
20th Nordic Workshop on Programming Theory

NWPT 2008

Tallinn, Estonia, 19-21 November 2008

Abstracts

Institute of Cybernetics at TUT

TTÜ KÜBERNEETIKA INSTITUUT

20th Nordic Workshop on Programming Theory

NWPT 2008

Tallinn, Estonia, 19–21 November 2008

Abstracts

Institute of Cybernetics at Tallinn University of Technology

Tallinn ◦ 2008

20th Nordic Workshop on Programming Theory

NWPT 2008

Tallinn, Estonia, 19–21 November 2008

Abstracts

Edited by Tarmo Uustalu, Jüri Vain, and Juhan Ernits

Institute of Cybernetics at Tallinn University of Technology

Akadeemia tee 21, 12618 Tallinn, Estonia

http://www.ioc.ee/

Department of Computer Science, Tallinn University of Technology

Raja 15, 12618 Tallinn, Estonia

http://cs.ttu.ee/

ISBN 978-9949-430-24-6

c© 2008 Institute of Cybernetics at TUT

Printed by Alfapress

Preface

This volume contains the abstracts of the talks to be presented at the 20th Nordic Workshop on Program-

ming Theory, NWPT ’08, to take place in Tallinn, Estonia, 19–21 November 2008.

The NWPT workshops are a forum bringing together programming theorists from the Nordic and Baltic

countries (but also elsewhere). The previous workshops were held in Uppsala (1989, 1999, 2004), Aal-

borg (1990), Göteborg (1991 and 1995), Bergen (1992 and 2000), Åbo (Turku) (1993, 1998, 2003),

Aarhus (1994), Oslo (1996, 2007), Tallinn (1997, 2002), Lyngby near Copenhagen (2001), Copenhagen

(2005), Reykjavı́k (2006). This year 2008 it is Tallinn’s turn again and the workshop series will be

celebrating its 20th anniversary.

The scope of the meetings covers traditional as well as emerging disciplines within programming theory:

semantics of programming languages, programming language design and programming methodology,

programming logics, formal specification of programs, program verification, program construction, pro-

gram transformation and refinement, real-time and hybrid systems, models of concurrent, distributed

and mobile computing, tools for program verification and construction. In particular, they are targeted

at early-career researchers as a friendly meeting where one can present work in progress but which at

the same time produces a high-level post-proceedings compiled of the selected best contributions in the

form of a special journal issue.

The workshop programme features four invited talks by distinguished researchers. We are proud to have

on our programme talks by Dave Clarke (Katholieke Universiteit Leuven, Belgium), Vincent Danos

(University of Edinburgh, UK), Martin Fränzle (Carl von Ossietzky Universität Oldenburg, Germany)

and Margus Veanes (Microsoft Research, Redmond, WA, USA). The contributed part of the programme

consists of 30 talks by authors from different European countries.

This edition of NWPT is sponsored by EXCS, the new Estonian Centre of Excellence in Computer Sci-

ence, funded mainly by the European Regional Development Fund. We are grateful to the managements

of the House of the Brotherhood of the Blackheads and the KUMU Art Museum for letting us their

premises. For the third time, the Journal of Logic and Algebraic Programming have agreed to publish

our post-proceedings and we are grateful in advance for their assistance.

Tarmo Uustalu, Jüri Vain

Tallinn, 12 November 2008

3

Organization

Programme Committee

Luca Aceto (Reykjavı́k University)

Michael R. Hansen (Danmarks Tekniske Universitet)

Anna Ingólfsdóttir (Reykjavı́k University)

Einar Broch Johnsen (Universitetet i Oslo)

Kim G. Larsen (Aalborg Universitet)

Bengt Nordström (Chalmers Tekniska Högskola, Göteborgs Universitet)

Olaf Owe (Universitetet i Oslo)

Gerardo Schneider (Universitetet i Oslo)

Tarmo Uustalu (Institute of Cybernetics at TUT, co-chair)

Jüri Vain (Tallinn University of Technology, co-chair)

Marina Waldén (Åbo Akademi)

Uwe Wolter (Universitet i Bergen)

Wang Yi (Uppsala Universitet)

Organizing committee

Tarmo Uustalu (Institute of Cybernetics at TUT)

Juhan Ernits (Inst. of Cybernetics / Dept. of Comp. Sci., TUT)

Monika Perkmann (Institute of Cybernetics at TUT)

Kristi Uustalu (Institute of Cybernetics at TUT)

Hosts

Institute of Cybernetics at Tallinn University of Technology

Department of Comptuer Science, Tallinn University of Technology

Sponsor

Estonian Centre of Excellence in Computer Science, EXCS

(funded mainly by the European Regional Development Fund)

4

Table of contents

Invited talks

Dave Clarke (Katholieke Universiteit Leuven)

Coordination via interaction constraints 7

Vincent Danos (University of Edinburgh)

A rule-based approach to the global dynamics of protein networks 8

Martin Fränzle (Carl von Ossietzky Universität Oldenburg)

Engineering constraint solvers for the analysis of hybrid systems 9

Margus Veanes (Microsoft Research, Redmond)

Ten years of model-program theory at Microsoft: from research to product impact 10

Contributed talks

Lennart Beringer

Relational bytecode correlations 11

Sukriti Bhattacharya and Agostino Cortesi

Property-driven program slicing 15

Maksym Bortin, Christoph Lüth and Dennis Walter

A certifiable formal semantics of C 19

Morten Dahl and Hans Hüttel

Type inference for a correspondence certifying type system 22

Markus Degen, Peter Thiemann and Stefan Wehr

Contract monitoring and call-by-name evaluation 25

Romain Demangeon

Type systems for the termination of mobile processes 28

Johan Dovland, Einar Broch Johnsen, Olaf Owe and Martin Steffen

Lazy behavioral subtyping 31

Stephen Fenech, Gordon Pace and Gerardo Schneider

Detection of conflicts in electronic contracts 34

Pavel Grigorenko

Higher-order attribute semantics of flat declarative languages 37

Damas Gruska

Quantification of information flow for value-passing process algebra 40

Nan Guan, Wang Yi, Zonghua Gu, and Ge Yu

Improving scalability of model-checking for minimizing buffer requirements of synchronous

dataflow graphs

43

Abubakar Hassan, Ian Mackie and Shinya Sato

Translating interaction nets to C 47

Dag Hovland

A type system for usage of software components 51

5

Hans Hüttel and Willard Thór Rafnsson

Secrecy in mobile ad-hoc networks 54

Peter A. Jonsson and Johan Nordlander

On building a supercompiler for GHC 57

István Knoll, Anders P. Ravn and Arne Skou

A semantics for a real-time actor language 60

Marcel Kyas, Andries Stam, Martin Steffen and Arild Torjusen

A specification-driven interpreter for testing asynchronous Creol component 63

Timo Nummenmaa

A method for modelling probabilistic object behaviour for simulations of formal specifications 66

Cristian Prisacariu

Extending Kleene algebra with synchrony: completeness and decidability 69

Stefan Ratschan and Jan-Georg Smaus

Finding errors of hybrid systems by optimising an abstraction-based quality estimate 72

Rivo Roo and Juhan Ernits

Model-based testing of a web-based positioning application 75

Adrian Rutle, Alessandro Rossini, Yngve Lamo and Uwe Wolter

A category-theoretical approach to the formalisation of version control in MDE 78

Adrian Rutle, Alessandro Rossini, Yngve Lamo and Uwe Wolter

Automatic definition of model transformations at the instance level 81

Felix Schernhammer and Bernhard Gramlich

On operational termination of deterministic conditional rewrite systems 84

Neva Slani and Francisco Martins

Secure open networks 87

Florian Stenger and Janis Voigtländer

Parametricity for Haskell with imprecise error semantics 90

Peter Sørensen and Jan Madsen

Consistency check for component-based design of embedded systems using SAT-solving 93

Claus Thrane, Uli Fahrenberg and Kim G. Larsen

Quantitative simulations of weighted transition systems 97

Claus Thrane, Uffe Sørensen and Kim G. Larsen

Slicing for Uppaal 100

Peter Ölveczky and Daniela Lepri

Towards model checking bounded response in real-time Maude 103

6

Coordination via interaction constraints

Dave Clarke
Dept. of Computer Science, Katholieke Universiteit Leuven

Celestijnenlaan 200A, B-3001 Heverlee, Belgium
dave.clarke@cs.kuleuven.be

Wegner described coordination as constrained interaction. This talk will explore a literal interpretation

of this idea by using constraint satisfaction as the basis of a coordination model. Our model derives from

the behavioural constraints underlying Arbab’s Reo coordination model, though extends it considerably.

Coordination in Reo emerges from the composition of the local behavioural constraints of primitives

such as channels in a component connector. Expressing behavioral possibilities as constraints provides

a new computational model for component connectors, which also offers a clear intensional description

of behaviour. By exploring variations on the constraint paradigm, such as open constraints and partial

solutions, more refined interaction patterns can be expressed, including interaction with an unknown

world and on-the-fly-constraint generation.

7

A rule-based approach
to the global dynamics of protein networks

Vincent Danos
Laboratory for Foundations of Computer Science, School of Informatics,

University of Edinburgh
Informatics Forum, 10 Crichton Street, Edinburgh EH8 9AB, United Kingdom

vdanos@inf.ed.ac.uk

Over the past decade, networks have emerged as a biological paradigm. High-throughput experimen-

tal techniques, bioinformatics and improved data analysis have made a global systemic view possible.

However statistical studies of network structure (degree distributions, motifs, etc.) are limited by the fact

that network descriptions (usually plain graphs) are static. One would like to investigate the network

dynamics. Bridging this gap between network structure and function poses serious challenges. One

needs high-quality network data. One also needs new modelling techniques since the traditional ones

cannot cope with the inherent combinatorial complexity. We present an other approach grounded in the

computer science of distributed systems, that allows us to consider truly global cellular systems, and

investigate their dynamics.

8

Engineering constraint solvers
for the analysis of hybrid systems

Martin Fränzle
Abteilung Hybride Systeme, Department für Informatik,

Carl von Ossietzky Universität Oldenburg
Escherweg 2, D-26121 Oldenburg, Germany

fraenzle@informatik.uni-oldenburg.de

Safety-critical embedded systems often operate within or even comprise tightly coupled networks of both

discrete-state and continuous-state components. The behavior of such hybrid discrete-continuous sys-

tems cannot be fully understood without explicitly modeling and analyzing the tight interaction of their

discrete switching behavior and their continuous dynamics, as mutual feedback confines fully separate

analysis to limited cases. Tools for building such integrated models and for simulating their approxi-

mate dynamics are commercially available. Simulation is, however, inherently incomplete and has to be

complemented by verification, which amounts to showing that the coupled dynamics of the embedded

system and its environment is well-behaved, regardless of the actual disturbance and the influences of

the application context, as entering through the open inputs of the system under investigation. Basic no-

tions of being well-behaved demand that the system under investigation may never reach an undesirable

state (safety), that it will converge to a certain set of states (stabilization), or that it can be guaranteed to

eventually reach a desirable state (progress).

Within this talk, we concentrate on automatic verification and analysis of hybrid systems, with a focus on

fully symbolic methods manipulating both the discrete and the continuous state components symbolically

by means of predicative encodings and dedicated constraint solvers. We provide a brief introduction to

hybrid discrete-continuous systems, demonstrate the use of predicative encodings for compactly encod-

ing operational high-level models, and continue to a set of constraint-based methods for automatically

analyzing different classes of hybrid discrete-continuous dynamics. Covering the range from non-linear

discrete-time hybrid systems to probabilistic hybrid systems, advanced arithmetic constraint solvers will

be used as a workhorse for manipulating large and complex-structured Boolean combinations of arith-

metic constraints arising in their analysis tasks.

9

Ten years of model-program theory at Microsoft:
from research to product impact

Margus Veanes
Foundations of Software Engineering Group, Microsoft Research

One Microsoft Way, Redmond, WA 98052, USA
margus@microsoft.com

Model programs, written in C# or AsmL, were recently adapted in the Windows organization at Microsoft

as the standard for doing behavioral modeling of application-level network protocols. The main focus

currently is on model-based testing, which is a cornerstone of the wider protocol quality assurance effort

that is a part of Microsoft’s commitment to comply with the requirements of the Department of Justice

and the European Union. We look back at how this technology evolved in Research and ended up in the

Product land. Looking ahead, model-based development, supported by various formal methods, will be

an integrated part of protocol development. We look at some recent advances and challenges in model-

program analysis.

10

Relational bytecode correlations
(Extended abstract)

Lennart Beringer

Institut für Informatik, Ludwig-Maximilians-Universität München

Oettingenstrasse 67, 80538 München, Germany

beringer@tcs.ifi.lmu.de

Abstract. We present a calculus for tracking indistinguishability relationships

between values through pairs of bytecode programs. The calculus may serve as

a certification mechanism for a variant of non-interference as well as for a re-

stricted form of transformation validation. Contrary to previous type systems for

non-interference, no restrictions are imposed on the control flow structure of pro-

grams. Objects, static and virtual methods are included, and heap-local reasoning

is supported by frame rules. In combination with polyvariance, the latter enable

the modular verification of programs over heap-allocated data structures, which

we illustrate by verifying and comparing different implementations of list copy-

ing. The material is based on a complete formalisation in Isabelle/HOL.

1 Introduction

Non-interference is a well-known program property in the area of language-based se-

curity [6]. In its most basic form for a simple imperative language, it is formulated by

separating the program variables into public (low security) L and private (high security)

variables H . The property then requires that the program preserves the relation =L be-

tween states, which is to say that the final states of two executions agree on all variables

in L whenever the initial states did.

A similar property specifies the semantic validity of program transformations: two

executions (now of different programs) commencing in identical states should yield

identical states, or should at least yield return states which agree on all variables that

are relevant for the ensuing program continuation.

In this paper, we outline a new proof system that may be used for certifying proper-

ties of both kinds, for a fragment of sequential Java bytecode. The calculus generalises

the two disciplines by considering two program phrases, a relation constraining pairs

of initial states, and a relation constraining return values and final states. Its interpreta-

tion requires that any two terminating executions of the phrases commencing in states

related by the former relation yield configurations that are related by the latter relation.

In addition to the basic instructions for transferring values between the operand stack

and local variables, the fragment of bytecode considered includes object creation and

manipulation, static and virtual methods, and conditional and unconditional jumps.

The usage of an explicitly relational judgement form differentiates our approach

from most static analyses presented for non-interference in the literature. These employ

11

non-relational type systems or abstract interpretations, but are often restrictive in at least

some of the following respects. First, occurrences of low events (such as assignments

to public variables) are often forbidden to occur in code regions whose execution is

predicated on a private variable, even if these occurrences do not affect the final states.

Secondly, semantic equivalences of e.g. the two branches of a high conditional are not

taken into account, even if the equivalence may be detected by simple program trans-

formations or program analyses such as copy propagation. Thirdly, the effect of method

invocations on heap objects is usually constrained along the axis of visibility (i.e. the

order of the security lattice separating low from high), irrespectively of the reachabil-

ity of objects from the method parameters. Finally, type systems for non-interference

are often restricted to bytecode of essentially structured control flow in the sense that

the analysis (or its correctness) depends on the availability of annotations which par-

tition the code into regions corresponding to high-level code structures. The calculus

proposed in the present paper addresses all these issues. First, we allow in principle ar-

bitrary events to occur in high branches, as long as such events are statically identifiable

as being compatible with the desired security condition on final states. Second, our for-

mulation is easily seen to be compatible with semantics preserving code transformations

and incorporates a form of copy propagation. Thirdly, we improve on the modularity

of verification by including frame rules which allow one to embed judgements at ap-

plication sites where additional heap objects are present, and do not impose an explicit

effect-limitation along the axis of visibility. Finally, we do not require annotations that

essentially enforce structured control flow but instead treat arbitrary unstructured code.

Our calculus is based on a notion of abstract states that approximates the equality

between values held in the storage locations (local variables, operand stack positions,

object fields) of a concrete JVM state. Abstract states comprise similar components as

concrete states, but contain abstract anonymous values (“colours”) instead of concrete

runtime values. Occurrences of the same abstract value in different abstract storage lo-

cations represents equality of the concrete values in the corresponding locations of a

compatible concrete state. On integer values, different abstract values may well abstract

one and the same concrete value. Address values, in contrast, are required to be ab-

stracted to different colours, resulting in the separation discipline necessary for admit-

ting the above-mentioned frame rules [5]. Due to the necessarily approximative nature

of the described value abstractions our calculus represents a conservative static analy-

sis and may be seen as an explicitly relational abstract interpretation or type system.

Indeed, while we expect our calculus to be formally embeddable in relational general-

purpose program logics such as Benton’s Relational Hoare Logics [3], we do not in-

clude any form of logical reasoning in the calculus.

Symbolic assertions in our calculus consist of pairs of abstract states, together with

an administrative component that associates basic type information as well as a secu-

rity level to each colour in use. These structures are called relational shape descriptions

(RSD’s for short) and are interpreted over pairs of concrete states. In addition to the con-

straints arising from the interpretation of the two abstract states contained in an RSD,

the concrete states have to satisfy the following property. Whenever a colour occurs in

both abstract states, the concrete values interpreting the colour in the two concrete states

must be indistinguishable according to the security level associated with this colour in

12

the administrative component. In particular, any colour of integer type that is associated

with the public security level must be interpreted identically in the two concrete states.

Thus, RSD’s generalise the information contained in abstract states of non-relational

type systems for non-interference in that the colours introduce an additional layer of

abstraction: the security levels are not directly associated with variables, and occur-

rences of a colour in the two abstract states may well be in different (abstract) storage

locations.

The main judgement form of our calculus associates a pair of phrases with a pre-

RSD and a post-RSD, and is interpreted in a (relational) partial-correctness style. In-

deed, a special case of the interpretation asserts that the final states of two terminating

executions commencing in states related by the pre-RSD are related by the post-RSD.

However, the formal interpretation of judgements is more general as it extends this pre-

post-relationship to all separated state extensions of the abstract states explicitly men-

tioned in the judgement. This interpretation not only makes the frame rule easy to justify

but also yields a stronger guarantee than previous type systems as non-interference is

directly guaranteed also for states containing additional objects.1

The proof system includes rules for pairs of correlated instructions (for example,

allocations of objects of the same class in both phrases) as well as rules that affect only

one of the two phrases. Proof rules of the latter kind are used for code segments where

the two phrases proceed in a non-correlated way (roughly speaking, such segments cor-

respond to high code regions, but in the absence of a formal separation into high and

low code regions this notion is only phenomenologically observed rather than actively

enforced) and also for simple instructions transferring abstract values between the com-

ponents of abstract states. Due to the occurrence of uncorrelated method invocations,

the unary rules are isolated as a separate auxiliary proof system which is embedded

into the main relational proof system using dedicated rules. Frame rules are given for

both judgement forms, as are axiom rules that extract assumptions from appropriate

(polyvariant) unary and relational proof contexts, and further structural rules.

In order to maintain the copy propagation information embodied in abstract states

across method invocations, judgements are required to preserve colours and abstract

addresses. This means that the administrative component of the post-RSD must con-

tain the administrative component of the pre-RSD, and that each abstract object in the

abstract heap of an initial abstract state must be present (albeit with potentially differ-

ent abstract values in the abstract fields) in the corresponding abstract heap of the final

RSD. Thus, while the interpretation of object colours of a single RSD amounts to a

partial bijection between addresses (essentially the partial bijection constructed in the

work of [1] and [2]), the resulting discipline regarding objects across a judgement is

slightly different from the notion of non-interference used by [1] and [2]. In particular,

the preservation of address colours in the unary proof system enables the specification

of policies which, for example, guarantee that the result of a method is the value passed

in a certain argument position, or that the result points to a freshly allocated object.

1 Having completed the work outlined in this paper, we learned that our technique is similar

to resource Kripke semantics, a technique employed by Birkedal and Yang for modelling the

semantics of higher-order separation logics [4].

13

This extended abstract is based on a complete formalisation of the calculus in Is-

abelle/HOL which comprises the definition of an operational semantics for the chosen

language fragment, the formal derivation of all proof rules, and the example verifica-

tion of selected program fragments. The latter includes the verification of a method

for copying (the spine of) heap-allocated lists, for non-cyclic lists of arbitrary length.

The specification of such data types is defined using abstract representation predicates

similar to the concrete predicates used in Reynolds’ introductory paper on Separation

logic [5]. A proof using only unary rules establishes that a single execution indeed cre-

ates a copy of the list’s spine (with shared abstract pointers to the content-representing

objects), while the relational proof system is used to establish the correlation between

different variations of the code. These variations arise from each other by simple peep-

hole transformations. Depending on the choice of security levels in the administrative

components, these judgements may either be read as witnesses for the semantic ad-

missibility of the transformations or as a non-interference statement asserting that a

program environment cannot discover which of the two branches of a high conditional

has been executed if each branch contains a different variation of the copying routine.

Acknowledgements

This work was supported by the Information Society Technologies programme of the European

Commission, Future and Emerging Technologies under the IST-2005-015905 MOBIUS project,

and the DFG-funded project InfoZert, grant number Be 3712/2-1. We are grateful to the members

of both projects for discussions on type systems and program logics for information flow.

References

1. Anindya Banerjee and David A. Naumann. Stack-based access control and secure information

flow. J. Funct. Program., 15(2):131–177, 2005.

2. Gilles Barthe, David Pichardie, and Tamara Rezk. A Certified Lightweight Non-Interference

Java Bytecode Verifier. In Rocco De Nicola, editor, Proceedings of 16th European Symposium
on Programming (ESOP’07), volume 4421 of LNCS, pages 125–140. Springer, 2007.

3. Nick Benton. Simple relational correctness proofs for static analyses and program transfor-

mations. In Neil D. Jones and Xavier Leroy, editors, Proceedings of the 31st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL 2004), pages 14–25.

ACM Press, 2004.

4. Lars Birkedal and Hongseok Yang. Relational parametricity and separation logic. In Helmut

Seidl, editor, Proceedings of the 10 International Conference on Foundations of Software
Science and Computational Structures (FOSSACS 2007), volume 4423 of LNCS, pages 93–

107. Springer, March 2007.

5. John C. Reynolds. Separation logic: A logic for shared mutable data structures. In Proceedings
of the 17th IEEE Symposium on Logic in Computer Science (LICS 2002), pages 55–74. IEEE

Computer Society, 2002.

6. Andrei Sabelfeld and Andrew C. Myers. Language-based information-flow security. IEEE
Journal on Selected Areas in Communications – special issue on Formal Methods for Security,

21(1):5 – 19, January 2003.

