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PREFACE 
 

Within the past twenty years noise-induced phenomena in nonlinear systems have received considerable 
attention. Development of resources management, new techniques in pollution/waste control, a better 
understanding biophysical processes in living organisms are some results of these studies in ecological context. 

We have considered N-species Lotka-Volterra stochastic models of symbiotic ecological systems with the 
generalized Verhulst (IV) and Gompertz (II) self-regulation mechanism. The effect of a fluctuating 
environment on the carrying capacity of a population was taken into account as dichotomous noise. The main 
result is that environmental noise can cause discontinuous transitions in population densities even if the system 
is monostable in the absence of noise. (II, IV). 

Another model we have studied concerns an overdamped Brownian particle in a periodic symmetric one-
dimensional sawtooth potential subjected to both thermal noise and spatially nonhomogeneous trichotomous 
noise. It was established that the mobility depends nonmonotonically on the parameters of nonequilibrium and 
thermal noises. For this reason, anomalous negative mobility and other anomalous transport properties appear, 
which can be used in particle separation techniques. (I, III). 

The present dissertation consists of two parts. The first is a summary of the studies and the second consists of 
published papers. 

 
 

 

1. INTRODUCTION 
 
1.1.  ECOSYSTEMS WITH FLUCTUATING ENVIRONMENTAL PARAMETERS 
 
The dynamical stability of populations and ecosystems governs their responsiveness to fluctuating 
environmental conditions and determines with what reliability these natural resources provide life-
sustaining services to society. Thus, it is important that designers of environmental management plans 
should not overlook any impacts to the stability of ecosystems. Population and ecosystem dynamics is thus 
a major structuring theme in ecology.  

Ecological systems are open systems in which the interaction between the component parts is nonlinear and 
the interaction with the environment is noisy. This intrinsic nonlinearity can give rise to a complex 
behaviour of the system, which becomes very sensitive to initial conditions, various deterministic external 
perturbations, and to fluctuations always present in nature. Mathematical approaches provide powerful tools 
in the analysing of such problems and many different models have been used to study the dynamics of 
interacting species in a variety of different contexts (May, 1973a; Murray, 1989; Renshaw, 1993; Turchin, 
2003).  

Work on theoretical models has implied that ecosystems may switch abruptly from one stable state to a 
contrasting alternative one. To test such ideas, ecological time-series analysis is necessary. The key 
characteristic of such a regime shift is that remarkably sudden switches to contrasting community states 
may occasionally occur, while the time-scale for the change between states is much shorter than the time 
within alternate states. Nowadays regime shifts have been documented for a wide range of ecosystems, 
including the open ocean (Hare & Mantua, 2000; deYoung et al., 2004), lakes and ponds (Scheffer, 1998; 
Ruggiero et al., 2005), rivers and wetlands (Strehlow et al., 2005), and coral reefs (McCook, 1999; 
Nystrom et al., 2000). A regime shift has taken place in the Baltic Sea as well (Munkes, 2005). The forcing 
for the change is generally external to the biological ecosystem, that is, those changes are not simply 
biological oscillation patterns within the ecosystem, but arise from changes in the physical environment. 
This is why the obvious intuitive explanation for a sudden dramatic change in nature is the occurrence of a 
sudden large external impact. However, theoreticians have long stressed that this need not be the case. Even 
a tiny incremental change in conditions can trigger a large shift in some systems if a critical threshold 
known as ‘catastrophic bifurcation’ is passed.  

Observations of catastrophic shifts in different ecosystems are interpreted in the light of stability theory 
(Ludwig et al., 1997; Scheffer et al., 2003; Scheffer & Carpenter, 2003). Such catastrophic transitions have 
also been noted in various theoretical models, assuming that the deterministic counterpart of the model is 
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multistable (Scheffer et al., 2001; Vandermeer & Yodzis, 1999; Rozenfeld et al., 2001). Regime shifts are 
formally associated with the ideas of nonlinear amplification (Dixon et al., 1999), an alternative basis of 
attraction (Sutherland, 1974), multiple stable states (Steele & Henderson, 1984), hysteresis and fold 
catastrophe (May, 1974; Scheffer et al., 2001), all of which require the underlying dynamics to be 
nonlinear.  

Researchers have mainly been interested in the dynamical consequences of population interactions, often 
ignoring environmental variability altogether. However, the essential role of environmental fluctuations has 
recently been recognized in theoretical ecology. Future advances in community dynamics will require the 
use and analysis of nonlinear stochastic models, as illustrated by the studies reviewed by Bjørnstad and 
Grenfell (Bjørnstad & Grenfell, 2001). The environmental fluctuations or noise, via its interaction with the 
nonlinearity of the system, has given rise to new counterintuitive phenomena: stochastic resonance 
(Gammaitoni et al., 1998; Blarer & Doebeli, 1999; Valenti et al., 2004), noise-enhanced stability (Agudov 
& Spagnolo, 2001), resonant activation (Doering & Gadoua, 1992), noise-induced nonequilibrium 
transitions (Horsthemke & Lefever, 1984; Van den Broeck et al., 1997; García-Ojalvo & Sancho, 1999), 
noise-induced multistability and nonequilibrium phase transitions (Jülicher & Prost, 1995; Mangioni et al., 
1997; Reimann et al., 1999; Li & Hänggi, 2001; Berry, 2003), and amplification or suppression of diffusion 
(Lindnder et al., 2001; Örd et al., 2005). Notably, noise-induced effects on population dynamics have been 
a subject of intense theoretical investigations (Vilar & Solé, 1998; Rogers, 2003; Houchmandzadeh, 2002; 
McKane et al., 2000; Spagnolo et al., 2002; Chesson, 2003; Kinezaki et al., 2003). 

Environmental noise can be generated by a range of factors, such as climatic effects, natural enemies, 
interspecific competition, or anthropogenic change. The most productive abstraction of noise-like influence 
from the environment is the case of Gaussian white noise. There the problem is considerably simplified as 
the corresponding transition probability densities satisfy the Fokker-Planck equation, which in certain 
specific cases can be solved exactly. However, time-series of real environmental variables contain positive 
temporal autocorrelation (Steele & Henderson, 1994; Cuddington & Yodzis, 1999), which is often referred 
to by its effect on the colour (the relation between the frequency and amplitude) of the time-series. Large-
scale climatic fluctuations are characteristically autocorrelated, showing a dominance of multiannual or 
decadal variability (e.g. the El Niño-Southern Oscillation and the North Atlantic Oscillation) (Bjørnstad & 
Grenfell, 2001). Positive temporal autocorrelation results in low-frequency fluctuations with a high 
amplitude, which by analogy to red light is often referred to as reddened noise. For example, Steele 
suggested that terrestrial noise should be white, while marine noise should be brown, based upon a few 
empirical records and simple forcing models (Steele & Henderson, 1994). This statement was corroborated 
by the authors of (Vasseur & Yodzis, 2004). However, as researchers continue to use white-noise models, 
even in the face of contradictory environmental data, research that focuses on providing a solid theoretical 
framework for the analysis of reddened environmental variation is sorely needed (Green et al., 2005). 

A number of investigations suggest that population dynamics is sensitive to noise colour (Ripa & 
Lundberg, 1996; De Blasio, 1998; Caswell & Cohen, 1995; Petchey, 2000; Xu & Li, 2003; Laakso et al., 
2006; Hiltunen et al., 2006). Clearly important aspects to tackle are the question of how the frequency of 
environmental noise affects the probability that the ecosystem will shift to another attractor (Steele & 
Henderson, 1994; Steele, 1998) and how extinction risk depends on environmental stochasticity (Halley & 
Kunin, 1999; Wichmann et al., 2003; Heino & Sabadell, 2003).  

