for nanoparticle aP and planes a, adhesion energy ε, equilibrium 
separation from the surface σ, characteristic decay length λ, damping co-
efficient η0 and decay length ξ. It also includes vector of point force fP and 
its application point rP for the case (a), and normal load fN, velocity of the 
spring V, and spring constant κ for the case (b). Initial configuration of the 
system, i.e. position of the nanoparticle and top-plane can be also set. The 
mode of calculation – classical equations of motion or overdamped case can 
be chosen. 

4. Visualization and analysis system for visual representation of the system 
evolution in time, and tools for analysis of the various system variables, such 
as friction force f. 

The components stated above were realized in the frame of a single executable 
file. Let us consider some of the peculiarities in the implementation of each of 
the components. 

Among all the available numerical algorithms of solving ordinary 
differential equations, one of the most widely used is so-called Runge-Kutta. In 
particular, classical Runge-Kutta (RK4) has an error on each step of order h5 
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and accumulated error of order h4, where h is the integration step [63]. This 
RK4 method was chosen for the implementation of the simulation program. 

The subroutine for calculations of atom’s positions is an important part of 
the 2nd component. In the current implementation, where only INPs are 

considered, this subroutine must give the atom’s positions irof all the atoms for 

a nanoparticle of a given size. The size can be described as a number of 
icosahedral layers L. When L=0, the nanoparticle consists of a single atom 
(layer 0). When L=1, in addition to the central atom of the layer 0 a number of 
atoms arranged the way depicted in the Fig. 21a (layer 1). The length of the 
edge of the icosahedron is described by the nanoparticle lattice constant aP and 
nanoparticle L=1 consists of 1+12=13 atoms. In the case of L=2, the layer 2 is 
added up to the basis described by layers 0 and 1 with the same orientation of 
the icosahedron. The length of the edge in layer 2 is now 2aP and the 
nanoparticle consists of 1+12+42=55 atoms. This can be continued for larger L 
in analogous way as seen from the Fig. 21. 

 

 
 

Figure 21. Schematics of atoms in an icosahedral nanoparticle: with 1 layers, 13 atoms 
(a), with 2 layers, 55 atoms (b), with 3 layers, 147 atoms (c). 

 
 
Control panel has been implemented to set up physical parameters in a graphical 
user interface before the simulation start (Fig. 22). It also allows monitoring 
current state of the physical system during the simulations and seeing such 
variables like nanoparticle position, momentum and angular momentum. It 
should be noted, that the choice of the initial rotation of the nanoparticle does 
not really influence the long-term motion of the system, because in relatively 
short time the nanoparticle rolls and occupies an energetically favorable 
position. In the current implementation in the initial state the icosahedron is 
“standing” upon one of the vertexes. 

Visualization of the simulations has been realized in a form of 3D picture of 
the system with atomic spheres rendered to a graphical window and updating in 
real-time along the simulations. In the current version of the program, the 
simulation timeline is written in a corner. 
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Figure 22. Control panel for setting physical parameters of the simulation and 
monitoring the system state. 

 
 

4.1.2. Results of the simulations 

Let us now consider some of the results obtained with use of the numerical 
simulations described in the previous paragraph. The simulations were per-
formed in the two manipulation regimes: point force and top plane (see Figure 
23). The overdamped zero-temperature approximation was used all the time. 
 
 

  
 
Figure 23. Schematics of the simulation regimes. The point force manipulation regime 
(a). The top plane manipulation regime (b). 
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In the point force regime, it makes sense to consider 3 main cases. In all these 
cases the point force is directed along X axis, however it is applied at different 
positions on the nanoparticle, therefore producing different torques (see Table 1 
for details). The types of observed motion are also listed in the Table 1, where it 
can be clearly seen that the nanoparticle follows intuitively expectable directions 
of motion. In the case 2 the nanoparticle slides on a facet attracted by the surface. 

 
 
Table 1. Schematics and results of the numerical simulation of manipulations of a 
nanoparticle with a point force applied at different locations of the nanoparticle. In all 
cases L=4, η0=10–6 kg/s, a=aS=0.25 nm and ξ=λ=0.05 nm were used.  
 
No. System parameters Schematics Types of 

nanoparticle’s 
motion  

1 fP=(10, 0, 0) nN, 
θ=φ=0. 

Rolling motion in 
the clock-wise 
direction. 

2 fP=(10, 0, 0) nN, 
θ=π/2, 
φ=0. 

After rolling to a 
facet, stable 
translational 
motion. 

3 fP=(20, 0, 0) nN, 
θ=3π/4, 
φ=0. 

Rolling motion in 
the counter-
clockwise direction. 

 
 

In the regime with the top plane the dependence of the nanoparticle’s motion on 
the normal load is interesting to consider. According to the results listed in 
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Table 2, under higher normal load the nanoparticle slides without rolling (case 
1), and with lower load the nanoparticle may roll (case 2). 

It should be noted that the goal of this paragraph is to present the model for 
numerical simulations. The physical parameters used for the calculations listed 
in Tables 1 and 2, were not chosen to suit any particular real materials. There-
fore, performing “realistic” simulations for different materials could be aims of 
new investigations. It could be also interesting to simulate nanoparticles of 
other shapes and compare the results. 

 
 

Table 2. Results of the numerical simulation of manipulations of a nanoparticle 
clutched between two planes with the top plane dragged by a spring κ with constant 
velocity V. In all cases L=4, η0=10–5 kg/s, a=aS=0.25 nm and ξ=λ=0.05 nm were used. 
 
No. System parameters Types of nanoparticle’s motion 
1 fN=300 nN, 

V=4·105 nm/s 
κ=10 N/m. 

Sliding without rolling. 

2 fN=10 nN, 
V=8·105 nm/s 
κ=10 N/m. 

Rolling slowly. 

 
 

4.2. Nanomanipulation experimental  
setup and force sensor 

Experimental measurements considered in the present paper involve visually 
controllable manipulations (positioning and bending) of NPs and NWs inside 
SEM (Vega-II SBU, TESCAN; typical chamber vacuum 3 x 10–4 mbar). The 
manipulation tool comprised an AFM cantilever with a silicon tip (NT-MDT), 
etched 0.1 mm W wire [64] or chip with contact cantilever (Nanosensor ATEC-
CONT cantilevers C=0.2 N/m) connected to a 3D nanomanipulator (SLC-1720-
S, SmarAct). The tip of the AdvancedTEC AFM probes is tilted about 15 
degrees relative to the cantilever, providing tip visibility from the top.  

For the nanomanipulation experiments described in paragraphs 4.3 and 4.4.2, 
a home-made force sensor was installed to measure the applied force. Force 
sensors were constructed in a manner similar to Rozhok et al. [65]. Force 
measurements were based on the fact that the oscillation amplitude of the sensor 
oscillating on its resonant frequency depends on the forces acting on the tip, i.e. 
so-called amplitude modulation. Sensor oscillations were excited by applying 
alternating voltage to its electrodes using a lock-in amplifier (SR830; Stanford 
Research Systems). The amplitude of free oscillations at the tip apex was on the 
order of 100 nm. The sensor also provided feedback to control the distance 
between the tip and the surface.  



62 

Depending on the side to which the tip was glued, the sensor operated in 
normal or shear modes. In normal mode, the QTF oscillated perpendicularly to 
the surface in a manner similar to a conventional AFM (Fig. 24a). In shear 
mode, the sensor oscillated parallel to the surface (Fig. 24b).  

Such a sensor enables to measure the force applied by AFM tip to the NP or 
NW. The tip was electrically connected to the QTF electrode to exclude 
charging effects. To make the QTF response faster, the Q-factor was reasonably 
decreased by putting a small drop of epoxy resin (Ecobond 286, Emerson & 
Cuming) onto the opposite prong of the QTF. Thermal drift for given 
experimental set-up was on the order of 0.1 nm/sec and could thus be neglected 
within one manipulation event. 

The signal from the QTF was amplified by the lock-in and recorded through 
the ADC-DAC card (NI PCI-6036E, National Instruments). The typical values 
of the driving voltage were 10–30 mV. The force sensitivity of the QTF was 
calibrated in both the Y and Z directions on reference contact AFM cantilevers 
(FCL, AppNano and CSG11 C=0.03–0.1 N/m, NT-MDT) inside the SEM 
similar to the procedures described in [66, 67]. The reference cantilevers were 
precalibrated by the thermal noise method [68]. 

 

 
 

Figure 24. Tip oscillating in (a) Normal and (b) Shear modes. (c) QTF and sample tilted 
at 45 degrees to the SEM objective. (d) SEM image of the sample and QTF with AFM 
tip. 

