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ABBREVIATIONS

GTR – green-tree retention cutting
VRC – variable retention cutting
CWD – coarse woody debris
GLM – general liner model
DBH – diameter at breast height

1. INTRODUCTION

In the last decades, forestry has been increasingly focusing on multiple 
values instead of timber production only. Changes began largely after 
the United Nations Conference on Environment and Development in 
Rio, 1992 (Johnson, 1993). The principles presented there recognised 
the simultaneous roles of forests in economic development, in the pres-
ervation of biological diversity, as a carbon reserve retarding the global 
warming process, for soil and water protection, and as a source of cultural 
and spiritual values important for the mankind. Of these, “biological 
diversity” means the variability among living organisms from all sources 
including, inter alia, terrestrial, marine and other aquatic ecosystems and 
the ecological complexes of which they are part; this includes diversity 
within species, between species and of ecosystems (The Convention on 
Biological Diversity: Johnson, 1993).

Following the Rio conference, the Pan-European Conferences (Helsinki 
1993, Lisbon 1998 and Vienna 2003) have verified and refined the principles 
for forest management and, gradually, the whole aim of forestry has 
been transformed – to preserve biodiversity and other forest-related values 
while retaining economic viability (Franklin et al., 1997; Lindenmayer 
and Franklin, 2002). A general term for the resulting modifications of 
conventional silvicultural methods is “sustainable forestry” (see Kimmins, 
1995; Larsen, 1995; Kerr, 1999; Anonymous, 2003), sometimes also 
“the new forestry” (Franklin, 1989). In the current Estonian forest 
policy, sustainability is one of the two leading principles, defined as the 
management of forests in a manner and to the extent that maintains their 
biological diversity, productivity, capacity for regeneration and vitality as 
well as their potential to fulfil, at present and in the future, ecological, 
economic and social functions at the local, national and global level 
without damaging other ecosystems (Anonymous, 2003).

The most widespread approach for reaching sustainable forestry from 
the aspect of biodiversity has been to use silvicultural techniques that 
imitate natural disturbances (e.g., Hunter, 1993). The clearest difference 
between the conventional forest management technique – clear-cutting 
– and a natural disturbance is that clear-cutting attempts to remove as 
much wood as possible, while after a fire, windstorm or disease many 
legacies of the previous forest structure remain at place, and the result-
ing structural complexity plays an important role in the functioning of 
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the forest’s ecosystem and for biodiversity (Lindenmayer and Franklin, 
2002). Thus, the similarity between clear-cutting and natural disturbances 
could be increased if structural features of old forests, such as live and 
dead trees of varying sizes, multiple canopy layers, and coarse woody 
debris, are purposefully retained on cuts (Franklin et al., 1997; Beese et 
al., 2003). However, corresponding variable retention harvest system is a 
disturbance in a dynamic forest landscape creating habitats for pioneer 
species and modifying succession patterns afterwards. Therefore, given 
that the conditions after stand-replacing disturbances differ from those 
within forest by definition, comparing VRC cuts with forests (as has 
often been done) is of secondary importance. Instead, the main question 
is how forest biota survives in the landscape despite or because of such 
intensive disturbances. Consequently, the aim of retention trees is sustain-
ing the populations or communities which are lost in the conventional 
clear-cutting forestry (Lindenmayer and Franklin, 2002). Franklin et al. 
(1997) list the three main objectives of VRC: (1) ‘lifeboating’ species and 
processes over the regeneration phase, (2) enriching re-established forest 
stands with structural features, and (3) enhancing landscape connectivity. 
The structural enrichment objective can be further divided into long-term 
and short-term enrichment according to the results of many studies on the 
importance of the latter for disturbance-phase species (e.g. Hansen et al., 
1995; Kaila et al., 1997; Martikainen, 2001). Thereby, the main attention 
on live trees (GTR) is due to the dependence of long-term existence of 
other structures on them as well as the most pronounced conflict with 
timber production objectives.
 
Since 1999, the Estonian Forest Act requires the retention of three ty-
pes of trees in clear-cuts: (1) seed-trees, which will be cut later, (2) live 
trees having high-quality timber for future cutting (termed säilikpuu, 
i.e. retention tree), (3) live and dead trees „for biodiversity“ (at least 5 
m3 per hectare) (Anonymous, 1999, 2007). This restriction of the term 
“retention tree” for category (2) above differs from the conventional ap-
proach adopted elsewhere in the world. Given the international scope, 
this study defines retention trees as trees for biodiversity which stay in a 
forest permanently (category 3 above). However, before cutting, also the 
trees of categories (1) and (2) support wildlife and they can be difficult 
to distinguish from true retention trees in the field. Therefore, in original 
studies II–IV, all trees standing were considered retention trees for the 
aims of these studies.

This study stems from the notion that, so far, there has been no overview 
of the worldwide use of the tree retention, of the studies conducted, and of 
the effectiveness of retention trees. Here, for the first time, such a review 
was compiled, problematic gaps of knowledge were distinguished, and 
some of them were filled with specific case studies. 
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2. REVIEW OF THE LITERATURE

Literature is thoroughly reviewed in paper I; hence, the section below 
presents only a historic summary about tree retention, the amount of 
research and research needs.

2.1. History of tree retention and the research efforts

The retention of live trees during cutting has been in use for a very long 
time, but with aims other than biodiversity – better regeneration of desired 
tree species in cut areas, valuable timber in the future, aesthetic reasons 
or protection of forest ground or water bodies (e.g. Brosofske et al., 1997; 
Hannerz and Hånell, 1997; Jakobsson and Elfving, 2004; Valkonen et al., 
2002). However, its value for biodiversity has been extensively recognised 
only during the last decades (Hansen et al., 1995; Franklin et al., 1997; 
Vanha-Majamaa and Jalonen, 2001). The retention of standing dead trees 
for wildlife has somewhat longer history: for example in the USA, it came 
into practice in the middle of the 1970s, and became widespread in the 
beginning of the 1980s (Davis et al., 1983). 

Leaving both live and standing dead trees for biodiversity on the cut, as 
an attempt to mimic and restore natural disturbance, began mostly in 
1980s (Franklin, 1989; Franklin et al., 1997). Today, it is widely used all 
over the world. Those trees can be called retention trees, residual trees or 
wildlife trees. The corresponding silvicultural systems are mostly known 
as variable retention cutting (VRC) (Franklin et al., 1997), including 
green-tree retention (GTR) – the retention of live trees (e.g. Beese and 
Bryant, 1999; Vanha-Majamaa and Jalonen, 2001) – and various names 
for particular techniques. Often the trees are retained in groups, which 
reduces harvest costs and windthrow hazard, and may further benefit 
biodiversity (Franklin et al., 1997).

Research on GTR became systematic in the late 1980s (Figure 1 in I) and 
has reached a phase of integration now. For example, several large-scale 
field studies have been initiated in North America (Monserud, 2002) and 
the Fennoscandian experience has been summarized (Vanha-Majamaa 
and Jalonen, 2001). A summary of the study issues and objects related to 
biodiversity is given in Table 1.

Table 1. Numbers of green-tree retention studies according to main issues, objects and 
geographical region (A – North America, E – Europe). Brackets indicate long-term 
studies (at least 20 years post-cut) (I)

Study issues and objects Region Total

Boreal Temper-
ate

Sub-
tropical

A E A E A

Biodiversity effects 1 49 22 60 3 10 144 (28)
Epiphytes 1 4 4 1 10 (3)
Ground vegetation 7 6 12 25 (5)
Ectomycorrhizal fungi 5 1 5 11 (2)
Arthropods 5 11 3 1 20 (2)
Amphibians and reptiles 6 1 7
Birds 22 19 2 5 48 (10)
Mammals 9 11 3 23 (6)
Effects on retention trees and 
regeneration

38 16 45 2 8 109 (28)

Stand regeneration 13 6 18 2 5 44 (13)
Growth of retention trees 3 2 12 2 19 (10)
Stand structure 2 4 5 5 14 (5)
Wind-resistance 15 2 3 20
Logging damage on trees 
and soil

3 1 7 1 12

Other ecological and biologi-
cal effects 3

10 4 5 1 20

Total 97 42 110 5 19 273 (56)
1 incl. 5 studies on bird nest predation, 2 on mammal diets (all in North America)
2 incl. 3 studies on GTR as a source of coarse woody debris (all in boreal Europe)
3 incl. 6 studies on the production, germination, dispersal or predation of tree seeds; 4 

studies on GTR effects on genetic structure of regeneration; 5 studies on the changes 
in microclimate and 5 studies on the changes in soils
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2.2. Research needs

Despite the extensive research already done (Table 1), the purposes and objects 
of the GTR studies have been often disputable. We defined (I) three main 
gaps of research, some of which the case studies (II–IV) tried to fill.

1. The studies should be objective-oriented and, consequently, have a clear 
ecological reasoning for the selection of study taxa. In particular, it is unknown 
to which extent live retention trees improve the landscape connectivity (i.e. 
dispersal) for relevant species groups (e.g. mobile animals with large home-
ranges or the species with pronounced extinction-immigration dynamics). 
Also, there is a shortage of short-term (lifeboating) studies on poor dispersers 
and disturbance-phase species (e.g. Peck and McCune, 1997).

2. Spatially explicit landscape perspectives on GTR as a biodiversity protec-
tion tool are urgently needed, particularly with regard to (1) the viability 
of threatened species, which at the scale of individual cuts are so rare that 
statistical power to detect any effects has been extremely low (Angelstam et 
al., 2004a); (2) applying varying retention levels according to presumable 
disturbance regimes in different site types to find adaptations according 
to the regimes (Schmiegelow et al., 1997; Lõhmus et al., 2004), and 
comparing the biodiversity effects with fixed-level retention (Franklin et 
al., 1997). Additionally, the effects of GTR should be compared in forest 
landscapes with different histories (see Robinson and Robinson, 1999). 

3. There is a need to expand the time-scale of studies (e.g. Franklin et al., 
1997; Hazell and Gustafsson, 1999), particularly to assess the objective 
of long-term structural enrichment, which may be more crucial than 
temporary lifeboating for forest biota in dynamic landscapes (Lõhmus 
and Lõhmus, 2007). In addition to the few pioneering projects in the 
western United States and Canada (Monserud, 2002), long-term studies 
are needed in other forest regions and continents, including retrospec-
tive research in areas where ancient trees, comparable to the present-day 
retention trees, have been traditionally protected in managed forests. 
In addition to the biota, it is necessary to explore the persistence of live 
retention trees themselves, which is the precondition for their effective-
ness in structural enrichment of the re-established forest stands. The 
only prediction published so far (Busby et al., 2006) is based only on the 
estimates from two years and neither better survival prospects in forests 
nor cuttings were taken into account. 

3. AIMS OF THE STUDY

In the last decades, in many places over the world, including Estonia, trees 
have been retained during cutting. The aim of such trees is to enhance 
biodiversity by mimicking natural disturbance, where almost always the 
structural elements remain in place. The actual benefit of retention trees, 
as previously discussed, is not clear. The aims of this study were:

To review live-tree retention according to the results of previous 1. 
studies in order to study the efficacy of its different objectives for 
biodiversity conservation (I);
To test short-term benefits of tree retention for different species 2. 
groups and species, the persistence of retention trees, and to find 
additional factors affecting them (II–IV);
To predict whether and to which extent the live retention trees 3. 
are likely to fill their aims in the future (I, IV). 
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4. MATERIAL AND METHODS

4.1. Material and areas

Paper I, based on 214 North American and European studies, explores 
whether, and under which circumstances, VRC meets its objectives (sensu 
Franklin et al., 1997). The publication list was compiled mostly by search-
ing electronic databases and reference lists for reports and reviews, which 
had been published from the beginning of 1981 to August 2006. The 
studies described situations where (1) trees had been harvested for timber 
production from at least 1 ha of mature forest, (2) at least four trees ha-1, 
but no more than 50% of pre-harvest numbers, had been retained solitarily 
or in up to 1-ha patches for any purpose, and (3) effects of retained trees 
on biodiversity or the structure of the stand had been measured.

The original studies (II–IV) were carried out in Estonia, Northern Eu-
rope. Persistence of retention trees (IV) was studied in 102 VRC areas, 
lifeboating of epiphytes (II) – in 85 VRC areas and in adjacent forest, 
and birds (III) – in 77 VRC or clear-cuts. 

All original studies included, partly or in full, the set of 102 stands that 
had been harvested during 2001–2002 in four randomly selected state 
forest districts in Central (Kõpu and Kabala districts) and Southern (Laeva 
and Alatskivi districts) Estonia (between 58–59°N and 25–27°E; alti-
tude below 75 m a.s.l.; Figure 1). All studied districts comprised large 
extensively managed forest areas. According to the pre-cut stand, the 
cuts were classified (according to Lõhmus 1984) into four main types: 
(1) oligotrophic – nutrient-poor dry Pinus-dominated forests (Vaccinium 
vitis-idaea and Vaccinium myrtillus-type) (n = 7); (2) mesotrophic – mixed 
forests of Oxalis, Oxalis-Vaccinium myrtillus and Hepatica-types (n = 25); 
(3) eutrophic – mostly deciduous forests mixed with Picea, belonging 
to Aegopodium- and Filipendula-types (n = 58); (4) swamp – both mo-
bile- and stagnant-water stands, but all drained to some extent (n = 12). 
The age range of the pre-cut stands had been mostly between 50 and 
80 (maximum 110) years for deciduous stands and between 90 and 110 
(maximum 180) years for conifer stands. The mean area of the cuts was 
2.3 ha (range 0.3–6.9 ha); the post-harvest live tree density was 15.9 trees 
ha-1 (range 2.3–47.5 trees ha) and the density of dead trees and snags was 
3.8 trees ha-1 (range 0–18.9 trees ha). Most retained trees were solitary. In 
the four districts, 33% of the live trees on VRC cuts were birches (Betula 

spp.), 20% were Scots pine (Pinus sylvestris L.), 18% were European ash 
(Fraxinus excelsior L.), 15% were European aspen (Populus tremula L.), 7% 
were littleleaf linden (Tilia cordata P. Mill.), and 7% were other species. 
Of the dead trees, 44% were birches, 17% Norway spruce (Picea abies L. 
Karst.), 14% aspen, 10% grey alder (Alnus incana L. Moench), 9% Scots 
pine, and 6% were other species. The average post-harvest diameter was 
30.2 cm (range 14–100 cm) for live trees and 25.0 cm (range 14–75 cm) 
for dead trees; their volumes per hectare being 15.7 m3 (range 1.5–60.2 
m3) and 1.3 m3 (range 0–12.3 m3), respectively.

For studying the avifauna of the cuts (III), 28 cuts were selected from 
among the 102 previously mentioned cuts, while 49 cuts were studied 
in the frame of another research program (Figure 1). The average area of 
the cuts in this study was 3 ha (range 0.4–8 ha); they had been harvested 
on the average 4.9 years (range 2–12 years) prior to the study. During 
the fieldwork there were on the average 11.7 (range 0–100) live trees and 
3.1 (range 0–24) dead trees ha-1. Of the live trees, 42% were Scots pine, 
18% birches, 11% European aspen and 13% rare hardwoods (European 
ash; Ulmus glabra Huds.; Quercus robur L.; Acer platanoides L.). Of the 
dead trees, 37% were birches, 22% European aspen, 17% Scots pine, 
13% Norway spruce and 8% grey alder. The average diameter was 28.8 
cm (range 14–84 cm) for live trees and 27.7 cm (range 14–84 cm) for 
dead trees; their volumes per hectare were 10.1 m3 (range 0–74 m3) and 
1.2 m3 (range 0–8.6 m3), respectively.

Figure 1. Location of the study areas: the four forest districts with the experimental 
areas of papers II-IV (ovals) and the additional regions where only birds (III) were 
studied (squares).
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4.2. Field data

Field data were collected between 2002–2007. In spring 2002, all live 
and standing dead trees (incl. broken-top snags ≥2 m tall) with ≥14-cm 
diameter were mapped in field; their species, DBH (also height for snags) 
and condition were recorded, and the site type and size of the cuts were 
determined. Every next year until 2007, the cuts were examined in summer 
to record the survival of each tree, the type of damage if present, and (in 
case of snags) also any changes in their height (IV).

In 2003 and 2004, epiphytic lichens and bryophytes were investigated on 
Scots pine, birch, European aspen and ash; additionally, three locations on 
the landscape (the centre and the edge of the clear-cut) and the adjacent 
forest were distinguished (II). Species composition, abundance and species-
specific vitality were visually assessed for whole trunks between heights 
of 0.2–2 m. Species-specific vitalities were coded according to Hedenås 
and Ericson (2003; slightly modified): 0, no change in colour and thus no 
desiccation damage; 1, few visible colour changes; 2, large patches with 
colour changes; 3, severe bleaching or thalli/stems either dead or lost. More 
accurate numerical estimates (incl. total coverage and vitality estimates) 
were obtained from 20×20 cm plots, which were placed at heights of 1.3 
and 0.2 m on the northern and southern sides of the trunks. The general 
vitality estimates were based upon clearly visible changes in the colour and 
structure of thalli or stems and were quantified as the share of the desic-
cated part of the total cover. 

Birds were censused in 2004, 2005 or 2006 using standard two-visit sur-
veys (III). We additionally visited more than half of the cuts, representing 
all site types and retention levels, in the evening of the same or preceding 
day to find previously undetected pairs and nests. The position of singing 
males, nests or (in the absence of these) any other observations referring to 
nesting were recorded on a topographic map (scale 1:2000–1:3000). The 
abundance of each species in each site was determined as the maximum 
count plus probable or confirmed nestings in clearly different locations 
during the other visit. Territorial birds moving across site borders as well 
as adult individuals of species with large home range or unstable pairs 
were counted as 0.5 pairs (Lõhmus and Rosenvald, 2005). Trunk volumes 
of the trees, logs and snags were estimated (III–IV) according to species-
specific diameter-functions (Padari, 2004).

4.3. Data processing and statistics

Conventional parametric statistics (t-test, ANOVA, GLM) (I–III), or 
– if the assumptions of parametric tests were not met – non-parametric 
statistics (Wilcoxon’s test, Kruskal-Wallis ANOVA, χ2-test, Spearman 
correlation) (II–IV) were used for hypothesis-testing. For parametric tests, 
the relevant variables were checked for normality (Kolmogorov-Smirnov 
test) and homogeneity of variances (Levene’s test), and transformed where 
appropriate: arcsine-square-root transformation was used for proportions 
(II), and square-root or logarithmic transformation for other variables 
(I–III). Logistic regression was used for building multivariate explanatory 
models (III–IV). The strategy of logistic regression modelling followed 
Hosmer and Lemeshow (1989, III) or Littell et al. (2002, IV).

In two papers, the key variables were ratios. (1) To evaluate the differences 
in biodiversity condition in clear-cuts and GTR cuts in the meta-analysis 
(I), the differences were presented as logarithmed ratios R = ln (g/c), 
where g is the average value in GTR cut and c is the value in clear-cut. 
(2) To evaluate the impact of VRC on epiphytes (II), exponential rate of 
vitality change of thalli (v) within two years on each tree was calculated 
as v = ln (A2(1-pd)/A1), where A1 and A2 are total coverages of lichens or 
bryophytes one and two years after the harvesting, respectively, and pd is 
the damaged proportion of the total cover in the second year. 

For rough projection of the retention-tree population (IV), the annual post-cut 
mortality was modelled as decreasing linearly from estimates of the 1st post-cut 
year mortality (IV) to the mortality rates of large (DBH >20 cm) forest trees in 
two permanent plots in Estonia (see Kiviste et al., 2005), and stabilizing at that 
level. The latter datasets distinguished natural deaths and cutting (thinning). 
Four scenarios were calculated: (1) maximum survival with natural mortality 
only – the better survival estimates for both retention trees and forest trees, 
assuming that that the stable survival typical to forests will be reached in 30 
years; (2) minimum survival with natural mortality only – the worse survival 
estimates and a duration of 40 years to reach stable survival; (3) maximum 
and (4) minimum survival with thinnings – similar to scenarios (1) and (2), 
respectively, except that the survival of forest trees included the cuttings.

Most analyses were performed with the Statistica 6.0 software (StatSoft 
Inc., 2001); for multilevel logistic regression (IV), the data were analysed 
by fitting mixed generalized linear models (SAS PROC GLIMMIX; Lit-
tell et al. 2002).
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5. RESULTS

5.1. Meta-analysis and review of previous studies on GTR (I)

Altogether, 214 studies on biodiversity or other ecological effects of GTR 
were found (I). Distribution of the studies in time- and space-scale was 
unbalanced: 81% of them had been carried out in North America and 
82% had been short term.  

5.1.1. General effects of GTR

Published GTR effects (compared with clear-cutting) on species richness 
and abundance of different taxa indicated no negative responses, but birds 
and ectomycorrhizal fungi benefited most (Figure 2). No retention level 
was worse than clear-cutting, and significant positive effects of GTR 
appeared for the highest levels, i.e. retaining of more than 15% of the 
growing stock (Figure 3 in I). 

Figure 2. Mean differences between GTR-cuts and clear-cuts in the species richness 
and abundance of different species groups. R – natural logarithm of ratio of the values 
in GTR-cuts vs. clear-cuts (positive values indicate higher values in GTR cuts); labels 
indicate the number of studies; lines are 95% confidence intervals for the mean (I).