Different studies show that external multiplicative noise can induce multistability as well as first-order 
phase transitions in some complex systems (Kim et al., 1997; Kim et al., 1998; Gudyma, 2004). Analysing 
the dynamics of salinity in an ocean model Timmermann found that red noise generates new 
nondeterministic equilibria (Timmermann & Lohmann, 2000). Inspired by these studies the authors of 
(Mankin et al., 2002) have investigated whether some catastrophic shifts occurring in ecosystems could be 
regarded as induced by multiplicative coloured noise. The answer is again positive, as in a symbiotic 
ecosystem, described by an N-species generalized Lotka-Volterra model with logistic self-regulation, 
coloured fluctuations of the carrying capacities of populations have been shown to produce discontinuous 
changes from a stable state to an unstable one. Note that symbiotic Lotka-Volterra models with the true 
Verhulst (logistic) self-regulation have some special properties, such as transitions from stability to 
instability, even in the absence of noise (Rieger, 1989; Mankin et al., 2002; Ciuchi et al., 1996). If there are 
no transitions from stability to instability, as is true for most natural ecosystems, the features of the system 
can be different. A more fundamental question is, both from theoretical and practical viewpoints, whether 
coloured fluctuations of the carrying capacities can also induce bistability of such systems and produce 
abrupt switching between their stable states. 
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Thus motivated, in the current thesis we consider N-species Lotka-Volterra models of symbiotic ecological 
systems with Richard self-regulation, focusing on coloured-noise-induced discontinuous transitions. The 
effect of fluctuating environment on the growth of populations is modelled as a dichotomous (two-level) 
noise of the carrying capacity. 
 
  
1.2. TRANSPORTATION OF NANOOBJECTS 
 
There are two environmental implications of nanotechnology: one is positive and the other is potentially 
negative. Some of the positive features from the ecological viewpoint are as follows (Theodore & Kunz, 
2005): 
• novel sensing technologies or devices for pollutant and microbial detection; 
• removal of environmental contaminants from various media; 
• posttreatment of contaminated soils, sediments, and solid wastes; 
• oil-water separation; 
• destruction of bacteria. 
The other implication of nanotechnology has been dubbed by many as “potentially negative”: the ability of 
nanoparticles and nanodevices to bypass natural defences of living systems. For example, a research team 
at the University of Rochester reported that inhaled carbon nanoparticles can travel directly into the 
olfactory area of the brain – not by crossing the blood-brain barrier as pharmaceuticals do, but by traversing 
neural pathways (Oberdörster et al., 2004). Air, water, and land (solid waste) concerns with emissions from 
nanotechnology operations in the future, as well companion health and hazard risks, receive extensive 
treatment. Transport phenomena play a crucial role in the above-mentioned processes. 

Moreover, biological organisms on their primary cellular level function in a nanofluidic environment, and 
the solutions that have been found after billions of years of evolution deserve a thorough inspection. For 
example, nature has found a way to harness Brownian motion, which creates a very noisy environment at 
the molecular scale for active transport (Magnasco, 1993). In this context, Brownian motor theory leads us 
into the realm of intracellular transport research, specifically the biochemistry of molecular motors and 
molecular pumps (Reimann, 2002).  

Starting from Magnasco’s theoretical work (Magnasco, 1993), there has been increasing interest in 
transport properties of nonlinear systems, which can extract usable work from unbiased nonequilibrium 
fluctuations (Mateos, 2000; Luczka et al., 1995; Ai et al., 2005a). The idea that noise, via its interaction 
with the nonlinearity of the system, can give counterintuitive results, has led to many important discoveries (for 
a review see (Hänggi & Marchesoni, 2005)). Among them, we can mention stochastic ratchets (Reimann, 
2002; Magnasco, 1993; Astumian & Bier, 1994; Rousselet et al., 1994; Faucheux et al., 1995; Matthias & 
Müller, 2003; Ghosh & Khare, 2003), and absolute negative mobility (Eichhorn et al., 2002a). 

A ratchet is a device that can induce directional motion of particles or molecules without a net external 
force or gradient. The operating principle of ratchets relies on the rectification of the effects of either 
thermal motion or a zero-average external field (Magnasco, 1993; Ajdari et al., 1994). Different types of 
ratchets (correlation, flashing, etc.) have been classified (Reimann, 2002). This is, indeed, a fascinating 
concept permeating many fields, from quantum mechanics to biophysics. Perhaps the current level of 
enthusiasm for ratchets is best illustrated by the special issue on the subject published in Applied Physics A 
(Linke, 2002). The technique has been used, for example, to transport micronsize colloidal particles 
through a silicon wafer with asymmetric pores by applying an oscillating pressure difference (Kettner et al., 
2000) or an oscillating electrical field (Marquet et al., 2002). To date, the feasibility of particle transport by 
man-made devices has been experimentally demonstrated for several ratchet types. 

It should be noted that dynamics in ratchet structures with its inherent spatial asymmetry generally exhibits 
a rich complexity, such as the occurrence of multiple current reversals and multipeaked current 
characteristics. The current reversal in ratchet systems can be engendered by varying system parameters 
(Bier & Astumian, 1996; Tammelo et al.2002; Ai et al., 2005a). 

The models with current reversals are very important in new particle separation devices such as 
electrophoretic separation of microparticles (Kettner et al., 2000). Also, such models are of interest in 
biology (Henningsen & Schliwa, 1997). Motions of macromolecules are probably responsible for vesicle 
transport inside eukaryotic cells. A typical example is the motion of proteins along a microtubule, usually 
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modelled by a ratchet (Oster & Wang, 2002). The two typical proteins – kinesins and dyneins – move along 
tubulin filaments in opposite directions and this can be explained by current reversal (Ai et al., 2005b). 

A characteristic feature of models with absolute negative mobility (ANM) is that upon the application of an 
external static force, these models respond with a current that always runs in the direction opposite to that 
of the force. Notably, for zero external force no current appears due to the spatial symmetry of the system. 

There are several categories of theoretical models for classical ANM. In (Eichhorn et al., 2002b; Eichhorn 
et al., 2002a; Eichhorn et al., 2003) various 2D spatial geometries have been proposed in which a single 
Brownian particle displays ANM. Two interesting basic 1D models for a single Brownian particle 
exhibiting ANM were presented in (Cleuren & Broeck, 2003; Jiménez de Cisneros et al., 2003). Although 
the mechanism of ANM in these 1D models is different, there is similarity in some aspects, notably, noise-
induced switching between different potential configurations (states) can take place only when the particle 
passes certain specific positions. For example, for the spatially continuous model in (Cleuren & Broeck, 
2003) the corresponding positions are the minima of the periodic potential with two minima per period. 
Note that as a result of the localized transitions between the different states, the dependence of the 
stationary current on the switching rate of noise disappears (Cleuren & Broeck, 2003).  

As the “three-layer” basic diffusion mechanism for ANM described in (Cleuren & Broeck, 2003) is robust 
enough and can be easily realized experimentally, we applied a similar approach to 1D models where the 
transitions between different potential configurations are not localized at discrete points, i.e. the transitions 
appear rather in finite intervals. It is of interest, both from theoretical and practical viewpoints, to know 
whether such a modification of the basic model can cause novel unexpected effects. 
 
 
1.3. OBJECTIVES 
 
The general aim of this study was to analyse nonlinear modelsystems in the presence of coloured 
environmental noise.  

The main objectives of the study were as follows: 
1)  to provide exact analytical results for coloured-noise-induced first-order-like phase transitions in model 

of symbiotic ecosystems over extended dichotomous noise parameters and interaction strengths by 
a) analysing how different self-regulation mechanisms, such as Richard and Gompertz laws can 

influence the behaviour of stochastic complex systems; 
b) establishing the exact conditions under which abrupt transitions occur, and analysing the role of the 

parameters of the Richard’s growth model in such transitions.  

2)  Considering one-dimensional overdamped dynamical systems, where Brownian particles move in a 
spatially periodic piecewise linear symmetric potential,  
a)  to report some interesting novel phenomena, which take place in systems described above, arising as 

a consequence of interplay between a nonequilibrium noise, a thermal noise, and a deterministic 
force; 

b)  to apply the developed modelsystem of Brownian particles to the exploration of the phenomenon of 
absolute negative mobility at intermediate intensity values of environmental fluctuations. 