 
 
Special software was developed to control the nanomanipulator and record 
simultaneous signals from the nanomanipulator’s position sensors and signals 
from the force sensor (see the Fig. 25). More details on the force sensor, data 
acquisition and manipulator control used can be found in [69]. 
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Figure 25. A screenshot of the control and measurement system panel for the nano-
manipulation setup. 
 
 
 

4.3. Manipulation of nanoparticles employed for 
tribological measurements 

4.3.1. Manipulation of gold nanoparticles in SEM 

For manipulation experiment, the tip was brought into the close proximity to the 
chosen particle. The particle was then displaced (“kicked”) from its initial 
position by an abrupt tip motion in the step regime to reduce the initial adhesion 
[32], which is known to be time-dependent [70], to its minimal value. Initial 
displacement was followed by controlled manipulation of the particle by 
pushing it with the tip in scan regime with simultaneous force recording. During 
manipulation, the tip moved parallel to the surface along a straight line without 
feedback. 

Figure 26 presents a typical manipulation curve for the QTF oscillating in 
the normal mode. The initial flat region A-B of the curves corresponds to the 
movement of the tip above the surface. Decline of the curve at region B-C was 
caused by a long-range interaction between the tip and the particle. The abrupt 
drop of the amplitude at C corresponds to the force needed to overcome the 
static friction and displace the Au particle from its initial location. When static 
friction was overcome, the particle jumped in the direction indicated by the 
arrow. From D to E, the particle moved smoothly with the tip. For the moving 
particle, the amplitude drop was only few percent lower than it was before the 
contact.   
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Figure 27 shows a manipulation curve for the QTF oscillating in the shear 
mode. The initial flat region from A to B of the curve corresponds to the 
movement of the tip at a constant set point above the surface. The abrupt drop in 
amplitude from B to C corresponds to the force needed to overcome static 
friction and displace the Au particle. The particle made a small jump in the 
direction indicated by the arrow. From D to E, the particle moved smoothly 
with the tip, and minor oscillations related to tip-particle interaction were 
noticeable. 

In all manipulation experiments, the tip moved in the Y direction. We used 
the Y-direction force-calibration data to convert the amplitude to force (further 
details are given below). The static friction was found in the range from 40 to 
450 nN for normal mode and from 50 to 750 nN for the shear mode. It should 
be noted that the oscillation amplitude often dropped to zero. This drop 
corresponds to the force higher than 1500–2500 nN (the upper limit depending 
on the particular sensor). Forces higher than these limits could not be measured 
due to the limited range of QTF sensitivity at a given driving voltage. 

 
 

 
 
Figure 26. Snapshots of the manipulation process and corresponding amplitude and 
force curves, Normal mode (sample tilt corrected).  
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Figure 27. Snapshots of the manipulation process and corresponding amplitude and 
force curves, Shear mode. 

 
 
Figure 28 displays a distribution histogram of the static friction forces for the 
manipulation experiments in the normal and shear modes. The static friction 
values for the cases when the amplitude dropped to zero remain unknown and 
thus could not be included in the histogram.  
 

 

 
 
Figure 28. Distribution of static friction forces based on 20 manipulation events in 
Normal mode and 17 manipulation events in Shear mode. 
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4.3.2. Structure and tribology of gold nanoparticles 

From the experimental results, it is evident that considerable force is needed to 
overcome static friction in this system. However, once the threshold for static 
friction was exceeded and the particle moved smoothly with the tip, then only 
minor changes in oscillation amplitude were observed in a few cases. Most of 
kinetic friction values were below the detection limits of our setup. This finding 
is in agreement with other researches, who have demonstrated that the kinetic 
friction is very small for clean surfaces in vacuum [71]. 

Variations in the experimental values of static friction may be due to the fact that 
the contact area between a particle and a substrate can vary due to deviations from a 
spherical shape. From Fig. 29a it is clearly seen, that Au particles used in the 
experiments were, in general, not spherical and had facets of different sizes.   

Geometrical factors may also play a crucial role in the reduction of static 
friction after a thermal treatment. In our experiments, the main reason for 
heating the samples was to burn out the surfactant remaining after the 
deposition of the particles onto the substrate. However, it was found that the 
annealing at 773 K also led to a rounding of the particles (see Fig. 29b), which, 
in turn, should result in reduction of contact area and the static friction.  

 
 

 
 
Figure 29. (a) Au particles of different shape as deposited from solution. (b) SEM 
micrograph of the same Au particle before and after annealing for 1 h at 773 K. 

 
 

Here, we provide an analytical estimate of the static friction considering the 
geometric parameters [5] of the particles used in our manipulation experiments. 
It has theoretically proposed and experimentally proven that friction at the 
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nanoscale is proportional to the contact area: Ffrict=τA, where A is the contact 
area and τ is the shear strength [72]. 

For spherical particles, the contact area can be calculated on the basis of 
continuum elasticity models for deformable spheres [32] such as the JKR model 
[53] or the DMT model [54]. According to Tabor [73], the choice of the most 
suitable model is determined by the parameter: 
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where R is the radius of the sphere, γ is the work of adhesion, and z0 is the 
equilibrium spacing for the Lennard-Jones potential of the surfaces. K is the 
reduced elastic modulus of the sphere and the substrate defined as 
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Assuming the following parameters for silicon and gold: E1 = 71.7 GPa, ν1 = 

0.17, E2 = 78 GPa, ν2 = 0.44, γ = 50 mJ/m2 [32], R = 75 nm and z0 = 0.3 nm, we 
obtained η = 0.158. For small η, the DMT-M theory is more appropriate [73]. 
According to the DMT-M model, the contact area 
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for spherical Au NPs with R = 75 nm is ADMT-M ≈ 31.43 nm2.  

The contact areas of the faceted NPs can be easily calculated using 
geometrical considerations. The results of the calculations for tetrahedral, 
decahedral and icosahedral NPs are presented in Table 3. 

The shear strength τ can be estimated using the relation τtheo = G* / 30 
between the theoretical shear strength and the reduced shear modulus, 

1
2211 ]/)2(/)2[(*  GGG  , where )1(2/ 2,12,12,1  EG  [43, 74]. 

The ultimate static friction can then be calculated as Ffrict = τtheoADMT-M.  
 
 

Table 3. Estimated static friction forces for 150 nm Au particles of different geometries. 
 

Shape Contact 
area, nm2

Static friction, 
nN

Spherical 31 9
Tetrahedral 9743 2768
Decahedral 3652 1038
Icosahedral 2693 765
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It should be noted here that the geometry of real particles is more complex due 
to the presence of arbitrarily truncated edges and apexes (Fig. 29a). Thus, the 
contact areas and static frictions should generally be lower than the maximal 
values listed in Table 3. 

According to the histograms (Fig. 28), low static friction force values prevail 
in the obtained data set. This finding can be interpreted as a reduction of contact 
area due to shape evolution towards the spherical after thermal treatment. For 
values beyond the upper detection limit (where the amplitude dropped to zero), 
the geometry was assumed to be highly faceted. 

The displacement of strongly adhered particles entails the risk of their plastic 
deformation. As one of the main objectives of our study was to compare the normal 
and shear modes, we narrowed our measurements to the low-friction region. 

Normal oscillation mode is commonly used for the AFM manipulation of 
nanoparticles. Considering that the friction is significantly higher at ambient 
conditions than in vacuum, our results correlate well with the previously 
reported static friction values of 130 nN for 15 nm Au nanoparticles on poly-L-
lysine coated mica in air [75]. In many studies, the friction was estimated from 
the dissipated power [30, 31]; however, the data obtained using such approach 
cannot be compared with direct frictional force measurements.  

In the normal mode, the sensor oscillated perpendicularly to the sample plane, 
producing a horizontal force component determined by the contact angle. The use 
of a nonzero contact angle requires sensor calibration in both the horizontal and 
vertical directions. However, according to our calibration data, the sensor was 
about ten times less sensitive in the Z (vertical) direction than in the Y (horizontal) 
direction. The ratio between the vertical and horizontal components of the applied 
force remains unknown, as it is determined by the contact angle, making 
interpretation of recorded signal in the normal mode complicated.  

In the shear mode, the tip oscillated parallel to the sample plane, and the 
alternating vertical component was almost absent (the small value may be due 
to imperfect alignment of the sensor relative to the sample). The force 
calibrations in both Y and Z directions showed the same sensitivity within the 
accuracy of our measurements.  

The manipulation curves for both normal and shear oscillation modes were 
rather similar. However, the values of static friction measured in the normal 
mode were a few hundred nN lower than those measured in the shear mode. 
This difference may be due to the contribution of the unaccounted vertical 
component in the normal mode.  