5.1.2. GTR objectives, research and effectiveness

As compared to clear-cutting, statistically significant improvements in the 
post-cut survival of populations or individuals on GTR sites (lifeboating) 
were reported in 72% of the 57 studies (Table 2 in I). The effectiveness 
depended on taxon (see also Maguire et al., 2005; II): it was best for ec-
tomycorrhizal fungi, epiphytic lichens and small ground-dwelling animals 
such as carabid beetles, salamanders, and the vole Clethrionomys gapperi. 
In contrast, GTR was usually insufficient to preserve forest bryophytes 
(both epiphytic and epigeic species) and vascular plants (Table 2 in I) 
in the post-cut site. For disturbance-phase species (short-term structural 
enrichment), retention trees improved the cut areas in 76% of the 37 case 
studies: seldom for mammals, but always for insects and usually for birds 
(Table 2 in I). Long-term or retrospective records, which linked the stand 
structure to the biodiversity response (long-term structural enrichment), 
detected significant benefit from GTR in 13 out of 14 results (93%) on 
relevant taxa (Table 2 in I). Improving landscape connectivity appeared 
to be not studied.

5.1.3. Technical considerations for successful GTR

For disturbance-phase species, even smaller-scale requirements of GTR 
remain unclear because silvicultural studies have not distinguished these 
taxa. For forest species, four technical aspects could be summarized – 
tree density, grouping, species and site type (Table 2 in I). Among these, 
retention-tree species was always a significant factor and thus should be 
of primary concern, followed by tree density (statistically significant in 
65% of cases). The spatial arrangement of the trees had less importance 
(50%) on forest biodiversity, and the influence of forest type – although 
central for the disturbance-mimicking paradigm (Fries et al., 1997) – has 
remained nearly unexplored according to our review. 

5.2. Original studies: filling the gaps 
5.2.1. Lifeboating lichens and bryophytes (II)

The damages on retention trees were severe and independent of tree spe-
cies for bryophytes throughout clear-cuts (Figure 3 in II), but weak for 
lichens, particularly at the cut edge, and on aspen and ash (Figure 2 in II).  
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On average, 2% of lichen thalli, but 60% of bryophyte stems became 
damaged in two years. Similarly, while retention trees and forest trees 
hosted similar total numbers of cryptogam species and mean numbers 
of lichen species per trunk, on average 1.1 bryophyte species per trunk 
were lost on retention trees (paired t-test: P < 0.001). 
Also the relationships between the average damage scores of the same 
species on retention trees and forests trees were different for lichens and 
bryophytes (Figure 3). For lichens, the damages were mostly explained 
by the general sensitivity of certain species. Crustose lichens and some 
macrolichens with small foliose or podetial thalli (e.g. Cladonia coniocraea, 
Vulpicida pinastri) were in remarkably good condition. For bryophytes, the 
damages in clear-cuts greatly exceeded those in forests, particularly for the 
species that were relatively vital in forests (e.g. Homalia trichomanoides).  

Figure 3. Linear regressions between the average damages on forest and retention trees 
for 19 bryophyte (circles) and 24 lichen species (filled dots) (II).

5.2.2. Short-term structural enrichment for birds 
in relation to site type (III)

In cut areas, the total breeding bird densities were explained with two 
alternative models (Table 2), both of which included site type (highest 
densities in swamp sites, lowest in oligotrophic sites; Figure 1A in III). 
The first model revealed the bird density increase along with dead-tree 
volume (Figure 2A in III). Alternatively, model II showed that smaller 

cuts had higher bird densities (Table 2). The relative avian species richness 
(adjusted to area) was a function of site type (Figure 1B in III), dead tree 
volume (Figure 2B in III), and more tree species on the cuts (Table 2).
 
Table 2. General linear models explaining the density of all breeding birds and their 
relative species richness (adjusted to area) in 77 cuts, and the density of hole-nesters 
in 53 retention cuts (III). 

Model and variable Coeff icient 
(mean ± SE)

F P

Density, no. of pairs ha-1 

I. (R2 = 0.25, F = 6.0, P < 0.001)

Site type 6.47 <0.001
Volume of dead trees ha-1 0.61 ± 0.27 5.29 0.024
II. (R2 = 0.25, F = 6.0, P < 0.001)

Site type 5.21 0.003
Area -0.23 ± 0.1 5.10 0.027
Relative species richness 
(R2 = 0.35, F = 7.6, P < 0.001)

Site type 5.38 0.002
No. of tree species 0.31 ± 0.13 6.16 0.015
Volume of dead trees ha-1 1.31 ± 0.54 5.89 0.018
Density of hole-nesters, no. of pairs ha-1 

I. Site type (R2 = 0.16, F = 3.1, P = 0.037) 3.05 0.037
II. No. of tree species (R2 =0.11, F = 6.1, 
P = 0.017)

0.24 ± 0.1
6.11 0.017

Note that there are two alternative models (referred to by Roman numerals) for the 
density of all birds and the density of hole-nesters.

Bryophytes:
P intercept < 0.001
P slope = 0.27
R 2 = 0.07

Lichens:
P intercept = 0.067
Pslope < 0.001
R2 = 0.52
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Among the species groups of particular concern, the density of hole-nesters 
in the 53 retention cuts was explained by two alternative univariate rela-
tionships with variables dependent on each other (Table 2; Appendix A 
in III). The influence of site type contained a significant contrast between 
mesotrophic and oligotrophic sites (Figure 1C in III). The positive ef-
fect of tree-species richness disappeared when site type was taken into 
account. 

The species of national conservation concern (according to Eesti Orni-
toloogiaühing, 2001) nested in 25 cuts of the 77 (32%); preferably in 
larger cuts with higher densities of live trees (Figure 4). The species of 
conservation concern and hole-nesters preferred the cuts having the most 
species-rich avian communities, hole-nesters prefering also the cuts with 
densest avian communities.

Figure 4. Incidence of the bird species of conservation concern in relation to live-tree 
densities on the cuts. The presence-absence data are linked with logistic function; the 
mean area of the cuts was 3 ha (III).

5.2.3. Short-term survival of live retention trees: dynamics 
and determinants (IV)

The total number of live retention trees decreased 35% in six years in the 
cut areas of 2001, and 36% in five years in the cut areas of 2002. Wind 
damage comprised 89.6% of tree deaths. The annual mortality rates were, 

on average, 6.8 ± 4.6% and 8.2 ± 6.2 %, respectively, and these rates 
declined in time (Figure 3 in IV). The total live-tree volume (m3 ha-1) 
was reduced from 13.1 to 7.6 for the 2001 cut areas and from 14.1 to 
8.8 for the 2002 cut areas during the study, adding 4.5 m3 and 4.3 m3 of 
downed dead trunks per ha, respectively, and 1 m3 of standing dead trees 
per ha in both samples (Figure 4 in IV). According to multilevel logistic 
regression, the main determinants of tree survival were tree species (the 
best survivors being hard deciduous trees – Fraxinus, Ulmus, Quercus, 
Acer, Prunus and Sorbus – and followed by soft deciduous trees – Alnus, 
Tilia and Salix), tree position relative to forest edge (best survival near 
current or former forest edge; Figure 6B in IV), post-harvest density of 
retention trees (positive; Figure 2 in IV), and exposure (negative; Table 3; 
Figure 6A in IV). Diameter affected survival (Table 3) depending on tree 
species: positively in aspen and in soft deciduous trees, and negatively in 
birch. Without the nesting approach, diameter seemed to have no effect 
(F1, 3242 = 2.0; P = 0.16).
 
Table 3. Fixed effects of the multivariate model for the 5–6-year survival of individual 
live retention trees (IV).

Variable DF F P
Species 5; 3237 6.56 <0.0001
Diametera 6; 3237 4.44 0.0002
Post-harvest density 1; 84.2 7.52 0.0074
Tree position 4; 3237 17.49 <0.0001
FETCH 1; 759.5 11.49 0.0007

anested in species

 

5.3. Predicted long-term effectiveness of retention trees

The majority of long-term or retrospective records, which linked the stand 
structure to the biodiversity response on relevant taxa detected significant 
benefit from retention trees (Table 2 in I). Although few studies on the 
density of retention trees have been conducted, these confirm that a greater 
number of trees enhance the positive effect on wildlife (I). The future tree 
densities result from retention densities and tree survival, and paper IV 
predicted the latter for Estonian conditions as follows. When we took into 
account (only) natural mortality in closed middle-aged stands after 30 or 
40 years (which we considered the time-line for stable survival typical to 
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forests), 29–38% of retained live trees were likely to be present after 40 
years and 22–29% in 100-year-old stands. When commercial thinning 
was taken into account in addition to natural mortality in closed stands 
after 30 or 40 years, these proportions became 18–28% and 9–15%, 
respectively (Figure 5).

Figure 5. Projected future populations of live trees retained at harvest (minimum and 
maximum scenarios for each mortality regime) (IV).

6. DISCUSSION

6.1. Taxon-specific responses to GTR and the target taxa

We found that tree retention effectiveness depends greatly both on species 
group and species (I–III), e.g. the negative impacts of cutting were severe 
for bryophytes, but less for lichens (II). Other studies have come to ba-
sically similar conclusions, but the extent of the impact depends greatly 
on the species of cryptogam and the density of retention trees (e.g. Beese 
and Bryant, 1999; Hazell and Gustafsson, 1999; Hedenås and Ericson, 
2003). Paper III demonstrated that the bird species of national conser-
vation concern clearly depended on live-tree retention (see also Conner 
et al., 1991; Niemi and Hanowski, 1997) while such a relationship be-
tween the density and species richness of all species, and the abundance 
of hole-nesters was not detected. The latter is particularly noteworthy, 
because resident hole-nesters have been considered suitable indicators of 
sustainable forestry in boreal regions: they suffer seriously from modern 
timber-extraction (Schmiegelow et al., 1997; Imbeau et al., 2001). 

The taxon-specificity of GTR effects has important implications for re-
search and practical forest management. So far, the selection of study taxon 
has been rather random and, considering the objectives of GTR, often 
not indicative or even relevant (I). For example, birds have often been 
used to detect the effectiveness of short-term lifeboating in a small area, 
but landscape-scale changes as well as the presence old-growth structural 
elements in young forests are obviously much more relevant for them. We 
suggested that the taxa that respond most clearly are suitable for moni-
toring forest management, i.e. comparing different GTR techniques and 
assessing the general use of GTR in silviculture. In general, we concluded 
that ectomycorrhizal fungi and epiphytes depend strongly on lifeboating, 
and wood-depending insects and disturbance-phase or forest birds prob-
ably benefit most due to the structural enrichment (I). In contrast, the 
management-sensitive taxa, whose performance has not been improved 
with GTR, are the clearest research priorities regarding their viability and 
further modifications of management techniques to improve it (I). 
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6.2. Retention trees in the context of natural disturbances

To create post-cut habitats that are more suitable for forest biodiversity, 
cuttings should resemble natural disturbance regimes, such as fire (Hun-
ter, 1993; Steventon et al., 1998). Within the framework of objectives for 
VRC, we suggested that: (i) it is likely to retain forest species better than 
fire at the stand scale; (ii) live retention trees alone cannot provide all 
the fire-created structures for disturbance-phase species (Dahlberg et al., 
2001; Hyvärinen et al., 2005; Bradbury, 2006), though they may create 
woody substrata for thermophilous species (Martikainen, 2001; see also 
IV); (iii) the retention trees may be equal to fire legacy regarding long-term 
structural enrichment, at least the provision of old live trees (I). However, 
dead-tree retention – a characteristic element of naturally burnt areas (e.g. 
Schieck and Song, 2006) – is perhaps as important as the retention of 
live trees or even more important, at least in the short-term perspective. 
Supporting this, paper III found that bird density increased along with 
dead-tree volume. Yet, it is unlikely that the observed benefits of standing 
dead trees for birds could result from adaptations to such structural ele-
ments and natural disturbances (e.g. Shieck and Song, 2006), since the 
volumes of retained dead trees in our study were less than 1% of those 
reported after natural burns (Siitonen, 2001). 

At the landscape scale, topography and water regime have created a mosaic 
of patches with different natural disturbance regimes. Therefore, spatially 
explicit planning of cutting methods and GTR levels would be required 
(McRae et al., 2001; Keeton and Franklin, 2004). In Sweden, Fries et 
al. (1997) suggest a gradient of 5–20 pines ha-1 in dry pine sites, variable 
patterns of dispersed and patchy retention in mesic successional forests, 
and selection systems or shelterwood retaining one-third of the trees in 
moist spruce stands. 

In testing this hypothesis in paper IV, however, we did not find site-type 
specific survival of live retention trees. This contradicts the common 
understanding that the trees on wet or fertile soils are relatively wind-
prone (Dunham and Cameron, 2000; Ruel, 2000; Mitchell et al., 2001; 
Vanha-Majamaa and Jalonen, 2001). Similarly, we did not find any in-
teractions between site type and the variables of tree retention relevant 
to bird community characterictics, though we warn about drawing far-
reaching conclusions from this: (1) birds in general may tolerate forestry 
operations better than many other taxa (Imbeau et al., 2001), particularly 

at small scales (Similä et al., 2006); (2) even though birds could guide 
disturbance-based management at the landscape scale (Angelstam et al., 
2004b), they may be less informative in heterogeneous landscapes like 
Estonia; (3) the low retention levels of the study (mostly up to 5% of 
growing stock) may not mimick natural disturbances sufficiently well – 
an explanation provided by Virkkala (2004) for the lack of tree-retention 
effects on Finnish birds. Also, there can be some confounding factors, 
such as drainage, in our studies (IV).

6.3. Stand-scale management

Among the reviewed studies, tree species appeared to be the most influen-
tial technical consideration for biodiversity (I). Theoretically, as different 
tree species host different biotic communities, there can be no universal 
prioritization for retention (all native tree species should be represented 
at the landscape scale). However, two complementary preferences for 
practical use emerged (e.g. II): (1) rare tree species hosting threatened 
biotic communities or those with particular qualities not found in the 
other tree species in that landscape; (2) tree species with high future value 
for biodiversity, resulting from low mortality and quick development of 
important features on GTR-cuts (IV). For example, large aspens (Popu-
lus spp.) or hardwoods with coarse bark are priority trees for conserving 
epiphytic lichens (Hazell et al., 1998; McGee and Kimmerer, 2002; II). 
Importantly, despite their significant effects for biodiversity and tree sur-
vival acknowledged in many studies (referred to in I, II, IV), tree-scale 
characteristics other than species (such as age, size or shape of the crown) 
have received almost no attention (I). 

The optimum density and spatial configuration of retention trees have 
been listed among the most important questions for VRC research (Fran-
klin et al., 1997). No general answer has been provided so far, and our 
meta-analysis confirmed the lack of such research (I). However, it seems 
that group retention is generally better for biodiversity (I) and, at higher 
levels of retention, additional positive effects appear both for biota (III; 
Figure 3 in I) and the survival of retention trees (e.g. Beese 2001; Walter 
and Maquire, 2004; Scott and Mitchell 2005; IV).

The decline of tree survival from the oldest (field) to medium-aged (road) 
and young pre-cut edges (previously cut area) as well as cut interior  
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indicated time-limited adaptation of trees with wind. Hence, although 
no other previous works have pointed out tree location relative to pre-cut 
edge, our study shows that this is the key variable to be considered at the 
stand-scale to enhance wind-resistance (IV).

6.4. Predicted effectiveness of retention trees in the future  

Specific parts of forest wildlife appear to have adapted with very old trees in 
forests (I). For such species – even if they could not be continuously mai-
ntained – tree retention increases occupancy time in regenerating stands, 
which is particularly important in short-rotation forestry (e.g. Mazurek 
and Zielinsky, 2004). For example bryophytes – poorly surviving on the 
cuts in the short term – are obviously able to re-occupy young stands in 
the presence of substrata and source populations nearby (Lõhmus and 
Lõhmus, 2007). Also, the abundance of late-seral birds in GTR stands is 
likely to exceed that in clear-cut stands during the period between canopy 
closing and about 100 post-cut years (Hansen et al., 1995). In timber-
harvesting areas, some threatened bird species, such as the Spotted Owl 
(Strix occidentalis) or the Red-cockaded Woodpecker (Picoides borealis) 
in North America, may be viable only if residual trees are available for 
their nesting or foraging (e.g. Franklin et al., 1997; Phillips and Hall, 
2000). Also, the endangered Black Stork (Ciconia nigra) in Estonia nests 
on very old trees for nesting, the scarcity of which can be decreased with 
tree retention (Lõhmus et al., 2005). 

Thus, the presence of retention trees in the forest landscape can have a 
positive effect on biodiversity in the very long-term. Apparently, the low 
survival of retention trees can decrease their effectiveness for biodiversity, 
especially if their initial number is small like in Estonia (IV). Hemiboreal 
old-growth forests normally contain 10–20 large (DBH>70) live trees per 
hectare (and many more have DBH >50 cm; Nilsson et al. 2002). Retention 
trees can grow into such large trees, but in order to achieve the desired 
number of such retention trees that survive in old forest long-term, their 
initial number per hectare should be increased, taking into account their 
mortality rate in the meantime. However, very little is known about the 
long-term survival of retention trees (Busby et al. 2006, IV). In paper IV 
we tried to predict the long-term survival of retention trees and assumed 
that a stable survival typical to forests will be reached in 30 or 40 years 
(see Lõhmus et al. 2004 for a similar assumption). However, we do not 

actually know the accurate time line, and probably survival rate stabilises 
gradually within a longer time frame, not suddenly (see Figure 5). Moreo-
ver, survival can be influenced by many additional, unpredictable factors, 
e.g. occurance of big storms (Beese 2001; Busby et al. 2006). Therefore, 
our prediction may not be very precise. On the other hand, it is based on 
more factors than the only other previously published prediction (Busby et 
al. 2006). The accuracy of our prediction should be tested in field studies 
in the future. To enhance the prospects of the retention trees of reaching 
the next forest generation, the most wind-resistant trees should be chosen 
for retention trees (II), and the initial amount of retention trees should be 
increased (IV). The latter is necessary also for the purpose of providing 
sufficient amount of dead trees. In the hemiboreal old-growth forests the 
average volumes of CWD are around 100 m3/ha (Siitonen, 2001), while 
the minima for threatened polypore fungi are 20 m3/ha (Penttilä et al., 
2004). Currently, the volume of CWD from retention trees remains 
considerably below these numbers (IV).

6.5. Practical implications

The main aspects to be considered in GTR, and monitored with biological 
indicators, are the species and size composition of retention trees, retention 
density, and the position of GTR stands on the landscape. Considering 
the taxon-specificity of effects, we suggested that ectomycorrhizal fungi, 
epiphytes, birds, and wood-dependent beetles may be suitable indicator 
taxa for measuring the success of GTR (I). For that purpose it is neces-
sary to study both composition of all species and cut-sensitive species 
survival in GTR cuts.

The greater diameter of retention trees often enhances their value for bio-
diversity (I–II), while the best survivors among retention trees in Estonia 
are hard deciduous trees (mostly Fraxinus, Quercus, Ulmus and Acer) and 
soft deciduous trees (mostly Alnus spp.) (IV). Especially, European ash 
had a relatively high cover of cryptogams, and lichens certainly survived 
best there (II). However, European aspen is also valuable because of its 
unique and rare species composition (II) and a greater diameter than 
that of other trees (IV).

The majority of studies have found that the effectiveness of retention 
trees for conserving and enhancing biodiversity and tree survival are  
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enhanced with their density (I, III, IV), and the typical amount retained 
today in Estonia and Scandinavia (Vanha-Majamaa and Jalonen, 2001) 
is insufficient both in the short and long term (I, III, IV). Notably, the 
bird species of national conservation concern preferred to nest in cuts 
with higher density of live trees (III). The meta-analysis of GTR also 
demonstrated that retention levels exceeding 15% of the growing stock 
(Figure 3 in I) had significant positive effects (I). We recommend that 
the density of retention trees should generally exceed this level.

To retain as many trees as possible for the next forest generation, we also 
recommend to select retention trees which have previously adapted to 
winds (trees on the edge of fields, roads or earlier cuts) in open sites, and – 
for preserving forest-interior species – the better-shaded trees near existing 
forest edge (IV). Furthermore, it is recommended to retain trees in groups 
whereby their value for biodiversity is increased (I), and to increase their 
wind-resistance (IV). For all this, as well as for diminishing negative effects 
of cuttings for sensitive species groups (I), landscape-scale silvicultural 
planning is advisable. On the other hand, since we did not find that the 
survival or biota of the retention trees in VRC were differently affected in 
site types with different disturbance regimes (III-IV), there is no reason 
to state that GTR in wet site types is inefficient. More generally, we found 
no confirmation to the hypothesis that biota in different site types have 
adapted differently at the scales or extents of our GTR-studies.

7. CONCLUSION

The review of 214 North American and European publications 1. 
about live-tree retention (GTR) (I) confirmed that geographic 
areas, temporal ranges and objectives have been very unevenly cov-
ered: 81% of the studies have been carried out in North America, 
82% have been short term, and – in contrast to the lifeboating 
and structural enrichment objectives – the objective of improving 
landscape connectivity has not been studied.

The meta-analysis about the impacts of retention trees to bio-2. 
diversity (I) revealed no negative effects on the species’ richness 
and abundance, but birds and ectomycorrhizal fungi benefited 
most. 

Seventy-two percent of the previous studies indicated that, com-3. 
pared with clear-cutting, GTR lowered the harvest-related loss 
of populations or individuals, and it nearly always improved the 
habitat for disturbance-phase insects and birds on the cuts and 
for forest species in the regenerated stand. Lifeboating was most 
successful for ectomycorrhizal fungi, epiphytic lichens and small 
ground-dwelling animals, and least successful for bryophytes and 
vascular plants. The findings were verified in a case study II where 
the damage on epiphytic lichens on clear-cuts was 30 times less 
than on bryophytes.