 
 
 
2. MODELS AND METHODS 
 
In studies where a dynamical system is perturbed by noise it is appropriate to model the dynamics of the 
system by stochastic differential equations. The use of such equations for modelling purposes has a long 
history in the physical sciences, the use of the Langevin equation to study Brownian motion being but one 
(Risken, 1989; Coffey et al., 1996), but is much less common in the biological sciences. In context of 
population dynamics these equations were first formulated about thirty years ago (May, 1973a; May, 
1973b). 
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2.1.  POPULATION GROWTH MODELS WITH A FLUCTUATING CARRYING CAPACITY 
 
Many different types of mathematical and computer model of multispecies ecosystems have been 
developed (May, 1973a; Pastorok et al., 2002; Turchin, 2003). Time evolution of a two- species system is 
well-known as the Lotka-Volterra system. Our community models are based on the N-species generalized 
Lotka-Volterra equation  
 

( ) ( ) ( ( )) ( )i i i i ij j
j i

d
X t X t f X t J X t

dt ≠

 
= + , 

 
∑        (1) 

 
where Xi(t) (i =1,…,N) is the population density of the i-th species at time t (clearly, Xi(t) ≥ 0). The function 
fi (X) is the density-dependent growth rate of the population and describes the development of the i-th 
species in the absence of others. In general, the growth rate may also have a different form (Takeuchi, 
1996; Renshaw, 1993; Zwietering et al., 1990) 

The matrix (Jij) (i, j =1,…,N)  is an interaction (or coupling) matrix and represents the effect of the j-th 
species upon the i-th one. The elements of matrix Jij may be positive (+), negative (-) or zero (0). Ecologists 
distinguish among five general classes of pairwise species interactions: competition (-,-), symbiotic (or 
mutualistic) interaction (+,+), commensalism (+,0), amensalism (-,0), and trophic interaction (+,-) (Turchin, 
2003). Note that the well-known prey-predator relationship is one of the trophic interactions. 

Only models with symbiotic relationship have been analysed in this study. Accordingly, Jij > 0 and Jji > 0, 
which means that the growth rate of each species depends positively on the population densities of the 
others. In nature there are a number of different types of mutualistic relationships (Begon et al., 2006; 
Bronstein, 1994), but from the viewpoint of Equation (1) they all are identical. 

We analysed models with generalized Verhulst (or Richard) self-regulation, in which case the growth 
function can be written as 

( ) 1i i
i

x
f x

K

β

δ
  
 = −  
   

,                 (2) 

where δi is a density-independent growth rate and Ki is the carrying capacity of the i-th species (Levin et al., 
1997; McGlade, 1999; Lindsey, 2004). Carrying capacity is a limiting factor on the population growth 
which is imposed by environmental factors, basically food and space limitations.  

In the case of single species (Jij=0) the differential equation (1) with Eq. (2) gives us the solution 
 

1/

0

( ) 1 1 exp( )i
i i i

i

K
X t K t

X

ββ

δ

−
     = − − −  

     

 (3) 

 

called the Richards curve (Lindsey, 2004; Seber & Wild, 2003). For β>0 this curve describes initial 
exponential growth that is increasingly damped as the population density increases until it eventually stops. 
The parameter β changes the position of the inflection point and, hence, the shape of the curve (3). The 
determination of the inflection point by a free parameter makes the Richards growth model relatively 
flexible and inclusive of the other sigmoidal growth models. 

If β = 1, the Richards curve becomes the well-known logistic growth that is symmetrical about the 
inflection point. For β >1, the most density dependent change occurs at a high population level (close to the 
carrying capacity). According to both theory and empirical information, this is characteristic for species 
with a life history typical of large mammals (Fowler, 1981). The reverse is true for species with life history 
strategies typical of insects and some fishes, with 0<β<1 (Fowler, 1981). 

Although self-regulation models with β >0 are useful in modelling many actual communities, there are 
some biologically important systems, such as bacterial populations, where population growth could be 
modelled better by the Gompertz law with a growth rate  
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( ) ln .i i
i

x
f x

K
δ  = −  

 
 (4) 

 

Model (4) is a special case of the generalized Verhulst self-regulation with the exponent β→0. To show 
that one must take the intrinsic growth rate in (2) of the form δi/ β. 

In Paper IV we analysed the generalized Verhulst model with a large exponent β >1 (GVLB), and in (II) 
the models with Gompertz self-regulation and the generalized Verhulst model with a small exponent 0<β<1 
(GVSB) were studied. 

Environmental parameters vary over time, and so do carrying capacities. This is the reason why 
environmental noise  should be modelled by the inclusion of an additive noise term for the carrying 
capacity Ki. For the sake of mathematical simplicity, it is useful to look for types of coloured noise such 
that enable, in the case of the mean-field theory at least, the stationary probability density to be evaluated 
exactly for any value of the correlation time. The simplest noise of this kind is the dichotomous (two-state) 
Markovian noise, also known as the random telegraph signal (Horsthemke & Lefever, 1984). Such noise 
switches back and forth between two values, and the jumps follow in time according to a Poisson process. 
Dichotomous noise is often a good representation of actual environmental fluctuations, such as the 
alternating decades with low and high precipitation in southern Africa; the removal of vegetation by large, 
migrating herbivores and subsequent recovery; or the cyclic and vertical currents in water that transport 
algae in regions of high and low light availability (Wichmann et al., 2003). 

Thus motivated, in our study the fluctuations of the carrying capacity for GVLB were modelled as  
 

[ ]01 ( )i iK K a Z t= + ,  (5) 

 

where the coloured noise Zi(t) is assumed to be a dichotomous Markovian stochastic process (Horsthemke 
& Lefever, 1984; Hänggi & Jung, 1995) with state values z = -1, 1. The values occur with the stationary 
probability 1/2 and the transition probabilities between the states ( ) 1Z t = ±  can be obtained as follows:  

1
( 1 | 1 ) (1 ) 0 0

2
P t t e νττ τ ν−± , + , = − , > , > .m  

The mean value of Zi(t) and the correlation function are ( ) 0iZ t = ,   ( ) ( ) exp( )i j ijZ t Z t t tδ ν′ ′, = − − , 

where the switching rate ν is the reciprocal of the noise correlation time, 1 cν τ= / . The parameter a0 can be 

interpreted as the noise amplitude and obviously, Model (1) with Eqs. (2) and (5) is biologically 

meaningful only if 0 1a <  (the carrying capacity K is nonnegative). 

In the case of Gompertz self-regulation (4) and GVSB an additional adaptation parameter ε > 0 is required: 

01 ( ) [1 ( )].i j i
j i

K K X t a Z t
N

ε
≠

 
= − + 

 
∑  (6) 

The factor [1 ( ) ( )]jN X tε− / ∑  in Eq. (6) mimics the decrease of the carrying capacity caused by adaptive 

competition of populations for common resources, such as food or living space (see also (Dimitrova & 
Vitanov, 2001; Sprott, 2004)). A need for the consideration of inter-species adaptive competition in models 
with Gompertz self-regulation of biological relevance arises from the following circumstance: In the 
absence of adaptation (ε=0), for all Jij > 0 the corresponding deterministic model (without noise) is 

characterized by instability; it means that within a finite time the site average (1 ) ( )iX N X t= / ∑  grows to 

infinity (Rieger, 1989; Ciuchi et al., 1996). For biologically relevant models any growth of an expanding 
population must eventually be stopped by shortage of resources. Addition of adaptation to the model would 
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regulate the behaviour of the system so that an unstable state of the system will be replaced by a new stable 
stationary state. A qualitatively analogous situation takes place in models with general Verhulst self-
regulation with 0<β<1 (II). The adaptation parameter ε is assumed to be independent of the species, i.e., the 
populations adapt themselves with respect to the total number of individuals of all populations. 

We must point out that the same technique, an additive noise term for the carrying capacity, is used by the 
authors of (Ripa & Lundberg, 1996; Petchey et al., 1997; van Nes et al., 2004). In comparison with 
(Mankin et al., 2002), where the immediately fluctuating quantity is the reciprocal of the carrying capacity, 
such approach is more natural.  
 

 

2.2.  MEAN-FIELD APPROXIMATION AND THE MASTER EQUATION                                          
FOR LOTKA-VOLTERRA SYSTEMS 

 

The basic Lotka-Volterra model deals with interaction between a pair of species. As most populations are 
embedded in rich communities and affected by numerous interspecific interactions, low-dimensional 
models involving one or just a few species cannot capture the patterns of fluctuations. To analyse a 
community of many species by the general Lotka-Volterra model (1), we need take into account the 
interaction coefficients between each pair of the species involved. For example, in a system of 10 species a 
total of 90 interaction coefficients and 10 carrying capacities would have to be determined to be able to use 
the model. Clearly, in this way analytical calculations can be applied only to very simple systems. 

The simplest approach is to assume that all individuals in a system are homogeneous, evenly mixed in 
space and they interact equally – what in physics is termed a mean-field. Such assumptions are the basis of 
most N-species community models (Ciuchi et al., 1996; Rieger, 1989; McKane et al., 2000; McKane & 
Newman, 2004; Bastolla et al., 2005; Mombach et al., 2002). The advantage of mean-field models is that, 
on the one hand, they can often be solved with relatively little effort and, on the other hand, they account 
for subsystem-subsystem interactions of many-body systems. 