14

�������� ��	
�� ������ ��	�	��

������� ��	��	
�	��	� ������� �������

���	�������� �� ������	��
	

���������� �	� ���
	�� �� ���� �	

������� ��	
	�� 	� � �
��	�� �� ����
� ������� ����� �	�� ���
� ��
��� ��
	��
�������	��� �	�
 ���� �	�� ��� ���� ������� �� ���	�� ��
��	
	�� 	� �� �! ���" ����	
��	��� �� ��	� �
��	�� ��# $� ����	� 	� ��
�	������� ��	
	�� ��� ���� �#���� �� ��
	�	��� �$���	��! $�� 	� ��� $�
����� ������ 	� ���" ���
�� �� �� ������� �#������ �	�
"
�! 	�
���%
	�� ������� ���	��! ������� ��������! �������
�������	��! �������
��	�����
! ������� ���	��	��! ������� �������	&��	�� ��� �� �� �'�� (�%
���� ����� ��# ���� $� �#����! �	�)�������! *���#�! +����! ,�����!
��� -�#�	! .��� �� ��� � ���

/�����" ����	��! $" ����"	�� � ��	
	�� �
��	�� �� � ������� � �	�� �
��	
	��
�	��	��) 0	�� � �	� ��
�� 	� �1! � �� � ������� � ′ ���� $��#� �	�
� ��� ��
���	�� ���" �� �� #��	�$�� 	�)� 2� ��	
� ������� � ′ 	� �$��	��
������� $�
�����
�������	�� ���� � $" ���#	�� ��� �� �������� ���� ��
��� �3
� �	��� �	�
��" ��� 	��	�
��" �� #���� �� �� #��	�$�� 	�)�

2� �	� �� �� ����� ���� 	� �� ������ ��� �� ����	�	���� ��	
	�� �
�%
�	�� $"
��$	�	�� 	� �	�� �$����
� 	��������	�� ��� ���� 4�� ����"�	� �5!6��
2�	� ������ 	��� � ��� 	��	��� �� �� ������ ����	�� $��� ��	
	�� ���
������" $��� �����
"�

2� 	��
�� $ ������	&� �� �������� 7�" ����! � �� 	������ ��
� ��
	�
 ������" �� �� #��	�$�� 	� �� ��	
	��
�	��	��)! ��� �� ��	� �%
�
� �
���� #����� 8�� 	�����
! ���
����	�� �
��	�" ������	�! 	� ��" $
��9
	�� ��
���	�� .��� �� ���	�" �� �� #��	�$�
����	�	�� �
"������! ��
.��� 	�� �	��! �� .��� 	� 	� ���"� 	��� � �	#� ����� 2�����! ��� ������	��
��	
	��! ��� ���" �� �������� ���� �� ��� �3
� 7���0)1
�� $ �	�
����! $��
���� �� �������� ���� �� ��� ��# ��" 	���
�! ���
�	#�"! �� ��	� ���	�"!
�� ��	� �	�� �� �� ��	� �����

2� �����	�� �������� 	� � ��� ��	��
�������	�� ��� �
� 	���� ���
��� ������ 8	���! $" � ������� 0����4��1 ����	
 ����"�	�! ��
������ 4�� ����%
"�	� �� �� ������� 	� ����
� �	�� 	�������	�� �$��� �� ���� �� #��	�$��
�	�� ���
� �� �� ������" �� 	������ 2��! ������	�� � $�
�����
����%
���	��! � ����
 �� ��	
	�� �
��	�� $" ��	�� ��
� ���	�	���� 	�������	��
�� 	���	�" ��#��
" �� �� ������� �� $ ��� 0�� ���#�1 	� �� ��	
�
��������

15

����� � ��	
��� � �� ���	�� �� ������� ��� ��� 	� ��	
��� ��������� ��
� ��� �� ������������ ��� ��� 	� ��������	�� �� �� �� ���	�� ��� ��������	�
��������	� �� ����� ������������→ ������ � ��	����� ψ �� � �� ������ �		����
��� ��	� ℘��������������� → !"��� #����$�

����� ��	 ��	
���� �1 ��� �2 ��� � ��� %∈ ������1� ∩������2� �1 ���
�2 ��� ���� �	 �� %& 	�
����� ���� ����� � �	 ψ �� �	� �� � ��� ���	� 	� �1 ���
�2 ���� ��� ���� ����� ��� '��� ����� 	� ��� ��������� �� % ��� ��� �����

(������ �	� ������ � �1� ����� �����	
��
 �
� � �� �
��) ��� ��� �2�
����� �����	���
 �� �
���� �
��) ���� �1�� !��*$ 	�
����� �	 �2 ����
����� � �	 ������ ��� � �� ��� ��� 	� ��� 	�������	� �	�� ��	
���� ������
��� ���� ��� ������� � �� ���� � �� 	�� ��� * �� 	���

+�� � �� � ��	
��� � �� � ��������� 	� � ��� �⊆ �������� #	� ���������
� ��� �
���� ��	����� ψ ��� ��� � �

′
	� ��	
��� � ���� ����� � �	 ��� ��� ��

 ������	� ���� ��� ψ �� �� ��� ������ ��	
��� �� � �����
,� �

′
 �� �� 	������� �� �������
 *��	 	� �	�� ���������� ��	� ��

-� �
′
�� �& 	�
����� �	 � ���� ����� � �	 ψ�

(������ �	� ������ � ��� �	��	���
 (��	
��� ���
���� �� ���� �	 ��� �
� ���� ����� � �	 ��� ��� ��
 ������� ./)! $0 ��� ��� sign ��	������

1���� 23� 3��
���� ��	
��� ��� 1�� �� ��	
���

, � ����4�56�5�) 78 ��=9 87 � ����4�56�5�)
- � �8�&-�) � �8�&-�)
: �8-) �8-)
; � �<,)
/ � 7�) � 7�)
= �) �)

1�������� ; �� � �� ���	��� �� ��� ��� � �′ ��� � �� �� �	 �	�� �������� ����
 	��������
 ��� ���� ��	����� ��� ��� ��� ��
 ������	� �� ��� ��
� 	� �� ���� =
�� �	� �>� ��� �� �� � ���������

�� ��� �� �	 ����� 	�� ��
	����� �� '��� �	��� �������	� ����������
 ��������
��� ��� ��
 �������
 �	�� � ��	
��� � ��� � ��� ��
 ������	� (��� � ��	�����
ψ�

�		� !
�old �)
� ���������� ψ�)
�′ 1�� ���� (ψ ��)

$����� �′ �old

?	�� �� ������ ������ 	������� � �� �� 	������ ��� 	� ���������� ���� �����&
����� ���� ��	��� �	� �� ���	���� ��� ��� ��� 2 �	 �	�� ��� ��������� ���� ����
���� ����� ������ ����	��� � '��	��� �������	�� �� ����
 ���	�����	� 	��� ���
�� ��� �������� ������

16

��� ��� ����	
	�� �� ������� �	���	� �	 ����		���� ����	
	�������	� �	
�������������� ���	�����	
	��� �������� ��	����� � �������	 �� � ��	 ���	� ��
�� ��� �	 ��	� �������	� �� �	�	 ����	
	��� ��	 ���	� �� �� ����� �	�	 �	�� ��
��� ���� ���
��	� ��	����� ��� ����	�� �	�
����	� ����	 �	�	 ��	 ���� � ����	
��
�	� �� �������	� ��� ������
	��� �� � ������
� ������	�
�� �	 �	�� ��
�����	� ����� �����	��� !	 ����
	� ��� 	�� ����	
	�� � ��� �����	� �������	
�� ��� �	�	 �� � ������"�� #$% �	� �����	 �� ��� �������� �	 �	� �� �������	�
�������� �����	� �� �� � �� �	 ����	
	�� �� &	
��� �������� ��������	� � �	�
�� ��������� �	�	 �	 �	���� �� �� ������
	��
�� �	 ����	�� '� �	 �	��"���
���	 �� �	 ������
	�� �������� �	"�	�	�	��	� �����	��� �	�
��� ��	� ��� ��
��������	 �������	 ��������� �	�	 �	 �	����
��� �	 ����	�����

out

s ���� �	
�������	� ���	 #(%� ���	� �)	������ �� ����	
	�� ��

*�� ������
 +�� ���� 	��	 �� �� ��������	� +��� �	 ���������������
&�� +�� �� ��������� ����� ��� ��� 	��	�� *)	������	���� ����	 �� ������

+�� ���� 	��	� ��	
��,	� ���� �� ��
���������)	������ �	 ������
�
�	������� ��� �	 ����� ���	� !	�	�	� �� ������
	�� ���	 ��)	���	�� �	
�������������� ����	 �� �	 ���"	��	 �� �	 ������
 +�� ���� �	����� ���
���	 ��
��,	� �� ���� ��� ���	� �� �	 ���,����� !	�	�	� � �����������
���	 ��)	���	�� �)��	����� ����������� �	 ����������� �� 	������	� ���
�	 �	�	�
��	 ��� ����� -	�.
�� �	 ��,	�� '� �)��	����� 	������	� ��
⊥ -��� ��	�������	. �	� ��� �����	�
�� �	 ��,	�� &	 �������������� ����	
����	�������� �� �	�	 �����	� ��	 �	� �� �	 ����� /�	����	� ���� ��	 �����
��� �	 ��,	�� ��� �	 ��������	� �������������� ����	 �� �	� �� �	 �����

&	 0���	� �������
 ��� �	 �,	��	� �� ������1

0���	�-�0� �� ψ� � 2�&0�3�4∗5.
'��6&1
�01 &	 ���	 �� �	 ����	� -�	� �� ����	
	���.
�1 &	 ������� ����	���� 7�� 8
ψ1 � ���	� ����	���
�&01 9������ ���
 �����	� �������	� ��� ����	
	�� ��
�	�� �� ������"��"�	��
3�4∗1 3���+�� ���� �� �	 ������
 �	�	 	�� ���	 ��������	� ���

Πin
v -ψs. -�������	�: ����	 �	���)	������ ����	
	�� � ��� ψ.

Πout
v -ψs. -�������	�: ����	 ���	�)	������ ����	
	�� � ��� ψ.

/6&�6&1
�1 � ������
 ����	 ��� �� "������	�� ��� ψ ��� ��
;*4'�
�
� 2�5
�old 2∅5
���	 � ����� ��
�old �
��� 	�� ����	
	�� � ���
 � �� < �� �0 ��
�� *)*+�-0&9&-�.. &=6* �	�
��� 	�� � ∈3*�0 -�&0���0&9&-�.. ��

17

�� �∈ � ∧Πin
v �ψs��=Πout

v �ψs� ∧ � ∈ LIV Eout
s ��	

� �∪��
� � ∪ ��������� � �������

	
���
	
����

	
���
	
����

��� ����	 �	���
��	 �
�	 ��	�	 ��	 �
�� � �
��	
�� 	� �� ����� �	 �
�
��!
�	
� �
 � ���!��� �
� �� 	��� �	� �� ��	 "���	 ���� ��	 	� � � �������
�
��	��
! �
� � ��
�	� � #�����$

��� "��% ��� �
	 ����� �
���� �
� ���!��� ����
!� �$	 �� �	�
	 ����
!
"��� �	�	�� �� � ����	��� �� �
�	�	�$ &� ��
 ��� 	 ��� �
	� "��� ��	 � �����
����
! �������� �
 '()$ *
 ����	�	
�����
 �� ��	 �����	�	 ��!������ ��� + ���,
!���� "�	�	 ����	 ����	���	 ��%	 �!
 �
� ������� ��	 ��
��	�	�� �� ���	���
 		
 �	�	���	�� �
� ��	����
��� 	-�	���	
��� �	��� ��
��� ��	 ���� ����� ��
��	 ��!������$

����������

'.) �$ /	�	�$ ������� ��	
	��$ &
 &+�� 01.2 ����		��
! �� ��	 3�� �
�	�
�,
���
�� ��
�	�	
�	 �
 ����"��	 	
!�
		��
!� ��!	 456,446� ������"��� �7�
��*� .61.$ &��� ��	$

'8) 9$ ���$ � ����� �� ������� ��	
	�� ��
��	���$ 7���
�� �� ���!�����
!
:�
!��!	� ���$ 5� ��!	 .8.,.16� .663$

'5) 9�	���
! ��	��
� ;�

	 <$ ��	��
� �
� +��� ;�
%�
$ ��	�
	���� �� ����
���� ������	�$ ����
!	�,#	���! �	" =��%� &
�$� .666$

'4) ������% +����� <����� +����$ ������
� 	����������	��� � �	��� ����	
�
����� ��� ����	
 ������	� �� �������� ��
�����
�	�� �� ������	���	�� �� ���

��	���$ &
 +�
�	�	
�	 <	���� �� ��	 ��-�� *

��� *+� �&>�:*��&>*+�
�������� �
 ���
����	 �� ���!�����
! :�
!��!	� ��!	 851,838� :�
*
!	�	� +������
��� .6??$ *+� ��	� �	" =��%$

'3) :�� @�	 *
�	�	
 $ ������� ������	� ��� ���
	��	���	�� ��� ��� � ��������
�	�� ������� $��$A$ ��	� � A&B�� �
��	���� �� +��	
��!	
���� .664�
��!	 ...,.8C$

'() &$ �����	
�� A$ D�
����
�� ��� �������
	�� ��� ������� ��	
	��� ����

������ �� ������
� ������	
�� ����$ E*+� �&>�:*� 8CC1 /��%��� �

������� ���������
 �
� ���!��� ��
��������
E� ��
 9��
����� +*� ��* �
?,1 >	

��� 8CC1 � 8CC1 � *+� ��	� ��$.83,.54 $

18

A Certifiable Formal Semantics of C

Maksym Bortin Christoph Lüth Dennis Walter

1 Introduction

This paper presents a formalisation of a subset of the C programming language, and a corresponding verification
calculus, in the theorem prover Isabelle. There are of course many and varied approaches to the verification of
safety-critical programs. The characteristics of our approach stem from the application domain1: the certifica-
tion of control software for autonomous mobile robots [3]. This means that firstly, our verification techniques
need to stand up to certification by an external agency such as the TÜV; secondly, we can restrict ourselves to
a subset of C tailored for safety-critical applications, such as MISRA C [5] (in fact, this is even required by the
relevant standard IEC 61508); and thirdly, the algorithms to be verified are comparatively sophisticated for a
safety function, involving the calculation of safety zones from a model of the braking behaviour of the robot.

Our verification is based on a formalisation of a subset of MISRA C in the theorem prover Isabelle in typed
higher-order logic (HOL). Using Isabelle is crucial to our approach: based on the C semantics, we can build a
proof calculus and verify its correctness inside Isabelle. Thus, the validation of our verification can focus on
the semantics of C as presented here. Further, using Isabelle allows us to use higher-order logic to express our
specifications, so we are not tied to a specific specification language.

2 A formal semantics for a C subset

Overall, our model is close to a text-book semantics as found in e.g. [7], but of course some extensions are
necessary to cover features of the C programming language like pointers and their arithmetic, nested structures,
arrays and expressions with side-effects.

2.1 The memory model

A state represents a program’s memory. In contrast to the usual memory model as a stack of local variables
and a heap containing allocated objects, we use a flat model where all objects are given a base location. The
state maps these base locations to object representations. Fig. 1 depicts the structure of a state.

Concretely, a state is a partial function Σ : BaseLoc ⇀ (Type × (N ⇀ Val)) mapping base locations
to representations of scalar or structured values and their (run-time) type Type. Objects are represented as
sequences of what the C standard calls scalar values, i.e. integer and floating-point numbers and addresses.
These sequences are modelled as partial functions from N to Val , the type of scalar values. To access scalar
values (possibly inside structures or arrays) we use locations, which are pairs (BaseLoc × N). Thus, locations
represent addresses. They allow a limited form of arithmetic, as defined in the standard: we can add and
subtract the offsets of locations sharing the same base location.

Our model precludes the use of structured values in expressions, so they cannot occur as arguments to
assignment or functions. The basic operations on states are allocation, deallocation, reading and writing:

extend : BaseLoc → Σ → Σ read : Loc → Σ → Val
dealloc : BaseLoc → Σ → Σ update : Loc → Val → Σ → Σ

Deallocation is currently used for local variables on function exit; malloc and free could easily be supported
by our model as well. State updates always succeed, i.e. at the state level we don’t perform type checks,
array bounds checks or pointer validity checks. Sanity checks are instead inserted into the semantics of pointer
dereferencing and array access.

1http://www.sams-project.org/

19

BaseLoc0 Type0 Val0,0 Val0,1 V al0,2 · · ·
BaseLoc1 Type1 Val1,0

...
...

...
...

...
BaseLocn Typen Valn,0 Valn,1

Figure 1: A state maps base locations to types and sequences of scalar values

2.2 Language features

This is a brief and incomplete list of supported (•) and unsupported (◦) features of the C language.

• The address-of operator & ◦ Casts to and from void *
• Arrays and nested structures ◦ Function pointers
• Pointer offsets and subtraction ◦ union
• sizeof operator ◦ switch, goto, break, continue
• Side-effects in expressions ◦ Dynamic memory management (malloc)

2.3 State transformer semantics

The abstract syntax of C programs is modelled as a collection of Isabelle/HOL datatypes. We provide a
deterministic denotational semantics for the language that identifies all kinds of faults like invalid memory
access, non-termination or division by zero as complete failure. Hence, the semantics of functions, statements
and expressions map the corresponding data type to partial state transformers:

[[stmt]] : Γ → Σ ⇀ 1× Σ
[[expr]] : Γ → Σ ⇀ Val × Σ

[[f(x1, . . . , xn)]] : Γ→ Valn → Σ ⇀ Val × Σ

An environment Γ maps a variable to its allocated base location, and function identifiers to their semantics:

Γ ∼= (Id ⇀ BaseLoc)× (FunId ⇀ (Valn → Σ ⇀ Val × Σ))

Since expressions can have side-effects, evaluation order is important. However, the MISRA-C guidelines [5,
Rule 12.2] require that an expression must yield the same value under every evaluation order. As we only
consider MISRA-conformant programs, it is appropriate to fix the evaluation order, proceeding from left to
right for both function argument lists and expression trees.

A rather drastic simplification from a theoretical point of view is the lack of support for recursive functions
(also a MISRA requirement). This allows us to give semantics to functions in a sequential fashion without the
need for a fixed-point operator. Thus, the computational power of our language subset rests on the presence of
while-loops, the semantics of which are given in terms of the least number of unfoldings of the loop body.

3 Proving Properties

We use preconditions and postconditions of functions and invariants of while-loops for program specifications.
Additionally, as a means to express framing properties — i.e. to specify parts of the state that do not change—
we use assignment lists. They resemble JML’s assignable-clauses [1], and are lists of expression patterns which
evaluate to a set of locations that are allowed to be modified.

Very classically, total correctness of a function (or block of statements) means (i) the function (block)
terminates for all states satisfying the precondition; (ii) every state satisfying the precondition is transformed
by the semantics of the function (block) to a state satisfying the postcondition; (iii) all locations not in the set of
modifiable locations have kept their initial values after program execution. Total correctness is derived through
a Hoare-style calculus [4]. We have correctness assertions of the form Γ �stmt [P] c [Q], where P and Q are
state predicates, i.e. functions Σ→ bool . We decided to embed predicates shallowly because this gives us the full
expressiveness of HOL without tying us to a specific specification language. As a consequence, the assignment

20

rule in our calculus (A) uses state change operations instead of syntactic substitution in the predicate as usual
(B), a characteristic shared with e.g. Schirmer’s approach [6]:

(A)
Γ �expr [P] E [λvS. Q (update (Γ x) v S)]

Γ �stmt [P] x := E [Q]
Γ �stmt [P [x/E]] x := E [P] (B)

An important consequence is that we obtain a rather simple representation and uniform proof goals with regards
to aliasing. Terms of the form read l1 (update l2 v Σ) either simplify to v for l1 = l2, to read l1 S for l1 �= l2, or
they lead to a case split for cases where the equality cannot be derived.

Practically, the calculus is used in a weakest precondition fashion. We formulated all proof rules so that
they can automatically be applied by a proof procedure that finishes with a number of verification conditions.
Isabelle’s metavariable mechanism is used to this end. For this to work, in all rules the preconditions in the
premisses and the postcondition of the conclusion consists of a single metavariable. The verification conditions
are then to be proved by a domain expert.

4 A Verification Environment

The encoding as sketched above forms the core of a verification environment built around it. A syntactic front-
end is used to parse and typecheck the C programs, check conformance to the MISRA guidelines, and translate
the abstract syntax into the Isabelle datatype; since this is mainly convenience and syntactic translation, it
does not impinge on correctness.

The specifications are embedded into the program by using annotations as in JML or Caduceus [2], and
translated along with the program. This way, programs and specifications are kept in sync automatically: we
can either translate a given program to obtain a running program, or feed it through the verification tool.

References

[1] L. Burdy, Y. Cheon, D. Cok, M. Ernst, J. Kiniry, G. T. Leavens, K. R. M. Leino, and E. Poll. An overview
of JML tools and applications. International Journal on Software Tools for Technology Transfer, 7(3):212–
232, June 2005.

[2] J.-C. Filliâtre and C. Marché. Multi-Prover Verification of C Programs. In Sixth International Conference
on Formal Engineering Methods (ICFEM), volume 3308 of Lecture Notes in Computer Science, pages 15–29,
Seattle, Nov. 2004. Springer.

[3] U. Frese, D. Hausmann, C. Lüth, H. Täubig, and D. Walter. The importance of being formal. In H. Hungar,
editor, International Workshop on the Certification of Safety-Critical Software Controlled Systems Safe-
Cert’08, To appear in Electronic Notes in Theoretical Computer Science, 2008.

[4] C. A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM, 12(10):576–580, 1969.

[5] MISRA-C: 2004. Guidelines for the use of the C language in critical systems., 2004.

[6] N. Schirmer. A verification environment for sequential imperative programs in Isabelle/HOL. In F. Baader
and A. Voronkov, editors, Logic for Programming, Artificial Intelligence, and Reasoning, 11th International
Conference LPAR 2004, volume 3452 of Lecture Notes in Computer Science, pages 398–414. Springer, 2004.

[7] G. Winskel. The Formal Semantics of Programming Langauges. Foundations of Computing Series. The MIT
Press, 1993.

21

Type Inference for a Correspondence Certifying Type System

Morten Dahl and Hans Hüttel
Department of Computer Science, Aalborg University

{dahl, hans}@cs.aau.dk

Introduction We present a type inference algorithm for the correspondence certifying
type system presented in [2]. The type system employs dependent types and effects and
guarantees that well-typed processes (expressed in a pi-calculus) satisfy the authenticity
property expressed by correspondences in the process.

Our sound and complete type inference algorithm separates resolution of type constraints
from resolution of effect constraints. Contrary to [2] we do not encode the constraints in a
logic but use an unification algorithm for solving type constraints and a saturation algorithm
for solving effect constraints. We believe this yields a simpler inference algorithm.

Our work illustrates how to do type inference in the presence of bound names and
dependent types with instantiation and abstraction. Using explicit substitutions we find
that only the effect solving algorithm needs to deal with instantiation and abstraction.

We have implemented the algorithm in Caml and found that it performs very efficiently
in practice.

Process Calculus and Type System Processes are modelled using a standard pi-
calculus where messages M , in addition to the standard names and variables, contain pairs
and projections. The calculus is extended with correspondence annotations for expressing
non-injective authenticity properties in the form of begin- and end-events along with ok-
messages. Informally, we say that a process P is safe if in every run of P every end-event
is preceded by a begin-event.

Using dependent pair types together with ok effect types the type system guarantees
that well-typed processes are safe. The typing rules in Figure 1 show the intuition behind
the safety-guarantee: begin-events are collected and stored in the environment by the begins
function (rule pt-par) and whenever an end-event is encountered the environment is re-
quired to contain a matching begin-event (rule pt-end). Furthermore, begin-events can be
transferred using Ok(S) types: the type can contain as many begin-events as available in the
environment (rule mt-ok) which can be made available again by exercising the ok-message
(rule pt-ex).

The last typing rule in Figure 1 illustrates type instantiation and abstraction: pair types
Pair(x : T1, T2) are used to type message pairs (M1,M2) and bind a variable x in T2. In rule
mt-pair, type T2 = T ′

2{M1/x} is the type resulting from substituting x in T ′
2 with M1, or

equivalently, T ′
2 is the type resulting from abstracting M1 out of T2.

22

Γ, begins(P2) � P1 Γ, begins(P1) � P2

Γ � P1 | P2
pt-par

l(M) ∈ effects(Γ)
Γ � end l(M)

pt-end

S ⊆ effects(Γ)
Γ � ok : Ok(S)

mt-ok
Γ � M : Ok(S) Γ, S � P

Γ � exercise M ;P
pt-ex

Γ � M1 : T1 Γ � M2 : T2 T2 = T ′
2{M1/x}

Γ � (M1,M2) : Pair(x : T1, T
′
2)

mt-pair

Figure 1: Selected typing rules

T1
.= T2 type equality

T generative type requirement

Ṡ1
.= Ṡ2 effect equality

l(M) ∈ Ṡ1, . . . , Ṡn effect requirement
Ṡ 	 Ṡ1, . . . , Ṡn effect bound

Figure 2: Constraint language

Type Inference For type inference we first introduce an equivalent formulation of the
type system using nameless dependent pair types similar to the nameless de Bruijn for-
mulation of the lambda calculus. The addition of type variables leads us to an explicit
substitution [1] type T 〈M/ω〉 where ω is a natural number used instead of variables in the
nameless formulation and we define a reduction relation matching that of instantiation, e.g.
Pair(T1, T2)〈M/ω〉 = Pair(T1〈M/ω〉, T2〈M/ω + 1〉).

Our constraint language is shown in Figure 2 and some of the constraint generation
rules are listed in Figure 3. Note the strong resemblance between the constraint generation
rules and the typing rules in Figure 1; soundness and completeness is an easy consequence.
Performing type inference for a given process P under an environment Γ amounts to running
the constraint generation rules on P and Γ thereby producing a set C of constraints and
then looking for a type and effect variable substitution σ satisfying C. Our procedure for
finding a solution is composed of two algorithms: a unification algorithm that first solves all
type constraints and a saturation algorithm that finds a solution to the effect constraints.
Note that solving the type constraints may produce additional effect constraints.

Γ, begins(P2) � P1 � C1

Γ, begins(P1) � P2 � C2

Γ � P1 | P2 � C1 ∪ C2
pc-par

Γ � M � T, C1

C = {l(M) ∈ effects(Γ)}
Γ � end l(M)� C ∪ C1

pc-end

C = {X .= Ok(E), E 	 effects(Γ)}
Γ � ok� X, C

mc-ok

Γ � M � T, C1 Γ, E � P � C2

C = {T .= Ok(E)}
Γ � exercise M ;P � C ∪ C1 ∪ C2

pc-ex

Γ � M1 � T1, C1 Γ � M2 � T2, C2

C = {X .= Pair(T1, X
′
2), T2

.= X ′
2〈M1/1〉}

Γ � (M1,M2)� X, C ∪ C1 ∪ C2
mc-pair

Figure 3: Selected constraint generation rules

23

The unification algorithm is standard in most cases except when trying to solve a type
constraint on form T

.= X〈M/ω〉 where T is not a type variable. To solve this constraint,
X is assigned an opening of T where all variables occurring in T are replaced by fresh
variables. For instance, to solve constraint

Pair(X1, X2)
.= X ′〈M/ω〉

we assign X ′ the type open
(
Pair(X1, X2)

)
= Pair(X ′

1, X
′
2) and the constraint becomes

Pair(X1, X2)
.= Pair(X ′

1, X
′
2)〈M/ω〉. The right hand side of the constraint is reduced

to Pair(X ′
1〈M/ω〉, X ′

2〈M/ω + 1〉) in turn yielding constraints X1
.= X ′

1〈M/ω〉 and X2
.=

X ′
2〈M/ω + 1〉.

The effect constraint solving algorithm is run when only effect constrains remain. It
starts with the solution assigning the empty set to all effect variables and then in turn
tries to satisfy all effect requirements by expanding the sets in the solution. The current
algorithm can be seen as a fixed-point algorithm but with backtracking: at certain points
it has to choose which variable’s set to expand but cannot do so in a deterministic manner;
backtracking is required if a wrong choice is made. For instance, to solve constraint set

l(M) ∈ E1, E2〈M/1〉 , E1 	 ∅
the algorithm starts with the solution assigning ∅ to E1 and E2. It will then try to satisfy
l(M) ∈ E1, E2〈M/1〉 and has to choose if the set of E1 or E2 should be expanded. Choosing
the set of E1, the updated solution E1 = {l(M)}, E2 = ∅ is in conflict with constraint
E1 	 ∅ so backtracking is required. Selecting E2 instead, solution E1 = ∅, E2 = {l(1)} is
finally found. Note that M was abstracted out of l(M).

Conclusion, ongoing and future work A simple type inference algorithm using well-
known unification has been devised. Although worst-case running time can be as must as
exponential, tests with an implementation have shown low running times in practice.

