
Proceedings of the Estonian Academy of Sciences,
2013, 62, 1, 71–80

doi: 10.3176/proc.2013.1.08
Available online at www.eap.ee/proceedings

Adjusting effort estimation using micro-productivity profiles

Gabriella Tóth∗, Ádám Zoltán Végh, Árpád Beszédes, Lajos Schrettner, Tamás Gergely,
and Tibor Gyimóthy

Department of Software Engineering, University of Szeged, Árpád tér 2. H-6720, Hungary

Received 31 August 2011, revised 6 April 2012, accepted 21 November 2012, available online 20 February 2013

Abstract. We investigate a phenomenon we call micro-productivity decrease, which is expected to be found in most development
or maintenance projects and has a specific profile that depends on the project, the development model, and the team. Micro-
productivity decrease refers to the observation that the cumulative effort to implement a series of changes is larger than the effort
that would be needed if we made the same modification in only one step. The reason for the difference is that the same sections
of code are usually modified more than once in the series of (sometimes imperfect) atomic changes. Hence, we suggest that effort
estimation methods based on atomic change estimations should incorporate these profiles when being applied to larger modification
tasks. We verify the concept on industrial development projects with our metrics-based machine learning models extended with
statistical data. We show that the calculated Micro-Productivity Profile for these projects could be used for effort estimation of
larger tasks with more accuracy than a naive atomic change-oriented estimation.

Key words: effort estimation, change estimation, productivity, prediction model.

1. INTRODUCTION

Software estimation is often required in development
and maintenance tasks in various forms [2,11]. The
prediction of the required effort to implement a specific
change is directly related to software costs, hence it
is very important. However, estimation based purely
on experience is typical, and little or no systematic
approaches are often used. This is partly due to the
very complex nature of the problem: the required effort
depends on a number of parameters which are difficult to
quantify. Usually it is easier to get an accurate estima-
tion of a smaller change than of a larger change task (a
series of smaller changes). Hence, the estimators often
predict a larger task by aggregating a series of smaller
change estimations [3]. Different estimation models
(such as those based on statistical models or employing
machine learning) also tend to scale poorly, i.e., they
may be fairly accurate in the short term, but become
less and less so when applied to longer modification
periods. Moreover, the volume of example data avail-
able to automatic prediction models using historical data
is much bigger related to atomic changes than to larger

change tasks. Throughout the paper we will distinguish
the following effort estimation types.
• Change task estimation. This refers to the common

situation when a project manager or a developer needs
to estimate the cost of implementing a specific change
request, and generally, the manager is not interested
in the individual costs of performing atomic changes.
For this type of estimation, global information about
the organization and the project is also required.

• Atomic change estimation. In this case, we are
interested in the cost of implementing a unit, general
atomic change. This kind of estimation is important for
short-term project control, but insufficient for change
task estimation (typically simpler methods and less
historic data are enough).

• Atomic change sequence estimation. When the same
software entities are changed in a series of subsequent
steps of atomic changes, we can aggregate the
individual cost estimates up to the estimated size of
the change in order to approximate the cost of the
whole change sequence. Note that the expected extent
of the change needs to be estimated separately.

∗ Corresponding author, gtoth@inf.u-szeged.hu



72 Proceedings of the Estonian Academy of Sciences, 2013, 62, 1, 71–80

However, we argue that for the latter the notion
of what we call micro-productivity decrease1 should
be taken into account, otherwise the aggregation will
be imprecise and provide false estimations of the
whole change task. Micro-productivity decrease is an
observation that the cumulative effort to implement a
series of changes is larger than the effort that would be
needed if we made a single modification to achieve the
same result in one step. The reason for the difference is
that the same sections of code are usually modified more
than once in the series of (sometimes imperfect) atomic
changes. (Note that this can be observed in any type of
creative work, not only in software development.)

This phenomenon is undoubtedly found in most
development or maintenance projects, moreover, it seems
to have a specific profile that depends on the type of
the system, the development model, the composition of
the team, and other factors, but it has to be typical of
the current project. In this work, we propose to use
this profile – the Micro-Productivity Profile (MPP) –
to adjust the estimation values got for atomic change
sequences in order to get more accurate values at any
desired change task size. Essentially, the MPP shows
how much repeated modifications to distinct lines of code
are to be expected – in other words, how much the micro-
productivity is decreasing by the length of the atomic
change sequence. We found in our subject projects that,
on average, after merely eight atomic modifications the
micro-productivity halves.