It is worth noting that the normal mode is closely related to AFM tapping 
mode and hence provides a stable set point. In the shear mode, the tip oscillates 
above a certain area and it is more difficult to maintain a stable set point.  

The influence of the impact velocity on the initial displacement of the 
particles is another challenging issue. We found that the step regime was more 
effective for the initial displacement of the particles than the scan regime. This 
might be related to the abruptness of motion in this regime; the tip strikes the 
particle with a much higher velocity than in the scan regime. Visual information 
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concerning the real motion of the tip and the particle is restricted by the 
scanning speed of the SEM. Manipulation events in the step regime are so fast 
that we could see only the initial and final positions of the tip and the particle 
and have no data on the motion in between these points.  

 
 

4.4. Manipulation of nanowires employed  
for tribological measurements 

For the experiments and tribological measurements zinc oxide NWs were used. 
ZnO NWs were grown using Au nanoparticles as a catalyst for the vapor 
transport method [76]. Droplets of water suspension of 60 nm Au nanoparticles 
(BBI International) were deposited on a silicon substrate. Then 1:4 mixture of 
ZnO and graphite powder was heated to 800–900°C in an open-ended quartz 
tube over a period of 30 minutes. Synthesized NWs were 10–20 µm long and 
had diameters in the range of 60 to 200 nm (Fig. 30a). 

Morphology of the synthesized NWs is of highly importance within the 
scope of the present investigation. Size and geometry of the NW strongly 
influence the interfacial forces as well as elastic properties of the NW and 
therefore qualitatively determine behavior of NW. Resolution of SEM used in 
present study was not sufficient to distinguish single facets on the NW surface. 
Therefore based on the literature data for ZnO NWs the cross-section of NWs 
used in experiments assumed to be hexagonal [76]. 

For the measurements of tribological properties of ZnO NWs the substrates 
were prepared by mechanically transferring the grown NWs from the original 
wafer to freshly oxidized (50 nm of SiO2 layer) silicon wafer (Semiconductor 
Wafer, Inc.) using a piece of clean-room paper (Fig. 30b). Some of the NWs had 
been broken up during the transferring and the NWs had wide distribution of 
lengths from few hundred nm to several µm afterwards. 

 

        
 
Figure 30. Scanning electron microscope images of ZnO nanowires a) grown on silicon 
substrate and b) mechanically transferred to freshly oxidized silicon wafer. 
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Experimental measurements included measurements of Young modulus 
(paragraph 4.4.2), kinetic friction (paragraph 4.4.4), static friction (paragraphs 
4.4.6 and 4.4.8), as well as mechanical strength of NWs (paragraph 4.4.6). 

 
 

4.4.1. Half-suspended nanowire loaded at the end 

Let us consider a NW of length L fixed at one end (“walled”) and loaded by a 
concentrated force Fload perpendicular to the initial straight NW line (Fig. 31). 
This problem is classical and described in textbooks (e.g. [44]) through the 
following equilibrium equation along the NW axis: 
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Boundary conditions for the walled end and for the zero momentum M at the 
other end dictate: 
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Equation for the NW profile can be then expressed via elliptic integrals or cal-
culated numerically from the tangent angle φ(l). For the reference, the length of 
the NW from 0 to the current point as a function of the current tangent angle is: 
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where 

Ll
 0  is the tangent angle at the free end, which correspondingly 

can be found from Eq. (81) knowing the overall length L through the following 
equation: 
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The profile of the NW in Cartesian coordinates can be expressed therefore as: 
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Figure 31. Schematics of NW walled at one end and loaded at the other end by 
concentrated force Fload. 

 
 
4.4.2. Young modulus measurements for ZnO nanowires 

For measurements of Young modulus 1 µm deep and 2 × 2 or 1 × 3 µm trenches 
were cut in Si wafer (Fig. 32b) by focused ion beam (Helios NanoLab, FEI). 
The measurement algorithm started in translation of the NW over the wafer and 
positioning it half-suspended on the edge of the trench. In order to measure the 
Young’s modulus, the half-suspended NW was bent by pushing it at the free 
end with the tip, and the interaction force corresponding to the visually 
observed bending angle was measured with a QTF force sensor. 
 

 
 
Figure 32. Schematics of experiment. (a) QTF with the glued AFM tip contacts a NW
suspended over a trench on the silicon sample; Corresponding SEM image of the AFM
tip, NW and trenches (b). 
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NW having appropriate parameters (uniform thickness, sufficient length) and 
situated in the proximity of the patterned area was chosen and moved by the 
AFM tip toward nearest trench and positioned over its edge so that one end of 
the NW was suspended over the trench while another end was fixed to the 
substrate surface by the adhesion force. The suspended part of the NW was 
pushed by the AFM tip in direction parallel to the trench wall (Fig. 32). The 
QTF oscillation amplitude signal (which directly correlates with the applied 
force) and the grabbed SEM images were recorded simultaneously during the 
experiment. For the calculation of Young modulus the NW profile from the 
SEM image was numerically fitted to the curve given by the equation of 
equilibrium for a bent elastic beam Eq. (79) and the value of Young modulus 
was extracted. 
 
 

 
 
Figure 33. SEM images of the suspended NW being pushed by the tip and the 
corresponding force-time curve. The tip approaches the NW, the arrow indicates the 
direction of tip movement (a); The NW is slightly bent (b); Maximal bending of NW 
and the corresponding schematics of the NW loading laid over the SEM image; the 
natural axis l, the angle  between the tangent of the bent NW profile projected on an 
initial NW profile, the length L of the suspended part of the NW and the applied force f 
are shown (c); The NW has come off the tip and the force has dropped to zero (d). The 
calculated Young’s modulus is E=58 GPa. 

 
 

It should be noted that the region close to the trench (approximately 250–500 
nm) is slightly concave due to an imperfect focusing of the ion beam. This 
should be taken into account when estimating length L of suspended part of the 
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NW. Suspended part looks more transparent on SEM image in comparison to 
the adhered part (Fig. 33a-d). 

The typical force curve and the corresponding SEM images are presented in 
Fig. 33. The averaged value of Young’s modulus for five different NWs was 
found to be 40.4 ± 11 GPa (Table 4). The mean value is in good agreement with 
other works performed on ZnO NWs. Manoharan et al. found 40 GPa for a NW 
with the diameter of 200–750 nm [77] and Song et al. found 29 GPa for a NW 
with the diameter of 45 nm [78]. Significant variation in magnitudes of Young’s 
modulus from 27 to 58 GPa in the measured set of NWs clearly evidences the 
importance of gathering the Young’s modulus for each NW individually in 
order to perform calculations of friction based on the balance of elastic and 
friction forces as described in sections 4.4.4, 4.4.6 and 4.4.8. 

In most bending experiments, the adhered part of the NW remained 
motionless. It means that the applied force was lower than the static friction 
force between the NW and the substrate. NWs were never broken during the 
bending experiment, even at large bending angles (θ ≈ 60°). 

The proposed method opens a route to measure Young’s modulus of rather 
short NWs with lengths of a few microns. In our experiments, the length of the 
suspended part of NW was about 1 µm in contrast to at least a few tens of µm in 
other works dealing with NW bending [77, 79]. 

 
 

Table 4. Results of measurements of kinetic friction qkin and Young modulus E of indi-
vidual ZnO NWs. Interfacial shear stress kin is given assuming the contact on one 
hexagonal side of the NW.  
 

Nr. Diameter, 
nm 

Length, 
nm 

qkin, 
nN/nm 

kin, 
MPa 

Young’s 
modulus 
E, GPa 

1 112 3850 0.115 1.8 38 
2 125 3280 0.135 1.9 58 
3 160 3140 0.2 2.2 27 
4 180 4640 0.25 2.4 41 
5 230 4615 0.3 2.3 38 
 

 
4.4.3. Nanowire loaded at the midpoint and balanced by uniformly 

distributed kinetic friction forces  

When a NW is being uniformly dragged at its midpoint and all parts of the NW 
have the same constant velocity, the equilibrium equations Eq. (27a,b) are still 
applicable due to Galileo's principle of relativity. In this case, the profile of the 
deformed NW is determined by the balance of the external driving force, the 
kinetic friction between the NW and the substrate and the intrinsic elastic forces 
of the NW. The distributed driving force Fapl-lat can be modeled via the delta 
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function, and the kinetic friction qkin maintains a constant vector opposite to the 
direction of motion and Fapl-lat (see Fig. 34): 
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The condition of zero total force yields Lkin
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where H(x) is the Heaviside step function. The Eq. (85) can be solved 
numerically in order to obtain the NW profile. It is easy to see that the solution 
of Eq. (85) together with the initial condition 0)0(   fully complies with the 
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Figure 34. Schematics of a nanowire of length L being pushed at the midpoint by 
concentrated force Fapl-lat and affected by distributed kinetic friction force qkin. Fixed 
coordinates system Oxyz and local coordinate basis (t,n) along the nanowire axis l. 
Angle between the tangent vector t and axis Ox is denoted as φ. 
 