The success of GTR appeared to be always related to the retained 4. 
tree species. A case study II showed that aspens (Populus tremula 
L.) and ashes (Fraxinus excelsior L.) preserve lichens better than 
other trees. Tree density affected the benefits for biodiversity in 
65% of the previous studies; here, in a case study on birds, that 
was true for species of national conservation concern, but not for 
total abundance and species richness. The impact of the spatial 
arrangement of the trees is not clear, but 50% of the previous 
studies have found it important for the biodiversity. Among in-
sufficiently studied aspects, the variability of natural disturbance 
regimes implies that retention cutting, aimed at emulating natural 
disturbances to support biodiversity, should be forest-type specific. 
In contrast to that expectation, tree retention influenced birds in-
dependently of forest type in study III, and we also failed to find 
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better survival of retention trees (IV) in site types with frequent 
natural disturbances.

The main determinants of survival (5. IV) were tree species (best in 
hard deciduous trees – Fraxinus, Ulmus, Quercus, Acer, Prunus 
and Sorbus) and diameter (species-dependent effects), tree position 
relative to forest edge (best near current or former forest edge), 
post-harvest density of trees (positive), and exposure (negative). 
The total number of live retention trees decreased 35% in six 
years in the cut areas, but the mortality rates decreased in time. 
According to the predictions for different scenarios, 9–29% of 
retention trees might survive in 100 years.
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SUMMARY IN ESTONIAN

Viimastel aastakümnetel pööratakse metsanduses majandusliku tasuvuse 
kõrval tähelepanu ka säästlikule majandamisele, lähtudes metsa teistest 
väärtustest, sealhulgas elustikulise mitmekesisuse säilitamisest. Üheks 
vastavaks rakenduseks on elavate ja surnud puude säilitamine lageraiel, 
millega püütakse jäljendada looduslike häiringute (metsapõlengud, tor-
mikahjustused) käigus alles jäävaid puid. Säilitatavate puude looduskait-
selised eesmärgid on: 1) aidata organismidel üle elada periood järgmise 
metsapõlvkonna tekkeni, 2) pakkuda spetsiifilisi elupaiku metsaliikidele 
järgmises metsapõlvkonnas ja häiringuliikidele raiesmikel, 3) suurenda-
da liikide levimisvõimalusi maastikul. Raiel elustiku jaoks säilitatavate 
elusate puude kohta kasutatakse järgnevas terminit „säilikpuu“, mis ei ole 
küll kooskõlas Eesti õigusaktidega, kuid vastab mujal maailmas levinud 
terminoloogiale. 

Käesolev töö annab ülevaate senistest uurimustest säilikpuude eesmärki-
de kaupa ja neid mõjutavatest tunnustest, toob välja problemaatilised ja 
väheuuritud valdkonnad (I) ning täidab ilmnenud teadmistelünki origi-
naaluuringutega (II–IV).

Kokkuvõtteartiklis Euroopa ja Põhja-Ameerika 214 uurimusest säilikpuude 
mõju kohta elustikule (I) leiti valdkondade ebaühtlane kaetus: suurem 
osa pärineb Põhja-Ameerikast, enamus uurivad säilikpuude lühiajalist 
mõju ja levimisvõimaluste parandamist maastikul pole uuritud. Meta-
analüüsis, kus võrreldi lageraie ja säilikpuudega raie mõju elustikule, ei 
leitud ühegi liigirühma arvukuse ega liigirikkuse vähenemist säilikpuude 
jätmise tõttu, kõige rohkem kasu puude jätmisest said linnud ja ektomü-
koriissed seened (I).

Säilikpuude jätmine vähendas kokkuvõtteartiklis käsitletud uurimustest 
72% juhtudel raie vahetut kahjulikku mõju elustikule. Säilikpuud suu-
rendasid raiejärgset ellujäämust ektomükoriissetel seentel, epifüütsetel 
samblikel ja väikestel maapinnaloomadel, kõige vähem parandasid nad 
eluspüsimist sammaldel ja soontaimedel (I). Sama kinnitas ka uurimus 
II, kus säilikpuude epifüütsetest samblikest olid kaks aastat pärast raiet 
kahjustatud keskmiselt 2%, kuid sammaldest 60%. Peaaegu alati paran-
das säilikpuude jätmine häiringutega kohastunud putukate ja lindude 
elutingimusi raiesmikel ning uuenenud küpses metsas vanale metsale 
iseloomulikel liikidel (I).

Elustiku säilitamise edukus sõltub olemasolevate uurimuste järgi alati 
säilikpuu liigist (I), ka uurimus II leidis, et haab (Populus tremula L.) 
ja saar (Fraxinus excelsior L.) säilitavad samblikke paremini kui teised 
puuliigid. Säilikpuude suurem hulk (tihedus) suurendab 65% varasema 
uurimuse järgi nende kasu elustikule (I), mis käesolevas töös leidis kin-
nitust kaitsekorralduslikult oluliste linnuliikide (aga mitte linnustiku 
üldarvukus ja -liigirikkuse) puhul (III). Puude ruumilise asetuse mõju 
pole nii selge, kuigi 50% varasematest uuringutest leidis, et see on elus-
tikule oluline (I).

Looduslikke häiringuid jäljendades peaks säilikpuude mõju elustikule 
sõltuma metsatüübist, mida peetaksegi oluliseks, kuid on vähe uuritud (I). 
Käesolev töö seda ei kinnitanud: kasvukohatüübi ja säilikpuude arvu koos-
mõju linnustiku arvukusele ja liigirikkusele ei leitud (III) ja sagedasema 
häiringurežiimiga kasvukohatüüpides ei säilinud üksikuna jäetud puud pa-
remini (IV). Puude elumust mõjutasid eelkõige puu liik, diameeter, asend 
raiesmikul, puude tihedus ja avatus (IV). Paremini säilisid kõvalehtpuud 
(Fraxinus, Ulmus, Quercus, Acer), puud endiste ja praeguste metsaservade 
servas, suurema raiejärgse tihedusega raiesmikel ja vähem avatud maasti-
kul. Pehmelehtpuudel (Tilia, Alnus, Salix) ja haabadel säilivad paremini 
suurema diameetriga, kaskedel (Betula spp.) väiksema diameetriga puud. 
Kuue raiejärgse aasta vältel hukkus raiesmikel kokku 35% puudest, kuid 
aja jooksul suremus vähenes. Prognoosi kohaselt oleks parima stsenaariumi 
järgi 100 aasta pärast alles 29% säilikpuudest, halvima järgi 9%.

Antud töö põhjal soovitati edaspidiseks kindlale säilikpuude eesmärgile 
keskenduvaid uuringud just selleks eesmärgiks sobivate liigirühmade 
kohta. Uuringuid oleks vaja teha maastiku mastaabis ja pikaajalisemana 
(sealhulgas uude metsapõlve jõudnud säilikpuude kohta) ning võrrelda 
tuleks looduslikke häiringuid ja puude säilitamist. Praktikas tuleks säi-
likpuudeks valida kõige tuulekindlamad, arvestades puu liiki ja asendit 
raiesmikul ning maastikul, samuti kõige jämedamad, et suurendada nende 
väärtust elustikule. Säilikpuude hulka hektarile tuleks Eestis suurendada, 
et tagada piisav hulk puid elustiku jaoks nii praegu kui tulevikus.
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Abstract

Green-tree retention cutting (GTR) is a modification of traditional clear-cutting, aimed at better consideration of biodiversity. We reviewed 214

North American and European studies to answer whether, and under which circumstances, GTR meets its objectives: ‘lifeboats’ species over the

regeneration phase, provides microhabitats for old-forest species in re-established forest stands and for disturbance-phase species on the recent

cuts, and enhances species’ dispersal by increasing landscape connectivity. To answer these questions is complicated, partly because the target taxa

differ regionally and due to research biases: 81% of the studies have been carried out in North America, 82% have been short term, and the objective

of improving landscape connectivity has not been studied. A meta-analysis of GTR effects on species richness and abundance of different taxa

indicated no negative responses, but birds and ectomycorrhizal fungi benefited most. Compared with clear-cutting, GTR lowered the harvest-

related loss of populations or individuals in 72% of studies, and it nearly always improved the habitat for disturbance-phase insects and birds on the

cuts and for forest species in the regenerated stand. Lifeboating was most successful for ectomycorrhizal fungi, epiphytic lichens and small ground-

dwelling animals, and least successful for bryophytes and vascular plants. Retention tree species always contributed to the success of GTR,

followed by tree density (65% of cases) and the spatial arrangement of the trees (50%); the influence of forest type is likely, but insufficiently

studied. Ectomycorrhizal fungi, epiphytes, birds, and wood-dependent beetles may be suitable indicator taxa for measuring the success of GTR.

For future research, we encourage clearly objective oriented studies of relevant taxa, spatially explicit landscape perspectives, and long-term

(including retrospective) studies.

# 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In the last decades, forestry has been increasingly focusing

on multiple values instead of timber production only. One of the

crucial issues has been the concern about biodiversity—not

only in reserves but implicitly in managed forests as well

(Bengtsson et al., 2000; Lindenmayer and Franklin, 2002). For

the latter, it is not enough to slightly modify the traditional

cutting techniques but the whole aim of forestry should be

revised: to preserve biodiversity while retaining the economic

viability (Franklin et al., 1997). The primary approach for

reaching such an aim has been to use silvicultural techniques

that imitate natural disturbances (e.g. Hunter, 1993).

Clear-cutting is the dominant cutting technique in many

regions of theworld, notably in North America and Europe (e.g.

Keenan and Kimmins, 1993; Hannerz and Hånell, 1997; Deal

et al., 2002). This dominance has been largely based on

economic considerations such as cheaper cutting, larger volume

of timber, and easier artificial regeneration with economically

suitable tree species in cut areas (Keenan and Kimmins, 1993).

Yet, though felling all the trees in a forest stand may resemble a

natural stand-replacing disturbance (Esseen et al., 1997),

profound differences are evident when evaluated more closely

(Swanson and Franklin, 1992; Keenan and Kimmins, 1993;

Bengtsson et al., 2000; McRae et al., 2001). Perhaps most

importantly, many ‘‘biological legacies’’ of the previous forest

structure remain in place after fire, windstorm or disease, and

the resulting structural complexity plays an important role in

forest ecosystem functioning and for biodiversity (Linden-

mayer and Franklin, 2002). Thus, the similarity between clear-

cutting and natural disturbances could be increased if structural

features of old-forests, such as live and dead trees of varying

sizes and multiple canopy layers are purposefully retained on

cuts (Franklin et al., 1997; Beese et al., 2003). Such practices

have gained popularity during the last two decades and their

efficacy is an important subject of forest research.

In this review, we focus on the direct consequences for

biodiversity of leaving live trees on the cut area—a technique

most commonly known as ‘green-tree retention’ (GTR), which

forms a part of the ‘variable retention’ approach (Franklin et al.,

1997). In addition to the direct impact, GTR also has more

complicated effects, such as producing coarse woody debris in

the regenerating stand or complementing other techniques for

sustaining biodiversity (e.g. Franklin et al., 1997; Zenner, 2000;

Keeton and Franklin, 2005). Research on GTR became

systematic in the late 1980s and has now reached a phase of

integration. For example, several large-scale field studies have

been initiated in North America (Monserud, 2002) and the

Fennoscandian experience has been summarized (Vanha-

Majamaa and Jalonen, 2001). In this paper, we take a next

step and review whether, and under which circumstances, GTR

has met its objectives or, at least, whether the answer can be

given on the basis of current knowledge. For that, we define the

aims and objectives of GTR as follows.

GTR cutting is a disturbance in a dynamic forest landscape

(a mosaic of stands), creating habitats for pioneer species and

modifying succession patterns afterwards. Therefore, given that

the conditions after stand-replacing disturbances differ from

those within forest by definition, comparing GTR cuts with

forests (as has often been done) is of secondary importance.

Instead, the main question is how forest biota survives in the

landscape despite or because of such intensive disturbances.

Hence, we see the aim of GTR in sustaining the populations or

communities, which are lost in the conventional clear-cutting

forestry.

We define three main objectives of GTR as listed in Franklin

et al. (1997): (1) ‘lifeboating’ species and processes over the

regeneration phase, (2) enriching re-established forest stands

with structural features, and (3) enhancing landscape con-

nectivity. Very broadly, from a biodiversity aspect, these

objectives refer to the duration of post-cut occupancy by target

species: lifeboating (objective 1) means a continuous occu-

pancy of the cut stand, objective (2) reveals the presence of

specific microhabitats that can be inhabited after or during

some suitable period, and landscape can be considered

connected (objective 3) if individuals or propagules can

disperse through the GTR areas. Importantly, these objectives

could be reached for all organisms only at a very large scale—

the biotic richness of forests is huge, and habitat requirements

of the species and communities vary widely. Given that such a

scale is usually unachievable in case studies and often for

forestry planning as well, large-scale knowledge should be used

to select target species or community characteristics both for

informing management and measuring its success at a local

scale. In practice, however, the local targets depend also on

knowledge and conservation priorities, which may be

inadequate at the large scale after all. Handling all this variety

of smaller-scale targets presents a major challenge for any

general assessment of GTR success. Therefore, we pay

particular attention to the use of target species or variables

in the case studies on GTR.

In this paper, we start with an overview of the aspects that

GTR studies have covered so far. We then compare the average

abundance and diversity of biotic communities on GTR cuts

and clear-cuts, using meta-analysis. As null-hypotheses, we test

whether the effect of retention trees (i) is similar in terms of two

biodiversity responses—species richness and abundance, (ii) is

similar across taxa; (iii) does not depend on the density and

distribution of the trees; (iv) is generally positive as often

expected (e.g. Fries et al., 1997). In the third part of the paper,
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we review the evidence for GTR success according to its

objectives. To evaluate the efficacy of lifeboating (an objective

shared with uneven-aged silviculture), the GTR-cut versus

forest comparisons have been included. Fourth, we list the

silvicultural key factors that cause variability in the effects of

GTR. Spatial variation is essential for any comprehensive GTR

strategy because the intensity and extent of natural stand-

replacing disturbances varies a lot (e.g. Bergeron et al., 2002;

Angelstam and Kuuluvainen, 2004). Finally, we discuss the

implications on the research on and future use of GTR.

2. Materials and methods

2.1. The sample of studies

We searched electronic databases (e.g. SCOPUS, ISI Web of

Science, JSTOR, EBSCO Academic Search Premiere) and

reference lists for reports and reviews, which had been

published from the beginning of 1981 to August 2006, and

described situations where (1) trees had been harvested for

timber production from at least 1 ha of mature forest, (2) at least

four trees ha�1, but no more than 50% of pre-harvest numbers,

had been retained solitarily or in up to 1-ha (in four studies: up

to 2-ha) patches for any purpose (i.e. not necessarily for long-

term maintenance, but the trees were present at the time of the

study), and (3) effects of retained trees on biodiversity or the

structure of the cut stand (including the condition of retention

trees) had been measured. The 50% upper limit of retention is

widely used in practice and, for example in Alaska, it is the

threshold at which the plant community structure changes

significantly (Deal, 2001). Due to presumably strong and non-

measurable confounding effects, we omitted all reports on GTR

techniques in intensive plantations or forests of non-native tree

species, and the retention of strips of trees along waterbodies.

We also omitted the few studies describing tree strips between

clear-cuts, though these are clearly analogous to group

retention; however, the possible age or type differences

between the cuts and the specific elongated shape of the tree

group made this technique difficult to compare with more

traditional ones.

We did not limit the time-scale of the effects, so the studies

range from short-term post-cut measurements to long-term

predictive models and retrospective studies performed more

than 20 years after the GTR. However, geographically the

review is restricted to North America and Europe, since we

found only three studies from other parts of the world

(Australia: Dignan et al., 1998; Asia: Yoshida et al., 2005;

South America: Vergara and Schlatter, 2006).

In several experimental studies, the treatments of our interest

had been included as controls only (e.g. prescribed burning

compared with GTR). Unavoidably, many such studies may

have been missed in our keyword-based search from databases.

Furthermore, while the majority of peer-reviewed papers are

likely to be included, many master’s or doctoral theses and

project reports and other grey literature were unavailable for us.

Given that the reports are of highly variable quality, often

preliminary, and their best-quality parts are often published, we

made no effort to find all of them, and we avoided using them as

the only supporting evidence for generalizations. When the

results were duplicated in different publications, we only used

the most elaborated version.

For the meta-analysis and the assessment of biodiversity

objectives, we separated the studies directly relevant to

biodiversity.

2.2. The meta-analysis

For meta-analysis, we used 39 case studies with paired

numerical data relating to biodiversity condition in clear-cuts

(0–3 trees ha�1) and GTR cuts 0–17 years after cutting.

Altogether, eight species groups (see Appendix A) and four

GTR treatments (retention levels) were distinguished: 1,

solitary trees (up to 15% of the numbers or basal area of the

pre-harvest stock); 2, group-retention (10-tree to 1-ha groups;

altogether up to 20%); 3, two-storey retention (16–33%); 4,

shelterwood (34–50%). Dependent variables were the treat-

ment differences from clear-cuts in species richness (incl.

ectomycorrhizal morphotypes: Dahlberg et al., 2001; Lazaruk

et al., 2005), diversity (mostly Shannon and Simpson indices),

and abundance (usually number of individuals or cover; once

biomass; twice the number of root tips with mycorrhizal fungi

present). We were not interested in absolute values (which vary

due to local and methodological factors), so the differences

were presented as logarithmed ratios (to normalize distribu-

tions), R:

R ¼ ln

�
g

c

�

where g is the average value in GTR cut and c is the value in

clear-cut. Significant deviation of R from zero thus indicates

that GTR is better or worse than clear-cutting. Since the relative

diversity (Rd) was very closely related to relative species

richness (Rr; r18 = 0.94, P < 0.001), and never reported alone,

we omitted Rd from final analyses. Rr and relative abundance

(Ra) were strongly correlated as well (r40 = 0.86, P < 0.001),

but both were explored due to their different ecological mean-

ings. Altogether, 45 estimates of Rr and 72 estimates of Ra were

considered, a total of 39 of these were estimated from figures

(Appendix A).

We used one-way ANOVA to test for differences in Rr and Ra

between species groups and retention levels, including only

categories with at least three estimates. Since many combina-

tions had not been studied, it was not possible to use a

multivariate design and test for taxon-specific effects of

retention levels (interactions). If a study presented data for

several subsequent years, we used the average value. For three

studies (Lemieux and Lindgren, 2004; Lindo and Visser, 2004;

Lazaruk et al., 2005), which gave separate estimates for the

open parts of GTR cuts and the tree groups, we calculated

weighted means according to the relative areas. The assump-

tions of normal distribution (Kolmogorov–Smirnov test) and

the homogeneity of variances (Levene’s test) were checked

prior to analyses. The tests were performed with Statistica 6.0
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software (StatSoft, 1984–2001). All confidence intervals (CI)

given are at 95% probability.

2.3. Assessing the fulfilment of GTR objectives

In general, GTR might be considered a success if pre-defined

target taxa, sensitive to conventional clear-cutting, are viable in

landscapes managed with GTR cutting. However, since such

viability analyses and, in fact, any landscape-scale analyses are

absent so far, we could only assess whether retaining live trees on

cuts meets its specific objectives better than clear-cutting. For

that, we first stratified the studies according to the three

biodiversity objectives ofGTR, distinguished the cases exploring

meaningful target taxa for each objective (see below), and then

checked for statistically significant evidence of the superiority of

GTR over clear-cutting. Note that, except in a few long-term

studies, such ‘‘evidence’’ does not necessarily mean biologically

significant improvement, only a potential for that.

In addition to the comparisons of GTR cuts and clear-cuts

used in meta-analysis, we included the cases which (i)

described the gradient of biodiversity response from retention

trees towards open cut or compared it in the tree groups and

treeless parts of GTR cuts and (ii) assessed the performance of

strictly tree-dwelling species (epiphytes, squirrels, hole-nesting

and canopy-dwelling birds) on GTR-cuts (assuming that these

species were absent from clear-cuts). To explore long-term

structural enrichment, we included 11 studies on remnant trees

in the stands re-established after natural disturbances since such

trees can be considered analogues of the retention trees (e.g.

Zenner et al., 1998) and the specific consequences of natural

disturbances were likely to be diminished by that time. The

cases where any cuttings were found to have insignificant

influence on the measured variables were omitted because there

was no target for GTR.

The species groups of interest, and criteria of success for

each objective, were defined as follows:

(1) Lifeboating (objective 1) is most important for poor

dispersers or rarities all of whose local populations need

to be preserved. In particular, this meant omission of a large

number of short-term studies on birds (also most mammal

studies). Although stand-scale persistence may be impor-

tant for landscape-scale viability of some old-forest or rare

avian species (e.g. Conner et al., 1991) or in extremely

impoverished landscapes, it is not likely to be generally so

(e.g. Angelstam et al., 2004). GTR was classified successful

if these target taxa inhabited GTR areas continuously and,

even though their numbers or diversity might have been

lower there than in forests, they exceeded those in clear-

cuts. Failures were the cases when such biodiversity

responses did not differ on GTR cuts and clear-cuts.

(2) Structural enrichment (objective 2) was expected to support

two kinds of species with narrow habitat requirements, so

we assessed its success in two parts. (i) For disturbance-

phase species, the objective was met if, for some period

after the cutting, their numbers or diversity in GTR cuts

exceeded that in both forests and clear-cuts. The objective

was not met if such species were similarly or more abundant

in clear-cuts. (ii) For forest species, we checked long-term

or retrospective studies for whether post-cut stands

regenerated after GTR supported them in greater numbers

or diversity than the stands originated from clear-cutting.