We are currently working on an extension of the algorithm to a type system guaranteeing
robust safety [5] i.e. that a process remains safe in the presence of an arbitrary attacker.
The calculus upon which [5] is based employs symmetric cryptography and future work
include adding support for asymmetric cryptography [3] and injective correspondences [4].

References

[1] Gilles Dowek, Thérèse Hardin, and Claude Kirchner. Higher-order unification via explicit sub-
stitutions. In Proceedings of the Tenth Annual Symposium on Logic in Computer Science, pages
366–374. IEEE Computer Society Press, June 1995.

[2] Andrew D. Gordon, Hans Hüttel, and René Rydhof Hansen. Type inference for correspondence
types. In 6th International Workshop on Security Issues in Concurrency (SecCo 2008), 2008.

[3] Andrew D. Gordon and Alan Jeffrey. Types and effects for asymmetric cryptographic protocols.
In CSFW, pages 77–91. IEEE Computer Society, 2002.

[4] Andrew D. Gordon and Alan Jeffrey. Typing one-to-one and one-to-many correspondences in
security protocols. In ISSS, volume 2609 of LNCS, pages 263–282. Springer, 2002.

[5] Andrew D. Gordon and Alan Jeffrey. Authenticity by typing for security protocols. Journal of
Computer Security, 11(4):451–519, 2003.

24

Contract Monitoring and Call-by-name
Evaluation

— Extended Abstract —

Markus Degen, Peter Thiemann, and Stefan Wehr

Institut für Informatik, Universität Freiburg, Georges-Köhler-Allee 079,
79110 Freiburg, Germany

{degen,thiemann,wehr}@informatik.uni-freiburg.de

Abstract. Contracts are a proven tool in software development. They
provide specifications for operations that may be statically verified or
dynamically validated by contract monitoring.
Contract monitoring for strict languages has an established theoretical
basis. For languages with call-by-name evaluation, several styles of con-
tract monitoring are possible. In this article, we study two such styles:
eager monitoring enforces a contract when it is demanded, possibly eval-
uating expressions not touched by the user code, whereas delayed moni-
toring only proceeds as far as the user code itself can observe.
In each case, an effect system ensures that contract monitoring does not
change the meaning of a program and guarantees that contract moni-
toring is idempotent. Our formalization brings forward semantic reasons
that favor delayed monitoring for a call-by-name language and comes
with a Haskell implementation.

1 Introduction

Design by contract [8] is a methodology for constructing correct software. Each
operation is associated with a contract that defines two assertions, a precondi-
tion and a postcondition, for the operation. The contract is fulfilled if the usual
partial correctness condition is true: If the input meets the precondition and the
operation produces output, then the output is obliged to meet the postcondition.
A program run violates a contract if any of the pre- and postconditions of the
operations involved is false. Thus, a contract provides a (partial) specification of
an operation that every implementation of the operation must fulfill.

While contracts can be verified statically, in practice they are often enforced
dynamically using contract monitoring (cf. Eiffel [7, 6], Java [1, 5], Scheme [10],
or Haskell [4]): The implementation of an operation with monitoring checks the
precondition before performing its computation and checks the postcondition
before returning to its caller. If the precondition of the operation is false, then it
raises an exception blaming its caller. Conversely, if the postcondition does not
hold, then the operation blames itself.

The semantics of contract monitoring is intricate, and its correct and com-
plete implementation is non-trivial [3]. From a practical point of view, contract

25

monitoring should guarantee at least meaning preservation (MP) and behave
idempotently (IP):

MP: If a program run with contract monitoring enabled has no contract viola-
tions, then disabling contract monitoring should not change its meaning.

IP: Applying a contract multiple times is equivalent to applying it once.

The MP property ensures that developers may enable contract monitoring
for a test version of their software and safely disable contract monitoring for
the release version, without running the risk that the test and the release ver-
sion behave differently. The IP property ensures a meaningful notion of contract
composition.

In the context of call-by-value evaluation, there is only one useful and sensible
mode of contract monitoring. This mode corresponds to its implementation in
Eiffel, Java, and Scheme and is the one we just described.

In the context of call-by-name evaluation, there are at least two options, ea-
ger monitoring and delayed monitoring. Eager monitoring enforces an assertion
when it is demanded. That is, it checks the precondition when the function de-
mands its argument and it checks the postcondition when the caller demands the
function’s result. This eager strategy sometimes leads to undesirable behavior
which violates the IP property as pointed out by Hinze et al. [4].

We have developed a formalization which precisely pinpoints where eager
monitoring imposes too many restrictions on expressions subject to a contract.
Hence, we propose delayed monitoring as an alternative form of contract mon-
itoring for languages with call-by-name evaluation. Delayed monitoring places
no restrictions on expressions subject to a contract and enjoys the MP and IP
properties. It defers enforcement of an assertion until all values that it depends
on are evaluated by user code. Thus, monitoring only proceeds as far as the user
code itself can observe. Violations that the user code cannot observe, yet, are
considered to be invisible. Perhaps surprisingly, this delayed interpretation has
a logical foundation: While call-by-value monitoring checks properties according
to classical logic, lazy monitoring relies on a three-valued logic.

Contributions

We have developed a semantic framework for specifying and comparing contract
monitoring in functional languages [2]. The basis of the framework is an extended
version of Moggi’s monadic metalanguage [9] with a fixed monad providing for
nontermination, mutable state, and exceptions1 and an effect system for keeping
track of the effects.

We have developed the semantics of two styles of contract monitoring for
impure functional languages with call-by-name evaluation, eager and delayed
monitoring. Both are defined by translation into the metalanguage.
1 Usually, call-by-name languages provide non-termination as the only effect. However,

there is often a back door that allows other effects to creep in. In Haskell, this back
door is called unsafePerformIO.

26

The semantics enables us to formally prove (or disprove) the MP and IP
properties. The semantics also explains and helps fixing a problem with eager
monitoring observed by Hinze et al. [4]. We define and prove correct a criterion
that fixes the problem by imposing a suitable typing discipline.

We also provide a prototype implementation of delayed monitoring in Haskell [2].

References

1. P. Abercrombie and M. Karaorman. jContractor: Design by contract for Java.
http://jcontractor.sourceforge.net/, 2003.

2. M. Degen, P. Thiemann, and S. Wehr. Contract monitoring and call-by-name
evaluation. Technical Report 243, Institut für Informatik, Universität Freiburg,
http://proglang.informatik.uni-freiburg.de/projects/contracts/, Oct 2008. Full pa-
per and implementation.

3. R. B. Findler and M. Felleisen. Contract soundness for object-oriented languages.
In Proc. 16th ACM Conf. OOPSLA, pages 1–15, Tampa Bay, FL, USA, 2001. ACM
Press, New York.

4. R. Hinze, J. Jeuring, and A. Löh. Typed contracts for functional programming.
In Proc. Eighth International Symposium on Functional and Logic Programming
FLOPS 2006, Fuji Susono, Japan, Apr. 2006. Springer.

5. R. Kramer. iContract — the Java design by contract tool. In TOOLS 26: Tech-
nology of Object-Oriented Languages and Systems, pages 295– 307, Los Alamitos,
CA, USA, 1998.

6. B. Meyer. Applying “design by contract”. Computer, 25(10):40–51, Oct. 1992.
7. B. Meyer. Eiffel: The Language. Prentice-Hall, 1992.
8. B. Meyer. Object-Oriented Software Construction. Prentice-Hall, second edition,

1997.
9. E. Moggi. Notions of computations and monads. Information and Computation,

93:55–92, 1991.
10. The PLT Group. PLT MzLib: Libraries Manual. Rice University, University of

Utah, Dec. 2005. Version 300.

27

Type Systems for the Termination of Mobile Processes

Romain Demangeon

ENS Lyon, Université de Lyon, CNRS, INRIA – France

Termination is a key property in programming theory. It is not only desirable in itself, but also as a
prequisite for other properties (for instance, lock-freedom [KS08]). In this abstract, we address termination
of concurrent systems, and especially systems allowing the definition of dynamically evolving structures:
typically, new servers can be spawned at run-time, names newly created somewhere are sent elsewhere.
Deciding termination for such systems is a challenging task.

We present several type systems for termination in the π-calculus. The soundness of such systems ensures
that a typable term is terminating. We describe several results coming from joint work with D. Hirschkoff,
D. Sangiorgi and N. Kobayashi [DHKS07,DHS08a,DHS08b]; these studies rely on [DS06] as starting point.

1 Weight-based Type Systems

We use as a formalism the standard polyadic π-calculus with only replicated inputs. We denote a polyadic
input action by a(x̃), a polyadic output action by a〈ṽ〉 and a replicated input by !a(x̃).P . When we examine
the semantics of the π-calculus, we notice that the size of a process performing a communication involving non
replicated terms, like, e.g., a〈ṽ〉.P | a(x̃).Q→ P |Q[ṽ/x̃] strictly decreases. Actually, the replication is the sole
source of divergence for π processes: in a replicated communication a〈ṽ〉.P | !a(x̃).Q→ P | Q[ṽ/x̃] | !a(x̃).Q,
the persistence of !a(x̃).Q, which allows us to model the behavior of a server, can let the size of the whole
process increase. Terms P0 and P1 of Fig. 1 represent the kind of processes we want to reject, as they contain
dangerous replications, which lead to diverging behaviours.

The restriction operator ν, allowing the dynamical creation of new names, contributes importantly to the
expressiveness of the π-calculus. However, it is the source of several technical complications in the analyses
we describe below. For the sake of clarity, we will not address here name restriction.

The first type system we present, called S1, is introduced in [DS06]. The main idea is to assign a level (a
natural number) to every name used in the process. The main typing rule, to control replicated processes, is
as follows (here and below, we give a simplified presentation of the typing rules, to ease readability):

Γ, x̃ : T̃ � P : m m < n

Γ �!an(x̃).P : 0
(S1)

For a process to be type-checked, the levels of the names appearing in output position in the continuation
(P) must be smaller than the level of a. Here an means that a is given level n. The judgment Γ � Q : l means
that Q is typable in the context Γ , and that the outputs in Q which do not appear under a replication are
of level at most l.

Soundness of the type system is established as follows: take as a measure on processes the multiset of
levels of all names appearing in output position not under a replication. One proves that for a type-checked
process, this measure strictly decreases at each reduction step: this is insured by the above typing rule.

Remark 1.1 (Complexity of inference). It is easy to see that the inference for S1 is polynomial, as it boils
down to searching for cycles in a graph of domination (an edge between a, b represents the constraint a > b
between levels assigned to names). This algorithm is implemented in [Kob07], and in [Bou08], where a more
expressive variant of S1, described in [DHS08a] is also implemented.

28

P0 =!a(x).a〈x〉 P1 =!a(x).b〈x〉 | !b(y).a〈y〉 P2 =!a(x).b(y).a〈x〉 P3 =!a(x, y).x.(a〈x, y〉 | y)

P4 =!a(x, y, z).x.(a〈x, y, z〉 | y | z) P5 = a(X).(a〈X〉 |X) P6 = a〈X �→ (X | X)〉 | a(F).b(Y).F �Y �

Fig. 1. Motivating examples.

2 Allowing Forms of Recursion

The main disadvantage of S1, from the point of view of expressiveness, is that we reject a process as soon
as it contains a recursion: a replicated input !a(x̃).P whose continuation contains an output on a cannot be
type-checked, For example, the process P2 of Fig. 1 is rejected by our type system (the level of a should to
be strictly greater than itself), although this process is not intrinsically divergent (it requires an input on
a and an input on b to produce a single output on a). Several approaches have been explored to increase
expressiveness by allowing some controlled recursions (processes like P0 should still be rejected).

Multisets of names. The paper [DS06] proposes a more complex system, obtained by considering (replicated)
input sequences as a whole: to type-check a process of the form !a1(x̃1).ak(x̃k).P we compare the levels
of the multiset of names {a1, . . . , ak} (called the weight of {a1, . . . , ak}) with the weight the multiset of
names appearing in output position (again, not under a replication) in P .

The main typing rule of this system, that we call S2, is as follows:

Γ, x̃1 : T̃1, . . . , x̃k : T̃k � P : M {n1, . . . , nk} >lex M

Γ �!an1
1 (x̃1).ank

k (x̃k).P : ∅ (S2)

Here >lex is a lexicographical comparison between multisets of integers, and the judgment Γ � Q : N means
that Q is typable in the context Γ and that N is the multiset of the levels of all outputs not appearing under
a replication in Q.

Remark 2.1 (Complexity of inference). We prove in [DHKS07] that the type inference problem for this
system is NP-complete. The fact that we are lexicographically comparing two multisets of integers leads to
a combinatorial number of possible level assignments and allows us to reduce the problem 1in3 SAT to the
problem of the type inference. We also give in [DHKS07] a variant of system S2, at least as expressive, which
uses algebraic comparisons between multisets of names, instead of multiset comparisons. Type inference for
this variant is polynomial.

Partial orders. However system S2 is still not expressive enough to type complex processes mimicking
the behavior of list-like (a symbol table example is detailed in [DS06]) or tree-like (we give an example in
[DHS08a]) data structures. The action of propagating a request in such data structures is modelled in the π-
calculus by processes like P3 and P4 respectively (Fig. 1) (in these examples, we omit the arguments received
and sent on this node, for the sake of clarity): a firing of a replication trades an input on a name x (modelling
the request on a node of the structure) for outputs on names y, z (y modelling a request on its successor in
the list structure, and y, z modelling requests on its children in the tree structure). In a π-calculus encoding
of such a dynamically evolving structure, the types of x, y and z are necessarily the same, and so are their
levels.

In the case of the list sructure, in such a replication, the weight consumed is equal to the weight re-
leased. This motivates the definition of a more refined type system, S3, in [DS06]. System S3 uses a well-
founded partial order between names. In a typed replication, either we have {n1, . . . , nk} > M (as in S2), or
{n1, . . . , nk} = M and the partial order between names decreases: we are trading inputs for outputs of the
same level, but going down in the partial order. In the case of P3, the partial order will state that the name
a dominates the name b.

29

In [DHS08a], we define a type system which is expressive enough to type-check processes modelling the
behaviour of the tree structure. In that case, the type system has to be modified in a non trivial way, since the
weight associated to the process can increase when a replication is fired. This introduces some technicalities,
in particular in relation with he control of the restriction operator.

3 Higher-order Mobile Calculi

We are currently working on adapting the ideas exposed above to the higher-order paradigm, where the form
of recursion is different. The principles of the previous type system are no longer be applied, as they are
based on controlling the replication operator; in higher-order calculi like HOPI2, a version of the π-calculus
where values carried on channels are processes, this operator is not required to obtain divergence. This is
illustrated, e.g., by the diverging process Q5 = a〈P5〉 | P5 (P5 is defined in Fig. 1).

We prove in [DHS08b] that if we forbid recursive outputs, that is, the possibility for a channel a to carry
processes containing outputs on a (Q5 contains such a recursive output), we obtain a terminating system.
Indeed, we can assign levels to names like in S1 and forbid the presence of outputs on levels higher than l in
a message emitted on a name of level l. Here is a simplified version of the main typing rule of this system:

Γ � P : k Γ � Q : m k < n

Γ � an〈P 〉.Q : max(m, n)
(S4)

We write the judgment Γ � Q : l when Q is typable in the context Γ and the names in output position
in Q are at most of level l.

Termination is enforced as there exists a measure (the multiset of levels of all names at top-level, i.e., not
appearing in a process in message position) which decreases at every reduction step: the several copies of
the message process spawned contain only outputs whose levels are smaller than the level output consumed.

We notice some similarities between this typing rule for output actions and the typing rule for replicated
processes in S1. Indeed, we prove in [DHS08b] that every typable HOPi2 process is encoded (using the
standard encoding from [SW01]) into a first order π-calculus process, which is typable in system S1.

We are however able to adapt system S4 to more complex calculi, such as HOPiω, where values carried
on channels can be higher-order functions, whose codomain is the set of processes. An example is given by
process P6 from Fig. 1, where a function that duplicates a processes is transmitted on channel a. Other
extensions of S4, to calculi combining higher-order features and concurrency, are currently being studied.

References

[Bou08] P. Boutillier. Implementation of a hybrid type system for termination in the π-calculus. Training period
report, ENS Lyon, 2008.

[DHKS07] R. Demangeon, D. Hirschkoff, N. Kobayashi, and D. Sangiorgi. On the complexity of termination inference
for processes. In Proc. of TGC’07, volume 4912 of Lecture Notes in Computer Science, pages 140–155.
Springer, 2007.

[DHS08a] R. Demangeon, D. Hirschkoff, and D. Sangiorgi. Static and dynamic typing for the termination of mobile
processes. In Proc. of TCS’08. Springer Verlag, 2008.

[DHS08b] R. Demangeon, D. Hirschkoff, and D. Sangiorgi. Termination in higher-order concurrent calculi. in prepa-
ration, 2008.

[DS06] Y. Deng and D. Sangiorgi. Ensuring Termination by Typability. Information and Computation,
204(7):1045–1082, 2006.

[Kob07] N. Kobayashi. TyPiCal: Type-based static analyzer for the Pi-Calculus. available from
http://www.kb.ecei.tohoku.ac.jp/~koba/typical/, 2007.

[KS08] N. Kobayashi and D. Sangiorgi. A Hybrid Type System for Lock-Freedom of Mobile Processes. In Proc.
of CAV’08, 2008. to appear.

[SW01] D. Sangiorgi and D. Walker. The π-calculus: a Theory of Mobile Processes. Cambridge University Press,
2001.

30

Lazy Behavioral Subtyping �

Johan Dovland, Einar Broch Johnsen, Olaf Owe, and Martin Steffen

Dept. of Informatics, University of Oslo, Norway

{johand,einarj,olaf,msteffen}@ifi.uio.no

Abstract. Late binding allows flexible code reuse but complicates formal rea-

soning significantly, as a method call’s receiver class is not statically known.

This is especially true when programs are incrementally developed by extend-

ing class hierarchies. This talk presents a novel method to reason about late

bound method calls. In contrast to traditional behavioral subtyping, reverification

is avoided without restricting method overriding to fully behavior-preserving re-

definition. The approach ensures that when analyzing the methods of a class, it

suffices to consider that class and its superclasses. Thus, the full class hierarchy is

not needed, and incremental reasoning is supported. We formalize this approach

as a calculus which lazily imposes context-dependent subtyping constraints on

method definitions. The calculus ensures that all method specifications required

by late bound calls remain satisfied when new classes extend a class hierarchy.

The calculus does not depend on a specific program logic, but the examples use

a Hoare-style proof system. We show soundness of the analysis method.

1 Motivation

Late binding of method calls is a central feature in object-oriented languages and con-

tributes to flexible code reuse. A class may extend its superclasses with new methods,

possibly overriding the existing ones. This flexibility comes at a price: It significantly

complicates reasoning about method calls as the binding of a method call to code cannot

be statically determined; i.e., the binding at run-time depends on the actual class of the

called object. In addition, object-oriented programs are often designed under an open
world assumption: Class hierarchies are extended over time as subclasses are gradually

developed and added. In general, a class hierarchy may be extended with new subclasses

in the future, which will lead to new potential bindings for overridden methods.

To control this flexibility, existing reasoning and verification strategies impose re-

strictions on inheritance and redefinition. One strategy is to ignore openness and assume

a “closed world”; i.e., the proof rules assume that the complete inheritance tree is avail-

able at reasoning time (e.g., [9]). This severely restricts the applicability of the proof

strategy; for example, libraries are designed to be extended. Moreover, the closed world

assumption contradicts inheritance as an object-oriented design principle, which is in-

tended to support incremental development and analysis. If the reasoning relies on the

world being closed, extending the class hierarchy requires a costly reverification.

� This research is partially funded by the EU project IST-33826 CREDO: Modeling and analysis

of evolutionary structures for distributed services (http://credo.cwi.nl).

31

An alternative strategy is to reflect in the verification system that the world is open,

but to constrain how methods may be redefined. The general idea is that to avoid rever-

ification, any redefinition of a method through overriding must preserve certain proper-

ties of the method being redefined. An important part of the properties to be preserved

is the method’s contract; i.e., the pre- and postconditions for its body. The contract can

be seen as a description of the promised behavior of all implementations of the method

as part of its interface description, the method’s commitment. Best known as behavioral
subtyping (e.g, [1,7,8,10]), this strategy achieves incremental reasoning by limiting the

possibilities for code reuse. Once a method has committed to a contract, this commit-

ment may not change in later redefinitions. That is overly restrictive and often violated

in practice [11]; e.g., it is not respected by the standard Java library definitions.

2 Contribution

In this work, we relax the property preservation restriction of behavioral subtyping,

while embracing the open world assumption of incremental program development. The

basic idea is as follows: given a method m declared with p and q as the method’s pre-

and postcondition, there is no need to restrict the behavior of methods overriding m
and require that these adhere to that specification. Instead it suffices to preserve the

“part” of p and q actually used to verify the program at the current stage. Specifically,

if m is used in the program in the form of a method call {r} e.m() {s}, the pre- and

postconditions r and s at that call-site constitute m’s required behavior and it is those

weaker conditions that need to be preserved to avoid reverification. Thus, we distinguish

declaration-site specifications, which need not be enforced on redefinitions, from call-

site requirements, which are in fact enforced on redefinitions. This distinction leads

to behavioral subtyping “by need”. We call the corresponding analysis strategy lazy
behavioral subtyping. This strategy may serve as a blueprint for integrating a flexible

system for program verification of late bound method calls into object-oriented program

development and analysis tools environments [2–4].

The presentation uses an object-oriented kernel language, based on Featherweight

Java [6], and Hoare-style proof outlines. We formalize lazy behavioral subtyping as a

syntax-driven inference system in which the analysis of a class is done in the context

of a proof environment constructed during the analysis. The proof environment keeps

track of the context-dependent requirements on method definitions, derived from late

bound calls. The strategy is incremental; for the analysis of a class C, only knowledge

of C and its superclasses is needed. Proofs derived in the context of superclasses are

never violated by later extensions to the class hierarchy. We show the soundness of

the proposed analysis strategy. The talk builds on previously published work by the

authors [5], but extends this work with methodological aspects and applications in the

context of multiple inheritance.

32

References

1. P. America. Designing an object-oriented programming language with behavioural sub-

typing. In J. W. de Bakker, W.-P. de Roever, and G. Rozenberg, editors, Foundations of
Object-Oriented Languages, pages 60–90. Springer, 1991.

2. M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# programming system: An overview.

In G. Barthe, L. Burdy, M. Huisman, J.-L. Lanet, and T. Muntean, editors, Intl. Workshop on
Construction and Analysis of Safe, Secure, and Interoperable Smart Devices (CASSIS’04),
volume 3362 of LNCS, pages 49–69. Springer, 2005.

3. B. Beckert, R. Hähnle, and P. H. Schmitt, editors. Verification of Object-Oriented Software.
The KeY Approach, volume 4334 of LNAI. Springer, 2007.

4. L. Burdy, Y. Cheon, D. R. Cok, M. Ernst, J. Kiniry, G. T. Leavens, K. R. M. Leino, , and

E. Poll. An overview of JML tools and applications. In T. Arts and W. Fokkink, editors,

Proceedings of FMICS ’03, volume 80 of ENTCS. Elsevier Science Publishers, 2003.

5. J. Dovland, E. B. Johnsen, O. Owe, and M. Steffen. Lazy behavioral subtyping. In J. Cuellar

and T. Maibaum, editors, Proc. 15th Intl. Symposium on Formal Methods (FM’08), volume

5014 of LNCS, pages 52–67. Springer, May 2008.

6. A. Igarashi, B. C. Pierce, and P. Wadler. Featherweight Java: a minimal core calculus for

Java and GJ. ACM Transactions on Programming Languages and Systems, 23(3):396–450,

2001.

7. G. T. Leavens and D. A. Naumann. Behavioral subtyping, specification inheritance, and

modular reasoning. Technical Report 06-20a, Department of Computer Science, Iowa State

University, Ames, Iowa, 2006.

8. B. H. Liskov and J. M. Wing. A behavioral notion of subtyping. ACM Transactions on
Programming Languages and Systems, 16(6):1811–1841, Nov. 1994.

9. C. Pierik and F. S. de Boer. A proof outline logic for object-oriented programming. Theo-
retical Computer Science, 343(3):413–442, 2005.

10. A. Poetzsch-Heffter and P. Müller. A programming logic for sequential Java. In S. D. Swier-

stra, editor, 8th European Symposium on Programming Languages and Systems (ESOP’99),
volume 1576 of LNCS, pages 162–176. Springer, 1999.

11. N. Soundarajan and S. Fridella. Inheritance: From code reuse to reasoning reuse. In

P. Devanbu and J. Poulin, editors, Proc. Fifth International Conference on Software Reuse
(ICSR5), pages 206–215. IEEE Computer Society Press, 1998.

33

Detection of Conflicts in Electronic Contracts∗

Stephen Fenech, Gordon J. Pace
Dept. of Computer Science

University of Malta, Msida, Malta
{sfen002,gordon.pace}@um.edu.mt

Gerardo Schneider
Dept. of Informatics

University of Oslo, Norway
gerardo@ifi.uio.no

1 Introduction
Today’s trend towards service-oriented architectures, in

which different decoupled services distributed not only on

different machines within a single organisation but also

outside of it, provides new challenges for reliability and

trust. Since an organisation may need to execute code pro-

vided by third parties, it requires mechanisms to protect

itself. One of such mechanisms is the use of contracts.

Since services are frequently composed of different sub-

services, each with its own contract, there is a need to

guarantee that each single contract is conflict-free. More-

over, one needs to ensure that the conjunction of all the

contracts is also conflict-free —meaning that the contracts

will never lead to conflicting or contradictory normative

directives.

CL [5] is a formal language to specify deontic electronic

contracts. A trace semantics for the language was pre-

sented in [4], useful for runtime monitoring of CL con-

tracts. Such semantics, however, lacks the deontic infor-

mation concerning the obligations, permissions and prohi-

bitions of the involved parties in the contract, and thus it

is not suitable for conflict analysis.