 

4.4.4. Measurement of kinetic friction of ZnO nanowires  
on a flat surface 

For the kinetic friction measurements NW was translated by pushing it at its 
midpoint with AFM tip. The shape of the NW elastically deformed during the 
translation was used to determine the distributed kinetic friction force. To 
increase the loading during the NW translation and to ensure that the tip would 
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not slide over the NW, the force sensor was lowered another 1–2 µm after the 
tip came into contact with the substrate surface. The oscillation amplitude 
dropped to zero due to the high repulsive force, and no force measurement was 
performed during the NW translation.  

After being pushed a few microns the NW bends into an arc due to the 
distributed kinetic friction force acting along the NW’s length (Fig. 35). The 
characteristic profile of the bent NW remains constant during the translation due 
to the fact that the total kinetic friction force acting on the NW is balanced with 
the external force applied by the tip. The determination of the distributed kinetic 
friction for shorter NWs was problematic due to the large radius of the 
curvature during the translation. The minimal length suitable for the deter-
mination of kinetic friction depends on the NW’s diameter. For NWs used in 
our experiments minimal length was found to be about 3 m.  

 
 

 
 
Figure 35. Scanning electron microscope images of the NW shape profile during the 
NW dragging. The AFM tip contacts the intact NW, the arrow indicates the direction of 
tip movement (a); Partially displaced NW (b); Completely displaced NW (c); Final 
characteristic shape (d). 

 
 
For estimation of the distributed kinetic friction force the Timoshenko beam 
theory was applied as described in the paragraph 1.6. NW length L, diameter D 
and profile during manipulation were obtained from the SEM image. Actual 
values of Young moduli measured individually for each NW as described in the 
paragraph 4.4.2 were used for the calculation.  

Measurements were performed on five NWs with different diameters. 
Results of the calculations are presented in Table 4. The average value of the 
interfacial shear stress is kin=2.1±0.26 MPa. These results are in a good 
agreement with Manoharan et al. who obtained 1 MPa for the interfacial shear 
stress for ZnO 30–40 m long NWs with 200 nm diameters parallel to the NW 
axis dragging [80]. 

Large variation in sliding friction and shear stress values are common for 
nanotribological experiments, e.g. of an order of magnitude for InAs NWs [51]. 
That is probably also due to the usage of the bulk Young’s modulus of InAs in 
the friction calculations. Thus, the use of individual values of Young’s modulus 
for each NW is important to make friction force and shear stress determination 
more reliable. 
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4.4.5. Nanowire loaded at the end and balanced by combined 
distributed kinetic and static friction forces 

Let us consider a specific situation, when initially straight NW has been loaded 
at some point and a part of the NW was fixed to the substrate by static friction 
(see Fig. 36). The mobile part of the NW undergoes kinetic friction and the 
concentrated load force. The distributed force f consists of the external tip force 
Fapl-lat applied at the point Ltip, and the kinetic friction force qkin per unit length 
distributed uniformly along the moving part of the NW: 
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where )(x  is Dirac’s delta-function. 

Zero elastic force and momentum at the NW’s free end dictate the boundary 
conditions [44]: 
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Elastic force F according to Eq. (27a) yields together with Eq. (86): 
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where H(x) is Heaviside step function. 

Finally the equation for )(l  describing the profile of NW with boundary 
conditions: 
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where Eq. (89b) defines orientation of the NW with respect to the coordinate 
system, Eq. (89c) follows directly from Eq. (87b) and Eq. (87a) is automatically 
satisfied. Eq. (89) can be simplified in particular case Ltip=Lkin and yields: 
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Motionless (“static”) part of the NW is assumed to be a rigid rod of length Lst 
with 2 degrees of freedom: axis Oy and rotation angle in the plane Oxy. Values 

of elastic force 
0lyF  and momentum 

0l
M at the start point of the motionless 

region follow from the solution of Eqs. (89a,b,c) for continuity reasons. We 
assume that the interfacial stress between the NW and substrate and 
consequently the static friction force is distributed linearly along the rotated 
static part of the NW: blalqy )(st , where a and b are unknown constants. 

For the equilibrium of the NW, conditions for total force and momentum yield 
system of two equations: 
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which easily determine a and b. This allows to find such parameters as maximal 

static friction ||st
max bq   and averaged static friction  
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Figure 36. Schematics of a nanowire loaded by concentrated force Fapl-lat and affected 
by distributed kinetic friction force qkin of the interval (0,Lkin) along l axis. Left end is 
fixed by strong static friction force qst on the interval (0, Lst) along l’ axis. Angle 
between the tangent vector and axis Ox is denoted as φ and Fapl-lat is directed by angle 
  to Oy axis. The external force Fapl-lat is applied at the very end of the NW (a), the 
external force Fapl-lat is applied at a distance from the end of the NW (b). 
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4.4.6. Combined measurements of the kinetic and static friction 
forces of a ZnO nanowire on a flat surface 

Another approach in measurements of the NW static friction consists in bending 
of the NW lying on flat substrate by pushing it at one end with an AFM tip 
while some part of the NW at opposite end is adhered to the substrate and stays 
motionless as long as the applied external force does not exceed the total static 
friction force between adhered part and substrate. When the elastic stress 
generated inside the bent NW overcomes the total static friction force, the 
whole NW is displaced. The NW bending profile just before the complete 
displacement (“most bent state”) of the NW may is used then to find the static 
friction force. It is done by fitting the experimentally found NW bending profile 
in “most bent state” to the theoretical profile of an elastic beam lying on a flat 
substrate and pushed from one end by a point force in the substrate plane, while 
the second end is fixed by static friction as described in the paragraph 4.4.5. 
From the elastic deformation of the NW the generated elastic force and 
momentum are calculated. It enables to find counteracting friction forces in the 
adhered part.  

Depending on the point of the force application on the NW two loading 
schemes are possible. The first loading scheme is when an external force is 
applied at the very end of the NW. In this case the bending profile of the NW is 
rather simply determined and described (Fig. 36a). If an external force is 
applied at longer distance from the end of the NW, the profile may be more 
complicated and the second loading scheme is realized (Fig. 36b). 

It should be noted that the method is applicable only for NWs having aspect 
ratio in the appropriate range (usually between 10 and 100). If NW is 
sufficiently short (one micron or less for 100 nm cross-section), it slides or 
rotates as a whole object; if  NW is long enough, the internal elastic force 
produced during NW bending is not strong enough to overcome the static 
friction force, and the NW cannot be displaced even after significant bending. 
To produce a loading force high enough to initiate the displacement of NWs, the 
AFM chip with a cantilever was lowered 5–20 m after the tip came into 
contact with the substrate surface. 

First loading scheme. Fig, 37 represents a typical manipulation experiment 
according to the first loading scheme. The NW was bent by pushing it from one 
end by an AFM tip until the internal elastic stress generated due to deformation 
led to release of adhered part of NW and straightening of the whole NW (Fig. 
37a-f). Considering the length, the cross section of the NW, and the applied 
force lataplF  as fitting parameters, the NW “most bent state” profile was 

calculated according to Eq. (90) and laid over the SEM image (Fig. 37e). The 
values of Young’s modulus E=57 GPa and the interfacial shear stress associated 

with the kinetic friction force kin =2.1 MPa were taken from our previous 
works described in section 4.4. The statistics of the maximal static friction 
measurements for a set of 32 NWs is presented in Fig. 37g. 
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Figure 37. Manipulation experiment of ZnO nanowires according to the first loading 
scheme (see text). Series of SEM images of the nanowire bent by AFM tip from one end 
while other end is adhered to the substrate by static force (a-f). Skeletonized profile 
lying over the real nanowire image (e). Completely displaced nanowire (f). Distribution 
of the maximal static friction force versus NW diameter (g). 
 