To proceed with the analytical examination of Model (1) with the self-regulation (4) we follow the mean-
field approximation scheme described in (Mankin et al., 2002). We are interested in the case of infinitely 
many interacting species, N → ∞. The mean-field approximation can be reached by replacing the site 

average 
( )

(1 ) ( )jj i
N X t

≠
/ ∑  by the statistical average X . On the basis of (Mankin et al., 2002; Rieger, 

1989; Ciuchi et al., 1996) we consider all species to be equivalent, so that the characteristic parameters of 
the ecosystem (or metapopulation) are independent of the species, i.e., 0.i iK Kδ δ= , = >  Interspecies 

interaction is characterised by the coupling constant J >0, so that in Model (1) ( / )ij j i
j i i

J X J N X
≠

=∑ ∑ , 

and consequently the growth rate depends on the average species concentration. 

The natural time scale in Model (1) is given by the growth rate parameter δ and it is useful to absorb it into 
the time scale. The population density can be scaled by the carrying capacity. By applying a scaling of the 
form  

, .
X KJ

t t J KX
K

νδ ν ε ε
δ δ

= , = , = , = =%%% % %                                                           (7) 

we get dimensionless variables. For brevity’s shake, we shall omit tilde throughout this study.  

In the case of general Verhulst self-regulation we get a stochastic differential equation of the form  

{ }( )
( ) 1 ( ) ( )[1 ( )] ,

dX t
X t J X t X t aZ t

dt
βγ= + − +   (8) 

in which we have introduced  
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 0 02
0

1
(1 ) (1 )

2(1 )
a a

a
β β

βγ  
  

= + + − ,
−

 (9) 

and the amplitude of the dichotomous fluctuations  

0 0

0 0

(1 ) (1 )

(1 ) (1 )

a a
a

a a

β β

β β
+ − −= .
+ + −

                                                                 (10) 

We can see that as a result of the mean-field-type interaction the original many-body problem has been 
reduced to a one-body problem. 

The corresponding composite master equation is 

{ }( )
[ ( ) (1 )] ( ) ( )n

n n nm m
m

P x t
x r t x a P x t U P x t

t x
β γ∂ , ∂= − − + , + ,

∂ ∂ ∑                       (11) 

with ( ) 1 ( )r t J X t≡ + , Pn (x,t) denoting the probability density for the combined process 

1 2( ) 1 2nx a t n m a a a, , ; , = , ; − = = ; and  

1 1
.

1 12

ν − 
=  − 

U                                                                         (12) 

For the model with Gompertz self-regulation the corresponding stochastic differential equation is  

0

2
00

1( ) ( )
( ) ln ln ( ) ( ) ,

11 [1 ( ) ]

adX t X t
X t Z t J X t

dt aa X tε

   +  = − + +
  − − −  

                          (13) 

and the composite master equation can be expressed as 

0

0

( ) 1
ln ( ) ln ( ) ( ),

1
n

n n nm m
m

P x t a
x x q t z P x t U P x t

t x a

 
 
 
 
 
 

 ∂ , +∂= − − + + , + , 
∂ ∂ −  

∑                         (14) 

with 2
0( ) ( ) ln 1 (1 ( ) )q t J X t a X tε ≡ + − − 

. 

The behaviour of a stationary system can be analytically studied by means of a standard mean-field theory 
procedure (García-Ojalvo & Sancho, 1999). For a stationary state we can solve Eqs. (11) and (14), taking 
as the boundary condition that there is no probability current at the boundary. This way we get the 
stationary probability distribution in the x space, ( ) ( )s

nn
P x r P x, =∑ , where ( )s

nP x  is the stationary 

probability density for the state ( )nx a,  (IV). The self-consistency equation for the Weiss mean-field 

approach, whose solution yields the dependence of X  on the system parameters, is  

1

2

( )
x

x
X xP x r dx= , .∫                                                                     (15) 

 For GVSB the corresponding self-consistency equation takes the following form 

 
ρ λ

β β
β− = , + ; + ; ,−

















m m F m a1
12

21 1
2

1
2

1
2

1
2                                                       (16) 
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where 2F1 is the hypergeometric function, the "order parameter" 

1
,

2 2 (1 )
m

X J Xβ
ν ν
γβ β

:= =
+

                                 (17) 

and the parameters D and λ are defined as 

ρ
γβ
ν

ν
β

λ
γβ
ν

β β

= 





, = 





1 12
2

2 1/ /

.
J J                                              (18) 

For the model with Gompertz self-regulation the corresponding self-consistency equation is  

( )0(1 ) ( , ) expX X F a J Xε ν= − ,                                       (19) 

where 

0
0 0

0

1
( ) (1 ) ln ,

2 1

a
F a a

a

νν ν
 +, := − Φ , ;  − 

 

and Φ is the confluent hypergeometric function.  

The results that we got from analysing the different solutions of Equations (16) and (19) are presented in 
(II, IV) and in Section 3. 

For the model with β >1 the mean-field solution X  was also compared with a computer simulation with 

a finite number of interacting species, 500N = , using the numerical methods described in (Van den 

Broeck et al., 1997; García-Ojalvo & Sancho, 1999). The mean value of the population densities X  was 
computed by 

0

0 1

1
( )

Nt T

jt
j

X X t dt
TN

+

=

= .∑∫  

The averaging time T was chosen to be sufficiently longer than the correlation time (for example, T ≈ 1 
near the coexistence region) and the time evolution of the average value was carefully monitored until the 
stationary state was reached (t0 >5). 

 

 

2.3.  BROWNIAN PARTICLES IN A TILTED SYMMETRIC SAWTOOTH POTENTIAL 
 
Within the past two decades a number of stochastic ratchets (or Brownian motors) have been proposed to 
induce continuous directional motion of small particles (Reimann, 2002). In these models a system has a 
periodic structure with local symmetry breaking and particles are submitted to some local ‘shaking’, so that 
the asymmetric structure rectifies into a net macroscopic transport along the structure. Recently, two 
interesting basic one-dimensional models for a single Brownian particle exhibiting absolute negative 
mobility have been presented in (Cleuren & Broeck, 2003; Jiménez de Cisneros et al., 2003). The authors 
of the referred works analysed models where switching between different potential configurations (states) 
can take place in certain specific positions of the particle. By contrast with them in our approach the 
transitions between different potential configurations are not localized at discrete points.  

We have considered the motion of Brownian particles in a one-dimensional (1D) spatially periodic 
potential ( )V V x L= +% % %  of a period L and barrier height 0 max minV V V= −% % % . The applied force consists of an 

additive static force F%  and of a noise term composed of thermal noise ( )tξ% %  with a temperature T and a 
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coloured three-level Markovian noise ( )Z x t,% %% . As thermal fluctuations play a notable role in very small 

systems, the inertial forces are negligible and the dynamics is overdamped. The system is described by the 
following stochastic differential equation: 

( )
( ) ( )

dX dV X
F t fZ X t

dt dX
κ ξ= − + + + , ,

% % %
%%% % %% %

%%
                                          (20) 

where κ  is the friction coefficient and f%  is a constant force. The thermal fluctuations ( )tξ% %  are modelled 

by a zero-mean Gaussian white noise with the correlation function 1 21 2( ) ( ) 2 ( )Bt t k T t tξ ξ κ δ= −% % % % , where 

kB is the Boltzmann constant, 2 Bk Tκ  is the thermal noise intensity, and δ(t) is Dirac’s delta function. The 

term ( )Z X t,% % %  represents a three-level Markovian stochastic process and is assumed to be spatially non-

homogeneous, so that transitions between the states 1 1z = −% , 2 0z =%  and between the states 2 0z =% , 3 1z =%  

can take place only in the left half-period and in the right half-period of the potential, respectively. The 
probabilities ( )nW t  that ( )Z X t,% % %  is in the state n at the time t% evolve according to the master equation  

3

1

( ) ( )nmn m
m

d
W t W tU

dt =

= ,∑% %%
%

                                                (21) 

where  

1 1

1 2

2 2

( ) ( ) 0

( ) 1 ( ) ,
2

0 ( ) ( )

x xa a

x xa a

x xa a

ν
 − , , 
 = , − , 

 , , − 

U

% %% %
%% % %% %

% %% %

                                                      (22) 

with 1( ) ( 2)x x La = Θ − /% %% , 2( ) ( 2 )x L xa = Θ / −% %% , and ( )xΘ  is the Heaviside function.  