Short-term studies were omitted, though successful life-

boating of such specialist species includes provisioning of

their habitat as well (but failure of lifeboating does not

mean the failure of structural enrichment). On the other

hand, the reports of long-term success which we examined

may have included lifeboating in the past, but it was

impossible to distinguish that effect due to the absence of

continuous monitoring. We omitted the studies on ground

vegetation and mycorrhizal fungi, which depend more on

soil characteristics, habitat continuity (lifeboating) and

adjacent source populations (incl. seed bank) than the GTR-

related appearance of specific microhabitats and woody

substrata (e.g. Humphrey et al., 2004). An assessment was

also impossible for saproxylic insects or their predators,

because GTR has often been mixed with the simultaneous

retention of dead wood, so the contribution of the live trees

remains unclear.

(3) Improved landscape connectivity (objective 3) assumes that

the species or individuals, which would have become

isolated in forest fragments between clear-cuts, are able to

disperse through the GTR areas. The obvious targets for the

latter are mobile animals with large home-ranges or the

species with unstable local populations, which exhibit

extinction-immigration dynamics.

3. Results

3.1. The state of ecological research on GTR

Altogether, 214 studies on biodiversity or other ecological

effects of GTR were found: 181 papers in peer-reviewed

journals, 26 project reports or conference proceedings and

seven dissertations. The full list of papers is available upon

request from the authors. The average annual number of

publications has risen from 0.5 in 1981–1991 to 23.8 in 2001–

2005 (Fig. 1) with a steep increase in 1997. As several studies

Fig. 1. Distribution of 214 studies on the ecological effects of GTR according to

publishing year and study region, 1981–2006.
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considered more than one large taxon or aspect, a total of 273

general conclusions on GTR effects were distinguished

(Table 1).

The research on GTR has been strongly biased in many

respects. Eighty-one percent of the studies have been carried

out in North America (particularly in the west), including all

subtropical studies and most work on temperate forests and on

boreal forest vertebrates (Table 1). Though several papers

speculate about the possible landscape-scale biodiversity

effects of GTR (e.g. Hansen et al., 1995; Taulman et al.,

1998), we only found one explicit study on this (Phillips and

Hall, 2000). Even the large-scale initiatives in Canada and the

western United States (Beese and Bryant, 1999; Aubry et al.,

2004; Serrouya and D’Eon, 2004) actually collected and

analyzed stand-scale data. The situation regarding time-span is

slightly better: 39 studies (18%) with 56 conclusions covered at

least 20 years after the cut, while 82% of the studies were only

short term (Table 1). Of the three objectives of GTR, mostly

short-term lifeboating (54% of the 214 studies) has been

studied, and even this is usually for common mobile species at

small scales. The long-term effects of structural enrichment

have been explored considerably less often (13%), and we did

not find any studies on improving the landscape connectivity

with live retention trees.

3.2. Meta-analysis of general effects

The effect of GTR (comparedwith clear-cutting;R) differed

between the major taxa studied both when measured as a

change in average species-richness (F5,38 = 4.8; P = 0.0017)

or abundance (F5,56 = 4.1; P = 0.003). No species group

responded negatively, while the species richness and abun-

dance of birds and ectomycorrhizal fungi as well as the

abundance of woody plants increased significantly (Fig. 2).

These latter increases differed from the weak negative

tendencies in herbs and grasses (Tukey’s HSD tests:

P = 0.006–0.019; for fungal species richness, P = 0.098, for

fungal abundance, P = 0.062).

Table 1

Numbers of GTR studies according to main issues, objects and geographical region (A, North America; E, Europe)

Study issues and objects Boreala Temperatea Subtropicala Total

A E A E A

Biodiversity effectsb 49 22 60 3 10 144 (28)

Epiphytes 1 4 4 1 10 (3)

Ground vegetation 7 6 12 25 (5)

Ectomycorrhizal fungi 5 1 5 11 (2)

Arthropods 5 11 3 1 20 (2)

Amphibians and reptiles 6 1 7

Birds 22 19 2 5 48 (10)

Mammals 9 11 3 23 (6)

Effects on retention trees and regeneration 38 16 45 2 8 109 (28)

Stand regeneration 13 6 18 2 5 44 (13)

Growth of retention trees 3 2 12 2 19 (10)

Stand structurec 4 5 5 14 (5)

Wind-resistance 15 2 3 20

Logging damage on trees and soil 3 1 7 1 12

Other ecological and biological effectsd 10 4 5 1 20

Total 97 42 110 5 19 273 (56)

In brackets—long-term studies (at least 20 years post-cut).
a Region.
b Incl. five studies on bird nest predation and two on mammal diets (all in North America).
c Incl. three studies on GTR as a source of coarse woody debris (all in boreal Europe).
d Incl. six studies on the production, germination, dispersal or predation of tree seeds; four studies on GTR effects to genetic structure of regeneration; five studies

on the changes in microclimate and five on the changes in soils.

Fig. 2. Mean differences between GTR-cuts and clear-cuts in the species

richness and abundance of different species groups. R, natural logarithm of

ratio of the values in GTR-cuts vs. clear-cuts (positive values indicate higher

values in GTR cuts); labels indicate the number of studies; lines are 95%

confidence intervals for the mean.
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No retention level was worse than clear-cutting, and

significant positive effects of GTR appeared for the highest

levels of retention (two-storey retention and shelterwood), i.e.

retaining of more than 15% of the growing stock (Fig. 3).

However, we were not able to demonstrate statistically

significant differences of R between retention levels for species

richness (F3,41 = 1.4; P = 0.245) or abundance (F3,64 = 1.7;

P = 0.185).

3.3. The lifeboating objective

Of the species groups studied, we considered lifeboating

generally relevant for cryptogams, plants, arthropods, and

small ground-dwelling vertebrates, which had been the focus

of 71% of the studies exploring this objective. Statistically

significant improvements in the survival of their populations or

individuals after GTR, compared with clear-cutting, were

reported in 72% of the 57 studies (Table 2). The effectiveness

depended on taxon (see also Maguire et al., 2005; Lõhmus

et al., 2006): it was best for ectomycorrhizal fungi, epiphytic

lichens and small ground-dwelling animals such as carabid

beetles, salamanders, and the vole Clethrionomys gapperi. In

contrast, GTR was usually insufficient to conserve forest

bryophytes (both epiphytic and epigeic species) and vascular

plants (Table 2). Though increased density of trees reduces

microclimatic changes and enhances bryophyte survival

(Hannerz and Hånell, 1997; Beese and Bryant, 1999; Nelson

and Halpern, 2005), most sensitive and rare taxa, such as

liverworts, still disappeared (Nelson and Halpern, 2005). Also,

only a few species of forest-interior saproxylic beetles

occupied GTR areas even at high levels of retention (Serrouya

and D’Eon, 2004), though these may still include some

threatened species that are lost after clear-cutting (Martikai-

nen, 2001; Hyvärinen et al., 2005).

Even for the best surviving taxa, some logging-related

damage is unavoidable (e.g. for lichens: Hedenås and Ericson,

2003; Coxson and Stevenson, 2005; Lõhmus et al., 2006) and,

given that most studies had explored only short-term effects, the

Fig. 3. Mean differences between GTR-cuts and clear-cuts in species richness

and abundance of eight taxa in relation to retention levels: 1, solitary trees; 2,

group-retention; 3, two-storey retention; 4, shelterwood. R, natural logarithm of

ratio of the values in GTR-cuts vs. clear-cuts (positive values indicate higher

values in GTR cuts); labels indicate the number of studies; lines are 95%

confidence intervals for the mean. See Appendix A for the taxa included.

Table 2

General fulfilment of the objectives of GTR, and its dependence on four silvicultural considerations according to 183 case studies

Species groupa Generalb Tree densityb,c Tree groupingb Tree speciesb Site typeb

S D L S L S L S L S

Epiphytes

Lichens (A) 5/2 3/0 01/0 1/0 1/0 01/0 01/0

Bryophytes (A) 0/2 0/1 1/0

Ground vegetation

Bryophytes (B) 6/3 0/1 1/1 0/2

Herbs, grasses (B) 6/5 2/2 0/3 1/0 1/2 1/0 03/0

Woody plants (B) 4/2 2/3 3/2 2/2 1/0 2/0

Mycorrhizal fungi (B) 7/0 1/0 1/1 0/2 1/0 02/0

Arthropods (A) 6/1 7/0 2/0 3/1 1/3 21/0 12/0

Salamanders (A) 4/1 2/2 0/1 1/0

Birds (C) 22/3 20/5 5/1 10/2 4/0 3/2 1/0 62/0 3/0

Mammals

Ground-dwellers (A) 3/0 1/3 1/0 1/0 2/0

Squirrels (C) 1/0 1/0 1/0 1/0

Bats (C) 3/0 0/1 1/0 0/2 0/1 1/1

Totald 41/16 28/9 13/1 101/7 4/0 5/11 1/0 91/0 31/0 18/0

The objectives: S, short-term lifeboating of forest species; L, long-term structural enrichment; D, short-term structural enrichment for disturbance-phase species. The

numbers are statistically significant/non-significant cases; additional studies that referred to some effects, but did not demonstrate them, are indicated in superscript.
a Species groups have been roughly divided into those requiring both lifeboating and structural enrichment of the future stand (A), mostly lifeboating (B) or mostly

structural enrichment (C).
b No. of statistically significant/non-significant effects.
c Only dispersed retention considered.
d Only the species groups relevant for each objective considered.
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final success rates of lifeboating may also be overestimated

here. For example, the logging-related decline of Clethrion-

omys gapperi is delayed by 1–3 years (Fisher and Wilkinson,

2005). Yet, the improved short-term survival obviously

contributes to long-term persistence. Notably, populations

of mature-forest ectomycorrhizal fungi, which survive on the

roots of large live retention trees, can inhabit the roots of

adjacent seedlings (Kranabetter, 1999; Cline et al., 2005), and

residual trees obviously become dispersal centres for lichens as

indicated by their diversity (particularly of alectorioid and

cyanobacterial species) near large remnant trees in forests

regenerated after cuttings or fire (Neitlich and McCune, 1997;

Peck andMcCune, 1997; Sillett and Goslin, 1999). In addition,

lifeboating of these taxa may have cascade effects in the GTR

areas. Several mammal species use the epiphytes or fruit-

bodies of fungi (and, in turn, may disperse these) for food,

while a significant part of soil fauna depends on ectomycor-

rhizal fungi (Hayward et al., 1999; Carey et al., 2002; Luoma

et al., 2004; Fisher and Wilkinson, 2005); changes in

invertebrate biomass caused by silvicultural practices may

influence the breeding success of passerine birds (Duguay

et al., 2000).

3.4. The structural enrichment objective

For disturbance-phase species, retention trees improved the

cut areas in 76% of the 37 case studies: seldom for mammals,

but always for insects and usually for birds (Table 2). Notably,

in six studies out of eight found, the threatened Olive-sided

Flycatcher (Contopus cooperi) preferred GTR cuts to both

forest and clear-cuts (e.g. Lance and Phinney, 2001; Chan-

McLeod and Bunnell, 2002). Also, a few raptor and

woodpecker species preferred to nest on retention trees on

cuts, probably due to lower risk of nest predation or favourable

foraging conditions around (Sonerud, 1985; Niemi and

Hanowski, 1997; Rolstad et al., 2000).

For forest species, the GTR-induced structural effects

could be mostly derived from circumstantial evidence: at

least 77 cases have described the features of re-establishing

stands (incl. characteristics of retention trees; Table 1) and

there is a large body of literature on stand-scale habitat

requirements of forest biota. For example, the mixture of

woody species in the future stand, which greatly influences

biodiversity in general, is strongly related to the level of

green-tree retention (Hansen et al., 1995; Rose and Muir,

1997; Deal and Tappeiner, 2002; Deal et al., 2002). However,

only 24 long-term or retrospective records linked the stand

structure to the biodiversity response directly; of these, 13 of

14 results (93%) on relevant taxa detected significant benefit

from GTR (Table 2). Hence, for many forest species – even

though they could not be continuously maintained – tree

retention obviously increases occupancy time in regenerating

stands, which is particularly important in short-rotation

forestry (e.g. Mazurek and Zielinski, 2004). For example, the

abundance of late-seral birds in GTR stands is likely to

exceed that in clear-cut stands during the period between

canopy closing and about 100 post-cut years (Hansen et al.,

1995). In timber-harvesting areas, some threatened bird

species, such as spotted owl (Strix occidentalis) or red-

cockaded woodpecker (Picoides borealis) in North America,

may in fact be viable only if residual trees are available for

their nesting or foraging (e.g. Franklin et al., 1997; Phillips

and Hall, 2000).

Obviously the main effect of structural enrichment is due to

the use of retention trees as substrata or microhabitats, but the

changed canopy or vegetation structure around the trees may

have some importance as well. For example, medium-sized

forest-dwelling raptors nested in hemiboreal forest stands

younger than 80 years only if older trees were present for nest-

building. However, after taking into account tree size, forest

type and landscape characteristics, the birds still strongly

preferred stands with old-growth features (Lõhmus, 2005,

2006).

3.5. Technical considerations for successful GTR

It has been argued repeatedly that the efficacy of GTR

depends on geographical location and climate (e.g. Valkonen

et al., 2002; Hedenås and Ericson, 2003; Klenner and Sullivan,

2003), but our review found that no study has explored these

effects so far. For disturbance-phase species, even smaller-scale

requirements of GTR are unclear because silvicultural studies

have not distinguished these taxa. For forest species, four

technical aspects could be summarized (Table 2). Among these,

retention tree species was always a significant factor and thus

should be of primary concern, followed by tree density

(statistically significant in 65% of cases). Yet, the tree species

effects were mostly obtained from comparisons of stands of

different tree species; only two studies compared different tree

species on the same cuts (Kranabetter and Kroger, 2001;

Lõhmus et al., 2006). The spatial arrangement of the trees had

less importance (50%) on forest biodiversity, and the influence

of forest type – although central for the disturbance-mimicking

paradigm (Fries et al., 1997) – has remained nearly unexplored

according to our review.

The post-cut survival of various forest taxa is positively

related to the density of trees retained (e.g. Ross et al., 2000;

Lazaruk et al., 2005; Halpern et al., 2005), though the

relationship is not necessarily linear (Serrouya and D’Eon,

2004; Luoma et al., 2004; Harrison et al., 2005). For ground-

dwelling bryophytes, late-seral vascular plants and flying

squirrels, the retention of less than 20% of the growing stock

does not differ much from clear-cutting, while shelterwood

stands resembled forests (Hannerz and Hånell, 1993, 1997;

Taulman et al., 1998; Beese and Bryant, 1999; Jalonen and

Vanha-Majamaa, 2001; Sullivan and Sullivan, 2001; Brad-

bury, 2004; Halpern et al., 2005). For vertebrates of

conservation concern, the minimum required basal areas

for GTR was 9–15 m
2/ha (Conner et al., 1991; Ross et al.,

2000).

There is no straightforward answer as to whether the

retention trees should be aggregated or dispersed, partly

because the tree groups are smaller than required for retaining

forest-interior conditions anyway (at least 1 ha; Koivula, 2002)
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and in fine-grained clear-cutting systems such groups are

treated as separate stands rather than retention trees. Currently,

there is more evidence in favour of patchy retention: positive

effects of aggregation have been repeatedly noticed (Table 2)

and only two studies have considered it microclimatically less

favourable (for epiphytes—Peck and McCune, 1997; but see

Hazell and Gustafsson, 1999 for an opposite view; for

ectomycorrhizal fungi—Luoma et al., 2004). It must be

remembered, however, that at a fixed retention level, dispersed

trees might promote dispersal of many organisms (such as

cryptogams or invertebrates). For example, being sources of

inocula for multi-stage and late-stage fungi (Kranabetter,

1999), retention trees might be more effective if they are

dispersed, given the short dispersal distances of mycorrhiza

(Hagerman et al., 1999; Lazaruk et al., 2005). Yet, our review

shows that this aspect (objective 3 of GTR) has not been tested

yet.

Fragmented and circumstantial evidence indicates that the

success of GTR may differ along moisture, and perhaps also

soil fertility, gradients, although no study has addressed this

comprehensively so far. Moisture-dependent responses to

GTR have been demonstrated for carabid beetles (Koivula,

2002), and three studies have attributed the weakness of the

response in ground beetle and ectomycorrhizal fungus

communities to moist conditions (Kranabetter and Kroger,

2001; Lemieux and Lindgren, 2004; Luoma et al., 2004). Plant

cover develops differently depending on soil fertility levels

after harvesting (Jalonen and Vanha-Majamaa, 2001; Brad-

bury, 2004; Halpern et al., 2005), and these differences are

likely to change habitat suitability for other species requiring

the retention trees (e.g. Kuuluvainen and Pukkala, 1989;

Jakobsson and Elfving, 2004).

4. Discussion

The review of literature revealed three practical issues of the

biodiversity aspects of GTR: (1) differential responses among

species groups (implications for value setting and monitoring),

(2) large-scale resemblance to stand-replacing disturbances

(implications for landscape planning), and (3) direct effects of

different characteristics of retention trees (stand-scale silvi-

cultural considerations).

4.1. Taxon-specific responses to GTR, and the target taxa

Compared with clear-cutting, GTR appeared to improve

the habitat to differing extent, and by various pathways, for

different taxa, but it had limited or no negative impact in

terms of species richness and abundance. Among the species

groups covered in the meta-analysis, only the cover of

grasses and herbs tended to be somewhat smaller in the

presence of trees (Fig. 2; see also Hannerz and Hånell, 1997).

However, that decrease is mostly due to the reduced invasion

of pioneer species and, given that forest species survive

better (Hannerz and Hånell, 1997; Beese and Bryant, 1999),

total species richness did not decrease significantly. Other

evidence of a negative effect resulting from GTR is restricted

to the decreased abundance of some open-land birds (e.g.

Annand and Thompson, 1997; King and DeGraaf, 2000),

rodents (e.g. Moses and Boutin, 2001; Sullivan and Sullivan,

2001) and the regeneration of light-demanding tree species

(Holgen and Hånell, 2000; Brais et al., 2004; Oliver et al.,

2005). Importantly, the species preferring clear-cuts to GTR-

cuts are mostly common meadow- or wetland-dwelling

species (e.g. Hannerz and Hånell, 1993; Lance and Phinney,

2001; Moses and Boutin, 2001), whose populations in

forest lands are probably marginal. Moreover, GTR seems

to be flexible enough to provide openings (e.g. between

tree-groups) for such species if needed (Franklin et al.,

1997).

The taxon specificity of GTR effects has important

implications for research and practical forest management.

We suggest that the taxa that respond most clearly are suitable

for monitoring forest management, i.e. comparing different

GTR techniques and assessing the general state of biodiversity

considerations in silviculture. In contrast, the management-

sensitive taxa, whose performance has not been improved with

GTR, are the clearest research priorities regarding their

viability and further modifications of management techniques

to enhance it.

So far, the selection of study taxon has been rather random

and, considering the objectives of GTR, often not indicative

or even relevant for the treatment. For example, 29% of case

studies on pre- versus post-cut occupancy of forest stands

were about birds (Table 2), and short-term benefits of GTR

were very clear for them indeed. However, given their good

dispersal abilities, birds (notably the non-threatened species)

may not require the continuous occupation of particular

stands if suitable stands are developing at the same rate as

they are being cut in the surroundings. Thus, landscape-scale

planning of cuttings and the resulting mosaic of stands in

different succession phases is obviously much more relevant

for birds (Welsh, 1987; Angelstam et al., 2004). For them, the

main role of GTR could be its potential to create suitable

stand structures in post-cut areas, notably the old-growth

features in young forests, which would extend the duration of

suitable phase in stands managed on a rotational basis. Thus

bird communities in landscape mosaics and young stands

could be very indicative for forestry. However, the long-term

structural effects were actually the least explored in avian

studies, and the landscape perspective has not been

investigated at all.

In contrast to birds, ectomycorrhizal fungi – the other

species group for which GTR seemed to be highly beneficial

according to our meta-analysis – obviously depended

strongly on lifeboating. In addition to these fungi, lifeboating

success could be assessed using epiphytes, which were not

included in our meta-analysis because clear-cuts do not have

high-quality substrata on them at all. However, the long-term

effect of GTR for epiphytes is insufficiently studied so far. At

least bryophytes – poorly surviving on the cuts in the short

term – are obviously able to re-occupy young stands in the

presence of substrata and source populations nearby

(Lõhmus and Lõhmus, in press). Hence, for them, lifeboating
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may be less important than the structural enrichment of the

future stands.

In the meta-analysis, we found no general effect of GTR on

arthropods, which may be due to the pooling of arthropod taxa

having different responses (see Serrouya and D’Eon, 2004).

Wood-depending beetles probably benefit most due to the

structural enrichment, and the disturbance-phase species are

indeed among the clearest candidates for guiding the manage-

ment towards this objective. However, this effect may be mostly

indirect and delayed, since many such threatened species

depend on large-dimension dead wood, which will be created

along with the death of the live trees on the cuts. The same is

true for threatened polypore fungi (Junninen et al., 2007).

4.2. Retention trees in the context of natural disturbances

To create post-cut habitats more suitable for forest

biodiversity, cuttings should resemble natural disturbance

regimes, such as fire (Hunter, 1993; Steventon et al., 1998). As

discussed above, GTR is clearly more favourable in this

respect, but two questions remain: does GTR mimick the

disturbances well enough, and where should it be used?