 
Second loading scheme. When an external force is applied at a longer distance 
from the end of the NW, the free end of the moving part is bent in opposite 
direction (Fig. 38). The degree of bending of the moving part is determined by 
the magnitude of the kinetic friction force. The “most bent” profile of NW in 
this case contains information about both the static and the kinetic friction. It 
enables to introduce the kinetic friction qkin as an independent fitting parameter 
in addition to the applied force Fapl-lat, in contrast to the first scheme where we 
used the average value of qkin taken from previous experiments. The fit for the 
NW bending profile was calculated according to Eq. (89) and compared to the 
experimental profile of the NW (Fig. 38c). The second loading scheme was 
applied to 7 NWs (Fig. 38e). The median value of kinetic friction was kinq

=0.25 nN/nm ( kin =2.8 MPa), which is close to our previously obtained results 

in the paragraph 4.4.4 [81]. These measurements confirm that for NWs, the 
static friction can be significantly higher than the kinetic friction. 
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Figure 38. Manipulation experiment of ZnO nanowires according to the second loading 
scheme (see text). Intact NW (a). Part of the NW is displaced (b). “Most bent” profile of 
the NW before the complete displacement; the calculated profile (dashed white line) 
that is laid over the SEM image; white points (1, 2) indicate the static portion of the NW 
(c). The whole NW is displaced (d). The NW diameter is D =155 nm, the calculated 

maximal static friction is st
maxq = 46 nN/nm ( st

max =514 MPa), and the kinetic friction is 

qkin =0.25 nN/nm ( kin =2.8 MPa). Measurement statistics of the static and kinetic 

friction for a set of 7 NWs (e). 
 

 
Figure 38 presents the statistics of maximal static friction and critical interfacial 
shear stress for all 39 measured NWs. The median values of the maximum static 

friction and average static friction were found to be st
maxq =11 nN/nm and st

avgq

=5 nN/nm, respectively. The corresponding values of critical interfacial static 

shear stress and average static shear stress were st
max =195 MPa and st

avg =67 

MPa. 
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Figure 39. Histograms of maximum static friction st

maxq  (a) and corresponding critical 
interfacial shear stress st

max (b) summary of the measurements according to both 
loading schemes. The median value of static friction is st

maxq ~11 nN/nm, and the critical 
interfacial shear stress is st

max ~195 MPa.  
 
 
NW strength measurement. Loading scheme described in section 4.4.5 can be 
used for calculation of NW fractural strength when the static friction in adhered 
part is higher than the force needed to break the NW by bending (Fig. 40). In 
general, the NWs that broke experienced smaller interfacial shear stress (a 
longer motionless region stL ) but higher tensile stress compared to the dis-
placed the NWs. The tensile stress is maximal at the boundary dividing the 
motionless and displaced regions of the NW (Fig. 40e). However, the NWs did 
not necessarily break in the maximal tensile strain region but in any region 
probably with a structural defect. The statistics of maximal tensile stress values 
for both broken and displaced NWs are presented in Fig. 40g. The median value 
of tensile stress in successfully displaced NWs was tens

displ =2.6 GPa (for a set of 

32 NWs), while in broken NWs, tens
fract =3.3 GPa (for a set of 21 NWs). These 

values are in good agreement with failure tests performed by Hoffmann et al. on 
ZnO nanowires, where failure occurred with stress in the range from 2–9 GPa 
[82]. 
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Figure 40. Fracture of a NW during manipulation. Intact NW (a). Gradual bending of 
NW (b-d). The “most bent state” profile before the fracture of the NW and the 
calculated bending profile (dashed white line) laid over the SEM image; white points (1, 
2) indicate the static part of the NW (e). The  NW is broken (f). The NW diameter is D

=115 nm; its fracture tensile stress is tens
frac =5.1 GPa. The statistics of the maximum 

tensile stress for both broken NWs (21 NWs) and displaced NWs (32 NWs) (g). 
 
 

4.4.7. Nanowire self-balanced by distributed static  
friction forces on a flat surface 

In the case when the NW had been preliminarily bent by an actuator, it can be 
sustained in bent state by static friction forces from the substrate after the re-
moval of the external load. The equations of equilibrium for a purely bent NW 
affected by distributed static friction force f(l)=qst(l)  give (see Fig. 8 and, e.g., 
[44]): 

st
tn

t qF
dl

dF
  

st
nt

n qF
dl

dF
  

(92a,b,c) 
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nF
dl

d
EI 


, 

 

where Ft and Fn are the projections of elastic force F, st
tq  and st

nq  are the 

projections of qst to the local coordinates (t, n). 
Zero elastic force and momentum at the free ends of the NW dictate the 

boundary conditions [44]: 
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The complete set of boundary conditions Eq. (93a,b) applied to the system Eq. 
(92a,b,c) yields: 
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We will neglect the tangential component of the friction 0st tq , thus making 

the system of Eq. (92a,b,c) complete and yielding: 
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(95a,b) 

 
which solves the system together with the initial condition Ft|l=0 = 0. The 
absence of a tangential friction component does not lead to the vanishing of Ft 
which is then fully “driven” by the normal component Fn and necessary for 
exact NW equilibrium. 

It is important to note that the assumption 0st tq  was dictated by an 

intuitive consideration that the direction of qst should be close to the direction at 
which the NW tends to unbend. This “unbending” direction correspondingly is 
close to normal to the NW’s line. Formally it means that the integral contri-

bution of st
tq  along the length of the NW is much smaller than that of st

nq . 
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4.4.8. Measurements of a self-balanced ZnO nanowire  
static friction on a flat surface 

Once a NW is deposited on a substrate and elastically deformed in plane, the 
NW may preserve its bending profile or relax to form another non-straight 
profile. This requires the NW to be flexible enough (high aspect ratio) and static 
friction to be sufficiently high. In this case the role of “external force” is 
employed by the elastic force in each point along the NW which in turn 
controlled by static friction force in other points of the NWs. This kind of self-
balanced system, theoretically described in the paragraph 4.4.7, can be used for 
estimation of static friction for experimentally observed bent NWs self-balanced 
by distributed static friction forces on a flat surface. 
 
 

 
 
Figure 41. Measurements of elastic energy density and static friction distribution as 
functions along the NW for differently shaped nanowires (in rows). Parameters used: 
Young modulus E=57 GPa; diameter D=115 nm (a,e,i); D=111 nm (b,f,j); D=112 nm 
(c,g,k); D=103 nm (d,h,l). 
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Consider a SEM or AFM image of a ZnO NW bent upon a substrate as a data 
source for static friction force analysis. We have developed an original method 
of skeletonization suitable for finding elastic and friction forces with use of Eq. 
(95). The method consist of several steps: 1) Filtration of the source image and 
identification the backbone of the nanowire in Cartesian coordinates in the form 
of separate points; 2) differential analysis of the backbone points to find the 
tangential angle curve; and 3) interpolation of the tangential angle curve with 
polynomial function confined by the boundary conditions Eq. (94). As a result 
we obtain a smooth polynomial function φ(l), which can be then utilized for the 

further )(st lqn  calculations according to Eq. (95b). A special polynomial 

function was chosen as a possible analytic form for Eq. (95). Let us now 
examine an application of this method in detail. 

The source image snapshotted from a microscope usually contains some 
foreign objects (other nanowires, nanoparticles, etc.). Everything except the 
NWs under investigation should be filtered out to avoid artifacts during the 
skeletonization. After filtration, the image is ready for the extraction of the 
backbone. 

For locating the backbone we used a polar-scanning method. We chose an 
origin point and observed the intersection of the polar beam with the NW. The 
intersection histogram commonly has an obvious peak which we assume to 
belong to the backbone curve. This method is best suited for curves bent in a 
circular manner, so that we can choose an origin point close to the circle’s 
center. However, any other method of backbone extraction can be used. 

After the microscope image of the NW is skeletonized, a set of n discrete 
points (xi , yi) is obtained, representing the backbone. Differential analysis of the 
backbone is then needed to convert the Cartesian coordinates (xi , yi) to natural 
coordinates (li , φi), which are more suitable for the subsequent calculations. The 
discrete mesh for future φ(l) interpolation is produced with the following 
expressions: 
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(96a,b) 

 
where l1 = 0. 

Correct choice of the interpolation function is important, due to errors, which 
may arise during the identification and differentiation of the backbone curve. 
Regular polynomial interpolation would likely break the boundary conditions 
Eq. (94). The interpolation of φ(l) can be performed through the curvature κ(l) 
with the linear combination of the selected polynomial functions as follows: 
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where Ai are coefficients to be determined by the numerical interpolation. It is 
apparent that φ(l), defined according to Eq. (97), complies with the boundary 
conditions Eq. (94). 

It should be noted that, the more asymmetric or wavy the nanowire curve 
looks, the higher the degree N that must be used. Higher N leads to increased 
precision in fitting the curves, but it also may introduce artifacts generated from 
the scatter of experimental points. Therefore, as low N as possible should be 
used, on condition of sufficient correspondence between the fitted and the 
original curves. 