By applying a scaling of the form  

00 0 0 0

( )
( )

X V x t L L L
X V x t F F f f

L tV V V V

ξξ= , = , = , = , = , = ,
%% % %% %%

% % % %%
                      (23) 

we get a dimensionless formulation of the dynamics with the potential V with the property 

( ) ( 1)V x V x= − . By the choice of 2
00t L Vκ= /% %  the dimensionless friction coefficient turns to unity. The 

rescaled noises are given by  

2

1 2
0 0

1 1
( ) ( )

2 2
Bk TL

a x x a x x D
V V

κ νν    = , = Θ − , = Θ − , = ,   
   

%

% %
                          (24) 

where 2D is the strength of the rescaled zero-mean Gaussian white noise ( )tξ . For brevity’s sake, from 

now on we shall call D temperature. The dimensionless dynamics reads  

( )
( ) ( )

dX dV X
F t fZ X t

dt dX
ξ= − + + + , ,                               (25) 

where the rescaled nonequilibrium noise Z(X, t) is characterized by the transition matrix U  of the form  

1 1

1 2

2 2

( ) ( ) 0

( ) 1 ( )
2

0 ( ) ( )

a x a x

a x a x

a x a x

ν
 − , , 
 = , − , 

 , , − 

U  
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The process Z(X, t) can be presented as the sum of two kangaroo processes 0 0 1 1 1( ) ( ) ( ) iZ X t Z t Z tδ δ, ,, = +  

(van Kampen, 1987). If the kangaroo processes Z0(t) and Z1(t)  are statistically independent, which is the 
case addressed in the present study, then the two-dimensional process { ( ) ( )}x t z t,  is Markovian and its 

joint probability density ( )nP x t,  for the position variable x(t) and the fluctuation variable z(t) obeys the 

master equation of the form  (van Kampen, 1987)  

( ) ( ) ( ) ( )n n n nm m
m

P x t h x F z f D P x t U P x t
t x x

∂ ∂  ∂  , = − + + − , + ,  ∂ ∂ ∂  
∑                       (26) 

with m,n = 1,2,3; z1= -1, z2= 0, z3= 1; ( ) ( )h x dV x dx= − / . More precisely, in the interval (0,1) the master 

equation (26) splits up into two differential equations 1 2 3( ) ( )i i i ix t P P P, = , ,P  (i = 0,1), defined in the intervals 
1
2(0 ),  and 1

2( 1), , respectively.  

The stationary current J  is then evaluated via the current densities  

( ) ( ) ( ) ( )s
n n n n

n

j x h x z f F D P x J j x
x

∂ = + + − , = , ∂ 
∑                                        (27) 

where ( )s
nP x  is the stationary probability density for the state ( )nx z, . It follows from Eq. (26) that the 

current J is constant. In the stationary case, the total net probability flux between the states n = 1,2,3 must 
vanish, implying  

1 2 1 2 1 1

2 3 1 20 0 1 2 1 2
( ) ( ) ( ) ( )s s s sP x dx P x dx P x dx P x dx

/ /

/ /
= , = .∫ ∫ ∫ ∫                               (28) 

To derive an exact formula for J, we present an analysis of the system of Eq. (25) for a piecewise linear 
sawtooth-like symmetric potential  

(2 1) (0 1 2) mod 1
( )

(2 1) (1 2 1) mod 1

x x
V x

x x

− − , ∈ , / ,
=  − , ∈ / , .

                                               (29) 

The force ( ) ( )h x dV x dx= − /  being periodic, the stationary distributions ( )s
nP x  as solutions of Eqs. (26) are 

also periodic and it suffices to consider the problem in the interval [0, 1). The force corresponding to the 
potential of Eq. (29) is  

0

1

2 (0 1 2) mod 1,
( )

2 (1 2 1) mod 1

h x
h x

h x

:= , ∈ , /
=  := − , ∈ / , .

                                                      (30) 

A schematic representation of the three configurations assumed by the "net potentials" 
( ) ( )n nV x V x Fx z f x= − −  associated with the right hand side of Eq. (25) is shown in Fig.1. The lines 

depict the net potentials with z1 = -1, z2 = 0, and z3 = 1. Unbiased transitions with a switching rate ν can take 
place between the discrete states, but only at specific positions, namely, in the interval 1

2(0 )x ∈ , , modulo 1 

between V2 and V3, and in the interval 1
2( 1)x ∈ , , modulo 1 between V2 and V1. Regarding the symmetry of 

the dynamical system (25), we notice that ( ) ( )J F J F− = − . Thus, we may confine ourselves to the case 
F ≥ 0. Obviously, for F = 0  the system is effectively isotropic and no current can occur. 

As the force h(x) is piecewisely constant Eq. (26) splits up into two linear differential equations with 
constant coefficients for the two vector functions 1 2 3( ) ( )s s s s

i i i ix P P P= , ,P  (i = 0,1), defined on the intervals 

1
2(0 ),  and 1

2( 1), , respectively. The solution includes ten constants of integration and for the probability 

current J it can be determined at the points of discontinuity, by requiring continuity and periodicity for the 
quantities ( )s

i xP  and ( )nij x , i.e.  
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Figure 1. Schematic representation of different states and their transitions in the model (25) with the sawtooth 
potential (29) at low temperatures. (a) The case of F =1, f =4.             (b) The case of F =1.6, f =3. 
 
 

( ) ( )0 1 0 1 0 1 0 1

1 1 1 1
0 1 (0) (1) 1 2 3

2 2 2 2
s s s s

n n n n n n n nP P P P j j j j n
       = , = , = , = , = , , .       
       

                    (31) 

 

As it follows from Eq. (26) that J = const [see also Eq. (27)], the system of linear algebraic equations (31) 
contains only ten linearly independent equations. By including an eleventh (normalization) condition,  

3 1

0
1

( ) 1s
n

n

P x dx
=

= ,∑∫                                        (32) 

a complete set of conditions is obtained for the ten constants of integration and for the probability current J. 
This procedure leads to an inhomogeneous set of eleven linear algebraic equations. Now, J can be 
expressed as a quotient of two determinants of the eleventh degree. The exact formulae are presented in the 
Appendix of (III). It will be used to find the dependence of the current J on the tilting force F and the 
dependence of the mobility m dJ dF= /  on the switching rate. All numerical calculations are performed 
by using the software MATHEMATICA 4.1.  
 
 

 
 
3. RESULTS AND DISCUSSION 
 
3.1.  COLOURED-NOISE-INDUCED TRANSITIONS IN SYMBIOTIC ECOSYSTEMS 
 
3.1.1. A system with generalized Verhulst self-regulation 
 
The presence of coloured fluctuations of the carrying capacities of populations in      N-species symbiotic 
ecological systems with generalized Verhulst self-regulation with an exponent β>1 is analysed and 
discussed in (IV). We have found that: 
• For symbiotic ecological systems with generalized Verhulst self-regulation, coloured fluctuations of the 

environment can cause bistability and abrupt transitions of mean population densities.  
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• The hysteresis for the mean field and related discontinuous transitions can be found as functions of 
noise parameters as well as of the coupling constant. 

• For β>1 abrupt changes of mean population densities appear only if the noise amplitude is greater than 
the threshold value a0c and the critical noise amplitude depends on the exponent β, only: a0c increases 
relatively rapidly if β increases. 

Discontinuous transitions can occur by a gradual change of the coupling strength J. Figure 2 shows 
different solutions of the self-consistency equation (16) for the mean field m as a function on the coupling 
constant J and the noise correlation time τc at the amplitude parameter 2

0 0 980a = . . The solid and dashed 

lines are stable and unstable solutions of Eq. (16), respectively. The existence of alternative stable states 
(Fig. 2, the curve τc =0.5) indicates that there is a coexistence region, J1 < J < J2, where two stable 
phases are possible. Notably, coexistence does not mean that the two phases are present simultaneously, 
however, either is possible depending on the initial distribution. If the value of the mean field m lies on the 
upper branch of the curve τc =0.5 close to the point F, a slight growth of the coupling parameter  J induces a 
catastrophic transition of the system to another stable state with the value of the mean field corresponding 
to the point G. The opposite shift occurs, when the coupling parameter decreases below the value J1. The 
situation described represents a typical case of first-order phase transitions. As the coupling-induced two-
phased coexistence region does not exist in the system without noise, it is a coloured noise effect. The 
results indicate that the effect of noise is not merely restricted to the shift of the mean population density, 
but the whole nature of the dynamics changes. 
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Figure 2. Stationary mean-field m vs coupling strength J at different correlation times τc. The solid and dashed 
lines are stable and unstable solutions of the self-consistency equation (16), respectively. 