We determined a method to formulate the MPP, then
applied it to our prediction models, which are based on
machine learning, and can predict the net developer time
for modifying a single code line. In our machine learning
model [13], we employ various product and process
metrics as predictors, and in the present work we extend
it with statistical values to be able to predict change

sequences, and not only an atomic change as in the
previous version. We combine this model with the MPP
by taking explicitly the decrease in micro-productivity
into account and verify the effect of this enhancement to
the prediction accuracy in an empirical study. We make
the following contributions in this paper:
1. We apply our machine learning-based effort estima-

tion method from previous work on an extended data
set.

2. We introduce the notion of MPP and present the way
we have calculated it for our subject projects.

3. Finally, we compare the different prediction
approaches – learning models with and without the
MPP – and check which one is the closest to the
actual efforts.

The rest of the paper is organized as follows. Sec-
tion 2 presents the micro-productivity decrease pheno-
menon through an example. Section 3 defines the MPP
and describes its use in estimation models. Section 4
presents the machine learning that we used to predict the
modification effort. In Section 5, we describe our experi-
mental study using the machine learning method and
MPP. The results are reported in Section 6. Reviewing
related work in Section 7, we conclude and list our future
plans in Section 8.

2. MOTIVATING EXAMPLE

To understand the motivation for our work, let us con-
sider the following example, which has been taken from
one of the real projects we used in our experiment. The
example represents two changes. The initial code can
be seen in Fig. 1a, while Fig. 1b and Fig. 1c show the
modified parts of the first and the second changes.

Fig. 1. The original (a) and the changed code after (b) the first and (c) the second modification.

1 We use the term micro-productivity related to atomic developer changes as opposed to what we call macro-productivity, which
refers to the investigation of productivity on a larger scale, for a whole organization, its processes, people, a project or a
technology, for instance.



G. Tóth et al.: Effort estimation by micro-productivity profiles 73

The first change moved the if statement (lines 83–
85) to the initDataMap() method, so the if statement
was changed to the method call. The aim of this solution
was to decrease the number of duplicated code instances
in the code. The second change merged the initialization
and the addition as a refactoring operation. This opera-
tion increases the maintainability, as the developers
do not have to care about calling the initialization
method manually. A new method was declared with
the name of addDataForTag(), which performs the
initDataMap() method call in case of necessity.

During the first change three lines were removed
and one line was added, while during the second change
two lines were removed and one line was modified. It
could be counted as seven line modifications, however,
there were lines which were modified twice. If the
duplicated code elimination and the refactoring operation
were executed in one step, only four lines would be
removed and one line would be modified. In other
words, we could speculate that higher programmer pro-
ductivity can be obtained in short periods (seven lines)
than in a longer period (five lines). This is due to
the natural process of incrementally creating some-
thing new, sometimes performing atomic changes super-
fluously. This, of course, cannot be avoided, since there
is no such thing as perfect development, but we argue
that this phenomenon should not be neglected in software
cost estimation.

In the following, we will refer to this observation
as micro-productivity decrease. We will define the
modification effort, the Modification Complexity (MC)
metric as the ratio of the development time and the code
churn size (the number of modified, added, and deleted
lines), and with the help of this metric, the MPP will
be defined as well. Note when investigating micro-
productivity decrease, the time required for individual
modifications will always sum up, while the net amount
of modifications will be subjected to the effect above (the
total number of changed lines being less than or equal to
the sum of the atomic changed lines), hence it will affect
Levels of Modification Complexity (LMC) similarly.

3. MICRO-PRODUCTIVITY PROFILE AND ITS
USE IN EFFORT ESTIMATION

3.1. Definitions

First, we introduce the modification effort metric, which
will be our representation of the effort (developer time)
required to perform a single or multiple changes on
a program element such as a file, i.e., to modify one
line in a given subsequent revision (modification) of
that element. This metric, MC, is the ratio of the net
development time and code churn size for a subsequent
change of a file.2 More formally, MC is defined for the
ith modification of file F as:

MC(F, i,x) = time(F,i,i+x)
diff(F,i,i+x) ,

where
• x is the number of subsequent atomic changes,
• time(F, i, i+x) is the net Development Time (DT) spent

on F between the ith and (i + x)th versions of F in
minutes,

• diff(F, i, i + x) is the size of the code churn between
the ith and (i+ x)th versions of F in lines.