The fiction profile can be now calculated with the Eq. (95b), using the 

constrains for )(l  from Eq. (94). The expression for )(st lqn  contains the 2nd 

derivative of the approximated )(l  and therefore might contain significant 

error. As a consequence, the friction profile )(st lqn  can vary significantly with 

N. As stated above, the usage of high N may introduce unnecessary features into 
the curve and therefore should be avoided. 

Let us now take, for instance, an experimental nanowire of ZnO resting on a 
silicon wafer substrate. In the Fig. 41, an SEM images of bent ZnO nanowires 
are presented. To prepare the NW in this bent state, it was pushed near its center 
perpendicular to the NW axis by an AFM tip inside the SEM [81]. Over several 
microns of travel, the initially straight profile of the NW transformed into the 
characteristic arc shape. The static friction force model can be applied after the 
removal of the force applied by the AFM tip.  

Prior to the calculation of )(st lqn  a number of steps were performed as 

follows. The image was filtered manually. The backbone was extracted in the 
form of an array of Cartesian coordinates, and Eq. (96) was used to obtain the 
mesh of (li , φi) for further interpolation according to Eq. (97). Then the 

distributed friction force )(st lqn  was calculated using Eq. (95b) taking into 

account 256/35 4DI   for the hexagonal cross section of the NW [76], 
where D is the diameter of the NW’s. Polynomial functions of a degree of up to 
7 were used, which corresponds to 3N .  

As was mentioned above, the shape and extreme values of st
nq  are sensitive 

to any errors in the interpolated NW profile and to the polynomial degree. 
Therefore, we must find reliable quantities able to characterize the NW-
substrate system.  

The friction profile )(st lqn  contains several ranges of length with different 

signs. We suggest using the following procedure to estimate the average friction 
forces acting on the different parts of the NW. When we integrate 
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ni dllqQ , the obtained quantity has the meaning of an effective force 

acting on the corresponding range. At least three regions, Q1, Q2 and Q3, are 
necessary to stabilize the NW profile in its bent state. Our calculations have 
shown that the  Q1 calculated using different N do not significantly change, 
however a positive correlation of Qi with N is noticeable (see [83]). This 
behavior can be attributed to the fact that a curve of higher N is wavier and 
therefore implies higher elastic distortion of the NW, which leads to higher 
friction. For the next step, a friction force averaged along the NW length 

LQq
i

in /stst   is introduced. This along-NW-length-averaged friction force 

st
nq  still remains nearly the same with different N, and it may be utilized to 

characterize the magnitude of the NW-substrate friction interaction.  
As it was stated above, the kinetic friction force is balanced with the force 

applied by the tip during the dragging of the NW over the substrate surface. We 
did not find any visual changes in the NW profile during the dragging and after 
the removal of the tip, hence elastic energy of deformed NW for static case 
should be preserved approximately the same with kinetic case. The static 
friction force should redistribute itself to maintain force balance with the elastic 
force, and value of averaged static friction should be comparable with one of 
kinetic friction. It should be noted here that the method for determination of the 
kinetic friction utilizes a more simple and faultless model than the static friction 
model (more details in [81]). In other words, agreement between values of 
kinetic and averaged static friction will verify correctness or fault of static 

friction calculation method. The averaged static friction force st
nq  (1.7–2.34 

nN/nm) has a value close to that of the kinetic friction qkin (1.8 nN/nm). This 
confirms appropriateness of our static friction calculation method.  

An additional characteristic of the NW-substrate interaction is the elastic 
energy stored in the bent nanowire. The stronger the NW-substrate friction 
interaction, the higher the strain energy can be conserved in the elastically bent 

NW. The elastic energy per unit length 
stu  and total elastic energy 

stU of bent 
nanowire can be calculated, respectively, as [44]: 
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The profile of the distributed elastic energy 
stu  is shown in Fig. 42. The 

distributed elastic energy is proportional to the square of the NW curvature κ(l) 
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and contains much smaller error compared to the friction force. Profiling of the 
distributed strain energy along the NW length and calculation of the total elastic 
energy may be important in piezotronics for engineering piezoresistive and 
piezoelectric nanowire-based devices [84]. 

It is important to note that, while 
stu  has only one extremum near the NW 

center, the distributed friction st
nq  experiences 3 extrema of different signs. This 

evidences a non-local character of the NW-substrate friction. Moreover, the 

model enables certain cases when st
nq  has absolute maxima near the NW ends, 

rather than in the middle where the absolute maximum strain is located. 
Consequently, it is impossible to judge where the maximum friction is applied 
without detailed analysis in the framework of the presented distributed NW 
friction model. 

We have demonstrated that our method produces reasonable values of the 

averaged friction force st
nq , and gives estimations of the distributed and total 

elastic energies 
stU . Thus, the method may provide important and useful 

information on NW-substrate force interactions.  
 
 

4.5. Summary 

In the chapter 4 several theoretical and experimental methods for investigation 
of tribological properties of nanoparticles and nanowires were described. 

Paragraph 4.1 demonstrated the model and some results of numerical 
simulation of INP manipulation. A computer program was developed to 
implement the simulations and visually present the results. The INP is modeled 
as a rigid body governed by Newton’s laws of motion. Two main cases were 
considered: (a) the INP is rested on an atomically flat substrate and affected by 
a point force, and (b) the INP is clutched between 2 atomically flat surface 
while the upper surface is laterally dragged by a spring with a constant velocity. 
The surface and the INP consisted of atoms in mass point model. The 
interaction between the surface and the INP was calculated peer-to-peer 
between the atoms. The interaction forces came from 2 sources: conservative 
potential and dumping interaction. The point force can drag the INP over the 
surface in different manners depending on the position and magnitude of that 
force. In general, the motion of the INP is a combination of translational and 
rotational motion. However, the direction and velocity of the rotation depends 
on the position of the applied force. The results for 3 special cases (the lateral 
force at the top, in the middle and at the bottom of the INP) were qualitatively 
described. 

Paragraph 4.2 describes the nanomanipulation experimental setup and the 
QTF force sensor used for investigation of tribological properties of NPs and 
NWs. The setup consists of an AFM cantilever glued on a QTF mounted onto a 
high-precision 3D nanomanipulator. The cantilever can be glued in 2 ways, 
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enabling either normal or shear type of oscillations. This system is located 
inside a SEM and enables real-time visual guidance of the manipulation 
experiment. The QTF is served by a lock-in amplifier in amplitude modulation 
mode. A special control and measurement system is developed in order to 
manage the 3D manipulator and record the signal from the QTF. The calibration 
procedure is used to match the signal from the QTF and real force applied to the 
manipulated object. 

In the section 4.3 the results of the tribological measurements on gold nano-
particles are presented. The nanoparticles of approximately 150 nm in diameters 
on an oxidized Si substrate were used. The forces needed to overcome static 
friction and move individual nanoparticles were measured in normal and shear 
oscillation modes. The static friction was found to range from 40 to 450 nN for 
the normal mode and from 50 to 750 nN for the shear mode. The kinetic friction 
tends to be close to the detection limit and in most cases does not exceed several 
nN. Thermal treatment of Au particles for 1 hour at 725 K resulted in a 
rounding of the particles and a corresponding decrease in the static friction. 

Section 4.4 contains several experimental methods of measurements of NW-
substrate friction and elastic properties (Young modulus) of NWs. For each of 
the method a detailed description of the corresponding theoretical model is 
given. The experiments are performed for ZnO NWs on oxidized Si wafer using 
the real-time nanomanipulation experimental setup with QTF force sensor for 
measurement of Young modulus and without the force sensor in other cases. 

The measurement of Young modulus is conducted when the NW is half-
suspended on a trench in the substrate and bent by the tip. The applied force by 
tip is registered and then used to correlate the force with visually observable 
deflection of the NW and to find the Young modulus. The magnitude of Young 
modulus ranged from 27 to 58 GPa. 

In order to measure the kinetic friction of NW on a flat surface, the NW was 
loaded by a tip at the midpoint and dragged with a constant velocity along some 
direction. In this case, the NW shape is determined by the interplay of elastic 
forces inside the NW, the kinetic friction from the substrate and the external 
concentrated force from the tip. The NW profile observed in SEM is used to 
calculate the kinetic friction between the NW and the substrate by fitting to a 
theoretical model. The obtained magnitudes of the interfacial kinetic shear 
stress are within the range 1.8–2.3 MPa. 