Within the GTR framework of objectives, we suggest that:

(i) GTR is likely to retain forest species better than fire; (ii)

GTR alone cannot provide all the fire-created structures for

disturbance-phase species (Dahlberg et al., 2001; Hyvärinen

et al., 2005; Bradbury, 2006), though it may create woody

substrata for thermophilous species (Martikainen, 2001); (iii)

GTR may be equal to fire regarding long-term structural

enrichment, at least the provision of old live trees. For example,

fire modifies the communities of beetles (Wikars and

Schimmel, 2001; Hyvärinen et al., 2005) and ectomycorrhizal

fungi (Dahlberg et al., 2001; Lazaruk et al., 2005) much more

that any cutting. Also the composition of bird fauna (Hobson

and Schieck, 1999; Stuart-Smith et al., 2006) or plant cover

(Haeussler and Bergeron, 2004) often differ after fire and

cuttings. Due to such deviations, many studies suggest the use

of a variety of silvicultural techniques to provide suitable

conditions to different taxa (Annand and Thompson, 1997;

Taulman et al., 1998; Steventon et al., 1998; Carey, 2000; King

and DeGraaf, 2000; Patriquin and Barclay, 2003); this also

includes the protection of old-growth patches for the most

sensitive species (Rosso et al., 2000; Keon and Muir, 2002). We

are, however, not aware of any data-based synthesis of these

options (considering also the taxon specificity discussed above)

to judge which additional management techniques should

complement GTR, and to what extent. Thus, the existing

prescriptions for GTR planning are still very general, basically

distinguishing only the strategies in homogeneous and

heterogeneous landscapes.

In homogeneous landscapes, region-specific average char-

acteristics (frequency, severity) of natural disturbances, and the

trees surviving in these, could be used as a starting point for

planning GTR. For example, the highest structural complexity

of stands in the Pacific Northwest could be achieved by

retaining 10–40 trees ha�1, which corresponds to the average

number of remnant trees in old-growth forests (Hansen et al.,

1995; Zenner, 2000). Any average level does not mean,

however, that the trees should be equally dispersed: instead,

various local densities and mixtures of solitary trees, tree-

groups, and gaps are likely to meet the need of different taxa

best (Traut andMuir, 2000; Sullivan and Sullivan, 2001; Luoma

et al., 2004; Stuart-Smith et al., 2006). Moreover, though

conceptually the optimal retention levels are easy to imagine –

they should sustain most forest species and satisfy the human

need for timber as well – determining what such optima might

be in practice may be complicated. Thus, guidelines based on

natural remnant trees should address the post-cut mortality of

trees and increase the initial retention densities, whereas

economic yield calculations may suggest an opposite need. For

example, Hansen et al. (1995) report for the Pacific Northwest

that in case of five large trees ha�1 many bird species are

retained and economic yield does not decrease significantly.

Also, the growth rate of the regeneration of light-demanding

tree species decreases rapidly when the density of large

retention trees exceeds 15 per hectare (e.g. Rose and Muir,

1997; Zenner et al., 1998). In areas historically dominated by

disturbance-adapted tree species, GTR may even suppress their

regeneration to such an extent that the retention of none or only

a few trees has been recommended (Oliver et al., 2005). On the

other hand, our meta-analysis indicated that GTR can also

enhance the abundance of tree-seedlings significantly; this

effect resulted obviously because the focus of these studies was

on shade-tolerant tree species.

Heterogeneous landscapes, where topography and water

regime have created a mosaic of patches with different

disturbance regimes, would require a spatially explicit planning

of cutting methods and GTR levels (McRae et al., 2001; Keeton

and Franklin, 2004). For example, in the generally dry boreal

landscapes, it has been proposed that tree groups should be left

in the wet-forest and forested-peatland patches, which support

high vegetation diversity (Vanha-Majamaa and Jalonen, 2001).

In Sweden, Fries et al. (1997) suggest a gradient of 5–

20 pines ha�1 in dry pine sites, variable patterns of dispersed

and patchy retention in mesic successional forests to selection

systems or shelterwood retaining one-third of the trees in moist

spruce stands. Yet, testing the effectiveness of such mosaic

solutions, and adapting them further to the needs of

biodiversity, remains a global challenge. Even carefully

designed spatially explicit management systems have created

landscapes structurally very different from naturally develop-

ing ones (Cissel et al., 1998, 1999), so the primary question is

which deviations are still within the limits of tolerance for most

of native biota.

4.3. Stand-scale management

Among the reviewed studies, tree species appeared to be the

most influential technical consideration for biodiversity.

Theoretically, as different tree species host different biotic

communities, there can be no universal prioritization for

retention (all native tree species should be represented at the

landscape-scale). However, two complementary preferences

for practical use emerged (e.g. Lõhmus et al., 2006): (1) rare
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tree species hosting threatened biotic communities, or those

with particular qualities not found in the other tree species in

that landscape and (2) tree species with high future value for

biodiversity, resulting from low mortality and quick develop-

ment of important features on GTR-cuts (note the 38 studies

exploring growth or wind-resistance of retention trees; Table 1).

For example, large aspens (Populus spp.) or hardwoods with

coarse bark are priority trees for conserving epiphytic lichens in

boreal and temperate landscapes (Hazell et al., 1998; McGee

and Kimmerer, 2002).

The selection of live cavity-trees, which are preferred by

hole-nesters and persist much better than cavities in snags

(Remm et al., 2006), is more complicated. Though hollow

oaks (Quercus spp.) and other hardwoods could be superb nest

sites (Chambers et al., 1997; Taulman et al., 1998), the quickly

growing aspens may be the only cavity-trees left in managed

boreal forests (Sandström, 1992). Here, a long-term strategy

could include both the preservation of existing values (hollow

aspens) and the creation of new options (intact hardwoods

where cavities will be formed in the future). Finally, other

silvicultural techniques than GTR (notably uneven-aged

systems) should be considered for the tree species with high

biodiversity value in the forest, but poor survival on GTR-cuts

(e.g. old spruces, Picea spp.; Fries et al., 1997; Lõhmus,

2006).

A crucial point regarding the selection of retention trees is

that the characteristics other than species (such as age, size or

shape of the crown) have received almost no attention. Thus,

since there are no specific requirements for the trees retained

for biodiversity purposes, it was not possible to distinguish

between GTR, shelterwood, and seed tree cutting in most of

the studies reporting <50% retention levels. Therefore, on the

one hand, the potential of GTR to support biodiversity may be

higher than reported here. At the same time, however, there

may be ‘internal resources’ in GTR: for example, in Estonia

(hemiboreal Europe) only 37% of all trees in the GTR cuts

exceeded 30 cm diameter at breast height, and for some

species (such as Fraxinus excelsior or Tilia cordata) this share

was as low as 10–15% (Rosenvald and Lõhmus, 2005). These

small and young trees have hardly any importance for

lifeboating of, for example, epiphytes (Lõhmus et al., 2006),

and their role for structural enrichment will realize only after a

long time.

The optimum density and spatial configuration of retention

trees have been listed among the most important questions for

retention-harvest research (Franklin et al., 1997). No general

answer has been provided so far, and our meta-analysis

confirms the lack of such research. The weakness of retention

level effects was most likely due to the wide variation that

resulted from the pooling of different taxa. Hence, the stand-

scale optimum is still a question of values (target taxa), which

again points to the need to vary retention levels across

landscape for multiple targets. Also the effect of spatial

configuration of the trees was not clear in either our meta-

analysis or collating individual studies. Though grouping of

trees seems to benefit a larger number of taxa, dispersed

retention may be more appropriate for dispersal and for certain

species groups. Here, the current knowledge is still in the stage

of theoretical comparison as presented by Franklin et al.

(1997).

5. Conclusions: research needs

We conclude that despite extensive efforts in the last

decade to study the consequences of GTR for biodiversity,

at least three major improvements are necessary to test

and ultimately increase the efficacy of this silvicultural

technique.

(1) The studies should specify the particular objective of the

GTR explored and, thereby, have a clear ecological

reasoning for the selection of study taxa. In particular, it

is unknown to what extent retention trees improve the

landscape connectivity (i.e. dispersal) for relevant species

groups (e.g. mobile animals with large home-ranges or the

species with pronounced extinction-immigration

dynamics). Also, there is a shortage of short-term

(lifeboating) studies on poor dispersers and disturbance-

phase species.

(2) Spatially explicit landscape perspectives on GTR as a

biodiversity-protection tool are urgently needed, particu-

larly with regard to (1) the viability of threatened species,

which at the scale of individual cuts are so rare that

statistical power to detect any effects has been extremely

low and (2) applying varying retention levels in hetero-

geneous landscapes according to presumable disturbance

regimes in different site-types, and comparing the

biodiversity effects with fixed-level retention. Additionally,

the effects of GTR should be compared in forest landscapes

that have different histories. For example, the biodiversity

values, and consequently the rationale for the use of GTR,

may be very different in semi-natural forests, with a

management history of only a century, compared with long-

term agricultural areas currently afforested using exotic

plantations.

(3) There is a need to extend the time-scale of studies,

particularly to assess the objective of long-term structural

enrichment. In dynamic landscapes, the latter may be more

crucial than temporary lifeboating for long-term survival of

forest biota. In addition to the few pioneering projects in the

western United States and Canada (Monserud, 2002), long-

term studies are needed in other forest regions and

continents. We also encourage retrospective conservation

research in areas where ancient trees, comparable to the

present-day retention trees, have been protected in managed

forests for a long time.
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Please cite this article in press as: Rosenvald, R., Lõhmus, A., For what, when, and where is green-tree retention better than clear-cutting? A

review of the biodiversity aspects, Forest Ecol. Manage. (2007), doi:10.1016/j.foreco.2007.09.016

Appendix A

Data for the meta-analysis: relative differences (R) between GTR cuts and clear-cuts in the abundance and species richness of

eight species groups as calculated from 39 publications.

Species group R Retention

levela
Years post-cut Retained

tree speciesb
Regionc Sourced

Abundance Species

richness

Herbs �1.007 1 3 C AT 3

�0.262 3 3 C AT 3

�0.187 3 1 D AS 11

�0.112 4 1 D AS 11

�0.550 �0.028 3 5 C EB 12

�0.235 0.015 1 1 D AT 17

�0.070 0.048 3 1 D AT 17

�0.834 �0.183 4 1 D AT 17

�0.402 �0.067 4 1 D AT 17

0.375 2 1 C EB 19

0.245 1 1.5 C AT 30

0.019 �0.085 1 17 C AB 38

Bryophytes 0.223 1 3 C AT 3

2.303 3 3 C AT 3

0.934 3 7–8 C EB 13

0.206 �0.039 2 1 C EB 19

�0.221 1 17 C AB 38

Woody plants 1.872 4 6 D ET 1

2.079 5 6 D ET 1

0.423 1 2 D AT 2

0.290 3 2 D AT 2

0.693 1 3 C AT 3

1.735 3 3 C AT 3

�0.486 4 1–2 D AB 4

0.080 3 1 D AS 11

0.118 4 1 D AS 11

0.290 5 9–11 C EB 16

�0.077 0.039 1 1 D AT 17

�0.206 0.031 3 1 D AT 17

�0.261 �0.016 4 1 D AT 17

1.459 5 6 C ET 29

0.167 1 1.5 C AT 30

0.123 3 1 D AS 32

0.170 4 1 D AS 32

�0.491 �0.182 1 17 C AB 38

Arthropods 0.745 1 15 D AT 9

�1.099 �0.476 1 1 C EB 18

0.288 0.723 3 1 C EB 18

�0.011 �0.154 2 1 C EB 21

0.282 0.251 2 2–4 C AB 24

�0.288 4 2.5 D AB 26

0.537 4 2.5 C AB 26

�0.072 �0.010 2 1–3 C EB 34

�0.156 �0.095 2 1–2 C EB 35

Salamanders 1.386 3 1 D AS 11

2.079 4 1 D AS 11

�0.636 1 1–4 D AT 14

�0.435 3 1–4 D AT 14

0.009 4 1–4 D AT 14

Small mammals �0.037 3 1–2 C AB 36

�0.189 �0.025 1 1–4 C AB 37

�0.047 �0.034 2 1–4 C AB 37

0.034 0.089 1 17 C AB 38
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Hedenås, H., Ericson, L., 2003. Response of epiphytic lichens on Populus

tremula in a selective cutting experiment. Ecol. Appl. 13, 1121–1134.

Hobson, K.A., Schieck, J., 1999. Changes in bird communities in boreal

mixedwood forest: harvest and wildfire effects over 30 years. Ecol. Appl.

3, 849–863.

Holgen, P., Hånell, B., 2000. Performance of planted and naturally regenerated

seedlings in Picea abies-dominated shelterwood stands and clearcuts in

Sweden. For. Ecol. Manage. 127, 129–138.

Hood, S.M., 2001. Vegetation response to seven silvicultural treatments in the

southern Appalachians one-year after harvesting. M.S. thesis.Virginia

Polytechnic Institute and State University, Blacksburg, VA.

Humphrey, J.W., Peace, A.J., Jukes, M.R., Poulsom, E.L., 2004. Multiple-scale

factors affecting the development of biodiversity in UK plantations. In:

Honnay, O., Verheyen, K., Bossuyt, B., Hermy, M. (Eds.), Forest Biodi-

versity: Lessons from History for Conservation. CABI Publishing, Wall-

ingford, UK, pp. 143–162.

Hunter Jr, M.L., 1993. Natural fire regimes as spatial models for managing

boreal forests. Biol. Conserv. 65, 115–120.

Hyvärinen, E., Kouki, J., Martikainen, P., Lappalainen, H., 2005. Short-term

effects of controlled burning and green-tree retention on beetle (Coleoptera)

assemblages in managed boreal forests. For. Ecol. Manage. 212, 315–332.

Jakobsson, R., Elfving, B., 2004. Development of an 80-year-old mixed stand

with retained Pinus sylvestris in Northern Sweden. For. Ecol. Manage. 194,

249–258.

Jalonen, J., Vanha-Majamaa, I., 2001. Immediate effects of four different felling

methods on mature boreal spruce forest understorey vegetation in southern

Finland. For. Ecol. Manage. 146, 25–34.
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Siira-Pietikäinen, A., Pietikäinen, J., Fritze, H., Haimi, J., 2001. Short-term

responses of soil decomposer communities to forest management: clear

felling versus alternative forest harvesting methods. Can. J. For. Res. 32,

88–99.
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                Introduction 

 Intensive management of boreal and temperate 
forests changes their structure and bird commu-
nities at several scales, including the reduction 
of viability or even regional extinction of the 
most demanding species ( Imbeau  et al. , 2001 ; 
 Virkkala, 2004 ). To reduce the losses of biodi -
versity, silviculture should be modifi ed towards 
greater resemblance to natural disturbance 
regimes ( Lindenmayer and Franklin, 2002 ), such 
as variable retention cutting (VRC), which is an 

alternative to conventional clear-cutting. VRC 
attempts to emulate natural stand-replacing 
disturbances by preserving structural features of 
old forests  –  live and dead trees of varying sizes, 
multiple canopy layers and coarse woody debris 
( Franklin  et al. , 1997 ). 

 Natural disturbance regimes vary across geo-
graphical regions ( Bergeron  et al. , 2002 ;  Lorimer 
and White, 2003 ) and between forest types 
( Angelstam, 1998 ;  Lõhmus  et al. , 2004 ;  Wallenius 
 et al. , 2004 ), which implies corresponding differ-
ences in the adaptations of biota ( Denslow, 1980 ; 
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 Summary 

  The variability of natural disturbance regimes implies that retention cutting, aimed at emulating 
natural disturbances to support biodiversity, should be forest-type specifi c. We explored in four site 
types (ranging from dry nutrient-poor to wet nutrient-rich) in Estonia how the retention of live and 
dead trees affects post-cut abundance and species richness of birds. The whole bird communities 
and harvest-sensitive species groups responded differently: while the total abundance and relative 
species richness of birds increased along with the abundance of dead trees, the species of national 
conservation concern occurred more frequently at higher densities of live trees. Hence, although 
the species of conservation concern and hole-nesters preferred the cuts having the generally densest 
and most species-rich avian communities, this co-variation was obviously insuffi cient for using 
the total community characteristics (particularly density) as indicators of forestry impacts on bird 
biodiversity. In contrast to expectations, tree retention always infl uenced birds independently of 
forest type. This may be related to the particular study system (notably low retention levels) but 
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natural disturbances, and in which cases that knowledge can be used for forestry planning.   
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 Schmiegelow  et al. , 1997 ) and, consequently, a 
necessity to use type-specifi c and locally adapted 
silvicultural techniques ( Fries  et al. , 1997 ; 
 Angelstam, 1998 ). Yet, the impacts of clear-
cutting and VRC on biodiversity have not been 
compared in sites having different natural distur-
bance regimes, though at least 48 recent studies 
report the general tree-retention effects on birds 
alone ( Rosenvald and Lõhmus, 2007 ). The lack 
of such fi eld tests is particularly remarkable given 
that the distinctness of avian communities of 
different forest types is well known ( Haapanen, 
1965 ;  Petty and Avery, 1990 ) and their response 
to cutting is often found to depend on the tree-spe-
cies composition of stands ( Harrison  et al. , 2005 ; 
 Schieck and Song, 2006 ). Additionally, though 
the total density and species richness may indi-
cate some changes in bird communities, the fate 
of particular species groups has more relevance 
for biodiversity conservation  –  yet, it has been sel-
dom explored. For example, tree retention often 
supports hole-nesting birds ( Carlson, 1994 ), but 
not necessarily all species. Moreover, with the 
exception of three Scandinavian studies on hole-
nesters ( Sonerud, 1985 ;  Carlson, 1994 ;  Rolstad 
 et al. , 2000 ) and a Lithuanian study on the whole 
bird communities ( Brazaitis and Kurlavi  ius, 
2003 ), avian responses to VRC have been mostly 
described in North America where the succession 
of bird communities may profoundly differ from 
that in Europe ( Helle and Mönkkönen, 1990 ). 

 In this paper, we explore avian communities 
in hemiboreal cut areas in Estonia where, de-
spite the highly varying site-type composition of 
forest landscapes, timber harvesting has been 
almost entirely based on clear-cutting ( Lõhmus 
 et al. , 2004 ). Similarly, in the recent attempts to 
improve the consideration of biodiversity aspects, 
tree-retention techniques (though usually at low 
levels) have been introduced to all site types 
( Lõhmus  et al. , 2006 ). We therefore had an op-
portunity to compare the VRC effects on birds in 
different site types in geographically close areas. 
We asked (1) which silvicultural characteristics 
are related to the total abundance and species 
richness of birds in cut sites; (2) whether the same 
factors determine the occurrence of harvest-sensi-
tive species groups (hole-nesters and the species of 
national conservation concern) and (3) whether, 
and to what extent, do the effects of tree reten-
tion depend on forest type.  

  Materials and methods 

  Study sites 

 The study was carried out in 77 pre-thicket cut 
stands in mainland Estonia, between 57° 36   – 59° 
18   N and 24° 39    27° 50   E. Estonia is situated 
in the hemiboreal vegetation zone ( Ahti  et al. , 
1968 ); the mean air temperature is 17°C in July 
and  – 6.5°C in January; the average precipitation 
is 600 – 650 mm year –  1 . The terrain is fl at. For-
ests ( ~ 50 per cent of the country) do not contain 
intensive plantations but, due to a long clear-cut-
ting history, the stands are structurally impover-
ished  –  usually they have only one even-aged tree 
layer consisting, on average, of three tree species 
( Lõhmus  et al. , 2004 ,  2005 ). Approximately 40 
per cent of the forests are state owned, having an 
average growing stock 198 m 3  ha –  1  (272 m 3  ha –  1  
in mature stands;  Adermann, 2004 ). 

 The study sites were either random or com-
plete sets of regionally available cuts sampled in 
the frame of two integrated studies of forestry 
impacts on biodiversity ( Lõhmus, 2006 ;  Lõhmus 
 et al. , 2006 ). Both sampling schemes attempted 
to include a wide range of productive forest types 
and varying amounts of post-cut legacies in oth-
erwise similar state-owned cuts in the same re-
gions, and to avoid freshly cut stands. All sites 
were preselected from geographical informa-
tion system without previous knowledge on 
birds. The mean area of the cuts was 3 ha (range 
0.4 – 8 ha); they had been harvested on average 4.9 
years (range 2 – 12 years) prior the study. Accord-
ing to the pre-cut stand, the cuts were classifi ed 
(according to  Lõhmus 1984 ) into four main types: 
(1) oligotrophic  –  nutrient-poor dry  Pinus -domi-
nated forests ( Cladina ,  Calluna  and  Vaccinium 
vitis-idaea  types); (2) mesotrophic  –  mixed forests 
of  Oxalis  and  Oxalis - Vaccinium myrtillus  types; 
(3) eutrophic  –  mostly deciduous forests mixed 
with  Picea , belonging to  Aegopodium  and  Filipen-
dula  types; (4) swamp  –  both mobile- and stag-
nant-water stands characteristically dominated by 
 Betula pubescens  and  Alnus glutinosa , often mixed 
with  Picea . Detailed characteristics of the cuts by 
site types are presented in  Appendix 1 . 