 

This interesting circumstance demonstrates that both agents – the symbiotic coupling of species and the 
coloured fluctuations of the carrying capacities – act in unison to generate discontinuous transitions of the 
mean population density. Moreover, as in scaling (7) the growth rate δ and the deterministic carrying 

capacity K of species have been absorbed into the time scale and into the coupling strength J% , thus, in the 
original (unscaled) set-up, discontinuous transitions can occur also by a gradual change of the parameters 
δ and K.  

From Figure 2 one can see that the coexistence region of the two phases exists only for sufficiently large 
values of the correlation time τc. Hence, there is an upper limit τc* for the correlation time τc, at greater 
values of which the system is monostable. In Fig. 3 we have plotted the critical correlation time τc* as a 
function of the parameters a0

2 and β. In the case of fixed values of β the critical parameter τc* increases 
monotonically from zero to infinity if the noise amplitude a0 increases from 0 ( )ca β  to 1. 

Perhaps the most important new result, in an ecological context, is the existence of the critical noise 
amplitude. We emphasize that for β >1 abrupt changes of mean population densities appear only if the 
noise amplitude exceeds the threshold value a0c. In Fig. 3 the filled dots on the a0

2 axis correspond to 
different values of the critical noise amplitude a0c(β). It should be pointed out that the threshold amplitude 
a0c depends only on the exponent β describing generalized Verhulst self-regulation. Therefore, an increase 
of noise amplitude or a decrease of noise correlation time can under certain conditions cause a catastrophic 
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fall in the size of populations. As the critical noise amplitude increases relatively rapidly if β increases, it 
seems reasonable to assume that in symbiotic ecosystems with generalized Verhulst self-regulation abrupt 
transitions appear with a greater probability if the exponent β is lower.  
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Figure 3. The critical correlation time τ*c vs the noise amplitude a0

2 for some values of the system parameter β. 

  
Hysteresis can also occur in the case of either noise parameter, τc or a0, being chosen as the control 
parameter. For example, in Fig. 4 hysteresis is exposed for the mean value of the population densities X  if 

the noise correlation time τc is considered as the control parameter. It can be seen that a jump from a state 
with a bigger number of individuals to that with a lesser one occurs at smaller correlation times than the 
opposite jumps.  

The mean-field results considered correspond to an infinite number of globally coupled species. Bearing in 
mind the results of computer simulations (the squares in Fig.4), one can assume that this scenario is not 
much different from more realistic ecosystems, where the number of species is finite, at least in the case 
when the number of species is large enough.  
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Figure 4. Plot of the mean value of the population density X as a function of the noise correlation time τc at a0

2 

=0.939, β=2, and J=6. The solid and dashed lines correspond to the stable and unstable solutions of Eq. (16), 
respectively. The squares are obtained by means of computer simulations of the system with N=500. 

 
It is worth emphasizing that the deterministic counterpart of most ecological models exhibiting noise-
induced discontinuous transitions is able to display transitions similar to those induced by noise for a 
certain range of parameters values (Scheffer et al., 2001; Vandermeer & Yodzis, 1999; May, 1977; Rinaldi 
& Scheffer, 2000; Rozenfeld et al., 2001; Pascual & Caswell, 1997; Antal & Droz, 2001; Abramson, 1997). 
In our model, however, these transitions occur only if coloured noise is present.  

We believe that the obtained results are of interest also in other fields where symbiotic interaction and 
generalized Verhulst self-regulation are relevant, e.g. in the dynamics of human world population 
(Johansen & Sornette, 2001), coupled chemical reactions, some laser systems (Horsthemke & Lefever, 
1984), and in business (Bouchaud, 2002; Trimper et al., 2002). 
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3.1.2. A system with Gompertz self-regulation 
 
The presence of coloured fluctuations of the carrying capacities of populations in  N-species symbiotic 
ecological system with Gompertz self-regulation is analysed and discussed in (II). 

We have established two types of noise-induced discontinuous transitions – doubly unidirectional 
transitions (DUT) and single unidirectional transitions (SUT) – and given the necessary and sufficient 
conditions for the appearance of such effects. Single unidirectional transition means that an increase in 
noise amplitude can cause a catastrophic fall in the size of populations, while by decreasing the noise 
amplitude no opposite transitions can occur. To our knowledge, the appearance of a noise-induced SUT in 
models of ecosystems without extinction is a new noise-induced effect.  

When investigating the dependence of X  on the correlation time τc, five different types of the graph X  

versus switching rate υ emerge (Fig 5). We interpret these five qualitatively different shapes of the graphs 
as different ”phases” in the phase space (ε, J), where ε is the adaptation parameter and J is the strength of 
symbiotic interactions [the phases (a)–(e) in Fig. 6]: 
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Figure 5. The shape of the function X  vs. ν for the different domains in Fig. 6. 
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Figure 6. (ε, J) phase diagram for the dependence of the population density X  on ν in the case of a0=0.9. The 

phases (a) - (e) correspond to Fig. 5 (a) - (e), respectively. 
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(a)  The system is monostable for all values of ν.  
(b)  The phenomenon of doubly unidirectional transitions appears. 
(c)  The system exhibits single unidirectional transitions from a lesser number of individuals to a bigger 

number. 
(d)  The system also exhibits SUT, but from a bigger number of individuals to a lesser one.  
(e)  In this case, the system is bistable for all values of ν , no transitions between stable states occur.  

We must note that the coordinates of points B, C, and E in Fig.6 depend on the noise amplitude a0. As a0 

increases from 0 to 1, the points C and E move away from the origin O and this will increase the region of 
the phase space (ε, J), where discontinuous transitions are possible. Moreover, the point B moves from A to 
D, which causes an increase of the domain (d), where a SUT from the stable state of a bigger number of 
individuals to a lesser one takes place.  

In the case considered here, an increase in noise amplitude can, under certain conditions, cause a 
catastrophic fall in the size of populations, while by decreasing the noise amplitude an opposite transition 
cannot be brought about. This novel feature of symbiotic ecosystems can provide a possible scenario for 
some catastrophic shifts of population sizes observed in nature (Scheffer & Carpenter, 2003), e.g. in the 
case of coral reefs, where symbiosis is essential (McCook, 1999).  

The next interesting finding is that the critical noise amplitudes (the amplitudes at which discontinuous 
transitions appear) decrease if noise correlation time decreases. On the basis of this result, one may formulate 
the conjecture that in symbiotic ecosystems with Gompertz self-regulation discontinuous transitions appear 
with a greater probability if the noise correlation time is shorter. Weakly stable ecosystems will be prone to 
species extinctions and thus could sustain less diverse biotas. Therefore, it is important that any impacts on 
the stability of ecosystems be considered when designing environmental management plans. 

Finally, we believe that the model and results discussed here are also of interest in other fields where 
Gompertz self-regulation is relevant in system modelling, e.g. in oncology (Sullivan & Salmon, 1972; 
Michelson et al., 1987), bioeconomics (Pradhan & Chaudhuri, 1998; Kar, 2004), and sociology, in 
particular in the theory of cultural diffusion (Hamblin et al., 1979). 
 
 
3.2.  NOISE-INDUCED TRANSPORTATION EFFECTS IN THE STUDIED BROWNIAN 

RATCHET 
 
Overdamped motion of Brownian particles in a 1D periodic system with a simple symmetric sawtooth 
potential subjected to both unbiased thermal noise and a spatially nonhomogeneous three-level coloured 
noise are considered analytically in (I, III). 
For the stationary case, the dependence of the current J on the tilting force F enables us to establish the 
following four effects characterizing anomalous behaviour of the resistance (or mobility):  
• A resonant-like behaviour of anomalous mobility occurs: the particles move in the direction opposite to 

a small external force F (the region 0 < F < 1 in Fig.7 ).  
• The curve exhibits intervals of F where particle speed decreases as the applied drive is increased – an 

effect that is termed negative differential resistance. 
• For large values of the switching rate υ and a low temperature D the current is, at some values of the 

tilting force F (in Fig.7 at F=1 and F≈ 2), very sensitive to a small variation of F – a phenomenon 
called hypersensitive differential response (HDR). 

• At a low temperature and a large switching rate ν the current exhibits characteristic „disjunct windows“ 
of the tilting force, where the value of the current is very small (the interval 2 < F < 3.5 in Fig.7 ).  
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Figure 7. The current J vs the applied force F in the region of anomalous mobility. D=10-7, υ=103, and f=3. 