Now we define the MPP – computed as a median
of all different modifications with the same length in a
project – as a function of x, which is the number of
subsequent atomic changes to perform a bigger change
task and shows the ratio of decrease in micro-pro-
ductivity (increase in MC) with respect to the case when
the modification is done in one step. In other words, the
MPP shows how much longer the modification of a single
line takes – given the atomic change sequence length as
a parameter – than if the change sequence had been done
in one single step. More formally:

MPP(x) = median∀F,∀i
MC(F,i,x)
MC(F,i,1) ,

where
• x is the number of subsequent atomic changes,
• the median values (to avoid over-influence of outliers)

are calculated from MC of every modification of every
file,

• 1 ≤ i ≤ max(F) − x, where max(F) is the last
modification of file F .

3.2. Using the MPP in effort estimation

Here, we will briefly describe a possible approach to use
the MPP in effort estimation of a larger development or
maintenance task. Suppose that a project manager needs
to assess the amount of developer time for completely
implementing a specific change request (rather than
being interested in the effort of a single modification
only) – this is what we called ‘Change task estimation’.
In this situation, after concept location, the next task is to
perform an impact analysis to determine the extent of the
required modification [12].

Often only the prediction of the cost performing a
smaller modification or an atomic change is reliable, so
the manager gets the estimation of the whole change
task by simply multiplying the effort of an atomic
change with the estimated number of the necessary
modifications, which relates to the size of the change
impact set and depends on the development process
model. But the problem is that atomic modifications do
not sum up due to the MPP effects.

It is important to stress that in this scenario the
amount of atomic changes required (i.e., the size of
the change impact and the required steps to perform

2 Note that this metric does not take the time spent on other activities into account, like reading documentation, examining
dependencies with other files, which may contribute to the overall cost.



74 Proceedings of the Estonian Academy of Sciences, 2013, 62, 1, 71–80

the change task) has to be determined by the manager
separately based on program analysis. We use this
length as a parameter in our estimation framework. In a
situation when the manager has access to more complex
project data (like a series of past change requests) that
can be used for predicting the effort of the change as
well, the method of adjusting atomic estimation using the
MPP has no function, but a complex change task-based
estimation would be used.

The MPP may be applicable for a number of
other purposes as well, such as to define customized
developer profiles that can be helpful in project resource
planning/allocation. Customized profiles could also be
defined for different project types, process models, or
organizations. We do not deal with these options in this
paper, but plan to investigate them in the future.

4. MACHINE LEARNING-BASED ESTIMATION

4.1. Estimation models

In previous work [13] we presented a framework and
an effort estimation model based on a complex set of
product and process metrics as predictors. With that
approach we could answer the question ‘how many
minutes will a single line change take in the next
modification of a file on average?’

However, if the effort of a complex modification
is to be estimated, this model is not suitable. If the
manager estimates the possible time of the modification,
due to the sequence of imperfect modifications, the real
modification time is usually more than the estimated one.
In order to get an accurate cost estimation by aggregating
the atomic changes cost, micro-productivity decrease
should be taken into account. In order to investigate
this phenomenon, we construct an extended estimation
model, which can estimate the effort not only for the next
modification, but for the next several modifications.

Figure 2 demonstrates the machine learning of the
modification effort in the case of a file. The x-axis repre-
sents the time, with nine modification points of the file.
The figure depicts a snapshot at measurement point 7,
previous measurement points represent the past, while
subsequent measurement points represent the future.
The training data is always calculated from the past

Fig. 2. Learning model (LM) illustrated chronologically.

(on interval 1–7), e.g., predictor values are generated
using the information available between points 1 and 5
and target values are obtained from points 5–7. The
predictors are calculated from the first versions of the file
(on interval 1–5), while the targets are calculated from
the next modifications based on interval 5–7.

This way, the learning model (which is based on
the training set) will be able to forecast the modification
complexity for the next modification. In the current
example, it means that the available information from
interval 1–7 can be considered as a predictor set to
predict the modification effort of the next change, which
gives a forecast to future point 8.

Furthermore, this learning model is extended with a
statistical function to give a forecast to not only the next
one but the subsequent modifications. So, we introduce
two kinds of estimation methods:
1. the naive atomic change-based estimation method

(referred to as EM): we assume constant effort during
a series of atomic changes, where the effort is
estimated by the learning model,

2. the improved atomic change-based estimation method
(referred to as EM(x)): the naive atomic change-based
estimation method is improved with MPP(x) statistical
function to be able to consider the productivity
decrease (EM(x) = EM×MPP(x)).