The combined measurements of the kinetic and static friction is used, when 
the NW is pushed by a tip in some point and the NW is partially moving while 
the rest part is still. That corresponds to the situation when the NW exerts both 
kinetic and static kinds of friction at the same time. The shape of the NW is then 
determined by the interplay of internal elastic forces, all friction forces and 
external forces. This experiment may end up in 2 basic scenarios upon the 
increase of the applied force: (a) the static friction is overcome and the whole 
NW is displaced, (b) the NW is broken due to high tensile stress. The first 
scenario enables to estimate the ultimate NW-substrate static friction. The 
second one allows measuring the tensile strength of the NW. Moreover, when 
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the tip pushes at some distance from the end of the NW, measurement of the 
kinetic friction is also possible. Values of the maximal interfacial static shear 

stress, averaged static shear stress and kinetic shear stress obtained are st
max

~195 MPa, st
avg ~65 MPa and kin ~2.8 MPa respectively. Median value of the 

tensile strength for broken NWs is tens
break ~3.3 GPa. 

The measurement of the distributed static friction force of a NW is 
performed also for the case when the NW is bent and self-balanced by static 
friction from the flat substrate. In this case the static friction significantly varies 
along the NW and the distribution of the static friction force can be obtained by 
considered the visible NW bending profile. The NW profile is determined by 
the friction force in each point of the NW and elastic force in the NW. It is 
important to note that the NW’s elastic force is cumulative and therefore the 
bending curvature of the NW in each point is not locally determined by friction. 
The elaborated model includes takes this cumulative effect into account as well 
as the effect of free NW ends. The several visual NW profiles of ZnO NW on 
an oxidized Si wafer are considered and the calculation of the static friction 
distribution is demonstrated. In addition, the elastic strain energy density is pre-
sented as a function along the NW. 
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MAIN RESULTS AND CONCLUSION 

From the point of view of modern physics, size of the physical system under the 
investigation is crucially important and in many cases essentially determines the 
properties of the system. For a nanoscale material, when surface/volume ratio is 
much higher compared to a bulk material, structure and other intrinsic 
properties are strongly affected by the presence of large surface area. Tribology, 
i.e. frictional properties have interfacial nature and the tremendously differ at 
the nanoscale. The goal of this dissertation was to consider some of structural 
and tribological properties of nanoparticles, nanorods and nanowires, propose 
corresponding theoretical models and demonstrate several experimental 
methods based upon those. In particular, structural properties of PNCs con-
cerned with the presence of intrinsic stresses and stress relaxation were in-
vestigated and described. Tribological properties of nanoparticles and nano-
wires on a flat surface were studied and described. 

In the present dissertation and previously published papers [17, 85] the 
model of core/shell formation as a mechanism of stress relaxation in PNRs and 
INPs was proposed. The model dealt with the formation of a crystal lattice 
mismatch layer that could diminish the total elastic energy of PNRs and INPs in 
the framework of the disclination model. On the base of the presented modeling 
and calculations it was shown that formation of the shell layer with crystal 
lattice mismatch could diminish the internal energy of the PNRs and INPs. 
Nanoparticles with core/shell configuration were prepared and observed 
experimentally [86], where copper nanoparticles were grown with silver shells. 

The optimal mismatch parameter opt  giving the maximal energy release 
was determined as opt for PNR and opt for INP. The threshold 
radius as the minimal radius of nanorods or nanoparticles, for which the 
formation of the layer is energetically favorable was found to be approximately 
10 nm for nanoparticles and 100 nm for nanorods of typical FCC metals. 

It should be noted that the described model justifies the hollow-core model 
of relaxation in pentagonal crystals suggested by Romanov et al. in [14]. The 
resulted expression for energy release for both PNR and INP showed energetic 
favorability of formation of hollow-core in all the range of core radius para-
meter. 

One additional possible stress relaxation mechanism was considered in 
particular, namely, the appearance of the internal cavity in PRs and PPs, accom-
panied by the formation of nanowhiskers on the surface of the PRs and PPs. 

A possible mechanism addressing the simultaneous emergence of pentagonal 
nanowhiskers and internal cavities in PRs and PPs based on the nucleation of 
two dislocation loops of opposite sign near the surface of the crystal with a 
disclination was described. As a result, vacancy-type dislocation loop remains 
in the material and acts as a nucleus for pores, while the interstitial loop comes 
to the free surface, contributing to nanowhisker growth. Demonstrated calcu-
lations provided a qualitative evidence for the formation of nanowhisker-cavity 
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pair in a material with disclinations, in particular in PRs and PPs. Therefore a 
conduction of additional experimental study to verify this hypothesis can be 
proposed. Moreover, in the development of the given model it would be 
desirable to elaborate the theoretical explanation and estimation of the critical 
size of PR and PP as well as the nanowhisker radius. 

Numerical simulation of INP manipulation was employed to investigate 
tribological properties of such objects. A computer program developed for the 
simulations used to model the INP, which was modeled as a rigid body 
governed by Newton’s laws of motion. In one case when the INP was rested on 
an atomically flat substrate and affected by a point force the simulations 
evidenced that the motion of the INP was a combination of translational and 
rotational motions. The rotation velocity depended on the position of the 
applied force. In the other case the INP was clutched between 2 atomically flat 
surfaces while the upper surface was laterally dragged by a spring with a 
constant velocity. The simulation demonstrated various possibilities of particle 
motion depending on the surface velocity and the normal load. 

The nanomanipulation experimental setup and the QTF force sensor used for 
investigation of tribological properties of NPs and NWs were described. The 
setup consisted of an AFM cantilever glued on a QTF mounted onto a high-
precision 3D nanomanipulator. The cantilever could be glued in 2 ways, 
enabling either normal or shear type of oscillations. This system was placed 
inside a SEM, which enabled real-time visual guidance of the manipulation 
experiment. A special control and measurement system was developed in order 
to manage the 3D manipulator and record the signal from the QTF. The 
calibration procedure was used to match the signal from the QTF and real force 
applied to the manipulated object. 

The manipulations can be performed by a dynamic mode when the 
manipulating tip is oscillating in either normal or shear modes, or in a static 
mode, when the tip is not oscillating. The former way allowed measuring the 
applied force by the tip. However, sometimes the dynamic range of force sensor 
was not sufficiently wide to register large forces. Therefore both methods were 
used. The elaborated experimental equipment enabled to manipulate nano-
crystals, register the applied force and watch the manipulation process simulta-
neously. This nanomanipulation setup was applied furthermore to investigate 
the tribological properties of gold NPs and ZnO NWs on an oxidized Si wafer. 

The gold particles of approximately 150 nm in diameter were manipulated 
using a QTF-based sensor and particle-sample friction was measured. The large 
variations in the static friction values were attributed to the differences in 
particle-sample contact areas associated with the shapes of the particles. 
Thermal treatment of the particles resulted in rounding of the particles and 
significantly decreased the static friction. Kinetic friction in the most cases did 
not exceed several nN.  

A novel method to determine the elastic and frictional properties of the same 
NW was also proposed. Distributed kinetic friction and corresponding inter-
facial shear stress were calculated from the characteristic shape of NW bending 
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during the translation on a flat substrate. Distributed kinetic friction qkin and 
interfacial shear stress kin of a ZnO NW on an oxidised Si substrate were found 
to be 0.2±0.8 nN/nm and 2.1±0.26 MPa, respectively. Young’s modulus was 
measured for the same set of NWs by bending its half-suspended part and was 
found to be 40.4±11 GPa.  

Novel method of in situ combined measuring NW-substrate static and 
kinetic friction was proposed and demonstrated. The friction forces were 
calculated using bending profile of the NW just before its complete 
displacement. In some cases the NW was broken and that was used to calculate 
the tensile strength of the NW. 

A model for calculation of distributed static friction force for a bent NW 
lying upon a flat surface was proposed. An appropriate nanowire backbone 
skeletonization algorithm was elaborated. The algorithm utilized interpolation 
polynomials of a special kind and enabled explicit fulfillment of mechanic 
equilibrium of the nanowire. In contrast to other methods [40, 45], this method 
enabled to take into account the free ends of the NW and comply the boundary 
conditions that might significantly influence the result. 

As a conclusion, the following several key findings of the thesis can be 
extracted: 
 pentagonal 0D and 1D nanocrystals possess specific structure and pro-

perties, particularly mechanical stresses due to their internal defect 
structure; 

 formation of the core/shell structure with crystal lattice mismatch leads to 
diminishing the elastic energy of pentagonal nanocrystals; 

 growth of a whisker is most probably to occur in the presence of mecha-
nical stresses, e.g. in grain boundary junctions and pentagonal nano-
crystals; 

 tribological properties of 0D and 1D nanocrystals are different from those 
of macroscale objects; 

 atomistic numerical simulations reveal different types of motion of 
icosahedral nanoparticles manipulated by concentrated or surface forces; 

 real-time nanomanipulation experiments can be effectively used to inves-
tigate static and kinetic friction of nanoparticles and nanowires on flat 
substrates; 

 nanomanipulation experiments result in the measurements of elastic moduli 
and bending strength of nanowires providing unique information on 
mechanical materials properties at the nanoscale. 