 In each cut, the species and diameter at 
breast height of all live and standing dead trees 
(including broken-top snags   2 m tall) with 
  14-cm diameter as well as the height of snags 
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were measured. Trunk volumes of the trees were 
estimated according to species-specifi c diam-
eter functions ( Padari, 2004 ) used in practical 
silviculture in Estonia. There were, on average, 
11.7 (0 – 100) live trees per hectare and 3.1 (0 – 24) 
dead trees per hectare. Importantly for the interpreta-
tion of results, there were relatively few live trees 
in the swamp cuts found and relatively few stand-
ing dead trees in oligotrophic sites ( Appendix 
1 ). Of the live trees, 42 per cent were Scots pine 
( Pinus sylvestris  L.), 18 per cent birches ( Betula  
spp.), 11 per cent European aspen ( Populus 
tremula  L.) and 13 per cent other rare hardwoods 
( Fraxinus excelsior  L.,  Ulmus glabra  Huds., 
 Quercus robur  L. and  Acer platanoides  L.). Of the 
dead trees, 37 per cent were birches, 22 per cent 
European aspen, 17 per cent Scots pine, 13 per cent 
Norway spruce ( Picea abies  L. Karst.) and 8 per 
cent grey alder ( Alnus incana  L. Moench). The 
average diameter was 28.8 cm (range 14 – 84 cm) 
for live trees and 27.7 cm (14 – 84 cm) for dead 
trees; their volumes per hectare were 10.1 m 3  
(0 – 74 m 3 ) and 1.2 m 3  (0 – 8.6 m 3 ), respectively. 

 Oligotrophic sites were regenerating, ei-
ther naturally or artifi cially, with Scots pine; 
the other site types were mostly overgrowing 
with deciduous trees or had been planted with 
Norway spruce. To quantify the overgrowth, we 
(1) directly measured the density and height of 
all woody plants at least 1 m tall and less than 
14 cm in diameter (hereafter, regeneration) in 32 
cut sites (24 random 1-m 2  plots in each site) and, 
using these as reference values, (2) we classifi ed 
the regeneration extent visually and using pho-
tos in the other cuts. The height was expressed 
on a fi ve-point scale, after omitting 5 per cent of 
the tallest plants: 1, <1.2 m; 2, 1.25 – 1.45 m; 3, 
1.5 – 1.7 m; 4, 1.75 – 1.95 m; 5,   2 m. The numbers 
of woody plants per square metre were classifi ed 
as follows: 0, <0.25; 1, 0.25 – 0.9; 2, 1.0 – 1.9; 3, 
2.0 – 2.9; 4, 3.0 – 3.9; 5,   4 plants per square metre. 
(3) Given the correlation between these height 
and density values ( r  s  = 0.44,  N  = 77,  P  < 0.001), 
we used their sum (scale 1 – 10) as the measure of 
regeneration extent.  

  Bird counts 

 Each cut was inventoried in 2004, 2005 or 2006, 
the cuts of different types, retention levels and age 

being well represented in each year (see also  Helle 
and Mönkkönen, 1986 , for the weakness of an-
nual fl uctuations in clear-cut bird communities). 
The basic method was a standard two-visit sur-
vey: one visit between 10 and 20 May and another 
between 25 May and 10 June in good weather 
between sunrise and 11:00 a.m. We additionally 
visited more than half of the cuts, representing all 
site types and retention levels, in the evening of 
the same or preceding day to fi nd previously un-
detected pairs, nests, etc. In the Estonian old for-
ests, this improved method underestimated true 
numbers by  ~ 40 per cent, while  ~ 10 per cent of 
recorded pairs were probably intruders from the 
surroundings ( Lõhmus and Rosenvald, 2005 ). In 
cut areas, the biases are probably even smaller, 
given the lower densities and better visibilities of 
birds and a distinct species composition, this en-
abled us to recognize and omit the most likely 
non-breeders (e.g. tree-dwelling raptors). 

 In the fi eld, the position of singing males, nests 
or (in the absence of these) any other observa-
tions referring to nesting were recorded on a 
topographic map (scale 1 : 2000 – 1 : 3000). The 
abundance of each species in each site was deter-
mined as the maximum count plus probable or 
confi rmed nestings in clearly different locations 
during the other visit. Territorial birds moving 
across site borders as well as adult individuals 
of species with large home range or unstable 
pairs were counted as 0.5 pairs ( Lõhmus and 
Rosenvald, 2005 ).  

  Statistical analysis 

 We used multivariate regression techniques to ex-
plain four characteristics of avian communities: 
(1) the total density (pairs per hectare); (2) relative 
species richness (adjusted to area; i.e. residuals of 
the regression between the logarithm of the cut 
area and the total species richness); (3) the den-
sity of hole-nesters (see  Appendix 2 ) and (4) the 
occurrence of the species of national conservation 
concern (according to  Eesti Ornitoloogiaühing, 
2001 ; listed in  Appendix 2 ). For the fi rst three 
variables, we built general linear models; for the 
latter (binomial) variable, logistic regression was 
applied. Since clear-cuts without any live or dead 
retention trees lack any nest sites for hole-nesting 
birds by defi nition, this non-habitat was omitted 
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from the analyses on these birds to distinguish the 
potential effects of different retention levels. 

 For model building, we used the procedure of 
 Hosmer and Lemeshow (1989) : (1) performed 
univariate analyses for each explanatory variable, 
(2) built a preliminary multivariate model, which 
included the potentially important variables ac-
cording to univariate analyses; (3) omitted non-
signifi cant and/or redundant variables from the 
multivariate model and (4) checked for interac-
tions between the fi nal set of variables. In the 
fi rst step, the signifi cance level was set at    = 0.1 
(to retain variables that could gain signifi cance 
in combination with other variables); afterwards  
  = 0.05 was used. All analyses were performed 

with Statistica 6.0 software (StatSoft Inc.,   2001). 
 As explanatory variables, we considered site 

type (a categorical predictor) and, initially, 13 
continuous site characteristics. The latter in-
cluded six general variables: (1) cut area; (2) cut 
age; (3) regeneration index (see above); (4) total 
density of live trees per hectare; (5) species rich-
ness of live retention trees and (6) total density of 
standing dead trees per hectare. The remaining 
seven variables described tree retention in detail, 
with a perspective to derive more precise man-
agement prescriptions from the analyses: (7) the 
total trunk volume (m 3 ) of live trees per hectare; 
(8) the total trunk volume (m 3 ) of dead trees per 
hectare; (9) density of live conifers per hectare; 
(10) density of live deciduous trees per hectare; 
(11) density of live aspens (the most cavity-rich 
tree species;  Remm  et al. , 2006 ) per hectare; (12) 
density of deciduous trees other than aspen per 
hectare and (13) density of large-diameter (>30 
cm) live trees per hectare  –  given their importance 
for hole-nesters ( Remm  et al. , 2006 ). 

 Redundancy of the explanatory variables was 
addressed by omitting variables 2, 6, 7 and 10 
above fi rst. Cut age (variable 2) was inversely 
related to the density of live trees ( r  s  =   0.57, 
 N  = 77,  P  < 0.001) and the volume of dead trees 
( r  s  =   0.73,  N  = 77,  P  < 0.001); also, older cuts 
were larger ( r  s  = 0.33,  N  = 77,  P  = 0.004). One 
reason for that is the recent change towards more 
nature-friendly forestry practices: the Estonian 
Forest Act has required retention of at least 
5 m 3  ha   1  of live and dead trees during fi nal fell-
ing only since 1999. Hence, the real effect of cut 
age could have been masked by the sample bias 
and, furthermore, we expected that rather than 

cut age itself, bird communities are infl uenced by 
overgrowth of the cuts, which was measured sep-
arately. The total volumes and densities of trees 
were strongly correlated (live trees:  r  s  = 0.88, 
 N  = 77,  P  < 0.001; dead trees:  r  s  = 0.93,  N  = 77, 
 P  < 0.001); we omitted the volume of live trees and 
the density of dead trees (variables 6 and 7), as 
presumably less important for birds, from further 
analyses. The density of all deciduous trees (vari-
able 10) was omitted due to the strong correla-
tions with its subsets (the densities of aspen and 
of other deciduous trees) and with large-diameter 
trees ( r  s  = 0.58 – 0.95,  N  = 77,  P  < 0.001). 

 Up to stage (2) of the analysis, we considered 
all the remaining variables describing tree reten-
tion as candidates for alternative models. Most of 
these variables were intercorrelated but had dif-
ferent ecological meanings, such as the densities 
of live and volume of dead retention trees ( r  s  = 
0.63,  N  = 77,  P  < 0.001), which pose a common 
technical problem for assessing their relative bio-
diversity contributions ( Rosenvald and Lõhmus, 
2007 ). Fortunately, the retention variables had 
no strong correlations ( r  s  > 0.4) with the area and 
regeneration of the cuts. Finally, since forest type 
was expectably related to several characteristics 
of the cuts ( Appendix 1 ), it was kept in multivari-
ate models if it passed the univariate stage (1) to 
detect additional contributions of structural char-
acteristics. Similarly, the incidence of the species 
of conservation concern was expected to increase 
along with the cut area; i.e. the additional ex-
planatory power of other variables was the main 
interest there. 

 The assumptions of normality (Kolmogorov –
 Smirnov test) and the homogeneity of variances 
(Levene’s test) were checked prior to parametric 
analyses, using square-root or logarithmic trans-
formations in a few appropriate cases ( Appendix 
1 ). Given that all continuous variables could not 
be normalized, we used Spearman rank correla-
tion in the univariate stage (1); this eliminated 
most of such variables as not signifi cant. The 
three highly skewed variables (densities of conif-
erous trees, aspens and other deciduous trees) that 
passed stage (1) were introduced into general lin-
ear models alternatively in their non-normal con-
tinuous form and as categorical variables (after 
grouping the values)  –  in neither case none of 
these variables reached fi nal multivariate models. 
For univariate tests of forest-type effects, we used 
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one-way analysis of variance (ANOVA) or, in 
non-parametric cases, Kruskal – Wallis ANOVA.   

  Results 

 Among the total of 620.5 pairs of 61 bird species, 
there were 57.5 pairs (9 per cent) of 13 species of 
hole-nesters and 33 pairs (5 per cent) of nine spe-
cies of national conservation concern ( Appendix 
2 ). The total bird densities were explained with 
two alternative models, both of which included 
site type (highest densities in swamp sites, lowest 
in oligotrophic sites;  Figure 1a ) and contained no 
signifi cant interaction terms ( Table 1 ). The fi rst 
model (model I,  Table 1 ) revealed the bird density 
increase along with dead-tree volume ( Figure 2a ; 
the abundances have been grouped for illustrative 
purposes). Alternatively, model II showed that 
smaller cuts had higher bird densities ( Table 1 ).             

 The relative avian species richness was a func-
tion of site type (oligotrophic sites poorer than 
the others;  Figure 1b ), dead-tree volume ( Figure 
2b ) and more tree species on the cuts ( Table 1 ). 
Again, no signifi cant interaction between any of 
these variables appeared. Signifi cant positive uni-
variate effects were recorded also for the densities 
of all live trees, large-diameter live trees and de-
ciduous trees other than aspen ( Appendix 1 ). 

 The density of hole-nesters in the 53 reten-
tion cuts was explained by two alternative uni-
variate relationships with variables dependent on 
each other ( Table 1 ;  Appendix 1 ). The infl uence 
of site type contained a signifi cant contrast be-
tween mesotrophic and oligotrophic sites ( Figure 
1c ). The positive effect of tree-species richness 
disappeared when forest type was taken into ac-
count. Hole-nester density co-varied weakly, but 
reliably, with the density of all other species on 
the 53 retention cuts ( r  s  = 0.27,  P  = 0.048) and 
with the relative species richness of these species 
groups ( r  s  = 0.28,  P  = 0.042). 

 The species of national conservation concern 
nested in 25 cuts of the 77 (32 per cent); prefer-
ably (multivariate model: log-likelihood =   42.5, 
 P  = 0.002) in larger cuts (coeffi cient 0.34 ± 
0.17; χ1

2     =          4.3     ,  P  = 0.038) with higher den-
sities of live trees (coeffi cient 0.06 ± 0.02; 
   χ1

2  =        9.0     ,  P  = 0.003;  Figure 3 ). In the univari-
ate stage, statistically signifi cant positive effects 
were also detected for the density of coni-

  

  Figure 1   .    Mean density of birds (a), relative num-
ber of bird species (b) and mean density of hole-
nesters (c) according to the site types of cuts (95% 
confi dence interval). The numbers above the bars 
are sample sizes; the letters below denote statistical 
similarity (means followed by the same letter means 
no difference in general linear model at    < 0.05; see 
 Table 1  for the models).    
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fers, large-diameter trees and the tree-species 
richness ( Appendix 1 ). The incidence of the 
species of conservation concern was related 
to higher relative species richness of all birds 
(likelihood-ratio test of logistic regression: 
   χ1

2  =   8.9    ,  P  = 0.003), hole-nester density 
(   χ1

2  =   5.0    ,  P  = 0.026) and hole-nester species 
richness (   χ1

2  =   7.1          ,  P  = 0.008), but not to the 
total density of birds (   χ1

2  =   1.7          ,  P  = 0.188).      

  Discussion 

 We found that tree retention infl uenced birds in-
dependently of forest type but the effects differed 
for the whole communities and for the harvest-
sensitive species groups. Even though the lat-
ter tended to prefer the cuts having the densest 
and most species-rich avian communities, that 
co-variation was too weak to justify the use of 
general community characteristics (particularly 
density) as universal shortcuts of forestry im-
pacts on bird biodiversity. Unfortunately, most 
threatened species, again, are so rare, often 
elusive and laborious to detect ( Imbeau  et al. , 
2001 ) that their absence is uninformative at the 
stand scale. Thus, forest managers usually only 
assume that some particular habitat modifi cations 

(e.g. the retention of adequate legacies) would in-
crease the probability of such species’ presence. 

 In this study, we were able to demonstrate 
the stand-scale relevance of VRC: the incidence 
of species of national conservation concern 
clearly depended on live-tree retention (see also 
 Conner  et al. , 1991 ;  Niemi and Hanowski, 1997 ). 
This effect could not be explained with the 
type-related bias in retention levels (see Materi-
als and Methods) since these species were well 
dispersed between different site types (no site-type 
effect). In Finland, e.g. threatened bird species 
are mostly restricted to and may have value as 
management indicators only in fertile forests 
( Similä  et al. , 2006 ). Yet, it is unclear to what 
extent each stand-scale retention would infl u-
ence the viability of the populations; the latter is 
revealed only at the landscape scale ( Angelstam  et 
al. , 2004a ) and rather in demography and long-
term trends than absolute densities. For those 
laborious assessments, focal taxa should be se-
lected ( Angelstam  et al. , 2004b ), so the question 
is how to distinguish VRC-dependent species. 

 Resident hole-nesters have been considered 
suitable targets of sustainable forestry in bo-
real regions: they suffer seriously from modern 
timber extraction ( Schmiegelow  et al. , 1997 ; 
 Imbeau  et al. , 2001 ) and obviously cannot nest 

  Table 1    :     General linear models explaining the density of all birds and their relative species richness (adjusted to 
area) in 77 cuts and the density of hole-nesters in 53 retention cuts  

  Model and variable
Coeffi cient 

(mean   ±   standard error)  F  P   

  Density, no. of pairs per hectare 
     I.  R  2    =   0.25,  F    =   6.0,  P  < 0.001  
     Site type 6.47 <0.001 
     Volume of dead trees per hectare 0.61   ±   0.27 5.29 0.024 
     II.  R  2    =   0.25,  F    =   6.0,  P  < 0.001  
     Site type 5.21 0.003 
     Area   0.23   ±   0.1 5.10 0.027 
 Relative species richness ( R  2    =   0.35,  F    =   7.6,  P  < 0.001) 
     Site type 5.38 0.002 
     No. of tree species 0.31   ±   0.13 6.16 0.015 
     Volume of dead trees per hectare 1.31   ±   0.54 5.89 0.018 
 Density of hole-nesters, no. of pairs per hectare 
     I. Site type ( R  2    =   0.16,  F    =   3.1,  P    =   0.037) 3.05 0.037 
     II. No. of tree species ( R  2    =   0.11,  F    =   6.1,  P    =   0.017) 0.24   ±   0.1 6.11 0.017  

  Note that there are two alternative models (referred to by Roman numerals) for the density of all birds and the 
density of hole-nesters.   
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on treeless cuts. However, we were not able to de-
tect any further relationships between tree reten-
tion and the abundance of hole-nesters, though 
their share in the bird communities exceeded 
the average for European forests (5 per cent; 
 Newton, 1998 ). The common pattern behind 
the two alternative models explaining their den-
sities on retention cuts (via site-type or tree-spe-
cies richness, respectively) was probably that the 
bird-poor ( Figure 1c ) oligotrophic cuts usually 
had only Scots pines, which contain few cavities 
at the age of cutting. The increased incidence of 
hole-nesters may partly explain the higher rela-
tive species richness of all birds in the cuts with 

more tree species, though the independent contri-
bution of a more abundant and varied food base 
was likely as well (see the univariate positive re-
lationships with the general abundance live trees, 
large trees and deciduous trees). Thus, we could 
not provide unequivocal evidence on immediate 
benefi ts of the retention of different tree species 
to birds ( Helle, 1985 ). Yet, such benefi ts are self-
evident for tree-specifi c epiphytes and inverte-
brates and  –  as a source of structural complexity 
of the stand ( Zenner, 2000 )  –  tree-species rich-
ness should enhance the bird diversity in the next 
forest generation as well ( Hansen  et al. , 1995 ). 

 The recorded site-type effects on bird abun-
dance, species richness and the abundance of 
hole-nesters followed the well-known increases 
along with the habitat productivity ( Helle and 
Mönkkönen, 1990 ) and moisture gradients 
( Haapanen, 1965 ). Importantly, however, the lack 
of interactions between site type and the variables 
of tree retention contrasts with the common 
assumption that biotic communities are adapted 
to natural disturbances, which, therefore, should 
be mimicked by forest managers ( Fries  et al. , 
1997 ;  Angelstam, 1998 ). It is unlikely that the 
observed benefi ts of standing dead trees  –  a char-
acteristic element of naturally burnt areas  –  on 
birds could result from such adaptations ( Schieck 
and Song, 2006 ), as the volumes of retained 
dead trees in our study were less than 1 per cent 
of those reported after natural burns ( Siitonen, 

  

  Figure 2   .    Mean density of birds (a) and relative 
number of bird species (b) according to the volume 
of dead trees on the cuts (95% confi dence interval). 
The numbers above the bars are sample sizes; the 
letters below denote statistical similarity (means 
followed by the same letter were not different in 
ANOVA at    < 0.05).    

  

  Figure 3   .    Incidence of the bird species of conserva-
tion concern in relation to live-tree densities on the 
cuts. The presence – absence data are linked with lo-
gistic function; the mean area of the cuts was 3 ha.    
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2001 ). Furthermore, the dead-tree effects were 
detected for general bird abundance and species 
richness only, and not for hole-nesters that actu-
ally nest there. Thus, biologically the co-variation 
of dead-tree retention and general bird commu-
nity characteristics is diffi cult to explain (but see 
 Schulte and Niemi, 1998 ;  Simon  et al. , 2002 , for 
similar results). 

 On the other hand, one should not make too 
far-reaching conclusions from the lack of proof 
for the adaptation assumption in our study. 
First, birds in general may tolerate forestry op-
erations better than many other taxa ( Imbeau 
 et al. , 2001 ), particularly at small scales ( Similä 
 et al. , 2006 ). Second, even though birds could 
guide disturbance-based management at the 
landscape scale ( Angelstam  et al. , 2004b ), they 
may be less informative in heterogeneous land-
scapes. In our naturally mosaic hemiboreal 
forests, the avian communities in the patches 
of contrasting forest types responded similarly 
to management; thus, it is unlikely that patch-
specifi c management would make a difference at 
the large scale. One reason for this may be the 
scarcity of bird species (such as  Lullula arborea  
and  Caprimulgus europaeus ) adapted to large 
stand-replacing disturbances in hemiboreal 
Europe. Third, the low retention levels of our 
study (mostly up to 5 per cent of growing stock) 
may not mimic natural disturbances suffi ciently 
well  –  an explanation provided by  Virkkala 
(2004)  for a lack of retention effects on Finnish 
birds. On average, signifi cant differences from 
clear-cuts in the abundance and species richness 
of various taxa appear at green-tree retention 
levels over 15 per cent of the growing stock 
( Rosenvald and Lõhmus, 2007 ) and over 10 per 
cent may be needed for many tree-dwelling bird 
species in northwestern North America ( Norton 
and Hannon, 1997 ;  Schieck and Song, 2006 ). 
Moreover, it is critical to distinguish between 
the failures to mimic disturbances and to retain 
the conditions for closed-forest species as the 
latter is not the primary aim of VRC ( Franklin 
 et al. , 1997 ). To summarize, the explicit plan-
ning of VRC could greatly benefi t from future 
studies similar to our’s on taxa other than birds, 
in homogeneous  vs  heterogeneous landscapes 
and on biodiversity responses to real natural 
disturbances having varying amounts of lega-
cies left.  
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Short-term determinants and long-term prospects of reten-
tion-tree survival in hemiboreal cut areas 

Raul Rosenvalda,b*, Asko Lõhmusb and Andres Kivistea
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Abstract.
Survival of live retention trees is a key issue for stand-scale applications of 
natural-disturbance-based silviculture. In 2002–2007, we explored post-cut 
survival of 3255 trees in 102 cut areas in Estonia, focusing on long-term 
survival prospects, pre-adaptation of the trees and spatial variation in sur-
vival.  Wind damage comprised 89.6% of tree deaths. In one subsample, 
the number of live trees decreased 35% in six years, in another – 36% in 
five years, adding 4.4 m3 of downed dead trunks and 1 m3 of standing 
dead trees ha-1 in both cases. Yet, the annual rates of natural mortality 
declined in time, and 29–38% of the trees were estimated to be alive 
after 40 years (22–29% after 100 years). According to multilevel logistic 
regression, the main determinants of survival were tree species (best in 
hard deciduous trees – Fraxinus, Ulmus, Quercus, Acer, Prunus and Sorbus) 
and diameter (species-dependent effects), tree position relative to forest 
edge (best near current or former forest edge), post-harvest density of trees 
(positive), and exposure (negative). The results implied that: (1) green-tree 
retention can effectively increase the abundance of large shade-tolerant 
trees, but it is equally important for producing coarse woody debris; (2) 
larger individuals, interior forest trees near existing forest edges and pre-
adapted trees in open conditions should be preferably retained; (3) in terms 
of tree survival, differentiating tree-retention geographically or amongst 
site types is not justified. The critical question for future research is the 
necessary abundance of old trees in the next forest generation.