4.2. Predictors

In our previous paper [13] we introduced a predictor
set for machine learning to estimate modification com-
plexity. Now we use the same predictors for effort
estimation. Figure 3 shows the used product and process
metrics.

While product metrics are based on classes and
process metrics are based on files, unambiguous associat-
ion between classes and files was necessary. We also
used the Revision Number (RN) as a metric in prediction,
which shows the number of the revision when the
file was modified, essentially the representation of the
time. We have three projects with three sequences of
revision numbers in different repositories, and they were
standardized by using sequential numbering starting
with 1.

Finally, we define the metric MC as the ratio of
development time and size of code churn for the next
changes of the class. The metric MC means how many
minutes one line modification takes on average dur-
ing the next changes of the class. The target of our
prediction model is the LMC. We defined the LMC
by grouping the MC values into three classes: low,
medium, high. We used Weka [14] to estimate the
LMC from the predictors. Three kinds of learning
methods were used: J48 (C4.5 algorithm), RBFNetwork
(a normalized Gaussian radial basis function network),
and ClassificationViaRegression (a classification using
regression methods).



G. Tóth et al.: Effort estimation by micro-productivity profiles 75

Product metrics:
LLOC Logical Lines Of Code: Total non-empty and non-

comment lines of the class.
C&K
metrics [4]

DIT (Depth of Inheritance Tree), NOC (Number Of
Children), CBO (Coupling Between Object Classes),
RFC (Response set For a Class), WMC (Weighted
Methods per Class), LCOM (Lack of COhesion in
Methods).

Code Churn The number of added, deleted or modified lines,
calculated from the SVN by comparing the previous
version of the class with the current version.

Process metrics:
TT Task Time: Estimated development time of a task by

the project manager in hours (in order to consider the
difficulty of the task in prediction). It is aggregated
into four groups: very short, short, medium, long.

DEP Developer’s Experience in Programming: The
level of experience of the developer according to
the project manager, aggregated into four groups:
beginner, junior programmer, senior programmer,
leader programmer.

NFA Number of File Accesses: Shows how many times a
developer accessed (got back to) a file during a given
modification.

NDF Number of Developers of the File: Shows how many
developers have modified a file before.

DT Development Time: The net development time of a
file – it is calculated by monitoring the development
of the file –, it shows how many minutes a modifica-
tion of a file actually takes between two revisions.

Fig. 3. The used product and process metrics.

5. THE EXPERIMENTAL STUDY

5.1. The subject projects

We gathered data from three industrial R&D projects
(a small, a medium, and a large) in the area of
agriculture, an off the shelf chart viewer component,
and telemedicine. SCM-map is a small map viewer
portlet project under GateIn Portal3 which also integrates
Geoserver services, an open source map server imple-
mentation. Chart is a Flot-based JSF implementation,
and EE-Oryx is a visual process template editor for the
web which is based on Oryx4. We used these three
projects together as a whole for our experiments to have
more data from which to predict.

The initial version of the project files was generated.
This included default implementations of most of the
methods. For this reason, during development the inser-
tion of completely new sections of code was relatively
rare; most of the file modifications involved editing and
restructuring the existing code. In Table 1, the main
characteristics of the projects can be seen.

The projects were managed at the same company and
each project had two different developers allocated to
them. Note that during the development and maintenance
of the SCM-map project, there were only 25 usable file

modifications, since the source code base contained a
great amount of XML, HTML, and JavaScript code, from
which we were unable to extract product metrics (only
from Java).

5.2. The framework

In this experiment we extend the framework introduced
in our previous work [13]. Our framework is a general
purpose framework, which can be applied to predic-
tion of different kinds of maintenance properties from
different kinds of metrics. Figure 4 shows the extended
framework.