 

For both slow and fast fluctuating forces, and for low temperatures, we have presented analytical 
approximations that agree with the exact numerical results. Figure 8 shows the mobility m0 as a function of 
the temperature D for four different values of the noise amplitude f in the case of a low switching rate limit. 
In this figure, one can also observe absolute negative mobility at small and intermediate temperatures, 
which apparently gets more and more pronounced as the noise amplitude f >2 increases. The tendency 
apparent in Fig. 8, namely, an increase of the critical temperature Dc (the temperature at which the 
phenomenon of ANM disappears) as the amplitude f grows, also takes place in the case of a large f, e.g. if 
f >6. It is remarkable that the phenomenon of ANM also occurs at high temperatures, if only the noise 
amplitude f is large enough.  

Our major result is a resonance-like enhancement of absolute negative mobility at intermediate values of 
the switching rate of a non-equilibrium noise. Two circumstances should be pointed out. (i) A resonant-like 
behaviour of ANM can occur in a system parameters domain where the characteristic distance of thermal 

diffusion νD /  is comparable with typical deterministic distances for the driven particles during the 
noise correlation time. (ii) There is an upper limit temperature Dc beyond which the phenomenon of ANM 

disappears. Notably, at increasing the noise amplitude f the critical temperature Dc grows as cD ~ f . It 

is obvious that the presence and intensity of ANM can be controlled by thermal noise or by the 
nonequilibrium noise amplitude f. The advantage of this model is that the control parameter is temperature, 
which can easily be varied in experiments. Moreover, as in Eq. (24) the friction coefficient κ is absorbed 
into the time scale, so, in the original (unscaled) set-up, the particles of different friction coefficients are 
controlled by different switching rates. This can lead to an efficient mechanism for the separation of 
different types of particles (Reimann, 2002; Bier & Astumian, 1996).  
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Figure 8. The mobility mo vs temperature D at various noise amplitudes f in the case of an adiabatic limit. 
 
Our other result is the establishing of the effects of both HDR and a “disjunct window” at large values of 
the switching rate ν and low values of the temperature D. We emphasize that here the mechanism of HDR 
is of a qualitatively different nature from the mechanism of hypersensitive response considered in 
(Ginzburg & Pustovoit, 2001; Bena et al., 2002; Mankin et al., 2003). It should be pointed out that in the 
present model the effect of HDR is pronounced in the case of fast switching of the nonequilibrium noise, 
while in the models in (Ginzburg & Pustovoit, 2001; Bena et al., 2002; Mankin et al., 2003) hypersensitive 
transport is generated by low or moderate values of the switching rate. Surprisingly enough, at a low 
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temperature and a large switching rate, <<1Dν , the current is very small in the finite interval of the tilting 
force 2 + (f/2) > F > max{2, f-2}. This novel feature for a Brownian particle is, so far, mainly of theoretical 
interest while applications are not clearly identifiable yet. 

 
3.3. SOME OPEN PROBLEMS 
 
Any study can find answers or explain only some problems, leaving most of them unsolved. Before 
concluding, we should mention some issues for future research. 
1. In this study we have considered symbiotic ecosystems. But how may coloured environmental noise 

affect the ecosystems with interspecies interaction other than symbiotic? Of particular interest is the 
influence of environmental noise on oscillating population densities as in predator-prey communities. 

2. The populations dynamics described by Eq. (1) contains no time delay effects, that is, the growth rate at 
a time t can be completely determined by the values of variables at the present time t. But many 
processes in ecology surely involve time delays. It is known that a delay can bring about a qualitative 
change in the dynamical behaviour of systems. More realistic and interesting models should take into 
account both the fluctuating environment and the effects of time delays. 

3. In Sec. 3.1 and in Papers (II, IV) we have presented the critical values and regions in phase diagrams 
(IV, Fig. 4; II Figs. 2 and 3) for the noise and system parameters where discontinuous transitions in the 
population densities appear. What is the probability the occurrence of these values in nature? One 
important problem is the linking of the mathematical models to empirical data. 

4. Examination of the studied stochastic ratchet system should be continued from the energetical 
viewpoint, especially with more extensive analysis of the efficiency with which the ratchet converts 
fluctuation to useful work. 

5. Although there are different physical mechanisms in the analysed ecosystems and the stochastic ratchet 
system, they have similar effects such as catastrophic shifts in population densities and hypersensitive 
differential response in the case of particles transport. Further investigations of interacting ratchet 
systems may reveal a closer connection between the above effects mentioned. 

 
 
3.4. CONCLUSIONS 
 
In this thesis we have analysed two kinds of non-linear systems – communities with symbiotic interaction 
and Brownian particles in a tilted symmetric sawtooth potential – in a fluctuating environment. The main 
question was whether coloured environmental noise with interaction of nonlinearity could generate new 
states and forms of behaviour of these systems, which do not appear in the noise-free limit.  

In the case of N-species generalised Lotka-Volterra model of symbiotic ecosystems the external 
environmental noise was modelled as dichotomous fluctuations of the carrying capacity and two models of 
self-regulation were used: generalised Verhulst and Gompertz. The analytical examination of the respective 
self-consistency equations gave the following major results: 
• In symbiotic ecological systems coloured fluctuations of the environment can cause bistability and 

abrupt transitions of mean population densities. Therefore, an increase of noise amplitude or a decrease 
of noise correlation time can, under certain conditions, cause a catastrophic fall in the size of 
populations. Moreover, we emphasize that for the model with the exponent β>1 abrupt changes of mean 
population densities appear only if the noise amplitude is greater than the threshold value, which 
increases relatively rapidly if β increases. In the models with 0<β<1 as well as with the Gompertz law 
such a restriction is absent. Hence, catastrophic shifts appear with a greater probability in those 
communities where the exponent β is lower. It remains to be seen whether such a trend has a meaning 
for problems in natural sciences. (II, IV). 

• In the ecosystems with the exponent 0<β<1 as well as with the Gompertz law an increase of noise 
amplitude can cause a catastrophic fall in the size of populations, while by decreasing the noise 
amplitude an opposite transition cannot be brought about. To our knowledge, the appearance of noise-
induced single unidirectional transitions in models of ecosystems without extinction is a new noise-
induced effect. (II). 

• Critical noise amplitudes (the amplitudes at which discontinuous transitions appear) decrease if noise 
correlation time decreases. Consequently, in symbiotic ecosystems discontinuous transitions appear 
with a greater probability if the noise correlation time is shorter. (II, IV). 
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• Discontinuous transitions can also occur by a gradual change of the coupling strength. This interesting 
circumstance demonstrates that both agents – symbiotic coupling of species and coloured fluctuations of the 
carrying capacities – act in unison to generate catastrophic shifts of the mean population density. (II, IV). 

Another problem we have addressed is the dynamics of an overdamped Brownian particle in a periodic 
symmetric, one-dimensional sawtooth potential landscape subjected to a static tilting force and to both 
thermal noise and a spatially nonhomogeneous three-level coloured noise. 

A major virtue of the proposed model is that an interplay of three-level coloured and thermal noises in 
tilted ratchets with simple symmetric sawtooth potentials can generate a rich variety of cooperating effects, 
such as absolute negative mobility, negative differential resistance, hypersensitive differential response, 
and the phenomenon of “disjunct windows” for the tilting force (see Sec. 3.2  and also (I, III)). 

Particularly, for the phenomenon of absolute negative mobility we have established that: 
• The presence and intensity of ANM can be controlled by thermal noise. There is an upper limit of 

temperature (critical temperature) beyond which the phenomenon of ANM disappears. Notably, the critical 
temperature grows as the amplitude of environmental fluctuations increases. The advantage of this effect is 
that the control parameter is temperature, which can easily be varied in experiments. (I, III). 

• A resonant-like behaviour of ANM versus noise correlation time can occur in a system parameters 
domain where the characteristic distance of thermal diffusion is comparable with a typical deterministic 
distance for the driven particles during the noise correlation time, i.e., in this case a considerable 
amplification of ANM occurs at an appropriate value of the correlation time. (I, III). 