We present here an extension of the trace semantics of CL
given in [4] to support conflict analysis. Based on that

semantics we have developed a decision procedure to au-

tomatically detect conflicts in contracts written in CL. We

have implemented such an algorithm into an ad hoc model

checker. Due to space restriction we only present in what

follows the CL syntax, the extended trace semantics, and a

brief discussion on the automata construction basis of our

model checker.

2 Deontic Logic and CL
Deontic logic [6] enables reasoning about non-normative

and normative behaviour (e.g., obligations, permissions

and prohibitions), including not only the ideal behaviours

but also the exceptional and actual behaviours. One of the

main problems of the logic is the difficulty theoreticians

have to define a consistent yet expressive formal system,

free from paradoxes.

Instead of trying to solve the problem of having a com-

plete paradox-free deontic logic, CL has been designed

∗Partially supported by the Nordunet3 project COSoDIS: “Contract-

Oriented Software Development for Internet Services”.

with the aim to be used on a restricted application do-

main: electronic contracts. In this way the expressivity

of the logic is reduced, resulting in a language free from

most classical paradoxes, but still of practical use. CL
is based on a combination of deontic, dynamic and tem-

poral logics, allowing the representation of obligations,

permissions and prohibitions, as well as temporal aspects.

Moreover, it also gives a mean to specify exceptional be-

haviours arising from the violation of obligations (what

is to be demanded in case an obligation is not fulfilled)

and of prohibitions (what is the penalty in case a prohibi-

tion is violated). These are usually known in the deontic

community as Contrary-to-Duties (CTDs) and Contrary-
to-Prohibitions (CTPs) respectively.

CL contracts are written using the following syntax:

C := CO|CP |CF |C ∧ C|[β]C|�|⊥
CO := OC(α)|CO ⊕ CO

CP := P (α)|CP ⊕ CP

CF := FC(δ)|CF ∨ [α]CF

α := 0|1|a|α&α|α · α|α + α

β := 0|1|a|β&β|β · β|β + β|β∗

A contract clause C can be either an obligation (CO), a

permission (CP) or a prohibition (CF) clause, a conjunc-

tion of two clauses or a clause preceded by the dynamic

logic square brackets. OC(α) is interpreted as the obli-

gation to perform α in which case, if violated, then the

reparation contract C must be executed (a CTD). FC(α)
is interpreted as forbidden to perform α and if α is per-

formed then the reparation C must be executed (a CTP).

[β]C is interpreted as if action β is performed then the con-

tract C must be executed — if β is not performed, the con-

tract is trivially satisfied. Compound actions can be con-

structed from basic ones using the operators &, ·, + and
∗ where & stands for the actions occuring concurrently, ·
stands for the actions to occur in sequence, + stands for

a choice between actions and ∗ is the Kleene star. It can

be shown that every action expression can be transformed

into an equivalent representation where & appears only at

the innermost level. This representation is referred to as

the canonical form. In the rest of this paper we assume

that action expressions have been reduced to this form. 1
is an action expression matching any action, while 0 is the

impossible action. In order to avoid paradoxes the opera-

tors combining obligations, permissions and prohibitions

34

are restricted syntactically. See [5, 4] for more details on

CL.

As a simple example, let us consider the following

clause from an airline company contract: ‘When check-

ing in, the traveller is obliged to have a luggage within

the weight limit — if exceeded, the traveller is obliged

to pay extra.’ This would be represented in CL as

[checkIn]OO(pay)(withinWeightLimit).

2.1 Trace Semantics

The trace semantics presented in [4] enables checking

whether or not a trace satisfies a contract. However, de-

ontic information is not preserved in the trace and thus it

is not suitable to be used for conflict detection. By a con-

flict we mean for instance that the contract permits and

forbids performing the same action at the same time (see

below for a more formal definition of conflict). We present

in what follows an extension of the trace semantics given

in [4].

We will use lower case letters (a, b . . .) to represent atomic

actions, Greek letters (α, β . . .) for compound actions, and

Greek letters with a subscript & (α&, β&, . . .) for com-

pound concurrent actions built from atomic actions and

the concurrency operator &. The set of all such concurrent

actions will be written A&. We use # to denote mutually

exclusive actions (for example, if a stands for ‘opening

the check-in desk’ and b for ‘closing the check-in desk’,

we write a#b).

In order for a sequence σ to satisfy an obligation,

OC(α&), α& must be a subset or equal to σ(0) or the rest

of the trace satisfies the reparation C, thus for the obli-

gation to be satisfied all the atomic actions in α& must

be present in the first set of the sequence. For a prohibi-

tion to be satisfied, the converse is required, that is, not

all the actions of α& are executed in the first step of the

sequence. One should note that permission is not defined

in this semantics since a trace cannot violate a permission

clause. An important observation is that the negation of

an action is defined as performing any other action except

the negated action.

In order to enable conflict analysis, we start by adding de-

ontic information in an additional trace, giving two paral-

lel traces — a trace of actions (σ) and a trace of deontic

notions (σd). Similar to σ, σd is defined as a sequence of

sets whose elements are from the set Da which is defined

as {Oa | a ∈ A} ∪ {Fa | a ∈ A} ∪ {Pa | a ∈ A}
where Oa stands for the obligation to do a, Fa stands for

the prohibition to do a and Pa for permission to do a.

Also, since conflicts may result in sequences of finite be-

haviour which cannot be extended (due to the conflict),

we reinterpret the semantics over finite traces. A con-

flict may result in reaching a state where we have only

the option of violating the contract, thus any infinite trace

which leads to this conflicting state will result not being

accepted by the semantics. We need to be able to check

that a finite trace has not yet violated the contract and

then check if the following state is conflicting. We use

a semicolon (;) to denote catenation of two sequences, and

len to return the length of a finite sequence. Two traces

are pointwise (synchronously) joined using the combine

operator where we will use the ∪ symbol and defined:

(σ ∪ σ′)(n) = σ(n) ∪ σ′(n). Furthermore, if α is a set

of atomic actions then we will use Oα to denote the set

{Oa | a ∈ α}.
The extended trace semantics for CL is given below, where

σ, σd �f C can be interpreted as ‘finite action sequence σ
and deontic sequence σd do not violate contract C’:

σ, σd �f C if len(σ) �= len(σd)
σ, σd �f � if len(σ) = 0 or ∀iσd(i) = ∅
σ, σd �f ⊥
σ, σd �f C1 ∧ C2 if σ, σ′

d �f C1 and σ, σ′′
d �f C2

and σd = σ′
d ∪ σ′′

d

σ, σd �f C1 ⊕ C2 if σ, σd �f C1 or σ, σd �f C2

σ, σd �f [α&]C if len(σ) = 0 or σd(0) = ∅ and

(α& ⊆ σ(0) and σ(1..), σd(1..) �f C, or

α& � σ(0)))
σ, σd �f [β; β′]C if σ, σd �f [β][β′]C
σ, σd �f [β + β′]C if σ, σd �f [β]C ∧ [β′]C
σ, σd �f [β∗]C if σ, σd �f C ∧ [β][β∗]C
σ, σd �f [C1?]C2 if σ, σd �f C1, or σ, σd �f C1 ∧ C2

σ, σd �f OC(α&) if len(σ) = 0 or σd(0) = Oα and

((α& ⊆ σ(0) and σ(1..), σd(1..) �f �) or

σ(1..), σd(1..) �f C)
σ, σd �f OC(α; α′) if σ, σd �f OC(α) ∧ [α]OC(α′)
σ, σd �f OC(α + α′) if σ, σd �f O⊥(α) or

σ, σd �f O⊥(α′) or (σd(0) = (Oα or Oα′)
and σ, ∅; σd(1..) �f [α + α′]C)

σ, σd �f FC(α&) if len(σ) = 0 or σd(0) = Fα and

((α& � σ(0) and σ(1..), σd(1..) �f �) or

(α& ⊆ σ(0) and σ(1..), σd(1..) �f C))
σ, σd �f FC(α; α′) if σd(0) = Fα and

(σ, σd �f F⊥(α) or σ, σd �f [α]FC(α′))
σ, σd �f FC(α + α′) if σ, σd �f FC(α) ∧ FC(α′)
σ, σd �f [α&]C if σd(0) = ∅ and ((α& � σ(0) and

σ(1..), σd(1..) �f C) or α& ⊆ σ(0))
σ, σd �f [α; α′]C if σ, σd �f [α]C ∧ [α][α′]C]
σ, σd �f [α + α′]C if σd(0) = ∅ and

(σσd �f [α]C or σ, σd �f [α′]C)
σ, σd �f P (α) if len(σ) = 0 or σd(0) = Pα and

σ(1..), σd(1..) �f �
σ, σd �f P (α; α′) if σ, σd �f P (α) ∧ [α]P (α′)
σ, σd �f P (α + α′) if σ, σd �f P (α) ∧ P (α′)

Note that the conditions for a trace containing a permis-

sion not to violate the contract are defined on σd rather

than on the trace of actions. So, for any σ there exists a

σd which will not violate a permission clause. Also note

35

that in the absence of deontic notions the corresponding

element in σd is the empty set. We have proved that the

infinite and finite trace semantics are sound and complete

with respect to each other.

3 Conflict Analysis
Conflicts in contracts arise for 4 different reasons. First,

we can be obliged and forbidden to do the same action,

and second, we can be permitted and forbidden to perform

the same action. In the first conflict we would end up in

a state where whatever we do we will violate the contract.

The second conflict situation would not result in having a

trace that violates the contract since in the trace seman-

tics permissions cannot be broken, however, since we are

augmenting the original trace semantics with the deontic

notions we can still identify these situations. The remain-

ing two cases correspond to obligations (and permissions

and obligations) of mutually exclusive actions. Freedom

from conflict can be defined formally as follows (recall

that a#b if a and b are mutually exclusive actions):

Definition 3.1 A contract C is said to be conflict free if
for all traces σf and σd satisfying σf , σd �f C, there is
no conflict in σd, meaning that it is not the case that any
of the following are true:

1. ∃i · Oa ∈ σd(i) and Fa ∈ σd(i)

2. ∃i · Pa ∈ σd(i) and Fa ∈ σd(i)

3. ∃i · Oa ∈ σd(i) and Ob ∈ σd(i) and a#b

4. ∃i · Oa ∈ σd(i) and Pb ∈ σd(i) and a#b

By unwinding a CL formula according to the finite trace

semantics, we create an automaton which accepts all non

violating traces, and such that any trace resulting in a vio-

lation ends up in a violating state. Furthermore, we label

the states of the automaton with deontic information pro-

vided in σd, so we can ensure that a contract is conflict

free simply through the analysis of the resulting reachable

states (non-violating states).

States of the automaton contain a set of formulae still to be

satisfied, following the standard sub-formula construction

(as done for instance for CTL). Each transition is labelled

with the set of actions that are to be performed in order

to move along the transition. From the canonical form

assumption we can look at an action as a disjunction of

actions that must occur now and for each of these a com-

pound action that needs to occur in the next step. This

view is very helpful when processing the actions since a

compound action α can be seen as an array of possibilities

αi where for each entry we have the atomic actions which

need to hold now (αi.now) and the possibly compound or

empty actions that need to follow next (αi.next).
Once the automaton is generated we can go through all

the states and check for the four types of conflicts. If there

is a conflict of type one or three, then all transitions out

of the state go to a special violation state. In general we

might need to generate all possible transitions before pro-

cessing each sub-formula, resulting on a big automaton.

In practice, we improve the algorithm in such a way that

we create all and only those required transitions reducing

the size considerably.

Conflict analysis can also be done on-the-fly without the

need to create the complete automaton. One can process

the states without storing the transitions and store only sat-

isfied subformulas (for termination), in this manner, mem-

ory issues are reduced since only a part of the automaton

is stored in memory.

4 Final Remarks
In this paper, we have presented a finite trace semantics

for CL augmented with deontic information, and sketched

how it can be used for automatic analysis of contracts for

conflict discovery. The automaton we have created here

could also be used as a basis for other kinds of analysis

not just conflict analysis. These include the possibility of

performing queries, the detection of unreachable clauses,

and the identification of superfluous clauses. Based on the

construction presented in this paper, we have implemented

a model checker for detecting conflicts in CL [1]. In other

ongoing work using the semantics presented in this pa-

per, we have implemented a translation from the automa-

ton created from CL contracts into the runtime verifica-

tion tool LARVA [2]. This enables us to write contracts

about Java programs and automatically obtain monitors

to ensure conformance to the contracts at runtime. More

detailed trace semantics, the conflict analysis algorithm

(including proof of soundness, completeness and termi-

nation), as well as a description of the tool can be found in

[3].

References
[1] CLAN. CL ANalyser – A tool for Contract Analy-

sis. Available from www.cs.um.edu.mt/˜svrg/
Tools/CLTool/.

[2] C. Colombo, G. J. Pace, and G. Schneider. Dynamic

event-based runtime monitoring of real-time and con-

textual properties. In FMICS 2008, LNCS, 2008.

[3] S. Fenech. Conflict analysis of deontic contracts.

Master’s thesis, Dept. of Computer Science, Univ. of

Malta, 2008.

[4] M. Kyas, C. Prisacariu, and G. Schneider. Run-

time monitoring of electronic contracts. In ATVA’08,

LNCS. Springer-Verlag, Oct. 2008. To appear.

[5] C. Prisacariu and G. Schneider. A Formal Language

for Electronic Contracts. In FMOODS’07, volume

4468 of LNCS, pages 174–189. Springer, June 2007.

[6] G. von Wright. Deontic logic. Mind, (60):1–15, 1951.

36

Higher-order attribute semantics of flat declarative languages

Pavel Grigorenko
Institute of Cybernetics, Tallinn University of Technology, Estonia

pavelg@cs.ioc.ee

Let us consider attribute semantics of a traditional programming language as defined originally in [3]
and explained in terms of attribute models in [6]. If we look at an attribute model of a production of the
language, or at an attribute model of a syntax tree of a text written in this language, we can see that
it is just a collection of variables bound by functional dependencies. In other words — it is a functional
constraint network representing the meaning of a production or a text. In the present work we extend the
attribute models by allowing attribute dependencies to be, beside functional dependencies, also higher-
order functional dependencies. This gives us a possibility to express more control of computations in an
attribute model itself. We consider declarative languages where a text can be not only a specification
of a single program, but it can be also a description of a device or a system (its model) that allows one
to ask different questions (cf. Prolog). This means that a program can be obtained from a declarative
specification and a goal (a problem statement describing what is needed). We have restricted the set of
specification languages considered here to structurally very simple languages that we call flat languages.

A flat language is a declarative language suitable for composing typed objects into descriptions of
concepts and/or systems (a mathematical model in a broad sense) by connecting their components by
equalities. The meaning of a text in a flat language is hidden in the types of objects and in the way
the objects are connected. Types of objects describe the ways of possible computations with objects,
and their possible values. Good examples of flat languages are visual languages where specifications are
schemes, e.g. the language of class diagrams of UML and many simulation languages. Even many popular
special purpose specification languages like, for instance, VHDL are in essence flat languages, although
they have some features that are difficult to express through local connections of objects.

First, we give a syntax and intuitive semantics of a flat language by defining statements of the core
language and its extensions. We call conventional attribute models as defined in [6] simple attribute
models, introduce computational problems and use the value propagation as a procedure of attribute
evaluation on simple attribute models. We define the semantics of a specification in the core language
as a set of all algorithms that can be composed on the attribute model of the specification for solving
computational problems.

Let U and V be two sets of attributes of an attribute model M . We denote by U → V a computational
problem on the attribute model M , and say that U is a set of input attributes (or just inputs) and V is
a set of output attributes (or outputs) of a computational problem. The computational problem states
a goal that, given values of attributes from U , requires to find values of attributes of V using attribute
dependencies of M .

Let A be a set of attributes and P a set of computational problems with inputs and outputs from A.
Higher-order attribute dependency (hoad) is a functional dependency that has inputs from A∪P and

outputs from A. Inputs from P are called subtasks.
Higher-order attribute model is a pair 〈A, R〉 where A is a set of attributes and R is a set of attribute

dependencies that includes some higher-order attribute dependencies on the set of attributes A. Higher-
order attribute models are so expressive that enable one to synthesize recursive, branching and cyclic
programs where respective control structures, i.e. recursion, branching and loops are preprogrammed
and represented as higher-order attribute dependencies.

Often only one higher-order attribute dependency is used in a specification. The evaluation strategy
is quite obvious in this case: first use only conventional attribute dependencies and at the end the higher-
order one. Thereafter, if still needed, use simple attribute dependencies again. Time complexity of the
search remains linear in this case.

In a general case, when an attribute model M contains several higher-order attribute dependencies,
the evaluation strategy is as follows.

First the procedure of simple value propagation is done using only attribute dependencies that are
not higher-order. If this does not solve the problem (does not give values of all outputs of the problem),

37

S0

Rα
... Rβ

Sα,1 Sα,m Sβ,1 Sβ,n... ...

Rγ Rζ...

... ...

S
′
α S

′
β

Figure 1: And-or search tree for attribute evaluation on higher-order attribute model

then a hoad is applied, if it is applicable. A hoad is applicable if and only if all its inputs are given and all
its subtasks are solvable and it computes values of some attributes that have not been evaluated yet. A
sequence of applicable attribute dependencies obtained in this way is called maximal linear branch (mlb).
It contains one hoad at the end of the sequence. There are three possible outcomes of this procedure:

1. After constructing the mlb the problem is solvable (like in the case of a single hoad).

2. A mlb cannot be found and the problem is unsolvable.

3. A mlb can be found and the initial problem U1 → V1 is reduced to a smaller one U2 → V2,
U2 = U1 ∪ Y and V2 = V1\Y , where Y is the set of outputs of the hoad.

This procedure (construction of mlb) is repeatedly applied until the problem is solved or no more mlb
can be constructed.

It is important to notice that for applying a hoad we have to solve all its subtasks. This means that
the whole procedure of problem solving must be applied for every subtask. This requires a search on
an and-or tree of problems (subtasks) on the attribute model. The root of a tree corresponds to the
initial problem, and it is an or-node, because there may be several possible mlbs for this problem. And-
nodes correspond to higher-order attribute dependencies and have one successor for its each subtask, plus
one successor for the reduced task that has to be solved after applying the mlb. Or-nodes of the tree
correspond to the subtasks that have to be solved for their parent and-node.

Let us label hoads with Ri, i = 1, . . . , imax, where imax is the number of all hoads in the model and
abbreviate S for a subtask. Then a hoad Ri has the form:

Si,1, ..., Si,r, x1, ..., xk → y1, ..., yl{f},
where xs, yt ∈ A are attributes and Si,j ∈ P are subtasks.

Figure 1 shows a part of an and-or search tree for solving a problem S0 on a higher-order attribute
model. The and-nodes are the hoads Rα, . . . , Rβ with α, . . . , β ∈ {1, . . . , imax} that can be tried first for
solving a problem of their parent node. The successors of a hoad node Ri are its subtasks Si,1, . . . , Si,j

and the reduced problem S
′
i that remains to solve after applying the hoad. The search on the and-or

tree is depth-first search with backtracking. In fact, our attribute evaluation procedure only constructs
an algorithm — a tree of applicable attribute dependencies, the values of attributes are computed only
during the execution of a program extracted from this tree. Unlike Prolog, backtracking in our case does
not involve unnecessary evaluation of variables.

It is useful to notice that types of attribute dependencies (and higher-order attribute dependencies)
can be considered as propositional formulas where arrows denote implications and commas denote con-
junctions. Building an attribute evaluation algorithm for a particular computational problem with inputs
u1, . . . , um and outputs v1, . . . , vn corresponds then to a derivation of the formula u1∧. . .∧um ⊃ v1∧. . .∧vn

in the intuitionistic propositional calculus (IPC). This is justified by the Curry-Howard isomorphism [2].
This gives also an algorithm of proof search for IPC, although some transformation of propositional for-
mulas to the suitable form will be needed in the general case, see [5].) An unpleasant consequence of this
fact is that the proof search for IPC is PSPACE-complete [7], hence the higher-order attribute evaluation
has exponential time complexity. However sufficiently good search strategies help to reduce the search in
practical cases [5].

We have implemented a flat language in a Java-based visual programming framework CoCoViLa [1].
The experience of using CoCoViLa has shown that higher-order attribute semantics is a practically useful
instrument for implementing domain specific languages. CoCoViLa has been successfully used for the
automatic composition of web services [4].

Acknowledgements This work has been partially supported by the Estonian Science Foundation grant
No.6886.

38

References

[1] Pavel Grigorenko, Ando Saabas, Enn Tyugu. Cocovila - compiler-compiler for visual languages.
Electr. Notes Theor. Comput. Sci., 141(4):137–142, 2005.

[2] William A. Howard. The formulas-as-types notion of construction. In J. P. Seldin and J. R. Hindley,
editors, To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus, and Formalism, pages
479–490. Academic Press, New York, 1980. Reprint of 1969 article.

[3] Donald Knuth. Semantics of context-free grammars. Mathematical Systems Theory, 2:127–145, 1968.

[4] Riina Maigre, Pavel Grigorenko, Peep Küngas, Enn Tyugu. Stratified composition of web services. In:
Knowledge-based software engineering : Proceedings of the Eighth Joint Conference on Knowledge-
Based Software Engineering: (Toim.) Virvou, Maria; Nakamura, Taichi. Amsterdam: IOS Press,
2008, (Frontiers in Artificial Intelligence and Applications; 180), 49 – 58, 2008.

[5] Mihhail Matskin, Enn Tyugu. Strategies of structural synthesis of programs and its extensions.
Computing and Informatics, 20:1–25, 2001.

[6] Jaan Penjam. Computational and attribute models of formal languages. Theoretical Computer Sci-
ence, 1990.

[7] Richard Statman. Intuitionistic propositional logic is polynomial-space complete. Theoretical Com-
puter Science, 9:67–72, 1979.

39

Quantification of Information Flow for
Value-passing Process Algebra �

Damas P. GRUSKA

Institute of Informatics, Comenius University,
Mlynska dolina, 842 48 Bratislava, Slovakia,

gruska@fmph.uniba.sk.

Abstract. A quantification of an information flow is defined and stud-
ied in the framework of value-passing process algebras. It is based on
Shannon’s information theory and on a concept of noisy channels.

Keywords: information flow, entropy, security, process algebra, value-
passing

1 Introduction

Many security properties are based on an absence of information flow or non-
interference (see [GM82]) between private and public system data or activities.
Systems are considered to be secure if from observations of their public activi-
ties no information about private activities can be deduced. This approach has
found many reformulations for such formalisms as Petri nets, process algebras,
imperative languages etc. The absence of information flow or non-interference
is a qualitative property - either there is or there is not. It does not take into
account an amount of information which can be gained by an intruder from sys-
tem’s observations. For example, if we tray to login to a system even by typing
an incorrect password we gain some information since the space of possible pass-
words was in such a way reduced by one. In spite of that, an existence of such
the interference the system is considered to be secure if the set of admissible
passwords is large enough.

The aim of this paper is to precisely quantify an amount of (private) informa-
tion which can be gained by an intruder. As a basic formalism we take a variant
of Milners CCS with value-passing and guarded processes ([be]P). To quantify
an amount of information regarding private system’s activities or data which
could be gained we will use Shannon’s information theory. We will study con-
cepts as entropy and mutual information between public inputs, public outputs
and private data. The concepts will be compared with other security notions
known in the literature.

As regards related works there is a number of papers devoted to quantifica-
tion of information flow in the framework of imperative languages (see [CHM07]
for an overview). In [L02] an information flow is studied in case of process al-
gebras. Particularly, it is investigated how much information i.e. a number of
� Work supported by the grant VEGA 1/3105/06.

40

bits can be transmitted by observing some timed system activities. In [Gru08]
a quantitative information flow is formalized by means of observation functions
(which can hide some system activities) and by rather general security property
called opacity (see [BKMR06]) in framework of timed process algebras. A predi-
cate over sequences of system actions is opaque if from an observation of system
activities an observer cannot deduce whether the predicate holds or it does not
hold. Shannon’s information theory is exploited for quantification of an amount
of information regarding validity of given predicate φ. As the basic formalism
Timed CCS without value-passing was used.

In this paper we will work with a variant of CCS with value-passing and
with guarded processes (process [be]P behaves like P if boolean-expression be is
evaluated to true otherwise as Nil). As we show later the choice of the boolean
expression can significantly influence resulting quantity of possible information
flow. We split the set of channels to two disjoint sets of private and public ones
with names h, h1, h2, . . . and l, l1, l2, . . ., respectively.

Let us consider a simple access control process μX.l(x).h(y)([x = y].l̄1LogIn.X
+[x �= y].l̄1IncPassw.X) which check whether a user types the correct password.
Clearly, there is some information flow between privata input h(y), public input
l(x) and possible public outputs {LogIn, IncPassw}. If a password is, for exam-
ple, a random string of 8 characters each chosen from set of 27 elements, i.e.
roughly 1020 possibilities, the corresponding information flow is very low. On
the other side, if the password is a word from English dictionary (with size, say
106, the corresponding information flow is significantly increased. This is due to
smaller set of possible private inputs. Now let us consider another example. Let
us assume processes μX.l(x).h(y)([x = y].l̄1Accepted.X + [x �= y].l̄1Refused.X)
which simulates whether an user types a correct 4 digit pin code (out of 104

possibilities) and similar process μX.l(x).h(y)([x < y].l̄1Accepted.X + [x �<
y].l̄1Refused.X) for which there is a very high information flow. Actually due to
different choice of guarding boolean expression one needs just 14 attempts to ob-
tain private value transmitted via h. To express quantity of an information flow
we will exploit Schannon’s information theory (see [Sch48]). Let X be a discrete
random variable and let x ranges over the set of values which X may take. By
p(x) we will denote probability that X takes the value x. The information en-
tropy (also called self-information or a measure of uncertainty) of the variable X
is denoted H(x) and is defined as the following: H(X) =

∑
x p(x). logb

1
p(x) . We

define p(x). logb
1

p(x) = 0 if p(x) = 0. We will work with the base b of logb equal
to 2 and hence the unit of the information entropy will be one bit. Given two
discrete random variables X and Y , the mutual information between them, writ-
ten I(X; Y), is defined as follows: I(X; Y) =

∑
x

∑
y p(x, y). log p(x,y)

p(x).p(y) . It can
be easily shown that I(X; Y) = H(X) +H(Y)−H(X, Y) = H(X)−H(X|Y) =
H(Y)−H(Y |X) where H(X|Y) is the conditional entropy of X given knowledge
of Y . Clearly, if X and Y are independent then I(X; Y) = 0.