On each workstation, a productivity plug-in was
installed into the Eclipse development environment,
which logs the development-related low-level informa-
tion (e.g. active file, perspective, developer, task, elapsed
time). Each log is then uploaded to the productivity log
server. Before starting the development of the project,
the project manager estimated some project metrics (e.g.
task time, developers’ experience). Process metrics
are calculated from the productivity log server, while
the product metrics are obtained using the Columbus
tool [6], which analyses the source code retrieved from

Table 1. Metrics representing the main characteristics of the projects

Project Classes No. of developers Workdays No. of revisions No. of file modifications

SCM-map 14 → 40 2 21 140 25
Chart 93 → 107 2 20 72 201
EE-Oryx 1380 → 1418 2 16 285 145

Total 497 371

3 http://www.jboss.org/gatein
4 http://bpt.hpi.uni-potsdam.de/Oryx/



76 Proceedings of the Estonian Academy of Sciences, 2013, 62, 1, 71–80

Fig. 4. The architecture of the framework.

the version control server. The framework collects,
processes, and aggregates the metrics which serve
as input to the Weka [14] machine learning tool,
which finally gives estimation models to predict the
maintenance effort. We determined the MPP from the
collected code churn size and the development time in
case of each file in each modification.

During the examined commits to the SVN
repository, 371 Java file modifications were made.
Adding or removing a whole file was not considered,
only file modifications. There were many file modifica-
tions during the experiment, but we can measure static
product metrics for only Java files. For each Java
file modification, we collected the C&K and LLOC
product metrics calculated by Columbus. These metrics
have proved to be useful for prediction in the software
development area [8]. They were processed in three ways
to be able to follow their change scale, namely: (1) the
value of the metric in the given revision, (2) the relative
value of the metric in the given revision compared to its
first version, (3) the relative value of the metric in the
given revision compared to its previous version.

We determined the code churns from the SVN
repository. Then the process metrics from the pro-
ductivity log server were related to the SVN repository
changes: this way the file modifications were connected
to both the product and the process metrics. Finally,
we calculated the MC values from a product and a
process metric (DT/code churn) for the training set of
the machine learner. However, since there were file
modifications among the 371 cases where the file was not
modified again at all, 254 file modifications remained to
predict the LMC.

We have extended the framework with a statistical
component, which collects the code churn and the DT
values from the past to determine the MPP for different
modification lengths.

5.3. Training and testing data

The C4.5 algorithm, a normalized Gaussian radial basis
function network, and a classification using regression
methods were employed as prediction algorithms for the
effort of the next change, which were validated with 10-
fold cross validation by their precision, recall, and F-
measure values.

However, to test our extended prediction method,
we took a sequence of modifications belonging to a
randomly selected task called chart.implementa-
tion.java.connector. This task modified 17 files
during nine revisions. A total of 44 file modifications
belong to this task, so we partitioned the 254 prediction
data into two groups: one group contained 210 training
data instances and the other one contained 44 testing data
instances. In the following, we will refer to the testing
data as the actual value.

As the MC metric is a nominal attribute, we
aggregated it into three groups (called LMC) to predict
only three classes by the learner: we sorted ascending
the MC values and composed three sets with the same
number of elements (low, medium, high).

6. RESULTS

In this section the estimation models (EM and EM(x))
are applied to estimate the effort of the next modification
of the files. We also quantify the MPP for our projects
and compare the actual effort to the predicted data by the
constant EM model and by the improved EM(x) model.

6.1. EM learning model

The model EM is the original learning model which we
used in our previous experiment [13]. In that paper we



G. Tóth et al.: Effort estimation by micro-productivity profiles 77

Table 2. Precision and recall values of EM

Model Precision, % Recall, % F-measure

J48 50.1 (47.5) 49.8 (47.3) 49.9
RBFNetwork 37.9 (39.7) 40.3 (39.6) 38.4
ClassificationViaRegression 46.6 (42.7) 47.4 (45.1) 44.9

showed that the combination of the product and process
metrics resulted in a significantly higher accuracy in the
case of our effort prediction. Since we have another,
larger training set, we re-evaluated the precision and
recall of this learning model using the same 10-fold cross
validation. The precision and recall values determined by
Weka are shown in Table 2. The results of our previous
experiment can be seen in parentheses. On the whole, the
larger data set shows a bit better accuracy in modification
complexity prediction, except for RBFNetwork.

6.2. Micro-Productivity Profile

We collected the modification complexity values for 1,
2, 3, etc. modification lengths. Among the 254 file
modifications, the most frequently modified file was
changed 17 times, so we had modification complexity
statistics up to the next 16 modifications. Because of the
asymmetric distribution of the complexity values, their
average would not characterize them well, so the median
was calculated for each modification length instead. The
MPP defined as the rate of effort can be seen for our
projects in Fig. 5.