Key words: coarse woody debris, green tree retention, forest management, 
variable retention cutting, windthrow

 Rosenvald, R., Lõhmus, A., Kiviste, A. 
SHORT-TERM DETERMINANTS AND LONG-TERM PROSPECTS 
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Submitted manuscript.
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Introduction

Variable retention cutting (VRC) is the main stand-scale application of 
the developing natural-disturbance-based silviculture, which, by emulating 
the consequences of natural stand-replacing disturbances, aims at better 
consideration of biodiversity in forest management (Franklin et al. 1997; 
Drever et al. 2006). Though its basic technique – permanent retention 
of live trees (“green-tree retention”) at cutting – obviously has a general 
positive effect on forest biota (Rosenvald and Lõhmus 2007a), the practical 
guidelines are still poorly elaborated and supported by field data. Partly, 
this is due to the complex interplay between immediate and future value 
of the trees (Lõhmus et al. 2006). Immediate effects of tree-retention on 
the cuts are seen, for example, for threatened saproxylic beetles adapted 
to post-disturbance conditions (Martikainen 2001), while future values 
are more important for epiphytic forest bryophytes that tend to go extinct 
on solitary trees (Lõhmus et al. 2006) but can re-establish old trees in 
the young forest (Lõhmus and Lõhmus 2007). Such a re-establishment is 
impossible if the trees die earlier; however, the deaths also provide essential 
coarse woody debris for saproxylic forest species (Junninen et al. 2007).

Thus the survival of the live retention trees is a key knowledge for VRC 
but, despite the at least 20 studies performed so far (Rosenvald and Lõhmus 
2007a), there are major gaps inhibiting its effective application. Notably, 
long-term survival prospects of the trees remain unknown but are sus-
pected to be low (e.g., Jull 2001; Busby et al. 2006), mostly due to the 
extra wind damage caused by the increased post-cut exposure of the trees 
(Foster 1988; Ruel et al. 2003). However, the dropped average survival 
rates may start increasing again along with the selective mortality of the 
most susceptible trees (Scott and Mitchell 2005; Busby et al. 2006). Furt-
hermore, the individuals of at least some species may also adapt to these 
more open conditions by accelerating their diameter growth (Holgen et 
al. 2003; Jakobsson and Elfing 2004), strengthening their root system 
(Foster 1988; Peterson 2004) and changing their canopy shape (Foster 
1988; see also Canham et al. 2001). These processes may be addressed by 
two complementary retention strategies: (1) given that interior forest trees 
are particularly susceptible to opening up the forest  (e.g., Lohmander 
and Helles 1987; Foster 1988; Peltola 1996; Talkkari et al. 2000) – to 
prefer the pre-adapted trees at the edges of former openings; (2) to reduce 
per capita mortality rates by increasing retention densities to the levels 
where the trees provide shade for each other (Scott and Mitchell 2005; 
Busby et al. 2006).

Secondly, retention-tree survival may vary in space, which questions 
the attempts to introduce similar retention techniques to all site types 
(Rosenvald and Lõhmus 2007b). On the one hand, given the differences 
between natural disturbance regimes amongst site types (e.g., Angelstam 
1998; Lõhmus et al. 2004) and geographic regions (Bergeron et al. 2002; 
Lorimer and White 2003), their dominating tree species may differ in the 
resilience to abrupt changes in microclimate caused by cutting (Valinger 
and Fridman 1999; Lanquaye-Opoku and Mitchell 2005). On the other 
hand, depending on soil moisture and depth, even relatively wind-resistant 
tree species may be locally vulnerable (Peterson 2004) suggesting, for 
instance, that in wet forests alternative management techniques to VRC 
should be considered (Valinger and Fridman 1999). 

In this paper, we explore the process and determinants of post-cut sur-
vival of live retention trees in hemiboreal cut areas in Estonia, with an 
emphasis on the pre-adaptation and spatial aspects as well as the pros-
pects of long-term survival. In terms of pre-adaptations, we expect that 
the trees growing near pre-cut edges survive better; we also explore the 
differences between tree species and size classes. As for spatial aspects, 
we test whether the survival differs between geographic regions and site 
types (being higher on moist mineral soils where stable root hold can be 
established; Schaetzl et al. 1989; Ray and Nicoll 1998) and depends on 
post-cut shade provided by forest edges or other retention trees. Based on 
the mean annual survival, its variance and trends (the possible temporal 
increase), we discuss the prospects of the retention trees to reach the next 
forest generation. Finally, we list the implications of our study for forest 
managers and the needs for future studies. 

Material and Methods

Study Areas

The study was carried out in four randomly selected state forest districts 
in three Estonian regions located at 58°–59°N and 25°–27°E (Figure 1). 
Estonia is situated in the hemiboreal vegetation zone (Ahti et al. 1968). 
The mean air temperature is 17 °C in July and –6.5 °C in January; the 
average precipitation is 600–700 mm per year. Forests (ca. 50% of the 
country) do not contain intensive plantations but 25% are drained and, 
due to a long clear-cutting history, the stands are structurally impoverished 
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– usually they have only one even-aged tree layer consisting, on average, 
of three tree species (Lõhmus et al. 2004; 2005). Approximately 40% of 
the forests are state-owned, having an average growing stock 198 m3 ha-1 
(272 m3 ha-1 in mature stands; Adermann 2004). 

All studied districts comprised large, but extensively managed, forest areas 
on flat terrain below 75 m a.s.l. The study included all the 102 stands 
that had been harvested in 2001 (69 cut areas with 2157 retention trees; 
70% in Laeva and Alatskivi regions) and winter-early spring 2002 (33 cut 
areas with 1107 trees; 73% in Viljandi region). The mean area of the cuts 
was 3 ha in the Laeva and Alatskivi districts and 1.5 ha in the Viljandi 
region (total mean 2.3 ha; range 0.3–6.9 ha). Age of the pre-cut stands 
had been mostly 50–80 (max. 110) years for deciduous stands and 90–110 
(max. 180) years for conifer stands. According to the pre-cut stand, the 
cuts were classified into four main types on the soil moisture and fertility 
gradients (following Lõhmus 1984): (1) oligotrophic – nutrient-poor dry 
Pinus-dominated forests of Vaccinium vitis-idaea and V. myrtillus-types 
(8 cuts/104 trees; only in Viljandi region); (2) mesotrophic – mixed for-
ests of Oxalis, Oxalis-Vaccinium myrtillus and Hepatica-types (25/508; 
dominating in the Viljandi region); (3) eutrophic – mostly deciduous 
forests mixed with Picea, belonging to Aegopodium- and Filipendula-types 
(58/2376; dominating in Laeva and Alatskivi); (4) swamp – both mobile- 
and stagnant-water stands, usually with some drainage effects (12/276). 

A total of 16 tree species had been retained on the cuts. To reach mean-
ingful sample sizes (see Table 1), only three of these were considered at 
the species level for most analyses: European aspen (Populus tremula L.), 
Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies L. Karst.). 
The Silver birch (Betula pendula Roth.) and Downy birch (B. pubescens 
Ehrh.), which commonly hybridize, were treated at the genus level. The 
remaining deciduous trees were separated into two groups: (a) soft deci-
duous trees – Small-leaved lime (Tilia cordata P. Mill.), Black alder (Alnus 
glutinosa L. Gaertn.), Grey alder (A. incana L. Moench) and Goat willow 
(Salix caprea L.); (b) hard deciduous trees – Common ash (Fraxinus excelsior 
L.), Mountain elm (Ulmus glabra Huds.), European white elm (U. laevis 
Pall.), Common oak (Quercus robur L.), Norway maple (Acer platanoides 
L.), Bird-cherry (Prunus padus L.) and Mountain ash (Sorbus aucuparia 
L.). Species composition differed between the study districts (Appendix); 
most notably, 83% of pines were in Viljandi region and 94% of hard 
deciduous trees in Laeva and Alatskivi districts. 

Fig. 1 Locations of the studied forest districts: (1) Viljandi (Kabala and Kõpu districts), (2) 
Laeva and (3) Alatskivi region 

Table 1 Retention numbers, tree sizes (trunk volumes), and the mortality of different species 
during the study. Statistical estimates based on less than five observations are given in pa-
rentheses. 

Tree species Retained trees No. of trees that died during 
the study

Wind-
caused 
deaths, 

%
No. Tree volume, 

m3 (mean ± 
SD)

To-
tal

Up-
rooted

Trunk 
bro-
ken

Died 
stand-

ing
Populus tremula 461 2.34 ± 1.67 214 99 91 24 89
Betula spp. 1028 0.82 ± 0.55 449 316 89 44 90
Pinus sylvestris 647 0.97 ± 0.65 277 234 34 9 97
Picea abies 47 0.59 ± 0.63 20 15 2 3 85
Tilia cordata 232 0.43 ± 0.38 84 84 0 0 100
Salix caprea 24 0.36 ± 0.28 9 5 3 1 89
Alnus glutinosa 107 0.69 ± 0.65 10 2 6 2 82
Alnus incana 31 0.31 ± 0.19 12 5 6 1 92
Fraxinus excelsior 576 0.54 ± 0.55 57 22 0 35 39
Ulmus spp. 31 0.35 ± 0.19 0 0 0 0 (0)
Quercus robur 32 0.64 ± 0.5 1 1 0 0 (100)
Acer platanoides 33 0.87 ± 1.03 4 4 0 0 (100)
Prunus padus 2 (0.39± 0.07) 1 0 1 0 (100)
Sorbus aucuparia 4 (0.22± 0.14) 1 0 1 0 (100)
Total 3255 0.96 ± 1.0 1139 787 233 119 89.6
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Field methods 

In spring 2002, all live (incl. seed trees, which often were inseparable 
from the trees retained for biodiversity only) and standing dead trees (incl. 
broken-top snags >2 m tall) with diameter at breast height (DBH) ≥14-
cm were mapped in the field; their species, DBH (also height for snags) 
and condition were recorded. Trunk volumes of the live and dead trees 
were estimated according to species-specific diameter-functions (Padari 
2004) used in practical silviculture in Estonia. Every next summer until 
2007, the survival, type of damage if present, and (in case of snags) any 
changes in height of each tree were examined. The causes of tree death 
were classified as windthrow, trunk breakage at foot, trunk breakage 
creating a snag, or desiccation. Among 51 broken-trunk trees having live 
branches left, we subjectively considered four trees broken below 4 m as 
dead, and the taller ones as alive. 

Exposure of individual trees to wind was described using three standard 
variables: (1) FETCH – the sum of distances (m) to the nearest forest 
edges for eight cardinal directions, measured from aerial photographs. 
Distances over 300 m were not further measured (Scott and Mitchell 
2005), i.e. the maximum sum was 2400 m; (2) DIREX  – a simplified 
version of FETCH (Scott and Mitchell 2005) indicating the number 
(1...8) of cardinal directions with the nearest forest edge over 30 m away 
(DIREX30), 60 m (DIREX 60) or 90 m (DIREX 90); (3) tree position 
relative to various edges (defined as a distance up to 20 m) – either at the 
edge of (a) a field or meadow; (b) a road (at least 15 m wide); (c) a forest; 
(d) an earlier cut area (regeneration height up to 10 m) or (e) in the cut 
interior. In addition, given that western winds predominate in Estonia, 
we calculated modified FETCH (hereafter FETCHw) using only three 
western directions (SW, W, NW) to analyze whether a region-specific 
approach might be preferred to the standard variable. 

Statistical analysis

From all analyses, we omitted the nine retention trees that were cut 
during the study. The post-cut survival was considered separately in the 
cuts of 2001 (data for six years) and 2002 (five years) for their particular 
post-cut years represented different calendar years. To check for a possible 
temporal decrease in the annual tree-mortality on the cuts, we performed 

a general linear analysis with these two „cohorts” as a categorical factor 
and post-cut year as the continuous variable. 

For rough projection of the retention-tree population, we modelled the 
annual post-cut mortality as decreasing (see Results) linearly from our 
estimates of the 1st year mortality of the two „cohorts” to the mortality 
rates of large (DBH >20 cm) managed-forest trees, and stabilizing at that 
level. The data on forest trees had been collected in two permanent plots 
in Estonia (Kiviste et al. 2005). In one plot, 14,541 trees had the mean 
annual mortality 0.46% for natural causes and 1.23% when thinning 
added; in the second, the rates for 5,088 trees were 0.45% and 1.04%, 
respectively. We calculated four scenarios to illustrate the influence of 
different assumptions and to capture the real values at greater probability: 
(1) maximum survival with natural mortality only – the best survival 
estimates for both retention trees and forest trees, assuming that that a 
stable survival typical to forests will be reached in 30 years (see Lõhmus 
et al. 2004 for a similar assumption); (2) minimum survival with natural 
mortality only – the worse survival estimates and a duration of 40 years 
to stabilize; (3) maximum and (4) minimum survival with thinnings – 
similar to scenarios (1) and (2), respectively, except that the survival of 
forest trees included the cuttings.

For analysing the survival of individual trees, we used multivariate lo-
gistic regression with hierarchical data structure (Alenius et al. 2003): 
three geographical regions (level 1) included the 102 cuts (level 2) with 
the total of 3255 trees (level 3). The data were analysed by fitting mixed 
generalized linear models (SAS PROC GLIMMIX); the levels were taken 
into account using Kenward-Roger method for determining denomina-
tor degrees of freedom (Littell et al. 2002). The dependent variable was 
the survival (1, live; 0, dead) of the tree by the end of the study period 
(after 5–6 post-cut years, depending on cutting year). Initially, eleven 
independent variables were considered (Table 2) but the approach was 
simplified by omitting two non-significant and four redundant variables 
(see below). Notably, the geographical region (identifier of level 1) was 
omitted as non-significant (see Results); thus the final model comprised 
only two levels and a random intercept. 

Variable redundancy was a significant problem for exposure variables and 
tree species, which could not be omitted prior to analyses due to their 
expected biological relevance. At the tree level, diameter was independent 
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of all exposure variables; its dependence on tree species (see Table 1 and 
Appendix) was addressed by nesting the diameter within species. This 
approach (1) is more realistic than a common across-species quantita-
tive relationship between tree size and survival probability, (2) allowed 
to explore species differences in diameter effects, and (3) did not affect 
qualitatively any results on species differences in survival. Among the 
five continuous exposure-variables, the strongest correlations appeared 
between the three forms of DIREX and FETCH (for all possible pairs: 
rs = 0.64–0.89, n = 3255, P <0.001); their correlations with FETCHw 
were slightly weaker (rs = 0.47–0.59, n = 3255, P <0.001). For the main 
analysis, we only selected the standard and most information-rich FETCH, 
though it still co-varied with the tree position (Kruskal-Wallis ANOVA: 
P <0.001). Yet, after constructing the final model, we tested the possible 
additional effects of the other exposure variables using Type I models.

To take into account the potential shade from other trees on the cut, we 
only used post-harvest density of the trees for simplicity, though the tree 
densities declined during the study period. This variable was independent 
of the other cut-level variable – site type (see Figure 2), and there was only 
one significant correlation with the cut-level average value of a tree-level 
variable: post-harvest densities were higher in case of smaller-diameter 
trees (rs = -0.31, n = 102, P =0.001). 

Table 2 Variables for the survival analysis of individual trees: division between levels, 
means, standard deviations and range

Variable (no. of groups) Mean S.D. min. max.
Level 1: Geographical location – 3 regions
Level 2: Stand variables – 102 cuts

Site type (4)
Post-harvest density 15.9 10.1 2.3 47.5

Level 3: Tree variables – 3255 trees
Tree position (5)
FETCH 1047.4 430.1 130 2210
FETCHw 316.7 205.7 15 900
DIREX30 6.5 1.7 1 8
DIREX60 5.2 2.0 0 8
DIREX90 4.2 2.0 0 8
Diameter 30.2 11.2 14 100
Species (6)

Fig. 2 The average retention-tree survival in relation to their post-harvest density in 85 
cut areas (with at least 10 trees retained) during the study. For illustrative purposes, 
the cuts of different site types have been distinguished

Results

Mortality of Retention Trees

The average retention levels on the 102 cut sites were 15.9 (range 2–48) 
live trees per ha and 3.8 (range 0–22) standing dead trees per ha. The 
average volume of live retention trees was 15.6 (range 1.5-60.2) m3 ha-1, 
which accounts for 6% of the average growing stock in mature stands 
in the Estonian state forests (Adermann 2004). Most trees had been 
retained solitarily.

The total number of live retention trees decreased 35% (from 2153 to 
1405 trees) in six years in the cut areas of 2001, and 36% (from 1102 to 
711 trees) in five years in the cut areas of 2002 (Figure 3A). The annual 
mortality rates were, on average, 6.8 ± 4.6% for the 2001 cut areas and 
8.2 ± 6.2% for the 2002 cut areas, respectively, but these rates decreased 
during the study (Figure 3B). In preliminary general linear model explain-
ing annual mortality via post-cut year and the cutting year (“cohort”), 
the latter was non-significant (F1 = 0.05, P = 0.83). After pooling the data 
from the two cohorts, the univariate linear regression between % annual 
mortality (y) and post-cut year (x) was highly significant: y = 13.15-1.79x 
(coefficient S.E. = 0.34; n = 6; P = 0.006). 

The loss of total live-tree volume in the study period was higher than 

y = 0.005x + 0.558
R 2 = 0.053
p = 0.035
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of tree numbers: 42% (from 13.1 m3 to 7.6 m3 per ha) for the 2001 cut 
areas and 38% (from 14.1 m3 to 8.8 m3 per ha) for the 2002 cut areas. 
These losses provided 4.4 m3 of downed dead trunks and 1 m3 of standing 
dead trees ha-1 from each „cohort”. Compared with live tree volumes, the 
retained Populus tremula produced relatively large amounts of dead wood, 
especially snags (Figure 4).

Of the 1139 retention-tree deaths, 89.6% were wind damages (incl. 69.1% 
uprooting and 20.5% trunk breakage) and 10.4% died on foot. The domi-
nant causes of death differed between tree species: uprooting was most 
frequent for Tilia cordata (100%) and Pinus sylvestris (84%), trunk break-
age for Alnus glutinosa (60%), Alnus incana (50%) and Populus tremula 
(43%), and death on foot for Fraxinus excelsior (61%) (Table 1). There was 
no clear pattern in uprooting frequency along with the site type gradient: 
28% of retained trees were windthrown in oligotrophic type (n =104), 
31% in mesotrophic (n = 505), 21% in eutrophic (n = 2371) and 35% in 
swamp type (n = 275) during the study. 

Projection of the annual tree survival rates indicated that, in case of natural 
mortality only, 29–38% of retained live trees are likely to be present after 
40 years (closed mid-aged stand) and 22–29% in 100-year-old stands. 
If commercial thinning is added, these proportions will be 18–28% and 
9–15%, respectively (Figure 5).

Fig. 3 Total survival (% of post-cut numbers) of live retention trees (A) and annual 
mortality (% of the numbers of the previous year; B) in the sites cut in 2001 (n = 2153 
trees) and 2002 (n = 1102 trees)

Fig. 4 Reduction of the total live-tree volumes and the resulting accumulation of coarse 
woody debris during five years
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Fig. 5 Projected future populations of live trees retained at harvest (minimum and 
maximum scenarios for each mortality regime) 

Determinants of tree mortality

Of the seven variables considered, geographical region and site type were 
omitted from the final model (Table 3) due to their non-significance (P > 
0.2) in any multivariate combination (see Appendix for their descriptive 
statistics). Among tree species (see also Appendix), hard deciduous trees 
survived best (Tukey’s tests for all post-hoc contrasts significant at P < 
0.001), followed by soft deciduous trees (P < 0.001 for the contrasts with 
birch, aspen and pine; P = 0.015 for spruce). Diameter affected survival 
(Table 3) depending on tree species: positively in aspen (coefficient 0.022 
± 0.008 S.E.; t3237 = 2.8, P = 0.006) and in soft deciduous trees (coefficient 
0.047 ± 0.018 S.E.; t3237 = 2.7, P = 0.008), and negatively in birch (coef-
ficient -0.031 ± 0.010 S.E.; t3237 = 3.0, P = 0.003). Without the nesting 
approach (see Material and Methods), diameter seemed to have no effect 
(F1, 3242 = 2.0; P = 0.16)

The expected effects of all exposure variables were confirmed (Table 3): 
the initial retention density had a positive effect (see also Figure 2), FE-
TCH had a negative effect (Figure 6A), the trees near forest edge survi-
ved much better than in the middle of the cuts (Tukey’s test: P < 0.001) 
and, compared with the latter, pre-cut edges enhanced tree survival in 
the sequence: earlier cut edge (P = 0.036) < road edge (P < 0.001) < field 
edge (P = 0.003) (Figure 6B). However, among the pre-cut edges, only 

the earlier cut-field edge contrast was marginally significant (Tukey’s 
test: P = 0.066). 