Let us consider process P . Without loss of generality we will be interested
only in an information flow between data which P receives from one private
channel h and one public input/output channel l. Note that there might be other

41

channels which are out of interests. Note that the following definitions could
be extended to tuples of private/public channels. We will treat P as a noisy
communication channel (more noisy = more secure) with two inputs (actions
h(x), l(y)) and one output (actions l̄v). So we will omit all other actions and
we will consider sequences s such that P

s→ and s = s1.h(x).s2.l(x).s3.lv or
s = s1.l(x).s2.h(x).s3.lv such that s1, s2, s3, s4 ∈ (Act \ {h(x), l(x), l̄v})�.

Suppose that P can receive data from this input channels according distri-
bution given by discrete random variables Hin, Lin and P produce as the output
discrete random variables Lout.

We define information flow between private inputs and public outputs (know-
ing public inputs) as follows: F(H � L) = I(Hin, Lout|Lin) (note that this
definition can be naturally extended to the case of several private and public
channels). If there is no information flow i.e. random variables Hin and Lout|Lin

are independent then F(H � L) = 0. In general, higher values of F(H � L)
represent higher information flows and less secure processes.

As it was clear from the above example, in the case of process [be]P an
amount of information flow depends also on boolean expression be. Suppose
that be contains private variables. We define entropy of be as the entropy of
corresponding discrete random variable obtained from be which is viewed as
the function of private variables with parameters given by public variables.
For example, for boolean expression [x = y] from the above mentioned ex-
ample (x being private and y public variable), we have entropy close to zero
(9999/10000. log(10000/9999) + 1/10000. log(10000)) for every y. On the other
side, for boolean expression [x < y] we can increase entropy by suitable choice
of y to 1 (what corresponds to a binary choice).

Now suppose that we know the entropy of be and F(H � L) for processes
P and Q. From the above mentioned information we could tray to obtain an
evaluation of F(H � L) for [be]P and P + Q or to obtain other compositional
results.

References

[BKMR06] Bryans J., M. Koutny, L. Mazare and P. Ryan: Opacity Generalised to
Transition Systems. In Proceedings of the Formal Aspects in Security and
Trust, LNCS 3866, Springer, Berlin, 2006

[CHM07] Clark D., S. Hunt and P. Malacaria: A Static Analysis for Quantifying
the Information Flow in a Simple Imperative Programming Language. The
Journal of Computer Security, 15(3). 2007.

[GM82] Goguen J.A. and J. Meseguer: Security Policies and Security Models. Proc.
of IEEE Symposium on Security and Privacy, 1982.

[Gru08] Gruska D.P.: Quantifying Information Flow in Process Algebras, in pro-
ceedings of Concurrency, Specification and Programming, 2008.

[L02] Lowe G.: Quantifying information flow”. In Proc. IEEE Computer Security
Foundations Workshop, 2002.

[Sch48] Shannon, C. E.: A mathematical theory of communication. Bell System
Technical Journal, vol. 27, 1948.

42

Improving Scalability of Model-Checking for
Minimizing Buffer Requirements of Synchronous

Dataflow Graphs

Nan Guan1, Wang Yi2, Zonghua Gu3, and Ge Yu1

1 Northeastern University, Shenyang, China
2 Uppsala University, Uppsala, Sweden

3 Hong Kong University of Science and Technology, Hong Kong, China

1 Introduction

Synchronous Dataflow (SDF) is a widely-used model of computation for signal pro-

cessing applications that allows for powerful static analysis and synthesis techniques.

Since signal processing and multimedia applications are often implemented on resource

constrained embedded systems, it is important to minimize their memory size. The data

buffer minimization problem of SDF is known to be NP-complete [1]. Some authors

have used model-checking to obtain the optimal solution [2][3] by exploring the en-

tire state space. One key limitation of model-checking is its lack of scalability due to

state space explosion. In this paper, we present several techniques for reducing the state

space and improving scalability of model-checking when applied to the SDF buffer

minimization problem. We focus on the NuSMV model-checker, but our techniques are

at the application-level, and independent of the specific model-checker used.

A SDF graph is a directed graph G = (V,E), where V is the set of nodes repre-

senting actors and E is the set of edges. An edge e ∈ E has a source actor src(e) that

produces p(e) tokens on e at each invocation (referred to as an actor firing in the rest of

the paper), and a sink actor snk(e) that consumes c(e) tokens on e at each firing. d(e)
denotes the initial number of tokens on e, also called the initial delay.

A CB
e1 e2

2 13 2

(a) An SDF example

s
guard: WAIT(1,3)
update: CONSUME(1,3);
 PRODUCE (2,1);

guard: WAIT(2,1)
update: CONSUME(2,2);

guard:
update: PRODUCE(1,2)

FIRE (A) FIRE (C)

FIRE (B)

WAIT(c,n) ch[c]>=n
PRODUCE(c,n) ch[c] = ch[c] + n; UPDATE(c)
CONSUME(c,n) ch[c] = ch[c] - n
UPDATE(c) if (ch[c]>sz[c]) then sz[c]= ch[c]

(b) FSM that encodes the execution semantics

Fig. 1. SDF graph Example 1.

A feasible schedule of a SDF graph is a finite actor firing sequence, which when

executed by the SDF graph, returns the edge buffer token states to the initial state. The

43

feasible schedule can be repeatedly executed at run time without any deadlock or buffer

overflow. For example, the balance equation of the SDF graph in Fig. 1-(a) is:

{
rA ∗ 2 = rB ∗ 3
rB ∗ 1 = rC ∗ 2

where rA is the number of firings of actor A. Solving the balance equation yields the

repetition vector (rA, rB , rC) = (3, 2, 1), which means that any minimum-length fea-

sible schedule must consist of 6 actor firings in sequence, including 3 firings of actor A,

2 firings of actor B and 1 firing of actor C. Different feasible schedules may have differ-

ent data buffer size requirements. In this paper, we assume that each edge has its own

dedicated buffer space without any buffer sharing. Our objective is to find the minimum

total buffer size requirement for a SDF graph to have at least one feasible schedule.

Any buffer size less than that will cause the SDF graph to run into a deadlock for any

possible schedule.

In order to use model-checking to find the minimum-buffer size schedule of a SDF

graph, we transform the SDF graph into a Finite State Machine (FSM) encoding its

execution semantics, e.g., the FSM in Fig. 1-(b) corresponds to the SDF graph in Fig.

1-(a). Each FSM transition models an actor firing and its effects on the input and output

buffers of the actor. ch[c] denotes the current number of tokens on edge c, and sz[c]
denotes the buffer size requirement of edge c, i.e., the maximum number of tokens on

edge c throughout the entire schedule. The guard WAIT(c,n) encodes the condition

that an actor can be invoked only if there are enough tokens on its input edge(s). The

actions PRODUCE(c,n) (CONSUME(c,n)) encodes the semantics that each actor

firing produces (consumes) a certain number of tokens on its output (input) edges. Our

objective is to find a feasible schedule with minimum SUM=sz[c1]+sz[c2]+...,

i.e., the sum of all edge buffer size requirements.

However, scalability is a key limiting factor in using model-checking due to state

space explosion. In the following, we present several techniques for improving scala-

bility of model-checking by exploiting problem-specific properties of SDF models.

2 Tight Edge Buffer Size Upper Bounds

It is desirable to obtain correct and tight Buffer Size Upper Bound (BSUB) value for

each edge, since tight BSUB values help reduce the system state space as well as guar-

antee the minimal buffer requirement can be found. The following theorem tells that

we can get a buffer size upper bound for each edge much tighter than the coarse upper

bound in [2], and avoid [3]’s disadvantage of losing of optimality.

Theorem 1. For a given SDF graph G = (V,E), let s denote any feasible schedule s
with buffer size requirement R(s); let R(s, ei) denote the buffer requirement of edge ei

for schedule s; let sopt denote an optimal schedule with minimum buffer size require-
ment R(sopt). Then for each edge ei ∈ E, we have:

R(sopt, ei) ≤ R(s)−
∑

ej∈E−ei

BSLB(ej) (1)

44

where BSLB(ej) is the buffer size lower bound of edge ej obtained from Equation (2)
in [3].

We also propose techniques for tighten the BSUB of so-called Heavy Edges.

Definition 1 (Heavy Edge) An edge ef is a Forward Heavy Edge (FHE) if it is the only
input edge to its sink actor snk(ef), and

c(ef) >
∑

src(ej)=snk(ef)

p(ej) (2)

An edge eb is a Backward Heavy Edge (BHE) if it is the only output edge from its source
actor src(eb), and

p(eb) >
∑

snk(ej)=src(eb)

c(ej) (3)

Theorem 2. In any optimal feasible schedule sopt of a SDF graph, any FHE ef must
satisfy

R(sopt, ef) < max(p(ef) + c(ef), d(ef)) + c(ef) (4)

and any BHE eb must satisfy

R(sopt, eb) < max(p(eb) + c(eb), d(eb)) + p(eb) (5)

3 Graph Decomposition

We can decompose the SDF graph into several subgraphs connected by bridges, analyze

each subgraph separately, and then obtain the buffer size requirement of the whole SDF

graph from that of each subgraph.

Theorem 3. If G = (V,E) is a SDF graph consisting of the set C of the minimal
subgraphs connected by the set of bridges B.

R(sopt, G) =
∑

Gi∈C

R(si
opt, Gi) +

∑
ei∈B

BSLB(ei) (6)

in which sopt is an optimal schedule of G, and si
opt is an optimal schedule of Gi.

To use Theorem 3 to improve the efficiency of model-checking for the buffer re-

quirement optimization of SDF G, we should find all subgraphs and bridges of the

graph G, and compute the minimal buffer requirement of each subgraph separately,

then compute the buffer requirement of S with Theorem 3. If a subgraph is cyclic, or

it is acyclic with non-zero delay tokens, then we can use model-checking to derive its

minimal buffer requirement and schedule. For acyclic and delayless subgraphs, we can

use the algorithm in [4] to derive them analytically. Finding bridges of a graph can

be done by the depth-first search with a complexity of O(m + n) [5], where m is the

number of actors and n is the number of edges.

45

Table 1. Performance evaluation.

No. Actors 4 6 8 10 12 14 16 18 20 22

Buff. Size. 32 36 56 64 188 168 222 430 324 471

Peak memory of NuSMV with the original approach in [3]

BOUND (MB) 19.6 96.6 22.4 62.1 156.7 – – – – –

BOUND+1 (MB) 19.6 86.9 22.5 62.9 223.6 – – – – –

Running Time of NuSMV with the original approach in [3]

BOUND (s) 0.6 11.2 1.2 15.2 327.3 – – – – –

BOUND+1 (s) 0.1 21.2 1.2 26.5 562.5 – – – – –

Peak memory of NuSMV with the optimized approach in this paper

BOUND (MB) 2.5 26.1 13.6 25.8 36.6 17.2 21.3 12.6 16.7 56.8

BOUND-1 (MB) 2.5 2.5 2.5 2.5 26.7 2.5 2.5 2.5 2.5 22.4

Running Time of NuSMV with the optimized approach in this paper

BOUND (s) 0.1 0.1 0.2 0.1 0.6 0.3 0.4 0.2 0.3 2.2

BOUND-1 (s) 0.1 0.1 0.1 0.1 0.3 0.1 0.1 0.1 0.1 0.4

4 Performance Evaluation

We used the software tool SDF3 [6] to generate random SDF graphs. Since there ex-

ists fast and optimal algorithms [7] for deriving minimum buffer size requirements for

acyclic and delayless SDF graphs, which makes it unnecessary to apply model-checking

for these types of graphs, we ensured that any generated SDF graph contains cycles or

initial delay tokens, or both. In our experiments, the minimum, maximum and average

total input-output degree of each actor in the SDF graph are 1, 3 and 2, respectively. The

experiments are run on a Linux PC with an Intel dual-core 2.83GHz 64-bit processor

and 2GB of main memory. We use a utility program Memtime from the UPPAAL group

to measure the running time and peak memory usage. Table 1 shows the performance

evaluation results. We set a timeout limit of 2 hours. If a model-checking session did

not finish within 2 hours, then we denote it with ”-” in the table. As shown in Table 1,

the optimization techniques presented in this paper can result in significant reduction in

both the memory size and running time of model-checking.

References

1. P. K. Murthy and S. S. Bhattacharyya, Memory Management for Synthesis of DSP Software.

CRC Press, 2006.
2. M. Geilen, T. Basten, and S. Stuijk, “Minimising buffer requirements of synchronous dataflow

graphs with model checking.” in DAC, 2005, pp. 819–824.
3. Z. Gu, M. Yuan, N. Guan, M. Lv, X. He, Q. Deng, , and G. Yu, “Static scheduling and software

synthesis for dataflow graphs with symbolic model-checking,” in RTSS, 2007.
4. M. Cubric and P. Panangaden, “Minimal memory schedules for dataflow networks.” in CON-

CUR, 1993.
5. R. Tarjan, “Depth-first search and linear graph algorithms,” SIAM Journal of Computer, 1972.
6. S. Stuijk, M. Geilen, and T. Basten, “Sdf3: Sdf for free.” in ACSD, 2006.
7. S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee, Software Synthesis from Dataflow Graphs.

Kluwer Academic Publishers, 1996.

46

Translating Interaction Nets to C

Abubakar Hassan, Ian Mackie, and Shinya Sato

1 Department of Computer Science, University of Sussex, Falmer, Brighton, U.K.
2 LIX, CNRS UMR 7161, École Polytechnique 91128 Palaiseau Cedex, France

3 Faculty of Econoinformatics, Himeji Dokkyo University
5-7-1 Kamiohno, Himeji-shi, Hyogo 670-8524, Japan

Abstract. This paper is about a new implementation technique for interaction nets–a visual
programming language based on graph rewriting. We compile interaction nets to C, which
offers a robust and efficient implementation, in addition to portability. In the presentation
of this work we extend the interaction net programming paradigm to introduce a number
of features which make it a practical programming language.

1 Introduction

Interaction nets [6] are a graph rewrite system where programs are represented as graphs and
computation is graph rewriting. They enjoy nice properties such as strong confluence, Turing
completeness and locality of reduction. For these reasons, optimal [3, 7] and efficient [9] λ−calculus
evaluators based on interaction nets have evolved. Indeed, interaction nets have proved to be very
fruitful in the study of the dynamics of computation. However, they still remain useful only for
theoretical investigations.

In this note, we take a step towards developing a practical language for interaction nets which
allows them to be used in practice. In the same way that functional languages are based on the
λ-calculus, logic languages based on horn clauses or the pict [10] language based on the π-calculus,
here we present a language based on this very simple graph rewrite system.

There are several implementations of interaction nets [11, 8, 4, 5], but they all suffer at least
from one or more drawbacks: execution speed, lack of modern language constructs such as built-in
types, input/output etc. The goal of this paper is to address these issues so that we can shift
the use of interaction nets from theoretical investigations to a practical programing paradigm.
Firstly, we develop a textual syntax for interaction nets with higher level constructs that provide
programing comfort. We then show how this language can be compiled down to native codes via
the language C [12]. C is a machine independent low-level language that is well suited as a portable
target language for the implementation of programming languages. Over the years, C compilers
have gone through many improvements to generate optimised machine code. By compiling to C,
we also benefit in the improvements of C code generation. In addition, we gain instant portability
because C is implemented on a variety of platforms. Many languages [14, 1, 13] have benefited
from this line of compilation.

To summarise, the main contributions of this paper are as follows: We extend the definition
of interaction nets to allow: built in data types and conditional rewrite rules; states and state
transformers; and we define a compiler from interaction nets to native codes via the language C.

In our previous work [4] we defined a textual language for interaction nets and described
how it is transformed into an intermediate language pin. We then defined an abstract machine
that executes pin instructions. This paper is concerned with: 1) developing a richer language
for interaction nets 2) extending the pin language to cater for the introduced source language
constructs and 3) compiling pin into C code.

For the rest of this abstract, we just introduce the formalism, and give an example.

2 Interaction nets

Here we review the basic notions of interaction nets. We refer the reader to [6] for a more detailed
presentation. Interaction nets are specified by the following,

47

A set Σ of symbols. Elements of Σ serve as agent (node) labels. Each symbol has an associated
arity ar that determines the number of its auxiliary ports. If ar(α) = n for α ∈ Σ, then α has
n + 1 ports: n auxiliary ports and a distinguished one called the principal port. Each agent may
have attributes. In this paper, we will restrict attributes to just base types: integers and booleans,
and we write the attribute in brackets after the name.

��
��
α(n)

�

� �· · ·x1 xn

We can represent this agent textually as x0 ∼ α(n)[x1, . . . , xn], where x0 is the principal port.
A net built on Σ is an undirected graph with agents at the vertices. The edges of the net

connect agents together at the ports such that there is only one edge at every port. A port which
is not connected is called a free port. A set of free ports is called an interface.

Two agents (α, β) ∈ Σ ×Σ connected via their principal ports form an active pair (analogous
to a redex). An interaction rule ((α, β) =⇒ N) ∈ R replaces the pair (α, β) by the net N . All the
free ports are preserved during reduction, and there is at most one rule for each pair of agents.
The following diagram illustrates the idea, where N is any net built from Σ.

��
��

α ��
��

β��
�

�

�

�

...
...

x1

xn

ym

y1

=⇒ N
...

...
x1

xn

ym

y1

Figure 1 gives a simple example of an interaction net system that encodes the addition oper-
ation. We represent numbers using the agents S to represent the successor function (n �→ n + 1)
and Z to represent the number 0. Figure 2 gives an example reduction sequence that shows how
a net representing 1 + 1 is reduced to 2.

��
��

0

��
��

+

��
��

S

��
��

+

��
��

+

��
��

S

�

�� �
�
	 ����

	

�	 ��

=⇒ =⇒

Fig. 1. Rules for addition

3 The source language and compilation

Following [2], an interaction net system can be described as a configuration c = (Σ,Δ,R), where Σ
is a set of symbols, Δ is a multiset of active pairs, and R is a set of rules. A language for interaction
nets needs to capture each component of the configuration, and provide ways to structure and
organise the components. Starting from a calculus for interaction nets we build a core language.
A core language can be seen both as a programming language and as a target language where
we can compile high-level constructs. Drawing an analogy with functional programming, we can
write programs in the pure λ-calculus and can also use it as a target language to map high-level
constructs. In this way, complex high-level languages can be obtained which by their definition
automatically get a formal semantics based on the core language.

We write nets textually as a comma separated list of agents. This just corresponds to a flatten-
ing of the net, and there are many different (equivalent) ways to do this depending on the order
the agents are enumerated. As an example, we write the initial net in Figure 2 as:

48

��
��

S

��
��

0

�

��
��

0

�

��
��

+

����
	
�

��
��

S

 =⇒

��
��

0

��
��

0

�

��
��

+

��
��

S

�

����
	

�

��
��

S

 =⇒

��
��

0

�

��
��

S

�

��
��

S

�

Fig. 2. Example reduction sequence

a∼Add[x,y], a∼S[b], b∼Z[], y∼S[v], v∼Z[].
This can be simplified by replacing equals for equals:

S[Z[]]∼Add[x,S[Z[]]].
In this notation the general form of an active pair is α[. . .] ∼ β[. . .]. From now on, we shall omit
the brackets [] when the arity of an agent is 0. We give a more complete example below, which
introduces many of the novelties of this paper.

int counter;

Fact[result] ><

{
Num(int x)[] =>

counter = counter + 1;

if(x < 0)

result∼Error[];
else if(x == 0)

result∼Num(1)[];
else

Fact[Mult(x)[result]]∼Num(x-1)[] ;

}
Mult(int x)[res] ><

{
Num(int y)[] =>

counter = counter + 1;

res∼Num(x*y)[];
}
main(){

counter = 0;

Fact[result]∼Num(6)[];
print ‘‘total number of interactions ’’,counter;

}

We conclude this short abstract by showing the structure of part of the code generated for
the main net given in the example program given above. In the full paper we give the formal
translation of the language into C.

void MAIN(){
counter = 0;

Agent Fact = mkAgent("Fact",1); Agent result = mkVar("result");

connect(Fact, 1, result, 1)
Agent Num = mkAgent("Num",0); Num->value[1] = 6;

49

connect(Fact, 0, Num, 0); eval(Fact,Num);

printf("total number of interactions"); printf(counter);

}

int main(){ MAIN(); }

References

[1] Daniel Diaz. Wamcc: Compiling prolog to c. In In 12th International Conference on Logic Program-
ming, pages 317–331. MIT PRess, 1995.

[2] Maribel Fernández and Ian Mackie. A calculus for interaction nets. In G. Nadathur, editor, Pro-
ceedings of the International Conference on Principles and Practice of Declarative Programming
(PPDP’99), number 1702 in LNCS, pages 170–187. Springer-Verlag, September 1999.

[3] Georges Gonthier, Mart́ın Abadi, and Jean-Jacques Lévy. The geometry of optimal lambda reduction.
In Proceedings of the 19th ACM Symposium on Principles of Programming Languages (POPL’92),
pages 15–26. ACM Press, January 1992.

[4] Abubakar Hassan, Ian Mackie, and Shinya Sato. Interaction nets: programming language design and
implementation. In Proceedings of the seventh international workshop on Graph Transformation and
Visual Modeling Techniques, March 2008.

[5] M.Vilaca J.B. Almeida, J.S.Pinto. A tool for programming with interaction nets. Technical report,
University of Minho, 2006.

[6] Yves Lafont. Interaction nets. In Proceedings of the 17th ACM Symposium on Principles of Pro-
gramming Languages (POPL’90), pages 95–108. ACM Press, January 1990.

[7] John Lamping. An algorithm for optimal lambda calculus reduction. In Proceedings of the 17th ACM
Symposium on Principles of Programming Languages (POPL’90), pages 16–30. ACM Press, January
1990.

[8] S. Lippi. in2 : A graphical interpreter for interaction nets. In Sophie Tison, editor, Rewriting
Techniques and Applications (RTA’02), volume 2378 of Lecture Notes in Computer Science, pages
380–386. Springer, 2002.

[9] Ian Mackie. YALE: Yet another lambda evaluator based on interaction nets. In Proceedings of the 3rd
ACM SIGPLAN International Conference on Functional Programming (ICFP’98), pages 117–128.
ACM Press, September 1998.

[10] Benjamin C. Pierce and David N. Turner. Pict: a programming language based on the pi-calculus. In
Gordon D. Plotkin, Colin Stirling, and Mads Tofte, editors, Proof, Language, and Interaction, pages
455–494. The MIT Press, 2000.

[11] Jorge Sousa Pinto. Parallel evaluation of interaction nets with mpine. In RTA, pages 353–356, 2001.
[12] Dennis M. Ritchie. The c programming language, 1988.
[13] David Tarditi, Peter Lee, and Anurag Acharya. No assembly required: Compiling standard ml to c.

Technical report, ACM Letters on Programming Languages and Systems, 1990.
[14] Geo Wong. Compiling erlang via c. Technical report, 1998.

50

A Type System for Usage of Software
Components. Extended Abstract�

Dag Hovland

Department of Informatics, The University of Bergen,
PB 7803, N-5020 Bergen, Norway

dagh@ii.uib.no

Abstract. The aim of this article is to support component-based soft-
ware engineering by modelling exclusive and inclusive usage of software
components. Truong and Bezem describe in several papers abstract lan-
guages for component software with the aim to estimate bounds for the
number of instances of components. Their language includes primitives
for instantiating and deleting instances of components and operators for
sequential, alternative and parallel composition and a scope mechanism.
The language is here supplemented with the primitives use , for inclusive
usage, and lock and free for exclusive usage. The main contribution is
a type system which guarantees the safety of usage, in the following way:
When a well-typed program executes a subexpression use [x] or lock [x],
it is guaranteed that an instance of x is available.

1 Introduction

The idea of “Mass produced software components” was first formulated by McIl-
roy [2] in an attempt to encourage the production of software routines in much
the same way industry manufactures ordinary, tangible products. The last two
decades “component” has got the more general meaning of a highly reusable
piece of software. According to Szyperski [4] (p. 3), “(. . .) software components
are executable units of independent production, acquisition, and deployment
that can be composed into a functioning system”. We will model software that
is constructed from such components, and assume that during the execution of
such a program, instances of the components can be created, used and deleted.

Efficient component software engineering is not compatible with program-
mers having to acquire detailed knowledge of the internal structure of compo-
nents that are being used. Components can also be constructed to use other
components, such that instantiating one component, could lead to several in-
stances of other components. This lack of knowledge in combination with nested
dependencies weakens the control over resource usage in the composed software.

The goal of this article is to guarantee the safe usage of components, in the
following two ways: when use [x] is executed there is an instance of x available,
and when lock [x] is executed, there is an instance which is exclusively available

� This research was supported by the Research Council of Norway.