The MPP of the projects is an increasing curve. For
shorter sequence lengths the rate of effort increases fast,
then for longer modification sequences the growth slows
down. Note in particular that the profile relates the
number 2 to number 8. For these projects this means that
if a file were modified eight times, the cost of the eight
modification would be twice as much as the cost if the
modification would be done in a single step.

6.3. Comparison of estimation methods and the
actual data

In the following, we present some examples on how the
three effort (EM, EM(x), and the actual effort) values

Fig. 5. The Micro-Productivity Profile.

are related to each other for certain files. For the
measurements we used a task with 42 modifications of 17
files as the basis of the testing data. The most frequently
modified files from the 17 files of the testing data are the
SettingProvider.java and DataProvider files with
seven modifications. The predicted and the actual effort
values of these files are given in Fig. 6.

The naive atomic change-based method (EM)
assumes constant productivity, while the improved
atomic change-based method (EM(x)) improves the
naive approach with the MPP. Although EM over-
estimated the effort of the first modifications in the cases
of SettingsProvider and DataProvider, it gives an
average value of all of the actual ones, which is overall
a good estimation. By improving the estimation model,
the estimation accuracy seems to be the same, however,
because of its growing tendency the enhanced model
seems to be much closer to the actual values. EM and
EM(x) approximate the actual efforts pretty well in these
cases.

Fig. 6. Predicted and actual modification efforts in
SettingsProvider and DataProvider classes. The y-axis
represents the net time of a change of a line in minutes, while
the x-axis shows the length of the modification sequence.



78 Proceedings of the Estonian Academy of Sciences, 2013, 62, 1, 71–80

Using prediction values of all 17 files, we
determined the distance between the different estimation
models and the actual values. While the Euclidean
distance between the EM and the actual values is 1.3669,
the distance between the EM(x) and the actual values is
1.3289. The lower distance concludes higher estimation
accuracy.

6.4. Discussion

In this section we summarize some observations about
the results we obtained.
• Atomic change estimation. We repeated our previous

experiment [13] in a larger data set and found that
the accuracy of the estimation models (see Table 2)
is a bit higher than in the case of our earlier research.
The relatively high precision and recall values proved
the relevance of the predictor set. Learning precision
is over 50%, and nearly 60% for the classes, which is
notable compared to the random classification (33%).

• Micro-productivity. The findings of this research
statistically confirm our observation that the
cumulative effort to implement a series of changes
is larger than the effort that would be needed if we
made the same modification in one step.

• Micro-Productivity Profile. We quantified the
micro-productivity decrease phenomenon by collect-
ing data representing the effort and determined the
measure of effort increase if the modification is done
by a certain number of changes (see Fig. 5). We
observed that for shorter sequence lengths the rate
of effort increases fast, then for longer modification
sequences the effort growth slows down.

• Comparison of atomic change sequence estima-
tions. Finally, we compared the estimated targets of
the two kinds of prediction models to the actual
efforts. We found that the atomic change-based
estimation model improved by the MPP, hence giving
more accurate prediction than the naive one.

6.5. Threats to validity

Undoubtedly, the limited amount of training data and
the group of testing data is a risk: we had only three
projects to retrieve training data and we chose only one
task to get the testing data. We intend to perform similar
experiments in the future on more data.

Drawing general conclusions from this experiment
is difficult, because any method depends on a potentially
large number of relevant modifications. For this reason,
we cannot assume a priori that the results of this study
generalize beyond the specific environment in which it
was conducted. However, the results are in line with our
assumption.

We are confident that our predictor set (product
and process metrics) has predictive power for the
maintenance effort in other projects, but there can be

other metrics which are not considered in formulating
our models which could improve the prediction models.

To predict the modification complexity, we separated
the values on which we base our prediction into three
groups, but this way we got extreme values inside the
groups. To avoid this, we could use more than three
groups, but for this to be possible more training data
would be needed.

Managers can estimate the maintenance effort in top-
down and bottom-up approaches. The top-down effort
estimation is based on the known effort of previous
projects, while the bottom-up effort estimation is based
on aggregating distinct modification tasks. Our approach
is a form of the latter approach, where the effort can
be estimated as the sequence of smaller modifications
(which also relates to the so-called decomposition
technique [11]).

7. RELATED WORK

Note that the discussion revolves around two topics:
productivity decrease and the applicability of machine
learning to derive cost models.