Using Type I tests to explore the effects of the four exposure variables, 
which were initially considered redundant to FETCH, indicated a signifi-
cant additional contribution of FETCHw only (F1, 3236 = 7.1, P = 0.008). 
Moreover, when FETCHw was considered in the initial model instead of 
FETCH, the latter revealed no additional effect (F1, 867 = 2.2, P = 0.14). In 
a similar procedure, DIREX30, DIREX60 and DIREX90 all appeared to 
be significant predictors of tree survival (P < 0.004), but FETCH retained 
its additional contribution to each of them (P < 0.05).

Table 3 Fixed effects of the multivariate model for the 5–6-year survival 
of individual live retention trees
Variable DF F P
Species 5; 3237 6.56 <0.0001
Diametera 6; 3237 4.44 0.0002
Post-harvest density 1; 84.2 7.52 0.0074
Tree position 4; 3237 17.49 <0.0001
FETCH 1; 759.5 11.49 0.0007
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Fig. 6 Tree survival during the study in relation to FETCH (A), and tree position (B). 
The numbers above the bars are sample sizes

Discussion

Our study confirmed that wind damage is the proximate cause for the 
majority (90%) of tree deaths on retention cuts. Hence, the survival fac-
tors extracted by our analyses should be mostly interpreted in the light 
of wind-resistance, and these may differ from the situations where other 
mortality agents contribute more. For example, wind-caused deaths formed 
only 77% in a study by Busby et al. (2006), and may even remain below 
50% for certain tree species (e.g., Alnus glutinosa and Fraxinus; Wolf et 
al. 2004). Also in our study, hard deciduous trees relatively often died 
on foot. In particular, Fraxinus excelsior probably suffered from disease 
(probably a fungal pathogen; see Stenlid et al. 2005) since many indi-
viduals were dying also in adjacent forests (R.R., personal observations). 
However, it is also likely that other mortality agents contributed to the 
death of many wind-damaged trees; thus, wind-induced mortality can-
not be unequivocally distinguished for a separate analysis. Despite these 

unavoidable limitations, our results on the three key issues of retention-
tree survival (pre-adaptations, spatial aspects, long-term prospects) lead 
to important practical implications as discussed below. 

Pre-adaptations of the trees

In terms of pre-adaptations to post-cut conditions, our results suggested 
that tree species and tree location relative to pre-cut edge are the key vari-
ables to be considered in retention practices. Hard deciduous trees (mostly 
Fraxinus excelsior) survived best, followed by soft deciduous trees (mostly 
Tilia cordata and Alnus glutinosa) – a pattern roughly consistent with the 
hypothesis that shade-tolerant tree species are most wind-resistant (e.g., 
Canham et al. 2001; Peterson 2004). A well-known exception, having 
a below-average survival due to its shallower rooting (e.g., Peltola et al. 
1999; Nicoll et al. 2006), was the only shade-tolerant coniferous species 
in our study area, Picea abies. Thus, VRC can increase the abundance of 
large individuals of shade-tolerant deciduous species that often disappear 
in even-aged forestry (e.g., Lõhmus et al. 2005). These species (most notably 
Quercus robur) also host distinct and species-rich biotic communities that are 
threatened in most clear-cutting forestry systems (e.g., Berg et al. 1994).

In previous case studies, windthrow probability has been found to inc-
rease (Canham et al. 2001; Peterson 2004) or decrease with tree diameter 
(Jull 2001; DeLong et al. 2001), yet in other cases medium-sized trees 
appear to be most susceptible (Lässig and Mocalov 2000; Beese 2001). 
Our results supported the view that, instead of a general relationship be-
tween tree diameter and survival, there are complicated species-dependent 
relationships (see Canham et al. 2001; Peterson 2004). As a preliminary 
approach, we thus encourage the retention of larger individuals of any 
given species (as required, for example, by the Swedish FSC-standard; 
The Swedich FSC-Council 1998) for their higher quality for threatened 
species (e.g., Lõhmus et al. 2006), but we call for species-specific studies 
to define conflicting cases in terms of tree survival. In Estonia, birch ap-
peared to be the only species with a negative diameter-effect on survival, 
the reasons of which also deserve further study. At least, this species did 
not appear to be more close to maximum age limit than several others 
in our study (cf. Wolf et al. 2004).
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We are not aware of previous field tests linking the survival of retention 
trees with their location relative to pre-cut edges, though unadapted trees 
are generally known to be more susceptible to wind – for example, if forests 
are opened up with clear-cutting or intensive thinning (e.g., Talkkari et 
al. 2000; Zeng et al. 2004; Lanquaye-Opoku and Mitchell 2005) or the 
trees have been retained solitarily rather than in clumps (Gibbons et al. 
2007). Also, edge-trees have been reported to be less susceptible at old 
than fresh clear-cuts (Foster 1988; Zeng et al. 2004). Our analysis puts 
these findings into a general framework of individual adaptation and 
selective pre-cut mortality processes as illustrated by the decline of tree 
survival from the oldest (field) to medium-aged (road) and young pre-cut 
edges (previous cut area) and, finally, cut interior. A confounding factor 
may be that the wind-resistance near roads may have been improved 
by drainage ditches, which often run along the roads. Importantly, tree 
position remained highly significant even though the multivariate model 
considered actual exposure (FETCH) as well. Perhaps, the exposure vari-
ables describe mostly the selective mortality of trees, while the additional 
effect of tree-position accounts more for individual adaptation. 

These results on pre-adaptation do not lead, however, to a straightforward 
recommendation to retain the trees growing near former forest edges – 
many threatened tree-dwelling species require the stable microclimate of 
forest interior conditions (Baldwin and Bradfield 2005; Gignac and Dale 
2005), and may never be able to occupy the field- or road-edge trees. A 
reasonable compromise, then, could be to retain both (1) interior forest 
trees in case of small post-cut exposure (notably, near existing forest edge 
and at higher retention densities) for (re-)establishment by interior species, 
and (2) the pre-adapted trees in open conditions to provide habitats for 
disturbance-phase tree-dwelling species. Additional guidelines based on 
pre-adaptation are to prefer the dominant trees (Dunham and Cameron 
2000; Jull and Sagar 2001) and to facilitate the adaptation process al-
ready in mid-aged stands by more extensive thinning around the future 
retention trees (Lohmander and Helles 1987).

Spatial aspects of tree retention

In agreement with many other (mostly univariate) analyses (e.g., Lo-
hmander and Helles 1987; Ruel 2000; Beese 2001; Ruel et al. 2003; 
Walter and Maquire 2004; Scott and Mitchell 2005) the local spatial 

effects of surrounding forest and other retention trees appeared to be 
highly relevant for tree survival in our study – even though the retention 
levels were low, and decreasing in time. Previous studies have noticed a 
sharp increase in survival when retention levels exceed 20% (Scott and 
Mitchell 2005) and the survival may approach pre-cut values when over 
50% of trees are retained (e.g., Conner et al. 1991; Coates 1997; Holgen 
et al. 2003). Regarding exposure, the novel aspects of our study emerged 
from the multivariate approach. First, after taking into account cardinal 
distances to forest edges (any type of FETCH or DIREX), location near 
forest edge retained an independent positive contribution to tree survival. 
Most probably, the survival increases sharply and non-linearly near forest 
edge – an aspect that is lost by simply summing the distances. Such a 
critical distance deserves further study, particularly in combination with 
the shade effects on sensitive tree-dwelling biota (for example, epiphytic 
lichens; Lõhmus et al. 2006). Second, a simpler, locally justified exposure 
variable – FETCHw – performed better than the standard FETCH, ap-
parently because it considered dominating winds most important. Though 
sometimes storms from unusual directions may cause high tree-mortality 
(Ruel 2000; Ruel et al. 2001), this seemed to be not a general case in 
Estonia where wind-protection to retention trees from western sides of 
cut areas appears to be most important. To summarize, assessment of the 
shade provided by the surrounding post-cut forest edge (within 30 m) 
is a promising field technique for selecting retention trees, and regional 
modifications of general techniques may further enhance its efficacy. 

In contrast to the local effects, we found no independent geographical 
and site-type differences. The former might be expected, for example, 
between areas differing in the frequency of severe storms that are strong 
determinants of overall tree mortality (e.g., Beese 2001; Ruel et al. 2001). 
To assess the importance of such random events, our study region may 
have been too small and/or the study period too short. In fact, the high 
3rd post-cut year mortality in the cut areas of 2002 (Figure 3B), which 
were mostly situated in the Viljandi region, apparently resulted from a 
storm in January 2005. Untypically, the ground was frost-free and wet 
then, and Scots pines (concentrated to Viljandi region) suffered most. The 
absence of independent site-type effect has been previously reported by 
Achim et al. (2005) but it contrasts with the common understanding that 
the trees on wet or fertile soils are relatively wind-prone (Dunham and 
Cameron 2000; Ruel 2000; Mitchell et al. 2001; Vanha-Majamaa and 
Jalonen 2001). One additional reason in our study might have been the 
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drainage of wet cut-areas, which may have improved the wind-resistance 
of trees (Lohmander and Helles 1987). This may also explain why we did 
not find site type differences in the relative frequency of windthrow, which 
could be expected from the strong relationship between soil moisture and 
root-system structure (Lohmander and Helles 1987; Gardiner and Quine 
2000; Scott and Mitchell 2005). In conclusion, our study did not reveal a 
necessity, in terms of tree survival, to differentiate tree-retention techniques 
geographically (at least within distances of a few hundred kilometres) or 
amongst site types but additional work on these aspects is needed.

The long-term prospects of green-tree retention

The recorded short-term mortality rates and their dynamics are in good 
accordance with the previous results. The 65% survival of retention trees in 
5–6 post-cut years in hemiboreal Estonia is comparable with the 50–75% 
survival in similar time-frame in Canada (Beese 2001; Bradbury 2004; 
Scott and Mitchell 2005) and Oregon, USA (Busby et al. 2006). Also, 
the improvement of annual survival during post-cut years has previously 
been described for VRC (Beese 2001; Ruel et al. 2003; Busby et al. 
2006) as well as for trees in riparian buffer strips (Ruel et al. 2001) and 
at clear-cut edges (Lohmander and Helles 1987; Mitchell et al. 2001). 
Therefore, given the absence of long-term monitoring results, our survival 
projections might be indicative for VRC planning also in other boreal 
or temperate areas.

To our knowledge, only Busby et al. (2006) have attempted to predict 
long-term survival of retention trees so far. Their result (14% survival 
after 100 years) was, however, based on two data points only and neither 
better survival prospects in forests nor cuttings were taken into account. 
Though it is unknown, when, and how exactly, the survival of retention 
trees might approach the levels typical to forests, our approach in general 
gave twice better 100-year survival estimates compared with Busby et 
al. (2006). Therefore, this process is highly relevant for future research. 
Similarly, while an accurate prediction of cuttings would be very compli-
cated or even impossible, we showed that even routine thinnings might 
become a major mortality factor for the trees. In Estonia, many retained 
trees were actually seed trees, which traditionally are cut before canopy 
closure. Thus, without special protection, their long-term survival prospects 
and, thereby, efficacy for biodiversity protection will be much reduced. 

More generally, the fact that most retention trees are likely to die before 
reaching the next forest generation indicates that their equally important 
function is the production of coarse debris.

The mortality aspects described above are particularly relevant given that 
even without human-induced mortality the projected densities of old 
retention trees in the next forest generation, and the coarse woody debris 
created by their death, would be much smaller than in natural forests. 
Hemiboreal old-growth forests normally contain 10–20 large (DBH>70) 
live trees per hectare (and many more having DBH >50 cm; Nilsson et 
al. 2002) and around 100 m3/ha of coarse woody debris (Siitonen 2001), 
while the minima for threatened polypore fungi, for example, are 20 m3/
ha (Penttilä et al. 2004). In our study, the average initial abundance of 
retained live trees (a mere 16 trees or 16 m3/ha) decreased by 30–40% 
during the 5–6 post-cut years already and was expected to decrease >70% 
in 100 years. Though the retention densities should be probably increased, 
the numerical targets of old-forests may be also inappropriate for man-
aged forests. Therefore, the most urgent field of research is the minimum 
abundance of old live trees in the next forest generation, which might 
be derived, for example, from extinction thresholds of specific species 
inhabiting such trees. After setting the target, the current knowledge 
on long-term survival and its determinants could be used for developing 
sound guidelines for tree-retention levels and conditions.
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Appendix The average annual survival (S) of different tree species during the study 
according to the geographic area, site type, diameter class, and the position relative to 
edges. The survival estimates are shown for samples of at least 10 trees
 

 

Populus 
tremula 

Betula spp. Pinus 
sylvestris 

Picea 
abies 

Soft 
deciduous 

treesa 

Hard 
deciduous 

trees b 

S n S n S n S n S n S n
Geographic area
Laeva 0.91 146 0.93 499 0.96 86 0.92 31 0.95 237 0.98 533

Alatskivi 0.88 183 0.82 243 0.87 25 0.88 10 0.95 86 0.98 103
Viljandi 0.96 132 0.93 286 0.91 536 6 0.93 71 1.00 42
Site type
swamp 8 0.83 56 0.93 160 5 0.95 35 0.96 11
eutrophic 0.90 360 0.91 897 0.90 92 0.91 41 0.95 337 0.98 644
mesotrophic 0.95 80 0.92 72 0.91 307 1 0.96 22 0.97 23
oligotrophic 0.89 13 3 0.93 88
Diameter
<20 cm 0.83 22 0.95 118 0.95 22 0.92 16 0.94 168 0.98 294
21-30 cm 0.88 71 0.90 521 0.91 300 0.91 23 0.95 169 0.98 278
31-40 cm 0.93 108 0.90 302 0.91 261 6 0.95 45 0.99 71
41-50 cm 0.93 119 0.87 75 0.96 52 0.95 10 0.98 24
>51 cm 0.90 141 0.87 12 0.94 12 2 2 0.97 11
Position of trees
Middle of VRC 0.89 231 0.89 562 0.89 308 0.81 15 0.92 157 0.98 291
Edge of earlier cut 0.88 56 0.88 107 0.92 58 2 0.95 56 0.99 71
Road edge 0.94 61 0.94 134 0.93 66 5 0.96 68 0.99 108
Field edge 8 9 6 1 4 1.00 11
Forest edge 0.95 105 0.94 216 0.95 209 0.94 24 0.97 109 0.99 197

a Tilia cordata, Alnus glutinosa, A. incana and Salix caprea
b Fraxinus excelsior, Ulmus glabra, U. laevis, Quercus robur, Acer platanoides, Prunus padus 
and Sorbus aucuparia



118 119

CURRICULUM VITAE

First name: Raul 
Surname: Rosenvald
Citizenship: Estonian
Date of birth: 28.08.1977
Address (home): Tähtvere küla, Tähtvere vald, Tartu maakond,  
 Eesti 61410
 Phone: +372 53418792     
  
Employment: Estonian University of Life Sciences, Institute of 
 Forestry and Rural Engineering, Kreutzwaldi 5, 
 51014, Tartu, Estonia

e-mail: raul.rosenvald@emu.ee

Education:  
2002-2006 Estonian University of Life Sciences, doctoral studies
1999-2002 Estonian Agricultural University, master studies
1995-1999 Estonian Agricultural University, Faculty of forestry,  
 Department of Forest Management 
1984-1995 Tartu Secondary School No. 10

Foreign languages: English, German

Professional employment: 
2006-2007 Estonian University of Life Sciences, Institute of  
 Forestry and Rural Engineering, Department of  
 Silviculture; researcher (1.00);
2005-2006 Estonian University of Life Sciences, Institute of 
 Forestry and Rural Engineering, Department of  
 Silviculture; researcher (0.50)

Academic degree: 
 2002 Master’s degree (M.Sc) “The influence of forest 
 management and forest structure on the nesting of the 
 Black stork (Ciconia nigra)”

Research interests: 
 Forest cutting impacts on biodiversity, retention   
 trees, birds of prey

Awards:
2002 Estonian National Contest for Young Scientists at the  
 university level, II Prize
1999 Estonian National Contest for Young Scientists at the  
 university level, II Prize

Target financed (TF) projects and grants of the Estonian Science 
Foundation (ESF):
2005-2007 ESF grant No. 6457: “The impact of residual trees on 
 biodiversity in relation to natural disturbance regimes”. 
 Principal investigator
2002-2004 ESF grant No. 5257: “Maintaining the structural elements 
 of old forest and species diversity in forest management 
 operations”. Principal investigator
2002-2006 TF project 0172100s02: “Sustainable and Close to Nature 
  Management of the Estonian Forests”. Investigator

Organisational activity:
2001-... member of the Estonian Ornithological Society
2002-... member of the Eagle Club.



120 121

CURRICULUM VITAE

Nimi: Raul Rosenvald
Kodakondsus: Eesti
Sünniaeg: 28.08.1977
Kodune aadress: Tartumaa 61410 Tähtvere vald, Tähtvere küla, 
 Telefon: 53418792         
Töökoht: Eesti Maaülikool, Metsandus- ja maaehitusinstituut, 
 Kreutzwaldi 5, 51014, Tartu, Eesti
 E-mail: raul.rosenvald@emu.ee

Haridus: 
2002-2006  EMÜ doktorantuur
1999-2002 EPMÜ, Metsandusteaduskond, magistriõpe, Metsa- 
 kasvatuse instituut, metsamajanduse eriala
1995-1999 EPMÜ, Metsandusteaduskond, bakalaureuseõpe, Metsa 
 kasvatuse instituut, metsamajanduse eriala 
1984-1995 Tartu 10. Keskkool

Keelteoskus: Eesti, inglise, saksa

Teenistuskäik: 
2006-2007  Eesti Maaülikool, metsandus- ja maaehitusinstituut, 
 metsakasvatuse osakond; erakorraline teadur (1.00)
2005-2006 Eesti Maaülikool, metsandus- ja maaehitusinstituut; 
 erakorraline teadur (0.50)

Teaduskraad: 2002 loodusteaduste magister (teaduskraad) „Metsa 
 majanduse ja metsade struktuuri mõju must-toonekure 
 (Ciconia nigra) pesitsemisele”. Välja antud 22 08.2002, 
 Tartus

Teadusliku uurimustöö suunad: 
Puude säilitamine lageraielankidel, nende efektiivsus •	
elustiku säilitamisel ja rikastamisel 
Metsamajanduse mõju kaitstavatele linnuliikidele•	

Teaduspreemiad:
2002 Eesti Üliõpilaste teadustööde riikliku konkursi II preemia
1999 Eesti Üliõpilaste teadustööde riikliku konkursi II preemia

Projektid:
2005-2007 Eesti teadusfond, grant 6457: „Säilikpuude mõju metsade 
 bioloogilisele mitmekesisusele sõltuvalt looduslikust 
 häiringurežiimist“, põhitäitja
2002-2004 Eesti teadusfond, grant 5257: „Vana metsa struktuurielemen 
 tide ja elustikuliigilise mitmekesisuse säilitamine metsade 
 majandamisel“, põhitäitja
2002-2006 Sihtfinantseeritav teema SF 0172100s02: „Eesti metsade 
 säästlik ja looduslähedane majandamine“, täitja

Organisatsiooniline ja erialane tegevus:
2001-...  Eesti Ornitoloogiaühingu liige
2002-... Kotkaklubi liige.



122

LIST OF PUBLICATIONS

1.1. Publications indexed in the ISI Web of Science database:

Rosenvald, R., Lõhmus, A. 2007. For what, when and where is green-
tree retention better than clear-cutting? A review of the biodiversity 
aspects. Forest Ecology and Management, published online Oct. 15, 
2007. DOI: 10.1016/j.foreco.2007.09.016.

Rosenvald, R., Lõhmus, A. 2007. Breeding birds in hemiboreal clear-
cuts: tree retention effects in relation to site type. Forestry, published 
online Sept. 13, 2007. DOI: 10.1093/forestry/cpm027. 

Lõhmus, P., Rosenvald, R., Lõhmus, A. 2006. Effectiveness of solitary 
retention trees for conserving epiphytes: differential short-term re-
sponses of bryophytes and lichens. Canadian Journal of Forest Re-
search 36, 1319–1330.

Lõhmus, A., Sellis, U., Rosenvald, R. 2005. Have recent changes in forest 
structure reduced the Estonian black stork Ciconia nigra population? 
Biodiversity and Conservation 14, 1421–1432.

Rosenvald, R., Lõhmus, A. 2003. Nesting of the black stork (Ciconia 
nigra) and white-tailed eagle (Haliaeetus albicilla) in relation to forest 
management. Forest Ecology and Management 185, 217–223. 

1.2. Papers in Estonian and in other peer-reviewed research 
journals with a local editorial board:

Lõhmus, A., Rosenvald, R. 2005. Järvselja looduskaitsekvartali haude-
linnustik: pikaajalised muutused ja inventeerimismetoodika analüüs. 
Hirundo 18, 18–30.

Rosenvald, R. 2001. Metsade muutused ja nende seos kaitstavate linnuliikide 
esinemisega. EPMÜ Metsandusteaduskonna toimetised nr. 34, 65–68.

1.3. Popular-scientific papers in Estonian:

Rosenvald R., Lõhmus A. 2005. Säilikpuud raiesmikel: kelle jaoks ja kui 
palju?. Eesti Mets 1, 33–38.

Lõhmus, A., Kraut, A., Lõhmus, P., Remm, J., Rosenvald, R., Soon, M. 
2005. Haab pakub elupaiku vähemalt kahele tuhandele liigile. Eesti 
Loodus 10, 6–15.

Niklus, I, Rosenvald, R. 1999. Arukase kultiveerimise tulemustest endistel 
põllumaade. Eesti Mets 7, 6–8.