We believe that the described models may shed some light on the stochastic interaction processes of 
ecosystems as well as on intracellular molecular motors with nonequilibrium environmental fluctuations 
and these could be used for the elaboration of some more realistic models for nonequilibrium intracellular 
transport as well as for the nonequilibrium phase transitions (catastrophic shifts) sometimes occurring in 
ecosystems. As the nonequilibrium phenomena considered in (I-IV) are robust enough to survive a 
modification of the coloured noise (i.e. environmental fluctuations) as well as a self-regulation mechanism 
(or potential landscape), the results of the investigations of the basic Models (1) and (20), belonging to a 
highly topical interdisciplinary realm of studies, can be applied for a variety purposes, starting from a 
description of Josephson connections (Majer et al., 2003; Pankratov & Spagnolo, 2004) and ending with a 
possible explanation of the catastrophic shifts occurring in ecosystems (Mankin et al., 2002; Spagnolo et 
al., 2004). The possible applications of Model (20) range from superconductors to intracellular protein 
transport in biology, or to methods of particle separation in nanotechnology (Linke, 2002; Reimann, 2002) 
as well as of separating biomolecules (Bader, 1999). 
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KESKKONNAPARAMEETRITE FLUKTUATSIOONIDE MÕJU 
MITTELINEAARSETE SÜSTEEMIDE DÜNAAMIKALE 
 
Kokkuvõte 
 
Paari viimase aastakümne jooksul on suurt tähelepanu pälvinud avatud süsteemide käitumise sõltuvus 
keskkonnaparameetrite fluktuatsioonidest ehk mürast. On selgunud, et mittelineaarsetes süsteemides võib 
müra tekitada nähtusi, mis deterministlikul juhul puuduvad. Näiteks võib tuua stohhastilise resonantsi, 
müra poolt indutseeritud faasiüleminekud ja stohhastilise transpordi ruumiliselt perioodilises jõuväljas, sh 
tükati lineaarse perioodilise potentsiaali korral (nn hammaslattmudelid). 

Ökoloogiliste süsteemide uurimisel on keskkonnaparameetrite fluktuatsioonide kirjeldamiseks enamikes 
töödes kasutatud valge müra mudelit. Aegridade analüüs on aga näidanud, et keskkonnamüra on pigem 
lõpliku korrelatsiooniajaga ehk värviline müra. Sellest lähtuvalt on antud uurimistöös elukeskkonna 
muutlikkust modelleeritud keskkonnamahutavusele lisatud dihhotoomse müra abil. 

Teine valdkond, kus keskkonnamüra võib tekitada senitundmatuid efekte, on nanoosakeste transport. 
Hiljutised uuringud on näidanud, et teatud tüüpi hammaslattmudelite korral võib esineda osakeste nega-
tiivne absoluutne liikuvus – kuitahes väikese välise jõu lisamine põhjustab Browni osakeste voo sellele 
jõule vastupidises suunas. Oma uurimistöö raames analüüsisime Browni osakeste dünaamikat uut tüüpi 
hammaslattmudelis.  
 
Doktoritöö põhieesmärgid: 
1. Analüüsida lõpliku korrelatsiooniajaga keskkonnamüra poolt indutseeritud üleminekuid sümbiootilistes 

ökosüsteemides, sealhulgas 
a) selgitada välja erineva iseregulatsiooni mehhanismi (üldistatud Verhulst, Gompertz), sümbiootilise 

vastasmõju ja keskkonnaparameetrite fluktuatsioonide koosmõju vastavates ökosüsteemides; 
b) analüüsida müra ja süsteemi parameetrite mõju ökosüsteemi stabiilsusele ning leida tarvilikud ja 

piisavad tingimused bistabiilsuse tekkimiseks. 
2. Uurida kallutatud hammaslattsüsteemi, kus Browni osakeste ühesuunaline transport on allutatud nii 
termilisele tasakaalulisele mürale kui ka mittetasakaalulisele lõpliku korrelatsiooniajaga kolmetasemelisele 
mürale ning 

a) demonstreerida erinevaid müratekkelisi transpordinähtusi; 
b) analüüsida negatiivset absoluutset liikuvust süsteemi parameetrite erinevates väärtuspiirkondades. 

 

Uuritavate mudelite dünaamika kirjeldamiseks kasutasime stohhastilisi diferentsiaalvõrrandeid. Tuginedes 
erinevate autorite poolt väljatöötatud ja Tallinna Ülikooli teoreetilise füüsika õppetooli juures tegutseva 
uurimisrühma poolt edasiarendatud metoodikale, analüüsisime seejärel vastavate kineetika põhivõrrandite 
(master equation) lahendeid statsionaarsel juhul.  
 
Järgnevalt doktoritöö olulisemad tulemused. 
Sümbiootiliste ökosüsteemide uurimisel selgus: 
• Üldistatud Verhulsti iseregulatsioonile alluvates sümbiootilistes ökosüsteemides võivad keskkonna-

parameetrite fluktuatsioonid nii amplituudi kui ka sageduse suurenemisel põhjustada katastroofilisi 
hüppeid populatsioonide arvukuses.  

• Kui iseregulatsiooni  astmenäitaja β > 1, siis eksisteerib müra amplituudi jaoks kriitiline piir, millest 
väiksema müra amplituudi väärtuste korral katastroofilisi üleminekuid ei teki. See kriitiline müra 
amplituud sõltub üksnes iseregulatsiooni astmenäitajast ja kasvab monotoonselt astmenäitaja kasvades. 
Kui astmenäitaja 0< β < 1 või kui on tegemist Gompertzi mudeliga, sellist kriitilist amplituudi ei esine. 
Järelikult sümbiootilistes ökosüsteemides toimuvad keskkonnamürast tingitud katastroofilised hüpped 
suurema tõenäosusega juhul, kui Verhulsti iseregulatsiooni iseloomustav astmenäitaja on väiksem. 

• Gompertzi iseregulatsiooniga ökosüsteemide analüüs tõi välja uut tüüpi,  mittepöörduvate üleminekute 
võimalikkuse. See tähendab, et müra amplituudi või sageduse kasv võib põhjustada populatsioonide arvu-
kuse hüppelist vähenemist, vastava parameetri kahanemine aga endist situatsiooni ei taasta, popu-
latsioonide arvukus jääbki väikeseks.  
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• Väiksematele korrelatsiooniaja väärtustele vastavad väiksemad kriitilise amplituudi väärtused, järelikult 
sümbiootilistes ökosüsteemides on katastroofilised üleminekud tõenäosemad, kui müra korrelatsiooni-
aeg on väike ehk müra sagedus suur. 

• Katastroofilised hüpped populatsioonide arvukuses võivad tekkida ka sümbiootilise vastasmõju tuge-
vust iseloomustava parameetri väikesel muutumisel. Seega võib väita, et bistabiilsuse teke on analüüsi-
tud mudelites põhjustatud sümbiootilise vastasmõju ja keskkonnamahutavuse fluktuatsioonide koos-
mõjust. 

Browni osakeste transpordi uurimine vaadeldud hammaslattsüsteemis näitas, et esinevad mitmed 
anomaalsed nähtused: negatiivne absoluutne liikuvus, negatiivne diferentsiaalne liikuvus, ülitundlik 
diferentsiaalne transport ja “isoleeritud aken” – välisjõu väärtuste vahemik, kus osakeste voog praktiliselt 
puudub, võrreldes vooga väiksemate või suuremate jõu väärtuste korral.  
Lähemalt uurisime negatiivset absoluutset liikuvust, mille korral selgitasime välja järgmist: 

• Efekti esinemist ja efektiivsust saab kontrollida temperatuuri muutmisega, kusjuures esineb krii-
tiline temperatuur, millest kõrgemal negatiivset absoluutset liikuvust ei esine. Kuna temperatuuri 
muutmine on lihtne, pakub see uusi võimalusi vastavate seadmete loomisel. 

• Resonantsisarnane efekt negatiivse absoluutse liikuvuse käitumisel esineb süsteemi parameetrite 
sellises piirkonnas, kus termilise difusiooni karakteristlik teepikkus on võrreldav deterministlikus 
süsteemis osakese poolt läbitud teepikkusega müra korrelatsiooniajale vastava aja jooksul. 

 
Usume, et saadud tulemused pakuvad uusi võimalusi looduslikes kooslustes esinevate populatsioonide 
arvukuse hüppeliste muutuste mõistmiseks ning elusorganismides toimuva rakusisese transpordi model-
leerimiseks. Liikide vastasmõju ja keskkonnaparameetrite fluktuatsioonide koostoime väljaselgitamine on 
oluline ökosüsteemide regeneratsioonil ja stabiilsuseks vajalike tingimuste loomisel. Uut tüüpi hammas-
lattmudel võib rakendust leida nanoosakeste (sh biomolekulid, aerosooliosakesed) detekteerimise ja sepa-
reerimise tehnoloogiates. 
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