 
Novelty of the results: 
 A new mechanism of stress  relaxation in pentagonal nanoparticles and 

nanorods via formation of a core/shell with crystal lattice mismatch is 
proposed and demonstrated in the framework of the disclination model 
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 An original model of nanowhisker growth in the present of disclination 
source suitable for pentagonal nanocrystals and triple grain boundary 
junctions is elaborated 

 A numerical simulation model for manipulation of icosahedral nanoparticles 
in 3D is demonstrated for the first time 

 A new real-time nanomanipulation experimental setup with quartz tuning 
fork enabling either normal or shear oscillation modes and managed by a 
unique control and measurement system is developed 

 Applicability and peculiarities of normal and shear oscillation modes in 
terms of manipulation of gold nanoparticles are compared and discussed for 
the first time. 

 Novel methods of measurement elastic modulus and various tribological 
properties of individual nanowires are demonstrated for ZnO nanowires on 
oxidized Si wafer 

 A new method for measurement of kinetic friction of a nanowire on a flat 
substrate is proposed and experimentally demonstrated 

 For the first time the method of combined static and kinetic nanowire 
friction measurement is presented and experimentally demonstrated 

 A new theoretical model and experimental method for measurement of 
nanowire-substrate static friction distributed along the nanowire are 
proposed and experimentally demonstrated 
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SUMMARY IN ESTONIAN 

Uurimistöö “1- ja 0-diminsionaalsete nanokristallide strukturaalsed ja 
triboloogilised omadused” käsitleb tänapäeva füüsika ja materjaliteaduse üht 
uurimisvaldkonda – süsteemi omaduste sõltuvust süsteemi suurusest, mis on 
eriti aktuaalne nanoskaalas süsteemide juures, kus pindala/ruumala suhe on 
oluliselt suurem kui makroskoopilistes süsteemides.  

Töö eesmärgiks oli käsitleda teatavate nanoosakeste ja nanotraatide struk-
tuurilisi ja triboloogilisi omadusi, luua nende kirjeldamiseks teoreetilised mu-
delid ning töötada välja mudelitel baseeruvad eksperimentaalsed meetodid. 
Eriline tähelepanu oli suunatud pentagonaalsete nanokristallide uurimisele. 

 
Töö peamised tulemused: 
 Töötati välja uus mehaaniliste pingete relaksatsiooni mehhanism pentago-

naalsetes nanoosakestes ja nanotraatides. Mudel baseerub disklinatsioonide 
teoorial ja seisneb mittekattuva kristallvõre struktuuriga tuuma ja kattekihi 
tekkimises kirjeldatavates nanostruktuurides.  

 Töötati välja originaalne mudel nanonõelte (i.k. nanowhisker) tekkimiseks 
pentagonaalsetes nanokristallides kolme elementaarühiku kokkupuute-
punktis.  

 Esmakordselt teostati ikosaheedriliste nanoosakeste struktuuri 3D numbri-
line modelleerimine.  

 Töötati välja uus eksperimentaalne nanomanipulatsiooni seade, mis basee-
rub kahemoodilisel kvartsresonaator-teravikmanipulaatoril ja reaalajas 
elektronmikroskoopilisel visualiseerimisel. Süsteem kasutab väljatöötatud 
unikaalset juhtimis- ja kontrollsüsteemi.  

 Nanomanipulatsiooni erinevate moodide rakendatavust uuriti kulla nano-
osakeste näitel. 

 Töötati välja uudne meetod nanotraatide elastsusmooduli ja triboloogiliste 
parameetrite määramiseks. Meetodit rakendati oksüdeeritud Si-alusel 
olevate ZnO nanotraatide juhul. 

 Töötati välja uus meetod siledal pinnal oleva üksiku nanotraadi kineetilise 
hõõrdeteguri määramiseks ja demonstreeriti selle rakendatavust. 

 Esmakordselt demonstreeriti eksperimentaalselt nanotraatide staatilise ja 
kineetilise hõõrdeteguri üheaegset määramist.   

 Töötati välja uus teoreetiline mudel ja sellele vastav eksperimentaalne 
meetod jagunenud staatilise hõõrdumise määramiseks nanotraat-aluspind 
süsteemis.  
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APPENDIX 

A1. Basic formulas of the linear theory of elasticity 
Tensor of small strain εij: 
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where ui is the field of displacements. 

Elastic strains are related to mechanical stresses σij in the body by Hook’s 
law. In the framework of isotropic approximation the Hook’s law has the 
following form: 
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, , ,i j x y z , (A1.2) 

 
where G is shear modulus, ν is Poisson’s ratio, and ε=Tr εij. 

It is also possible to represent strain tensor εij through σij: 
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 (A1.3) 

 
where σ=Tr σij. 

Within the condition of absence of volumetric forces, the equations of 
equilibrium are as following: 

 

0 iji  ( ). (A1.4) 

 
Tensors σij and εij are symmetric: σij=σij, εij= εij. 

Elastic energy corresponding to the fields σij and εij is determined by: 
 

,
2

1

V

ijij dVE   (A1.5) 

 
where V is the volume of the body. 

, , ,i j x y z

, , ,i j x y z
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Interaction energy of two elastic fields ( ij , ij ) and ( ij  , ij  ) are yielded in 

the form: 
 

.int  
V

ijij

V

ijij dVdVE   (A1.6) 

 
In the theory of defects the elastic energy of a defect is determined by the 
expression: 
 

,
2

1 *
V

ijij dVE   (A1.7) 

 
where *

ij the eigenstrain tensor components, σij is the stress field of the defect. 

Interaction energy of two defects can be found with use of either of these 
relationships: 
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int  

V

ijij

V

ijij dVdVE   (A1.8) 

 
where ** , ijij    are eigenstrains of the defects, ijij   ,  are the stress fields of 

the defects. 
For instance, interaction energy between a spherical inclusion characterized 

by the eigenstrain **  ii  ( zyxi ,, ), and the stress field σij is determined by 

a simple expression: 
 

,4 2

0

*
int drrTrE ij

Rcore

   (A1.9) 

 

where Rcore is the radius of the inclusion, 
i

iiijTr  . 

In spherical coordinates (  ,,R ) the strain tensor εij is related to the 
displacements uij as: 
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The equations of equilibrium in the spherical coordinates are as following: 
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 (A1.11) 

 
where the same designations as in (A1.10) are used. 
 
 

A2. Unit quaternions for rotation of a rigid body 
Quaternions are 4-component objects of a form q=s+vxi+vyj+vzk. Multiplication 
of two quaternions q1=[s1,v1] and q2=[s2,v2] is defined as  
 

],[ 211221212121 vvvvvv  ssssqq . (A2.1) 
 

Norm of a quaternion q=s+vxi+vyj+vzk is defined as 2222
zyx vvvsq  . 

Unit quaternions with 1q  are a convenient way for representation of the 

rotation of a rigid body in computer simulations. Each unit quaternion can be 
linked with a rotation matrix. Due to round-off errors, for instance, during 
solving equations of motion, rotation matrix is corrupted and becomes no longer 
an exact rotation matrix (that is observed as “distortions” of the rotated body). 
On the other hand, upon corruption of the quaternion, it can be renormalized to 
be unit on each step. That guarantees that the rotation will be saved from 
undesired distortions. 

Conversion of a quaternion q=[s,v]=(s,vx,vy,vz)=s+vxi+vyj+vzk to a rotation 
matrix 



105 






















22

22

22

2212222

2222122

2222221

yxxzyyzx

xzyzxzyx

yzxzyxzy

vvsvvvsvvv

svvvvvsvvv

svvvsvvvvv

W . (A2.2) 

 
Therefore the final position of a point in the body is r’=r0+Wr, where r0 is a 
fixed point in the body (e.g. center of mass), and r is the radius-vector of the 
point relative to r0 in the initial configuration. 

The relation between the quaternion derivative with angular velocity ω 
represented by a quaternion ω=[0, ω]: 

 

qq 
2

1
 .  (A2.3) 

 
 
A3. Solution for disclination in two-phase cylinder 
 
B1=

(A3.1)
B2=

 
(A3.2)

C2=

 
(A3.3)
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D=

 
(A3.4)

 
 
A4. Solution for mismatched two-phase cylinder 
 

B1= 

(A4.1)
D1= 

(A4.2)
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(A4.3)
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(A4.4)
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A5. Solution for Marks-Yoffe disclination in two-phase 
spheroid 
 
B1=

 
(A5.1)
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B2=

 
(A5.2)

C1=0 
(A5.3)

C2=

 
(A5.4)
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