Traditional, well-understood productivity measuring
approaches include Putnam’s SLIM, Albrecht’s FP
method of estimation, COCOMO, and COCOMO II [3].
Besides these traditional approaches, various machine
learning techniques have been evolved. These methods
are based on a set of cost drivers, like process
(e.g. process maturity), project (e.g. reuse, platform),
personnel (e.g. personnel experience), and product
measures (e.g. size). An effort estimation model was
introduced by Mockus et al. [9], which predicts the
amount and the distribution of maintenance effort over
time. They examined several factors, including the
developer, and properties of the change: type, status,
size, rate of size, and complexity. They were focused on
what changes were made and how these were made, not
on the properties of the code. Our most important cost
drivers are also the net development time and the code
churn size.

Most of the approaches deal with macro-pro-
ductivity, i.e., they try to reason about the (future)
behaviour of a system by considering coarse granularity
data that is available at higher levels of observation.
Premraj et al. [10] examined the productivity trends
over time with long-term objective. They had evidence
of productivity improvement over the years and stated
that there are significant differences in size and
effort between development and maintenance projects.
Contrarily, we examined productivity trends with short-
term objective, and to distinguish development and
maintenance is only our plan.

Our approach aims at micro-productivity, where
fine granularity data is collected and used from lower
levels of operation in the projects. Donzelli [5] used
data from a real project to show that using a com-
bination of different maintenance practices is needed



G. Tóth et al.: Effort estimation by micro-productivity profiles 79

to maximize maintenance performance. In the area of
micro-productivity Junio et al. [7] applied the k-means
clustering algorithm for partitioning and grouping the
maintenance requests. By their PASM process the group-
ing of maintenance requests helps to reduce maintenance
costs. Although we grouped the maintenance requests
not by automatic clustering but continuously coming
maintenance requests of a file, we also observed the
micro-productivity growth. While in the former case
the cost can be reduced by grouping the maintenance
requests, our approach shows an inevitable extra cost in
maintenance.

According to Abdel-Hamid [1], the actual pro-
ductivity is the potential productivity decreased with
losses due to faulty processes, where the potential pro-
ductivity is the level of productivity attained when an
individual or group makes the best possible use of their
available resources, and the faulty processes are typically
due to dynamic motivation factors and communication
overhead. Imperfect or not deliberating changes are not
referred, which also can cause loss.

8. CONCLUSION

We believe that micro-productivity decrease is a general
phenomenon (not even specific to software engineering),
which deserves much more attention when software
estimation is concerned. The MPP profile computed
for our subject development projects shows an eye-
opening tendency that, on average, after only eight
atomic modifications the micro-productivity halves. This
means that an effort prediction approach based on atomic
changes cannot be accurately used to predict larger
modifications by simple summing, but the inclusion of
MPP profiles is recommended.

We concentrated on what we called atomic
change sequence estimation as opposed to change task
estimation. Although the available experimental data did
not allow us to try learning on task-based changes, we
took an alternative route with MPP profiles and atomic
change sequences, which turned out to be well applic-
able. However, in the future when we have significantly
more data about change requests we will concentrate on
this topic as well.

We presented our experimental approach and
framework for effort estimation, which employs machine
learning techniques based on various process and product
metrics. Despite the relatively good learning accuracy
of more than 50% (with a 3-class classification), surely,
we have to perform additional experiments on larger data
sets in order to further enhance the basic methods and
get even better learning results. Our initial model could
predict the effort for atomic changes, and after we had
observed that the prediction could be made better when
incorporating the expected length of the modification, we
started to work on incorporating the micro-productivity
decrease. Our experiments with a real industrial project
showed that a prediction model based on predicting

atomic change adjusted by an MPP profile shows better
approximation to the actually measured data than without
an MPP profile.

Further research is required to validate the approach
in different situations and environments. There are
several ways to improve or extend our current results.
We are interested in how these MPP profiles look like
on different projects, with different development models
(e.g. linear, agile, evolutionary, open or closed source).
We also expect to find different profiles for different
phases of a project, like initial development, evolution,
or maintenance. Finally, it would also be interesting to
see whether individual developers have their own profiles
based on their experience and skill.

ACKNOWLEDGEMENTS

The work presented in this paper was partly funded
by the National Innovation Office, Hungary (project
No. OM-00191/2008-AALAMSRK ‘ProSeniis’),
Telenor 19/55 1I066, Nokia Komarom 19/55 1C117,
GOP-1.1.2-07/1-2008-0007, OTKA K-73688, and
TECH 08-A2/2-2008-0089.