51

for the current thread of execution. In [1,5,6], Truong and Bezem describe ab-
stract languages for component software with the aim of estimating the number
of instances of components existing during and remaining after execution of a
component program. Their languages include primitives for instantiating and
deleting instances of components and have operators for sequential, alternative
and parallel composition and a scope mechanism. The first three operators are
well-known, and have been treated by for example Milner [3] (where alternative
composition is called summation). The scope mechanism works like this: Any
component instantiated in a scope has a lifetime limited to the scope. Further-
more, from inside a scope, only instances in the local store of the same scope can
be deleted. The types count the maximum number of active component instances
during execution and remaining after execution of a component program.

These languages lack a direct way of specifying that one or more instances
of a component must exist at some point in the execution. In this paper we
have added the primitives use , lock and free in order to study the usage of
components. The first (use) is used for “inclusive usage”, that is, when a set
of instances must be available, but these instances may be shared. The other
form (lock and free) is used when the instances must exclusively be avail-
able for this execution thread. The difference between exclusive and inclusive
usage can be seen by comparing the expressions newx(use [x] ‖ use [x]) and
newx(lock [x]free [x] ‖ use [x]). The first expression is safe to execute, while
executing the latter expression can lead to an error if x is locked, but not freed,
by the left thread before it is used by the right thread.

2 Language

An expression in the language is defined inductively as a list where the elements
are of the form newx, delx, lockM, freeM, useM, nop, (Expr + Expr), (Expr ‖
Expr) or {M,Expr}, where M is a bag of component names, x is a component
name, and Expr is an expression. Furthermore, + denotes alternative compo-
sition, ‖ denotes parallel composition, {} denotes a local scope and nop means
“no operation”. A component program P is a comma-separated list starting with
nil and followed by zero or more component declarations, which are of the form
x−≺ Expr .

3 Examples

We assume that a program is executed by executing newx, where x is the last
component declared in the program, starting with empty stores of component
instances. Examples of programs that will execute properly and will be well-
typed are

x−≺ nop, y −≺ newx use [x] lock [x] free [x]
x−≺ nop, y −≺ newx newx {[], (use [x] ‖ lock [x])} free [x]

52

Examples of programs that can, for some reason, produce an error are:

x−≺ nop, y −≺ newx newx {[], (use [x] ‖ lock [x])}
x−≺ nop, y −≺ newx lock [x] use [x] free [x]
x−≺ nop, y −≺ newx {[], (use [x] ‖ lock [x])} free [x]
x−≺ nop, y −≺ newx free [x] lock [x]
x−≺ nop, y −≺ newx {[], (use [x] + lock [x])} free [x]

The first program leaves one instance of x locked after execution. The second
will get stuck as no x will be available for use by the use -statement. The third
might also get stuck. Note that there exists an error-free execution of the third
program, where the left branch of (use [x] ‖ lock [x]) is executed before the right
one. But as we do not wish to make any assumptions about the scheduling of the
parallel execution, we consider this an error. The fourth program tries to free a
component instance that is not locked. The fifth program can be run such that
when free [x] is executed no instance of x has been locked.

4 Results

The execution of a program is formalized in a small-step operational semantics.
The rules operate on states, pairs consisting of an expression in the language
and of a global store of component instances. Further a type system is presented,
which can assign types to expressions and programs. The type of an expression is
a 6-tuple of multisets over component names. The type of a program is a (partial)
mapping from component names to expression types. The main lemmas, type
preservation, progress and termination are formulated and proved in terms of
the operational semantics and the type system. The main result is a theorem
stating that if a program is well-typed in the system, then all execution traces
of the program are finite and safe.

References

1. Marc Bezem and Hoang Truong. A type system for the safe instantiation of com-
ponents. Electronic Notes in Theoretical Computer Science, 97:197–217, 2004.

2. Malcolm Douglas McIlroy. Mass produced software components. In P. Naur and
B. Randell, editors, Software Engineering: Report of a conference sponsored by the
NATO Science Committee, pages 79–87. Scientific Affairs Division, NATO, October
1968.

3. Robin Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes
in Computer Science. Springer, 1980.

4. Clemens Szyperski. Component Software—Beyond Object–Oriented Programming.
Addison–Wesley / ACM Press, 2nd edition, 2002.

5. Hoang Truong. Guaranteeing resource bounds for component software. In Martin
Steffen and Gianluigi Zavattaro, editors, FMOODS, volume 3535 of Lecture Notes
in Computer Science, pages 179–194. Springer, 2005.

6. Hoang Truong and Marc Bezem. Finding resource bounds in the presence of explicit
deallocation. In Dang Van Hung and Martin Wirsing, editors, Proceedings ICTAC,
volume 3722 of Lecture Notes in Computer Science, pages 227–241. Springer, 2005.

53

Secrecy in Mobile Ad-hoc Networks

Hans Hüttel1 and Willard Thór Rafnsson2

1 Department of Computer Science, Aalborg University, Denmark
hans@cs.aau.dk

2 School of Computer Science, Reykjav́ık University, Iceland
willard@ru.is

We propose a framework for automated verification of secrecy properties of
MANET protocols, consisting of a formal language and a proven sound verifi-
cation technique which can be automated. We start off by presenting the dis-
tributed applied pi calculus with broadcast (DAπβ), whereafter we summarise
our procedure for generating Horn clauses from a DAπβ model expressing con-
trol flow in the model. We then present our soundness result, from which it
follows that the generated Horn clauses can be used to reason about secrecy in
the source model, in an automated manner.

1 The Calculus DAπβ

Our calculus is an extension to the calculus of Abadi and Blanchet [1] with
arbitrary term rewrite systems, with an extended process layer as in the applied
pi calculus [3], with a network layer similar to that of the distributed pi calculus
[6], and with connectivity graphs akin to those of CBS� [4].

Let A, X , and U = A ∪ X be the infinite sets of names, variables, and
identifiers, ranged by a, b, c, k, . . . , t ∈ A, a, b, c, k, . . . , t ∈ X , and u, v, w ∈ U ,
and let A and X be disjoint. Let F and G be the sets of constructors and
destructors, ranged over by f and g, respectively. The syntax of DAπβ networks
is given by the following grammar specification.

T ::= u
∣∣ f(T, . . . , T)

P ::= 0
∣∣ u(x) .P

∣∣ u〈T 〉 .P ∣∣ !P
∣∣ νa .P

∣∣ P ‖ P
∣∣ let x = g(T̃) in P else P

A ::= A ‖ A
∣∣ νu .A

∣∣ P
∣∣ {T/x}

N ::= N ‖ N
∣∣ νu .N

∣∣ 0
∣∣ l[A]

∣∣ {T/x}

A DAπβ network is a parallel composition of sequential message-passing pro-
cesses residing at a location, which pass terms as values. Terms (T, U, V ∈ T)
can either be an identifier, or a construction of terms. For instance, suppose
enc, pair ∈ F , both of arity 2. Then enc(pair(x, y), k) is a term. Primitive Pro-
cesses (P,Q, R ∈ P) are identical to the processes of the pi calculus, except
for the presence of variables, and the “let” operator; let x = g(T̃) in P else Q
binds some (nondeterministically chosen) T to x in P , if a T exists such that g(T̃)
reduces to T , written g(T̃) > T . If no such T exists, then the process proceeds as
Q. A classic rewrite rule is that of synchronous key cryptography; for dec ∈ G,

54

we let def(dec), the set of rewrite rules for dec, be {dec(enc(z1, z2), z2) > z1}.
Here, dec(enc(pair(x, y), k), k) > pair(x, y) holds. As usual, perfect encryption
is assumed. Extended Processes (A, B ∈ B) are exactly like in [3]. Networks
(M,N,O ∈ N) are like the syntactic category A, with the addition of l[A],
representing A residing at location l. We assume in every N that each bound
location name is pairwise syntactically different from any other location name.

We adopt the notion of connectivity graphs from [4], with some adjustments.
A directed graph G = (V,E), where V and E are the vertices and edges of G,
is a connectivity graph if V is a finite set, V ⊆ A, and ∀l ∈ V . (l, l) ∈ E holds3.
G is admissible on N if V contains all locations in N . A network topology τ is a
set of connectivity graphs. τ is admissible to a network N if each graph in τ is.

The semantics of DAπβ is defined in terms of structural equivalence ≡, in-
ternal reduction →G, and labelled reduction →(l,α)

G , which are derived from [3],
and extended to take into account τ and the source location of each message.
→G is the least preorder on N closed by ≡ and evaluation contexts, satisfying

∏
i∈I

li[a(x) .Pi] ‖ l[a〈x〉 .P] →G

∏
i∈I

li[Pi] ‖ l[P], if ∀i ∈ I∃(l, li) ∈ E(G)

l[let x = g(T̃) in P else Q]→G l[νx . ({T/x} ‖ P)], if g(T̃) > T

l[let x = g(T̃) in P else Q]→G l[Q], if ¬∃T . g(T̃) > T

l[!P] →G l[P ‖!P].

Example 1 (Unauthenticated route). A common interest in MANET protocol
analysis is checking the possibility of routes, particularly unauthenticated ones,
such as in the ARAN protocol [5]. Let latt be an unauthenticated location in

N
def= ls[νasecret . c〈asecret〉 .Ps] ‖ lr[c(x) . νaoops . c〈pair(x, aoops)〉 .Pr].

We construct a network topology τ = {G1, G2} that keeps ls and lr separate.

G1:
ls latt lr , G2:

ls latt lr

If N reveals pair(asecret, aoops) =: m, an unauthenticated route has been estab-
lished. Here, N →G1 , the resulting network after N performs reduction →G1 , is
not in a position to reveal m to the environment, while N →(ls,c〈asecret〉)

G2
can be,

as latt is in a position to route asecret to lr.

2 Analysis

We have developed a Horn clause generation procedure expressing control flow
in our networks, which bears close resemblance to that of [1, 2]. For our example
above, the set H(N, τ) of clauses generated from N and τ would include

msgout(x, y, z) ∧ connected(z, z′) =⇒ msgin(x, y, z′), msgout(c, asecret, ls)
msgin(c, x, lr) =⇒ msgout(c, pair(x, aoops), lr), connected(ls, latt),

3 We usually make this last detail implicit in our graph specifications.

55

att(x) ∧ att(y) ∧ att(z) =⇒ msgout(x, y, z), connected(latt, lr),
msgout(x, y, z) ∧ connected(z, z′) ∧ att(x) ∧ att(z′) =⇒ att(y).

We then get an affirmative result when performing SLD resolution on H(τ)
with the goal clause msgout(c, pair(asecret, aoops), lr). We denote this deduction
by H(N, τ) � msgout(c, pair(asecret, aoops), lr), which expresses that in topology τ ,
N will output pair(asecret, aoops), which indicates the existence of a false route.

By making syntactic behaviour-preserving transformations on a network spec-
ification, we obtain, for any N and τ admissible to N , that

Theorem 1. There is a syntactic bijective relationship between process prefixes
of N ending in an output, and cl ∈ H(N, τ) with msgout in their conclusion.

We use this result to derive two key results in our framework.

Theorem 2. i) � is sound. ii) If H(N, τ) � att(s), then s is secret in N .

Thus, deducing facts from H(N, τ) is sound; while deduction can yield false
positives regarding control flow due to overapproximation, false negatives never
arise. Also, H(N, τ) can be used to reason about secrecy in N . A useful feature
is the “pluggable” nature of τ ; we are capable of proving that some protocols
are sound when mobility is constrained, as is the case of the ARAN protocol.

At last, a central consequence of Theorem 1 is that � can easily be imple-
mented in ProVerif [7] and the Succinct Solver [8]. As such, these tools can reason
soundly about the behaviour of broadcasting processes, which to our knowledge
has not been demonstrated before.

References

1. Mart́ın Abadi and Bruno Blanchet: Analyzing Security Protocols with Secrecy
Types and Logic Programs. Journal of the ACM 52, pp. 102–146 (2005)

2. Bruno Blanchet. From Secrecy to Authenticity in Security Protocols. In: SAS ’02:
Proceedings of the 9th International Symposium on Static Analysis, pp. 342–359,
Springer-Verlag, London, UK (2002)

3. Mart́ın Abadi, Cédric Fournet: Mobile Values, New Names, and Secure Communi-
cation. In: 28th ACM Symposium on POPL 2001, pp. 104–115, (2001)

4. Sebastian Nanz, Chris Hankin: A Framework for Security Analysis of Mobile Wire-
less Networks. Electronic Notes in Theor. Comp. Sci., 367:207–227 (2006)

5. Jens Chr. Godskesen: Formal Verication of the ARAN Protocol Using the Applied
Pi-calculus. In Proceedings of the Sixth International IFIP WG 1.7 Workshop on
Issues in the Theory of Security, 99–113 (2006)

6. Matthew Hennessy, James Riely: Resource Access Control in Systems of Mobile
Agents. In: Proceedings of HLCL’98, volume 16(3) of ENTCS. Elsevier (1998)

7. Bruno Blanchet. An Efficient Cryptographic Protocol Verifier Based on Prolog
Rules. In: 14th IEEE Computer Security Foundations Workshop (CSFW14), pp.
82–96, IEEE Computer Society, Cape Breton, Nova Scotia, Canada. (2001)

8. F. Nielson, H. Riis Nielson, H. Sun, M. Buchholtz, R. R. Hansen, H. Pilegaard, and
H. Seidl: The Succinct Solver Suite. In: Proc. TACAS’04, volume 2988 of Lecture
Notes in Computer Science, pp. 251–265. Springer-Verlag (2004)

56

On building a Supercompiler for GHC

Peter A. Jonsson Johan Nordlander

Luleå University of Technology

{pj, nordland}@csee.ltu.se

Abstract
Supercompilation is a program transformation that removes inter-
mediate structures and performs program specialization. We dis-
cuss problems and necessary steps for building a supercompiler for
GHC.

1. Introduction
Supero [4] is a supercompiler for Haskell that has achieved runtime
improvements of 16% for a subset of the imaginary part of the nofib
suite compared to GHC. This is a remarkable result considering that
it is doing a single program transformation beyond those of GHC
and that GHC is a mature optimizing Haskell compiler. Not only is
Supero showing great results, but the theoretical underpinnings of
supercompilation have been investigated quite thoroughly as well.
We know that it is possible to supercompile both strict [2] and
lazy [9] languages, that the algorithms preserve the semantics of
the program [7] and that the algorithms will terminate [8].

If the theory of supercompilers is well investigated, and runtime
improvements are impressive – why does not every compiler in-
clude the optimization? Mitchell and Runciman [4] list three main
areas in the future work for Supero:

Runtime performance For certain benchmarks earlier versions of
Supero had better results. This is both evidence that there are
improvements to be made, and it also highlights how small
changes to the algorithm can have large effects on the result
of the optimization.

Compilation speed Profiling Supero showed that 90% of the time
was spent to ensure termination (the homeomorphic embedding
test), which was done in a naı̈ve way.

More benchmarks Supero was applied to a subset of the imagi-
nary part of nofib. No one has ever benchmarked supercompiled
real world Haskell programs.

We set out to build a supercompiler for GHC in order to tackle
these three problems (Sections 3 and 4). Using GHC gives the addi-
tional benefit of support for many Haskell extensions for free, since
they are all translated to System Fc, GHC’s typed intermediate lan-
guage [10]. We start with some examples of a supercompiler in
action to try to convey the intuition behind the algorithm (Section
2).

2. Examples
We have left out many of the technical details of the algorithm due
to space constraints and instead try to convey the intuition via a
series of examples of how a supercompiler behaves. Readers who
are interested in the gory details are encouraged to read some of
the related work already cited, in particular Sørensen et al. [9] for
a call-by-name algorithm, the work on Supero by Mitchell and
Runciman [4], or Jonsson and Nordlander [2] for a call-by-value
algorithm.

Supercompilation is a program transformation, closely related
to deforestation [11], that both removes intermediate structures and
performs program specialization. Removing intermediate struc-
tures will make the program allocate less memory and thus put less
strain on the garbage collector. The program specialization will in
practice remove many of the higher order functions, replacing them
with a specialized first order variant. Higher order languages usu-
ally represent functions as closures on the heap, and these closures
need to be garbage collected. Having removed them at compile-
time reduces the amount of garbage collection necessary, and also
avoids an indirect jump to the function pointer in the closure at
runtime.

Our first example is transformation of sum (map square ys).
The functions used in the examples are defined as:

square x = x ∗ x
map f xs = case xs of

[] → ys
(x : xs) → f x : map f xs

sum xs = case xs of
[] → 0
(x : xs) → x + sum xs

We start our transformation by allocating a new fresh function
name (h0) to this expression, inlining the body of sum and substi-
tuting map square ys into the body of sum:

case map square ys of
[] → 0
(x ′ : xs ′) → x ′ + sum xs ′

After inlining map and substituting the arguments into the body
the result becomes:

case (case ys of
[] → []
(x ′ : xs ′) → (square x ′) : map square xs ′) of

[] → 0
(x ′ : xs ′) → x ′ + sum xs ′

We duplicate the outer case in each of the inner case’s branches,
using the expression in the branches as head of that case-statement.
Continuing the transformation on each branch with ordinary reduc-
tion steps yields:

57

case ys of
[] → 0
(x ′ : xs ′) → square x ′ + sum (map square xs ′)

Now inline the body of the first square and observe that the
second argument to (+) is similar to the expression we started with.
We replace the second parameter to (+) with h0 xs ′. The result of
our transformation is h0 ys , with h0 defined as:

h0 ys = case ys of
[] → 0
(x ′ : xs ′) → x ′ ∗ x ′ + h0 xs ′

This new function only traverses its input once, and no interme-
diate structures are created. If the expression sum (map square xs)
or a renaming thereof is detected elsewhere in the input, a call to
h0 will be inserted there instead.

The following examples are due to Ohori and Sasano [5]:

mapsq xs = case xs of
[] → []
(x ′ : xs ′) → (x ′ ∗ x ′) : mapsq xs ′

f xs = case xs of
[] → []
(x ′ : xs ′) → (2 ∗ x ′) : g xs ′

g xs = case xs of
[] → []
(x ′ : xs ′) → (3 ∗ x ′) : f xs ′

Transforming mapsq (mapsq xs) will inline the outer mapsq ,
substitute the argument in the function body and inline the inner
call to mapsq :

case (case xs of
[] → []
(x ′ : xs ′) → (x ′ ∗ x ′) : mapsq xs ′) of

[] → []
(x ′ : xs ′) → (x ′ ∗ x ′) : mapsq xs ′

As previously, we duplicate the outer case in each of the inner
case’s branches, using the expression in the branches as head of
that case-statement. Continuing the transformation on each branch
by ordinary reduction steps yields:

case xs of
[] → []
(x ′ : xs ′) → (x ′ ∗ x ′ ∗ x ′ ∗ x ′) : mapsq (mapsq xs ′)

This will encounter a similar expression to what we started with,
and create a new function h1. The final result of our transformation
is h1 xs , with the new residual function h1 that only traverses its
input once defined as:

h1 xs = case xs of
[] → []
(x ′ : xs ′) → (x ′ ∗ x ′ ∗ x ′ ∗ x ′) : h1 xs ′

For an example of transforming mutually recursive functions,
consider the transformation of sum (f xs). Inlining the body of
sum , substituting its arguments in the function body and inlining
the body of f yields:

case (case xs of
[] → []
(x ′ : xs ′) → (2 ∗ x ′) : g xs ′) of

[] → 0
(x ′ : xs ′) → x ′ + sum xs ′

We now move down the outer case into each branch, and perform
reductions until we end up with:

case xs of {[] → 0; (x ′ : xs ′) → (2 ∗ x ′) + sum (g xs ′) }

We notice that unlike in previous examples, sum (g xs ′) is not
similar to the expression we started with. For space reasons, we
focus on the transformation of the rightmost expression in the last
branch, sum (g xs ′), while keeping the functions already seen in
mind. We inline the body of sum , perform the substitution of its
arguments and inline the body of g :

case (case xs ′ of
[] → []
(x ′′ : xs ′′) → (3 ∗ x ′′) : f xs ′′) of

[] → 0
(x ′ : xs ′) → x ′ + sum xs ′

We now move down the outer case into each branch, and perform
reductions:

case xs ′ of
[] → 0
(x ′′ : xs ′′) → (3 ∗ x ′′) + sum (f xs ′′)

We notice a familiar expression in sum (f xs ′′), and fold when
reaching it. Adding it all together gives a new function h2:

h2 xs = case xs of
[] → 0
(x ′ : xs ′) → (2 ∗ x ′) + case xs ′ of

[] → 0
(x ′′ : xs ′′) →

(3 ∗ x ′′) + h2 xs ′′

Kort [3] studied a ray-tracer written in Haskell, and identified
a critical function in the innermost loop of a matrix multiplication,
called vecDot :

vecDot xs ys = sum (zipWith (∗) xs ys)

This is simplified by our positive supercompiler to:

vecDot xs ys = h1 xs ys
h1 xs ys = case xs of

(x ′ : xs ′) → case ys of
(y ′ : ys ′) →

x ′ ∗ y ′ + h1 xs ′ ys ′

→ 0→ 0

The intermediate list between sum and zipWith is transformed
away, and the complexity is reduced from 2|xs|+|ys| to |xs|+|ys|
(since this is matrix multiplication |xs| = |ys|).

3. Towards a Supercompiler in GHC
The first step towards a supercompiler in GHC is to construct a
supercompilation algorithm for System Fc, the typed intermediate
language found in GHC [10]. The conversion of the algorithm is
quite straightforward and in our experience it is rare to acciden-
tally introduce non-termination or unsound transformation steps.
The challenge is rather to achieve the desired transformation effects
in the presence of the casts (�) that might propagate inside expres-
sions in System Fc. Previous work on supercompilation has been
for untyped languages. Since GHC assumes well-typed expressions
once the type-checker pass is done it is necessary to prove that the
supercompiler preserves types as well

Mitchell and Runciman lists three choices that need to be made
during optimization:

• Which function to inline.

• What termination criterion to use.

• What generalisation to use.

Our current implementation makes a fixed choice for function to
inline (left-most), what termination criterion to use (the homeomor-

58

phic embedding), and what generalisation to use (the most specific
generalisation, or simple splitting in the case where no common
terms are found).

4. Analysis of Problems
4.1 Code Explosion
It is possible to construct examples where a module exports two
mutually recursive functions, and if one supercompiles both these
functions independently it might lead to code duplication. We have
sidestepped this issue by only supercompiling one function, main,
which makes our supercompiler unusable for libraries at the mo-
ment. However, upon compiling the entire program with the library
present the desired optimization should occur. We expand on issues
with whole program compilation in Section 4.3.

Our current strategy to always inline the left-most function is
not always beneficial for performance since it might lead to code
explosion, and possibly evaluating the same expression multiple
times. An example is the following Haskell-program:

main = do
x ← getArgs
xs ← readFile (x !! 2)
ys ← readFile (x !! 3)
doCompute xs ys
return ()

which will give two copies of readFile: one readF ile!!2 and one
readF ile!!3, something that is not necessarily faster than simply
calling readFile directly with the different parameters.

Inlining itself is a difficult problem, which is not that well
studied. The inliner of GHC has been investigated previously [6],
and we expect many results from that investigation to carry over
to our supercompiler. We find it likely that more work is necessary
for inlining efficiently in our supercompiler, possible directions for
work include, but are not limited to:

• Investigate how inliners of other compilers than GHC work.

• Characterize what a good or bad inlining is.

• Create a partial order between inlinings.

With the above knowledge, it should be possible to design a
heuristic that works well in practice.

4.2 Compilation Speed
We propose to make the homeomorphic embedding test on a
smaller part of the tree, which still preserves termination of the
algorithm. Any improvements in the implementation of the home-
omorphic embedding test will be of benefit both to our approach
and to Supero. Changing the test makes it impossible to extend
our algorithm to distillation [1], which removes more intermediate
structures. This a trade-off we are prepared to accept considering
that supercompilation is still an improvement over what is currently
in use today. Should we change our mind in the future it should not
be a problem to go back to the kind of test Supero uses. It is still
too early to tell whether this change is enough, or if there are other
bottlenecks that will show when supercompiling larger programs.

4.3 Whole Program Compilation
Currently, our experiments have only been on complete programs
defined in one module, avoiding to import the Prelude. To gain the
most out of supercompilation on real world programs GHC needs
to be tweaked to handle whole program compilation. This can be
done by removing the current constraint that expressions placed in
the interface files (.hi) must be “small”, and by annotating loop-
breakers in the interface files. The size increases to the interface
files from these changes need to be measured.

Whole program compilation has been used in MLton and they
manage to compile programs larger than 100k lines [12]. If this
number carries over to GHC and Haskell it makes whole program
compilation a viable approach for a majority of the known Haskell
programs.

5. Conclusions and Future Work
We have reported on our current work on building a supercom-
piler for GHC. Many problems that we intend to tackle have been
mentioned already, among them a proof of type preservation of the
algorithm, investigating inlining to avoid code explosion, and mea-
suring the effects of making the interface files contain entire mod-
ules to achieve whole program compilation. We are however certain
that problems which we have not foreseen will surface as we make
progress on our supercompiler.

Acknowledgements
We thank Simon Peyton Jones for suggesting several of the ex-
amples and explaining how to achieve whole program compilation
with GHC. Max Bolingbroke has patiently explained large parts of
the GHC internals to us and deserves a special thanks.

References
[1] G. W. Hamilton. Distillation: extracting the essence of programs. In

PEPM ’07: Proceedings of the 2007 ACM SIGPLAN symposium on
Partial evaluation and semantics-based program manipulation, pages
61–70, New York, NY, USA, 2007. ACM.

[2] P. A. Jonsson and J. Nordlander. Positive supercompilation for a
higher-order call-by-value language. In POPL ’09: Proceedings of
the 36th annual ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, New York, NY, USA, 2009. ACM. To
appear.

[3] J. Kort. Deforestation of a raytracer. Master’s thesis, University of
Amsterdam, 1996.

[4] N. Mitchell and C. Runciman. A supercompiler for core Haskell. In
O. Chitil et al., editor, IFL 2007, volume 5083 of Lecture Notes in
Computer Science, pages 147–164. Springer-Verlag, 2008.