REFERENCES

1. Tarek, K. A.-H. The slippery path to productivity improve-
ment. IEEE Softw., 1996, 13, 43–52.

2. Boehm, B., Abts, C., and Chulani, S. Software develop-
ment cost estimation approaches – a survey. Ann.
Softw. Eng., 2000, 10, 177–205.

3. Boehm, B. W. Software Engineering Economics. Prentice
Hall PTR, Upper Saddle River, NJ, USA, 1981.

4. Chidamber, S. R. and Kemerer, C. F. A metrics suite for
object oriented design. IEEE Trans. Softw. Eng., 1994,
20, 476–493.

5. Donzelli, P. Tailoring the software maintenance process
to better support complex systems evolution projects.
J. Softw. Maintenance, 2003, 15, 27–40.

6. Ferenc, R., Beszédes, Á., Tarkiainen, M., and Gyimóthy, T.
Columbus – reverse engineering tool and schema
for C++. In Proceedings of the IEEE International
Conference on Software Maintenance (ICSM 2002).
IEEE Computer Society, October 2002, 172–181.

7. Junio, G. A., Malta, M. N., de Almeida, H. M., Marques-
Neto, H. T., and Valente, M. T. On the benefits
of planning and grouping software maintenance
requests. In CSMR ’11. IEEE Computer Society,
Washington, DC, USA, 2011, 55–64.

8. Wei Li and Henry, S. Object-oriented metrics that predict
maintainability. J. Syst. Softw., 1993, 23, 111–122.

9. Mockus, A., Weiss, D. M., and Ping Zhang. Understanding
and predicting effort in software projects. In 2003
International Conference on Software Engineering.
ACM Press, 2002, 274–284.



80 Proceedings of the Estonian Academy of Sciences, 2013, 62, 1, 71–80

10. Premraj, R., Shepperd, M., Kitchenham, B., and
Forselius, P. An empirical analysis of software
productivity over time. In Proceedings of the 11th
IEEE International Software Metrics Symposium.
IEEE Computer Society, Washington, DC, USA,
2005, 37–46.

11. Pressman, R. S. Software Engineering, A Practitioner’s
Approach. McGraw Hill, 7th edition, 2010.

12. Rajlich, V. and Gosavi, P. Incremental change in object-
oriented programming. IEEE Softw., 2004, 21, 62–69.

13. Tóth, G., Végh, Á. Z., Beszédes, Á., and Gyimóthy, T.
Adding process metrics to enhance modification
complexity prediction. In Proceedings of the IEEE
International Conference on Program Compre-
hension (ICPC 2011). 2011, 201–204.

14. Witten, I. H. and Frank, E. Data Mining: Practical
Machine Learning Tools and Techniques. Morgan
Kaufmann, San Francisco, 2005.

Töökoormuse hinnangu täpsustamine mikroproduktiivsuse profiili abil

Gabriella Tóth, Ádám Zoltán Végh, Árpád Beszédes, Lajos Schrettner, Tamás Gergely
ja Tibor Gyimóthy

On uuritud nähtust, mida me nimetame mikroproduktiivsuse vähenemiseks ja mis peaks esinema arendus- ning
hooldusprojektides ja mille profiil sõltub konkreetsest projektist, arendusmeetodist ning meeskonnast. Mikroproduk-
tiivsuse vähenemise mõiste viitab tähelepanekule, et süsteemi muutmisel väikeste sammude seeriana kulub suurem
hulk ressursse, kui tehes sama modifikatsiooni ühe sammuna. Erinevuse põhjuseks on asjaolu, et väikeste muudatuste
seeria korral modifitseeritakse üht ja sama koodi osa enamasti korduvalt (need nn atomaarsed muudatused võivad olla
mittetäielikud). Sellelt baasilt soovitame nende profiilidega arvestada, kui on tarvis hinnata suuremateks muudatus-
teks vajaminevat töömahtu. Oleme seda lähenemist kontrollinud tööstuslike projektide korral, kasutades masinõppe-
tehnikat ja vastavaid statistilisi andmeid. Tulemustest näeme, et mikroproduktiivsuse profiile kasutavad tootlikkuse
hinnangud on täpsemad kui naiivsed atomaarsetele muudatustele orienteeritud hinnangud.