[5] A. Ohori and I. Sasano. Lightweight fusion by fixed point promotion.
In POPL ’07: Proceedings of the 34th annual ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, pages
143–154, New York, NY, USA, 2007. ACM.

[6] S. L. Peyton Jones and S. Marlow. Secrets of the glasgow haskell
compiler inliner. J. Funct. Program, 12(4&5):393–433, 2002.

[7] D. Sands. Proving the correctness of recursion-based automatic
program transformations. Theoretical Computer Science, 167(1–
2):193–233, 30 October 1996.

[8] M.H. Sørensen. Convergence of program transformers in the metric
space of trees. Sci. Comput. Program, 37(1-3):163–205, 2000.

[9] M.H. Sørensen, R. Glück, and N.D. Jones. A positive supercompiler.
Journal of Functional Programming, 6(6):811–838, 1996.

[10] M. Sulzmann, M. M. T. Chakravarty, S. Peyton Jones, and K. Don-
nelly. System F with type equality coercions. In TLDI ’07: Proceed-
ings of the 2007 ACM SIGPLAN international workshop on Types in
languages design and implementation, pages 53–66, New York, NY,
USA, 2007. ACM.

[11] P. Wadler. Deforestation: transforming programs to eliminate trees.
Theoretical Computer Science, 73(2):231–248, June 1990.

[12] S. Weeks. Whole-program compilation in MLton. In ML ’06:
Proceedings of the 2006 workshop on ML, pages 1–1, New York, NY,
USA, 2006. ACM. http://mlton.org/pages/References/attachments/
060916-mlton.pdf.

59

A Semantics for a Real-Time Actor Language

István Knoll Anders P. Ravn
Dept. of Computer Science, Aalborg University
S. Lagerlöfs Vej 300, DK-9220 Aalborg Øst

{iknoll, apr, ask}@cs.aau.dk

Arne Skou

Abstract
In order to develop simulators and analysis tools for an actor
based real-time language, we define its semantics. The semantics
is interesting in itself, as it models the functional, communica-
tion, and timing aspects separately, allowing several variants of
the language to be investigated.

1 Introduction
Development tools for hybrid embedded real-time systems often
need to be combined with external verification tools to support a
variety of model checking approaches. An example is COMDES-
II [9], an integrated development environment that supports the
model-driven paradigm by providing a graphical interface for de-
signing embedded real-time controllers, using an extended func-
tion block diagram notation with three syntactic levels. Function
blocks (level 1) are grouped into actors (level 2), which form a
network communicating through channels (level 3).
Fig. 1 shows an example of an embedded system model in

COMDES-II.

Figure 1: A COMDES-II system model example.

Actors are triggered periodically by timing events in accor-
dance with distributed timed multitasking [1], or by other, al-
ready triggered actors. Communication among actors takes place
through channels, carrying composite data types, connecting in-
put and output drivers (indriver, outdriver) in the actors. One
input driver which triggers the actor upon receiving data. The
functionality of the actors is given by function block (fb) dia-
grams. Besides basic function blocks, there are modal state ma-
chine function blocks that provide discrete (reactive) functional-

ity by controlling a modal function block. Which contained func-
tion block in a modal function block is executed is determined
by a computed mode1. Data transfer among function blocks hap-
pen through internal signals (isignal), which connect ingoing and
outgoing connection points (incp, outcp) in function blocks.
Comparable notations with distinguished syntactic level repre-

sentations include IF [3, 4] and Ptolemy [7]. IF supports three
syntactic levels; the specification level, expressing the system,
which is translated to the intermediate level, which is the IF in-
ternal format, and the labelled transition system (LTS) representa-
tion, the semantic model level, serving verification and simulation
purposes using external, linked tools [3]. In Ptolemy, architec-
tural and behavioral design is distinguished, and various models
of computations (semantic domains) are supported [5]. Ptolemy
supports actor oriented design, and supports timed multitasking
[10], as well as continuous time, and discrete time semantic do-
mains [7].
Verification of COMDES-II models is not supported, however,

semantic anchoring to Uppaal [2] has been investigated for in-
dividual actors, where functionality is abstracted away, and the
intent is to investigate scheduling [8].
Our contribution is a complete semantics for the COMDES-II

modeling language itself. It is a foundation for building seman-
tically correct translators to the input languages of a variety of
verification tools and frameworks like IF, Spin [6], and Uppaal.
Here, we present the three level semantics for COMDES-II:

(1) The semantics of actor functionality, parametrized by simple
function blocks and finite state machines, (2) semantics for ac-
tor communication and coordination, and (3) semantics for timed
systems. Based on the semantics, we report on the development
of a semantics derived simulator, which is used for demonstrat-
ing potential nondeterminism and race conditions in the current
COMDES-II specification.

2 COMDES-II Semantics
The behaviour of a COMDES-II system is on an outermost level
determined by the flow of values over the channels connecting the
actors. An actor that is enabled, and has been triggered, computes
a new value for its local state variables and an output for its output
drivers. The entire system can thus be seen as a network of Mealy
machines, where each actor takes exactly one step each time it is
triggered. With this structure in mind, we define the semantics

1Additionally, COMDES-II has a composite function block type, which can be
used to abstract away complex aggregates of function blocks (not shown in Fig.
1)

60

in two steps. First we give an operational semantics to the net-
work and then a denotation for each actor corresponding to the
definition for a Mealy machine’s transition and output functions.

Network semantics We begin by defining the following syn-
tactic domains: a ∈ Actor, the set of actors, i ∈ Indriver, the set
of input drivers, o ∈ Outdriver, the set of output drivers,
c ∈ Channel = Outdriver → P(Indriver), the set of channels,
t ∈ Trigger : Actor → Indriver, the input driver that triggers
a given actor, and f ∈ FB, the set of function blocks, The set of
drivers is Driver = Indriver ∪Outdriver.
The mapping indrivers : Actor→ P(Indriver) returns the in-

put drivers that are contained in a given actor, while
outdrivers : Actor → P(Outdriver) returns the output drivers,
and f b : Actor → P(FB) returns the function blocks for a
given actor. A number of well-formedness conditions ensure that
drivers and function blocks belong to a unique actor.
We shall not be particularly concerned with the values commu-

nicated and computed, but assume that for the drivers, connection
points, and states, there is a universal flat value domain Val, with
a designated bottom element ⊥ that denotes the undefined value.

Configurations A configuration C in the transition system is a
triple: 〈D, S , A〉, where D ∈ DV = Driver → Val maps all input
and output drivers to their current values, S ∈ SV = FB → Val
maps the state variables in the function blocks to their current
values, and A ⊆ Actor is the set of enabled (triggered) actors.
In the following, DVa and SVa denote the projection of DV

respectively SV on the drivers or function block states for a given
actor a. Due to the well-formedness conditions, these projections
form partitions of the corresponding configuration components.
We leave initial configurations unspecified.

Transitions A transition of the global system depends on two
functions defined for actors: σ : Actor → (DV × SV) → SV ,
that computes a next state, and π : Actor → (DV × SV) → DV ,
that computes the outputs. These functions are defined below.
A global transition, 〈D, S , A〉 −→ 〈D′, S ′, A′〉, selects a subset

At ⊆ A of the enabled actors to take a step. It updates the state for
function blocks of the selected actors (1).

S ′ = S
 [(σ(a)(D, S))a | a ∈ At] (1)

Note that the states of unselected actors are left unchanged.
Then, it updates the output drivers of the selected actors (2),

Do = D
 [(π(a)(D, S))a | a ∈ At] (2)

and completes by updating the input drivers with the values of the
corresponding output drivers (3).

D′ = Do
 [i �→ Do(d) | i ∈ c(d) ∧ d ∈ outdriver(At)] (3)

Finally, the actors triggered by updated input drivers have to be
set after removing the selected actors (4).

A′ = A \ At ∪ {a | t(a) ∈ Updated}, where
Updated = {i ∈ c(d) | d ∈ outdriver(At)} (4)

The semantics is deliberately very nondeterministic in the se-
lection of actors for a step. It leaves a maximum of freedom for
later constraints that comes from the timing properties that are su-
perimposed on the actors. A system will be deterministic, modulo
stuttering steps where no actor is selected, only when at most one
actor is triggered at a time.

Actor semantics Recall that an actor specifies one step of a
Mealy machine, so the task is to define the two functions: σ that
computes a next state, and π that computes the outputs.
During the evaluation of the function blocks, values are passed

through connection points, so we introduce the syntactic domain:
cp ∈ CP, the set of connection points. As usual, these are pri-
vate for each function block or driver, such that the sets are par-
titionend by projection on these. The connection points have
values, so we define the auxiliary domain: IV = CP → Val
and have through the syntactic binding of points to indrivers and
outdrivers an initialisation function and an extraction function
init : DV → IV and exit : IV → DV .
We have also s ∈ Signal = CP → P(CP), the set of signals,

going from an outgoing to ingoing connection points. These are
private for each actor.
Since the graph defined by the signals of an actor a is acyclic,

we can define a precedence relation ≺ on the function blocks FBa
by f ≺ f ′ just when a signal connects a cp of f to a cp of f ′.
Since it is a precedence relation on a finite set, a non-empty subset
of function blocks FB′a ⊆ FBa will always have an element that
precedes all others or is unrelated to all others.

Semantics of function blocks The step and output functions of
the individual function blocks are assumed to be specified by a
COMDES-II framework. Thus we expect to be given a next state
function σ f : FB → (IV × SV) → SV , and an output function
π
f : FB→ (IV × SV)→ IV .
The computation for an actor a is now defined by iterating over

its function blocks in precedence order. This is done by the aux-
iliary function iterate (5):

iterate : (P(FB) × (IV × S))→ (IV × S) (5)

Now, let (IV ′, S ′) = iterate(f b(a), (init(D), S)), then the main
semantic functions are defined by: σ(a)(D, S) = S ′, and
π(a)(D, S) = D
 [d �→ exit(IV ′)(d) | d ∈ outdriver(a)].
The iteration function is defined inductively. The empty set of

function blocks gives the identity as result (6). In (7) f is selected
so it precedes all other elements of FB.

iterate(Ø, (IV, S)) = (IV, S) (6)
iterate(FB, (IV, S)) = iterate(FB \ f , step(f , IV, S)) (7)

The step function (8) just applies the definition of the function
block and signals from the outgoing connection points.

step(f , S , IV) = (σ f (f)(IV, S), IV)

[cpin �→ π f (f)(IV, S)(cpout)
| cpin ∈ s(cpout) ∧ cpout ∈ CPf] (8)

It is clear that the iteration terminates, because the finite set of
function blocks is reduced by one for every step. It is also clear

61

that the function is defined, because each function block is exe-
cuted at most once, and furthermore no function block is executed
before its ingoing connection points are defined (to the extent that
the indrivers are defined).
The non-determinism in selecting a next function block reflects

an interleaving semantics for parallel execution of unrelated func-
tion blocks.

Towards timed semantics The timing of the system is given
in terms of deadlines. To be able to measure the time passing
during the execution of the actors, and thereby to know when
they have reached their deadlines, we introduce a clock (Clk).
With the added clock, the configuration becomes 〈D, S , A,Clk〉,
where Clk : Actor → N. During global transitions, the value of
the clock is updated (9).

Clk′ = [Clk + 1]
 [Clk(a) �→ 0 | a ∈ At] (9)

A deadline is defined as deadline : Actor → N. We can use the
deadline to select the subset of actors that are to be executed in a
given global transition (10),

At = {a | a ∈ A ∧Clk(a) ∼ deadline(a)} (10)

where ∼ is any relation defined to select the subset of actors,
based on the values of their deadlines.

3 Conclusion
To support validation of models designedwith COMDES-II, a de-
velopment tool for embedded real-time systems, we have defined
a semantics for its modeling language. As a demonstration of the
functionality expressed, we have developed a semantics-derived
simulator, which accepts COMDES-II models expressed in an in-
put language with syntax derived from the abstract syntax2. Sim-
ulations of simple example systems have shown that COMDES-II
models may exhibit nondeterministic behavior, as the execution
order of actors is not defined explicitly in the model3.
By adding semantics to the timing behavior, nondeterministic

behavior can be reduced, as the actor execution sequence is fur-
ther constrained. To address the nondeterministic behavior, two
approaches are proposed: (1) Extending the COMDES-II spec-
ification syntax with actor priorities, and requiring updates on
incoming channels before actor execution, or (2) model check-
ing the discrete and timing behavior of the model can detect and
enable the system designer to address nondeterministic issues.
The provided semantics for COMDES-II enables the creation

of semantically correct translators to other representations with
clearly defined semantics, including the input languages of model
checkers. Verification of the discrete behavior, represented by
the modal state machines in COMDES-II model, and the timing
behavior thus becomes possible.

2ANTLR v3 [11] was used to define the concrete syntax, and Java 6 was used
for implementing the simulator.

3Prototype implementations of the COMDES-II IDE have implementation
specific actor execution sequence, namely the appearance order in the compiled
controller software. This is, however, clearly not part of the formal specification,
and even so may lead to unspecified behavior when executed on multiple proces-
sors.

In further work we will focus on creating a translator for the
timed automata based model checker, Uppaal, and interfacing the
simulator to existing function block implementations.

References
[1] Christo Angelov and Jesper Berthing. Distributed timed multitask-

ing - a model of computation for hard real-time distributed systems.
In Bernd Kleinjohann, Lisa Kleinjohann, Ricardo Jorge Machado,
Carlos Eduardo Pereira, and P. S. Thiagarajan, editors, DIPES, vol-
ume 225 of IFIP International Federation for Information Process-
ing, pages 145–154. Springer–Verlag, 2006.

[2] Gerd Behrmann, Alexandre David, and Kim G. Larsen. A tuto-
rial on uppaal. In Marco Bernardo and Flavio Corradini, editors,
Formal Methods for the Design of Real-Time Systems: 4th Inter-
national School on Formal Methods for the Design of Computer,
Communication, and Software Systems, SFM-RT 2004, number
3185 in LNCS, pages 200–236. Springer–Verlag, 2004.

[3] Marius Bozga, Jean-Claude Fernandez, Lucian Ghirvu, Susanne
Graf, Jean-Pierre Krimm, and Laurent Mounier. IF: An interme-
diate representation and validation environment for timed asyn-
chronous systems. In Jeannette M. Wing, Jim Woodcock, and Jim
Davies, editors,World Congress on Formal Methods, volume 1708
of Lecture Notes in Computer Science, pages 307–327. Springer–
Verlag, 1999.

[4] Marius Bozga, Susanne Graf, and Laurent Mounier. IF-2.0: A
validation environment for component-based real-time systems.
In Ed Brinksma and Kim Guldstrand Larsen, editors, CAV, vol-
ume 2404 of Lecture Notes in Computer Science, pages 343–348.
Springer–Verlag, 2002.

[5] Holger Giese and Stefan Henkler. A survey of approaches for
the visual model-driven development of next generation software-
intensive systems. J. Vis. Lang. Comput., 17(6):528–550, 2006.

[6] Gerard J. Holzmann. Design and validation of protocols: A tutorial.
Computer Networks and ISDN Systems, 25(9):981–1017, 1993.

[7] Christopher Hylands, Edward A. Lee, Jie Liu, Xiaojun Liu,
Stephen Neuendorffer, Yuhong Xiong, Yang Zhao, and Haiyang
Zheng. Overview of the Ptolemy project. Technical Report
UCB/ERL M03/25, University of California at Berkeley, July
2003.

[8] Xu Ke, Paul Pettersson, Krzysztof Sierszecki, and Christo An-
gelov. Verification of COMDES-II systems using uppaal with
model transformation. In 14th International IEEE Conference on
Embedded and Real-Time Computing Systems and Applications
(RTCSA). IEEE Computer Society Press, August 2008.

[9] Xu Ke, Krzysztof Sierszecki, and Christo Angelov. COMDES-
II: A component-based framework for generative development of
distributed real-time control systems. In Proc. of the 13th IEEE
International Conference on Embedded and Real-Time Computing
Systems and Applications RTCSA, pages 199–208. IEEE Computer
Society Press, 2007.

[10] J. Liu and E. A. Lee. Timed multitasking for real-time embedded
software. IEEE Control Systems Magazine: Advances in Software
Enabled Control, pages 65–75, 2003.

[11] Terence J. Parr and Russell W. Quong. ANTLR: A predicated-
LL(k) parser generator. Software Practice and Experience,
25(7):789–810, 1995.

62

A Specification-Driven Interpreter for Testing
Asynchronous Creol Components�

Marcel Kyas1, Andries Stam2, Martin Steffen1, and Arild B. Torjusen1

1 University of Oslo, Norway
2 Almende, The Netherlands

1 Motivation

Software testing [9] is an established practice to ensure the quality of programs
and systems. Hosts of different testing approaches and frameworks have be pro-
posed and put to (good) use over the years. Formal methods and program lan-
guage theory have proven valuable to render testing practice a more formal,
systematic discipline (cf. e.g. [5]). In itself not a new proposal —first inspira-
tions to put testing on more formal grounds can be dated back as early as the
seminal Nato conference on “Software Engineering” [8]— formal approaches to
testing have gained momentum in recent years, as for instance witnessed by
the trend towards model-based testing [4,1]. In this paper we propose and ex-
plore a formal approach for black-box testing of asynchronously communicating
components in open environments.

Creol: a language for asynchronously communicating, active objects
Creol [3,7] is a high-level, object-oriented language for distributed systems, that
features active objects. Creol is formally defined and especially its operational
semantics is implemented in rewriting logic, using Maude [2] as execution plat-
form. Its communication model is based on exchanging messages asynchronously.
This is in contrast with object-oriented languages based on multi-threading, such
as Java or C�, which use “synchronous” message passing in which the calling
thread inside one object blocks and control is transferred to the callee. Exchang-
ing messages asynchronously decouples caller and callee, which makes that mode
of communication advantageous in a distributed setting. On the other hand, the
asynchronicity makes validating and testing of programs more challenging.

Behavioral interface description language Abstracting from internal exe-
cutions, the black-box behavior of components is given by interactions at their

� Part of this work has been supported by the EU-project IST-33826 Credo: Modeling
and analysis of evolutionary structures for distributed services and the German-
Norwegian DAAD-NWO exchange project Avabi (Automated validation for behav-
ioral interfaces of asynchronous active objects).

63

interface. We formalize the interface specification language over communication
trace labels to specify components in terms of traces of observable behavior.

In the specification language, a clean separation of concerns between inter-
action under the control of the component or coming from the environment is
central, which leads to an assumption-commitment style description of a com-
ponent’s behavior. The assumptions schedule the order of inputs, whereas the
outputs as commitments are tested for conformance. To ensure the mentioned
separation of responsibilities, we define well-formedness conditions which in ad-
dition assure that only “meaningful” traces, i.e., those corresponding to possible
behavior, can be specified. The specification language is characterized by two
other salient features: it allows to specify freshness of communicated values and
furthermore, it respects the asynchronous nature of communication in Creol: Due
to asynchronous communication, the order in which outgoing messages from a
component are observed by an external observer does not necessarily reflect the
order in which they where actually sent. We take this into account by only con-
sidering trace specifications up-to an appropriate notion of observational equiva-
lence. The specification language is a simple recursive trace language designating
sets of finite traces over communication labels.

A second point to stress is that the specification language is designed to
be efficiently executable on Creol’s executing platform and thus be used for
testing a component. We define an operational semantics for the specification
language. This is done by synchronising the execution of the specifications with
that of the component for the purpose of both generating the required input to
the component and at the same time testing that the output behavior of the
component conforms to the specification, up-to observational equivalence.

2 Results

The paper extends the technical report [6], which concentrates on the formal-
ization, and contains the following contributions:

Formalization: We formalize the interface behavior of a concurrent, object-
oriented, language plus a corresponding behavioral interface specification
language. This gives the basis for testing active Creol objects, where a test
environment can be simulated by execution of the specifications.

Implementation: The existing Creol interpreter, realized in rewriting logic
on the Maude platform, is extended with the implementation of the spec-
ification language. This yields a specification-driven interpreter for testing
asynchronous Creol components.

Case study: As a case study, we apply the test method to a model of an in-
dustrial software system which is inherently multi-threaded and based on
asynchronous communication.

64

References

1. Model-Based Testing of Reactive Systems, volume 3472 of Lecture Notes in Computer
Science. Springer-Verlag, 2005.

2. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and C. Tal-
cott. The Maude 2.0 system. In R. Nieuwenhuis, editor, Proceedings of the 14th
International Conference on Rewriting Techniques and Applications (RTA 2003),
volume 2706 of Lecture Notes in Computer Science, pages 76–87. Springer-Verlag,
June 2003.

3. The Creol language. http://heim.ifi.uio.no/creol, 2007.
4. S. R. Dalal, A. Jain, N. Karunanithi, J. M. Leaton, C. M. Lott, G. C. Patton,

and B. M. Horowitz. Model-based testing in practice. In Proceedings of the 1999
International Conference on Software Engineering, 1999, pages 285–294, 1999.

5. M.-C. Gaudel. Testing can be formal, too. In P. D. Mosses, M. Nielsen, and M. I.
Schwarzbach, editors, Proceedings of TAPSOFT ’95, volume 915 of Lecture Notes
in Computer Science, pages 82–96. Springer-Verlag, 1995.

6. I. Grabe, M. Steffen, and A. B. Torjusen. Executable interface specifications for
testing asynchronous Creol components. Technical Report 375, University of Oslo,
Dept. of Computer Science, July 2008. A shorter version has been submitted for
conference proceedings.

7. E. B. Johnsen, O. Owe, and I. C. Yu. Creol: A type-safe object-oriented model
for distributed concurrent systems. Theoretical Computer Science, 365(1–2):23–66,
Nov. 2006.

8. A. I. Llewelyn and R. F. Wickens. The testing of computer software. In P. Naur
and B. Randell, editors, Software Engineering: A Report on a Conference sponsored
by the NATO science committee, pages 189–199. NATO, Jan. 1969.

9. R. Patton. Software Testing. SAMS, second edition, July 2005.

65

�������	�
�����	���������������������������������
�������������
�
�
����������
������

���������	
���
�	����	
����������	�����	
�	

�
��	������������	�	
�����
���	
�������������

�����	�	���������

�� �����	�����
������ � �	���������
� � ��	 � � � ��	���� ��	���� � ��� ����	���
� � ����	�� 	�������� ���	�
�	���������
����������	���	�������	��������	�	�	
������	�	�����������	��������	�����
�� � !����	�" � #$$%&� �'
	 � ����� ����� �� � ����� � ��	 � �	���������
� � �� � � � ���������
���
*����������
�������������
� ����"��
���
���	" �	+�� �� ���� ���	
���� � 	��������" �����
�	����
�����	����	�����
����	������ 	��	��������

��������/��	�	
������	������������	���
���� � ��������� <	��� 	�������"���� 	�
��	���
����������
�������������	���������
���'������/������	���������	��	���������
��
��	������	������ <	�����
�������
�"���	�	���	�� <	����������������	��
���	������
��
�����	��������	����
���
�����
��	������	�������	�

'������������� ��	���
���	���	���������	
��
�� <	����������	
������������
������
�
������
"���	�� <	���������	���
	���	�����������
���������	�	��
	���� � �������	������
��������� <	������	�� <	������������	��
���������	��	�
	����
�	�������=�	
��
�� <	������

		�	�������������	��
��
������
" ��
�	��	�
	�������	������
�����������
	������	����
��	
���� � � <	�� � ���� � ��	�� � �	�	����	 � �
�	�����" � �
� � ��	 � � <	�� � ���� � ��	 � ��	��	���
	��	�
	�������	��������	
�����
����	�	��� � ������������
	
������������� �	�������	��
�
����������� � �������������	��	������� <	����

�=	����	����	�	
�	�������	������
���	��������������	���/��	�!�����">%%?&��
��	 ������ � �������	 � ��/��	 � �
����	� � � � ��
����	 � ��� ������
� � �	���������
� � �
� � ��
���������
�	
��
	��=	����	����	��� � �����������	���
���	����	�������	���������/��	�
�
�����
�	����	����������
�	
��
	������	���	��� � ���������
��������
��
����������
��

'����	�	��������������\	�������
�����������������	������������ 	���	��������
���	�
����
���	�������	�� ����	���
����	��	���
"��
���	����	�	���������	���������
����	�

����	
	��������	������������
���	�����������	������������� 	��	�����
"���
���	
	��"�
�������"�� ��������
"��
�		
�	
�	������
���������
����	"��
�������"�!^���������#$$#&��
_��	�	�" � ��� � ��	 � ����	 � �� ����	��
� � ���	� � �����	��	�" � ��	 � 	+	�����
 ����	� � ����
��������
����	��	���������
��������
		�������/	��
��������
���� � �����	��

���	������	���	���	���
	��������	��	������
�������	"�����������	���������
�����
�
	+����
� � 	������	 � ������	�� � �� ��	 � �
`��
	 � ���	 � ����	� � {�������| � ��	 � {� ��	�
*��/	
�
� � !{�������{� ��	" � >%%?&� � ��� � ��	��	� � ���
� � ��	 � ����	� � �� � ��������

66

	+	�����
����	���*�������	�����������	�����	�����	����	�����	������������/��	���
 	����	 ��� � ��	 �����	� � �	}���	�	
�� ��
 � �������	 ��	���
 �}������ � ��	�����	 � !~�������"�
>%%�&������	��������	����	��������	�����	��������������	���������	
������	�	�����
�	����	���	���
������������ �	�������	���������/��
���	���<	����������	��	����	����	�
 ����	��������!����	
���"�>%%?&���	�	�����	�����
�����������	�	
���������	�	��	����	��
���
���������	��	���������
������������	��	��

�� ��������
�	�����
���	�	���	������������	���	������ ����������	���������
������������� � ��������
	+	�����
 ����	�� �*���������� � �	�� ���
�������	���� ��
���\	���	�����	����� �����	�	
��
���	�������	��	�����	��	����������	������
������������	��������� 	����	�����	������ ��
��
�	
�����
� � �
 � �	����
 � ��	�� � �� � ���	 � ���� � �
 � ��	 � ���	 �{�������| � ��	 �{� ��	�
*��/	
�
�"����	��������������
��	����
�������	����	|����������
��	
���
�	������	�
���	������	���
������
������������	����������	��
�	���������	�����"� ������	��������
����	�	��	����
����������
��	
���
�	����������	����
������	���	����
�������	����	�

��	��	��������	���
	��������	�����
��	��� ��	��"���	�	��������	�������������
�����
	+����� � ��	 � ���	 � ���	� �{��	��	�" � �� � � � ����� �
�� 	� ��� ����	�� ����" � �� ��	�
� � ��	�
�������
�| � ��	 � ���	�� � ����� � �
�� � �
�	���� � ���� � 	��� � ���	� � �
� � �
�� � ���� � ��	�
	���
�����	� ��� � ����	����	�����	��� ���	���������	���� ��	����	���/	� ��� ����� �	 � ���
� ���
���	�����	����� �������	��� ���
���
�
��������� �
�� 	��������	��"���� ��	����	���
 	���	��	��������	" ��
����	����	���	��
�� ��	�	
����
�����������
� ��
�������
��
��������	����	����	�����
��
�	���/	������	����	����	�

=�	
���	��	���������
"���	����	����	�	����	
�	��	�
	�������	�������	���� 	�����
�
�	�	��	����	���	�	� �� ���������	 � �
 �	
���
�	����
���������� ���	��	�� ��	����� ���	�����
����	�� ���� � ��	 ����	�� �������
�	
����	� ���
���	�� ������	 ��
 ��
����
	 ��� � ��	�	�
�	����
� �	�����	����	�������� ����" ��������
�� �� � ���� � �
�������
" � ��	����	����������
�������������	�����
�	
�����
���
����
�������������
����
�	
���
�	���

�� �������������	�
��������������
*�
��	��������������	��� � �����	���
���������
����������	���������
������	�	
�	���
�
 � ��	 � ������" � �� � �� � ���� �	 � �� � �	��
	 � �� � �����	� � � ������ � � <	��� � �	���
	 � ���
��������	��
���	�	+	�����
�����
������
"��
���� � �����	���
�����	��	����	����	������/	�
�����
�����������
������	��������	��� <	��������
����	�	��� � �����	�"����������� �	����
��
�������	� 	�������������	�� <	����������	���� � �������������	��	�����	������������
���	�	
�	�� ���������
����	�	+	�����
����	�������	���������
����	��
�������	��	��
 ��	+	����
���	�	����	+	�����
��������������	��������	����	���������
����������	�	
��
/�
���������	����

������������ �	������	��	���	���
����
������������	������/�
����������	�����	����
��
��	���������
����	��
����	
	����\	���	�	�"� ��	���
���	������
���
��� <	������	
����	���
�

67

��	��	������	����	��	�����
���	���������
��	�	� �	����	������
������	�	
������������	�
��������
�	
�������	��	������	������� 	������	���������	����	������� ��	��
����	��
������

�
��	+	�����
���

_���
�� ��	����� ������ �� ��	�����	��	�
	�� ���	���	� � ��� ����	�� ��� � ��	 ����	�
���	������	�����	�	
�	��
���	�	+	�����
�������	��	���������
��*������	�	
�����	���������
����	�	
� � ����
� � ����	 � �
� � ��� � ����	�	
� � �
�	�	��� � �
 � ����	�	
� � ��� � ���	�" � ��	��
	�����	������	�	
�����_���
���������	���������
��������������	�������/	�	+	�����
��
�� � ��	 � ���	 ����	 � �
�	������� � �� � ��	�	 � ��	 � �	�� � �	� ����	�" ���	�	 � ��� � ���	�� � ��	�
����	�	���	}������������	�����������	�	
����������������	�"�������� 		
��	��
	���
���	�
������
������	�������	�	+	�����
��

���	� � �
 � ���� � ���� � ��	 � 	+	�����
�" ������ � �	���������
� ����� � ��	 �������	��
	+	�����
 � ���	� � ��
 � 	 � ��	� � �� � �
 � ��� � �
 � ���	 � �	�	���	
�� � �+	����
� � ��	�
�	���������
���
���
���������	���
���	��	���
��
����
��
��	��}�	����
����������	���
	��
���������	��
���	��	���
��'
	������}�	����
���������	����	��
		�������		������	����
�
��	��������	����	�������
�����	�����������"����	�	�"� 	�����������	���
	��������
��
�	��������������
��� �����������	��	�������	���������
��

�
 � �������
 � �� � ���	 ��	���
" � ��	�	 � ��	 � ���	� � ��	
���� � ��������
 � ��	�� � ��� � ��	�
	
��
�	���	�����������	���	���������
���
���������	���	���'
	�� ��������	�"���	�	�
��	��	�������
� 	����	�����"�������
������
���
��	�	
���

 �!�"��	����	��������
��������	���������
"������"��� � �����������������
"����	��	���
��	�	�����

#�
�������
!����	�"�#$$%&�����	�"�*�" �����������	
����
���
��
	��������
��"����
�=��	������
�"�

#$$%�
!�����" �>%%?& ���	���������<	�� �===���	� �*� ���^ �����������
���������� �
� ��	�

=�����=��	�=	 ��!*��	��	����{���>%%?&�
!~�������" � >%%�& � ������� �~��������" � ���	����� � �
| � ���� �*�	+�
�	� � �	��� ���������� �

����������	�����������
������������	�����	��{	���"�>%%�"�+�`+���
!^��������"�#$$#&�^��������"���"��
	���� ��������
������!��"�{�������
"�#$$#�
!{�������{� ��	" �>%%?&���	�{�������| ���	�{� ��	�*��/	
�
���	�������
���	��*��

��^ ����|������	������	`����
�������	������	�#%��� �
 � ��	 �=���� �=��	�
=	 ��!*��	��	��>���	�	� 	��>%%?&�

!����	
���"�>%%?&����������	
�����*���
���� � �����������	��
�����	+	���� �	�
��������������	���������
���������������
���
������	������	��
���
���������	��
���	��	���
� �{���	��� � ��	���" ��
��	�������� ����	�	" � ��
	 �>%%?� �*����� �	 ����
��^����|�����/�	��������������������%�#?$�����

68

Extending Kleene Algebra with Synchrony:
Completeness and Decidability�

(extended abstract)��

Cristian Prisacariu

Department of Informatics, University of Oslo,
P.O. Box 1080 Blindern, N-0316 Oslo, Norway.

E-mail: cristi@ifi.uio.no

1 Motivation

The work reported here investigates the introduction of synchrony into Kleene alge-
bra. The resulting algebraic structure is called synchronous Kleene algebra. Models
are given in terms of regular sets of concurrent strings and finite automata accepting
concurrent strings. The extension of synchronous Kleene algebra with Boolean tests is
presented together with models on regular sets of guarded concurrent strings and the
associated automata on guarded concurrent strings. Completeness w.r.t. the standard
interpretations is given in each case. Decidability follows from completeness. A com-
parison with Mazurkiewicz traces is made which yields their incomparability with the
synchronous Kleene algebra (one cannot simulate the other). Applications to respec-
tively deontic logic of actions and to propositional dynamic logic with synchrony are
sketched.

Kleene algebra is a formalism used to represent and reason about programs, and
it formalizes axiomatically the structures of regular expressions and finite automata
(see work of J.H. Conway and D. Kozen). Kleene algebra with tests combines Kleene
algebra with a Boolean algebra and can encode the propositional Hoare logic, therefore
it can express while programs. In one form or another, Kleene algebras appear in various
formalisms in computer science: relation algebras, logics of programs and in particular
propositional dynamic logic (PDL), regular expressions and formal language theory.

Synchrony is a model for concurrency which was introduced in the process algebra
community in R. Milner’s SCCS, but detaches form the general interleaving approach.
On the other hand it is a concept which does not belong to the partial order model of
true concurrency either. The synchrony concept proves highly expressive and robust;
SCCS can represent CCS (i.e. asynchrony) as a subcalculus, and a great number of
synchronizing operators can be defined in terms of the basic SCCS-Meije operators.

The notion of synchrony has different meanings in different areas of computer sci-
ence. Here we take the distinction between synchrony and asynchrony as presented in

� Partially supported by the Nordunet3 project “COSoDIS – Contract-Oriented Software Devel-
opment for Internet Services” (http://www.ifi.uio.no/cosodis/).

�� One may like to check details in the technical report: C. Prisacariu, “Extending kleene algebra
with synchrony – technicalities”, Dept. Informatics, Univ. Oslo, 2008.

69

the SCCS calculus and later implemented in e.g. the Esterel (Meije) synchronous pro-
gramming language. We understand asynchrony as when two concurrent systems exe-
cute at indeterminate relative speeds (i.e. their actions may have different noncorelated
durations); whereas in the synchronymodel each of the two concurrent systems execute
instantaneously a single action at each time instant. The SCCS concurrency operator×
over processes is different from the classical ‖ of CCS.

The perfectly synchronous concurrencymodel takes the assumption that time is dis-
crete and that basic actions are instantaneous (i.e. take zero time and represent the time
step). Moreover, at each time step all possible actions are performed. The reasoning is
governed by the assumption of a global clock which provides the time unit for all the
actors in the system. Note that for practical purposes this is a rather strong assumption
which offends the popular relativistic view from process algebras. On the other hand
the mathematical framework of the synchronous calculus is much cleaner and more ex-
pressive than the asynchronousmodel, and the experience of the Esterel implementation
and use in industry contradict the general believe.

The motivation for adding synchrony to Kleene algebra spawns from the need to
reason about actions (where Kleene algebra is the equational tool of choice in conjunc-
tion with PDL) that can be executed in a truly concurrent fashion. On the one hand we
do not need such a powerful concurrency model like the ones based on partial orders;
on the other hand the low level interleaving model is not expressive enough. The syn-
chrony model has appealing equational representation and thus it is natural to integrate
into the Kleene algebra. Moreover, the reasoning power and expressivity that synchrony
offers is enough for the applications listed below.

We have successfully used synchronous Kleene algebra in the context of deontic
logic of actions, and secondly we used the extension of synchronous Kleene algebra
with tests in the context of PDL with synchrony. A third application that we currently
work on is to give a semantics for Java threads. More general, wherever one uses Hoare
logic to reason about programs one can use the more powerful Kleene algebra with tests
which has also tool support (the KAT-ML prover).Moreover, one may safely choose the
synchronous Kleene algebra with tests where in addition reasoning about concurrent
executions is needed (similar to some extent to the current work of C.A.R. Hoare). In
these contexts (synchronous) Kleene algebra proves more powerful and general than
classical logical formalisms.

2 Results

SynchronousKleene algebra (SKA) adds to the Kleene algebra the×operator of SCCS.
SKA is a σ-algebra with signature σ = {+, ·,×,∗ ,0,1,AB} which gives the action
operators and the basic actions AB . The operators of SKA are defined over a carrier
set of compound actions denotedA. The non-constant functions of σ are: “+” for choice
of two actions, “·” for sequence of two actions (or concatenation), “×” for concurrent
composition of two actions, and “∗” to model recursive execution of one action.

We give the standard interpretation of the actions by defining a homomorphism
ÎSKA which takes any action of the SKA algebra into a corresponding regular concur-
rent set and preserves the structure of the actions given by the operators. A concurrent

70

set is a subset of strings from P(AB)∗. The important construction on concurrent sets
is the one corresponding to×: A×B

�= {u×v | u ∈ A, v ∈ B}, where u, v ∈ P(AB)∗

are concurrent strings and u×v is defined as (where xi, yj ∈ P(AB)):

u×v
�= (x1 ∪ y1)(x2 ∪ y2) . . . (xn ∪ yn)yn+1 . . . ym.

Theorem 1 (completeness). For any actions α, β ∈ A then α = β is a theorem of
SKA iff the regular concurrent sets ÎSKA(α) and ÎSKA(β) are the same.

The proof of completeness follows the ideas of D. Kozen only that we use a com-
binatorial argument. We use the translation of actions into automata that accept regular
concurrent sets (and need to prove an equivalent of Kleene’s representation theorem).
The main ideas are that the alphabet of the automata is P(AB) and that we require a
special product construction. Decidability in P-time follows then naturally from com-
pleteness and decidability of the equivalence problem for regular concurrent sets.

Synchronous Kleene algebra with tests SKAT = (A,A?, +, ·,×,∗ ,¬,0,1) is an
order sorted algebraic structure which combines SKA with a Boolean algebra in a spe-
cial way. The structures (A?, +, ·,¬,0,1) and (A?, +,×,¬,0,1) are Boolean algebras
and the Boolean negation operator ¬ is defined only on Boolean elements (called tests)
ofA? ⊆ A. The intuition behind tests is that for an action φ ·α it is the case that action
α can be performed only if the test φ succeeds.

Actions of SKAT are interpreted over what we call regular sets of guarded con-
current strings (an extension of guarded strings). Special two levels finite automata are
defined which accept these regular sets; fusion product and concurrent composition are
particular operations on these automata.

We compared the synchrony notion of SKA with Mazurkiewicz traces. Basically
the Mazurkiewicz traces have defined a global and partial independence relation. If we
take the similar view in SKA we need a local and total independence relation. The
locality comes from the perfect synchrony model we adopted, where all the concurrent
actions are executed at each tick of a universal clock. The totality comes from our view
of concurrent basic actions as forming a set.

We also related to the shuffle operator over regular languages which has been used
to model concurrency, with a position between the interleaving approach and the partial
orders approach. Shuffle is a generalization of interleaving but it does not take into
considerration any other relation on the actions(events) which it interleaves. If we were
to ignore the branching information in our actions then we can view× as an ordered
shuffle. The shuffling of two sequences of actions in SKA walks step by step (on the ·
operation) and shuffles the basic actions found (locally).

Our work is also related to Q-algebra which is a two idempotent semirings structure.
The difference is in our introduction of the notion of synchrony and the relation of
the× operator with the sequence operator. Also related to our algebraic structure is
the language mCRL2. This is a too complex formalism (and tool set) to be naturally
incorporated in the applications to the logics that we mentioned in the beginning.

71

Finding Errors of Hybrid Systems by Optimising an
Abstraction-Based Quality Estimate

Stefan Ratschan1 and Jan-Georg Smaus2

1 Academy of Sciences of the Czech Republic, stefan.ratschan@cs.cas.cz
2 University of Freiburg, Germany, smaus@informatik.uni-freiburg.de

1 Introduction

Hybrid systems are a formalism for modelling embedded systems. An important problem is
to ensure correctness, i.e., verification. However, during the design process, hybrid systems
are usually not correct yet, and hence error detection is equally important. We address
here the problem of automatically finding error trajectories that lead the system from an
initial to an unsafe state. In contrast to previous works [1, 3], we consider systems with
deterministic evolution. Moreover, we do not assume a-priori that our system is incorrect,
but rather, we interleave verification, using abstractions of the system [4], and falsification
attempts.

We define a real-valued function (the quality estimate) that approximates the notion of
a given point being close to an initial point of an error trajectory. Then we use numerical
optimisation to search for an optimum of this function. The function is computed from a
simulation of the hybrid system, using information from the abstraction. For each simula-
tion, the point at which it is cancelled depends on a quality estimate computed on-the-fly.
The accuracy of the quality estimate improves as the abstraction is refined.

Analysing the related work, one sees that methods designed for non-deterministic sys-
tems [1, 3] try to fill the state space as much as possible (according to some measure) with
simulations. As a result, they would start a huge number of simulations in parallel—either
from a grid (similar to our näıve algorithm from Sec. 3) or from random sample points.
In the case of highly non-deterministic systems, such a strategy is promising since the
probability of hitting upon an error trajectory is high. However, for systems with only a
small amount of non-determinism, and especially, completely deterministic evolution, this
creates a huge number of useless simulations. We avoid this by guiding our search using
abstractions in order to quickly arrive at a simulation close to an error trajectory.

Our work has some resemblance with pure optimisation problems in artificial intelli-
gence [5]. It is distinctive of our work that the objective function itself improves over time.
Our work also resembles reinforcement learning [6], because we compute the quality as
we do the simulation, and depending on this quality we will do other simulations in the
neighbourhood.

2 Hybrid Systems and Abstractions

Hybrid systems are systems with both continuous and discrete state. A hybrid system
has a finite set S of modes and n continuous variables. In each mode, the behaviour of
the variables is controlled by an arithmetic expression involving the variables and their
derivatives, called the Flow constraint. Each possible transition between modes is controlled
by a Jump constraint, and there are constraints specifying the initial and unsafe states,
respectively. A trajectory is a sequence of flows connected by jumps. An error trajectory is
a trajectory starting in an initial state and ending in an error state. A system is safe if it
does not have an error trajectory.

An abstraction of a hybrid system H is a directed graph whose nodes (the abstract
states) are subsets of the state-space of H. The transition relation of the abstraction is
defined so that each concrete error trajectory corresponds to an abstract error trajectory.

72

Abstractions are useful for verification because if the abstraction is safe, the original system
is necessarily also safe. Abstractions can be useful for falsification because the abstract error
trajectories narrow down the search space for concrete error trajectories.

We use here a technique that decomposes the state space into hyper-rectangles (boxes),
as implemented in the tool HSolver [4]. In HSolver, an abstraction that is not fine
enough yet to verify the desired property is refined by splitting a box.

A simulation is an explicitly constructed sequence of points in Φ corresponding to the
points of a trajectory at discrete moments in time.

3 The Search Algorithm

We want to find an error trajectory of a hybrid system. Since we focus on deterministic
systems, the problem reduces to determining the startpoint of an error trajectory among the
initial states. A näıve solution to our problem would be obtained by running simulations of
a certain length starting at points lying on a grid covering the entire state space. If no error
trajectory is found, the grid width should be reduced and the simulation length increased.

The aim of our work is to find an error trajectory with as little simulation effort as
possible. More precisely, we want to: (a) interleave falsification with verification; (b) start
simulations at the most promising points; (c) cancel simulations when they do not look
promising enough anymore. To address these three aims we designed a search procedure
that exploits information available from verification. The procedure uses a quality estimate
for simulations to determine which startpoints are the most promising, and when to cancel
a simulation.

The quality estimate measures how close the simulation eventually gets to an unsafe
state. We compute the closeness of all individual simulation points to an unsafe state, and
take the optimum of these. Note that this optimum can be easily computed on-the-fly.

For an individual point p, we want to estimate how far p is from an error state along the
current simulation. To do so, we use information from
the abstraction. We interpret the HSolver abstrac-
tion in a geometrical way as illustrated in the figure
to the right. Here a0 is an initial abstract state and
a4 is an unsafe abstract state. The dashed lines are
the line segments between connected abstract states.
For the point p, the estimated distance is the length
of the solid line segment sequence. Note that the ab-

•

a0

•

a1

�

•
a2

�
•

a3

�

•
a4

��
���

���
����������

��
×p

Fig. 1: The distance estimate

straction approximates the actual trajectories, and in particular, the present abstraction
is sufficiently fine to capture the fact that the trajectories first move away from a4 before
approaching a4. Thus the quality estimate will capture that moving roughly along the solid
line leads towards the unsafe state. The quality estimate will become more faithful as the
abstraction becomes refined.

The falsification is interleaved with verification. The falsification algorithm is called
from the verification after a refinement whenever an initial abstract state is split.

We understand our search problem as the problem of optimising the quality estimate.
We use direct search methods [2], specifically the compass method. The method takes an
initial box I and an n-dimensional cross that fits exactly into I. For the midpoint and
each cross tip, we start a simulation and compute the quality estimate f . If f attains an
optimum in some cross tip, we move the cross to this cross tip and continue. Otherwise,
we halve the size of the cross and continue. The compass method terminates when either
the number of cross shrinkings or of cross moves has exceeded a threshold.

We cancel simulations when an unsafe state is hit and thus we have found an error
trajectory. Moreover, we cancel a simulation when the quality estimate has not improved
for sim cnc steps. There is of course the risk that a simulation is cancelled too early.

73

our algorithm näıve algorithm

Example time ref. sim. sim. steps jumps time sim. sim. steps

convoi 0.5 0 1 7 0 ∞ ∞ ∞
eco sim cnc=400 0.1 0 1 328 2 0.1 1 313
eco 2.8 10 87 29027 2 0.1 1 313

focus 0.1 0 9 2312 0 0.04 1 131
focus sim cnc=20 33.9 434 319 14176 0 0.04 1 131

parabola sim cnc=105 0.0 0 1 201 0 ∞ ∞ ∞
parabola sim cnc=30 18.3 353 113 7665 0 ∞ ∞ ∞

Table 1. Experiments

This risk is countered by the fact that our abstraction is refined over time so that the
quality estimate will eventually be faithful enough to tell whether a simulation is “really”
improving.

4 Implementation and Experiments

We ran experiments on modifications of various well-known benchmarks from the lit-
erature, see http://hsolver.sourceforge.net/benchmarks/falsification. Since the
benchmarks were mostly safe, we injected an error into those systems.

Table 1 shows the results for a small selection of benchmarks. The table shows the
runtime in seconds, the number of abstraction refinements, simulations, the total number
of single simulation steps, and the number of jumps of the trajectory that was found, and
some figures for the näıve algorithm of Sec. 3.

The näıve algorithm performs very well on some apparently easy examples, where the
method we propose here also performs well, but on numerous examples it does not terminate
within several hours, indicated by ∞.

We did an experiment with focus showing that even for a too small value of sim cnc,
simulations will eventually “survive” long enough thanks to the refinement of the quality
function. The example is extremely easy for HSolver, provided sim cnc is not too small,
but hard otherwise. The same effect occurred for eco. We have also created an example
where we isolate the aspect just mentioned: parabola. In this example, the error trajectory
looked for is an extremely tight parabola, i.e., at the beginning, one must move away from
the unsafe state. If sim cnc is too small and the quality function is not faithful enough yet,
then the simulations will be cancelled prematurely.

References

1. A. Bhatia and E. Frazzoli. Incremental search methods for reachability analysis of continuous
and hybrid systems. In Rajeev Alur and George J. Pappas, editors, HSCC’04, number 2993 in
LNCS. Springer, 2004.

2. Tamara G. Kolda, Robert Michael Lewis, and Virginia Torczon. Optimization by direct search:
New perspectives on some classical and modern methods. SIAM Review, 45(3):385–482, 2003.

3. Erion Plaku, Lydia Kavraki, and Moshe Vardi. Hybrid systems: From verification to falsifica-
tion. In Holger Hermanns and Werner Damm, editors, Proceedings of the 19th International
Conference on Computer Aided Verification, volume 4590 of LNCS, pages 463–476. Springer-
Verlag, 2007.

4. Stefan Ratschan and Zhikun She. Safety verification of hybrid systems by constraint propaga-
tion based abstraction refinement. ACM Transactions in Embedded Computing Systems, 6(1),
2007.

5. Stuart J. Russell and Peter Norvig. Artificial Intelligence: a Modern Approach. Series in
artificial intelligence. Prentice Hall, 2003.

6. Richard S. Sutton and Andrew G. Barto. Reinforcement Learning. The MIT Press, 1998.

74

Model-Based Testing of a Web-Based Positioning
Application

Rivo Roo1 and Juhan Ernits2

1 Reach-U, Tartu, Estonia

rivo.roo@reach-u.com
2 Inst. of Cybernetics / Dept. of Comp. Sci.,

Tallinn University of Technology, Tallinn, Estonia

juhan@cc.ioc.ee

Extended abstract

1 Introduction

We present an experience report of applying model-based testing on a component of a

distributed web application - a web-based positioning system called WorkForce Man-

agement (WFM). The purpose of the system is to allow subscribers to track the position

of their employees for the purpose of, for example, improving the practice of a courier

service. The system consists of a number of components that involve the positioning

system, the bank and the mobile phone operator.

For modeling we use model programs. Model programs is a useful formalism for

the modeling of software and for design analysis. Model programs are used as the foun-

dation of tools such as Spec Explorer [3] and NModel [1, 2].

We built the models and the system adapter for model-based testing of WFM in C#

using the NModel toolkit.

2 Positioning System WFM

WFM is a system that enables to track the geographical position of employees, send

them messages and look at the history of their movement. The system is based on

mobile positioning service provided by a mobile service provider.

Application of model-based testing to WFM is motivated by the need to test various

aspects of the system and to evaluate the usefulness of the current state of the art of

model-based testing for industrial application.

The architecture of the WFM system is outlined in Fig. 1. The web server talks to

the backend, which in turn communicates with the billing system, the actual positioning

system, and logs the procedures to the history subsystem.

The functional specification was given in terms of causal relationships between dif-

ferent messages on different ports in the system. For the purposes of model-based test-

ing, we modelled the typical positioning scenario, where the operator logs in, selects

some cell phone numbers to position and expects the results. We control the system

from the web interface, indicated as web in Fig. 1. In addition we observe messages on

the web, billing, and history interfaces.

75

Back-End Server

Web Server

Mobile Positioning
System

Billing System History

web

Web Browser

h
is
t
o
r
y

b
ill
i
n
g

Fig. 1. Architecture of the WorkForce Management system.

3 Results

We modeled the system using NModel model programs. The system was split up into

different logical features like Login, Positioning, BillingAndHistory. The in-

terface between the model and the actual system, called stepper in NModel, was built

using .Net library functions. Observable functions were realized as web based callbacks

to a web server embedded into the stepper.

WFM was quite thoroughly tested already before model-based testing was applied

on the system. Still, model-based testing revealed some errors in both WFM, and also

a minor error in the NModel toolkit.

In WFM we experienced unexpected behaviour when in a scenario where users tried

logging in and out to the system very frequently. We also found that in some cases the

positioning results were not received by the end user. These errors were reported to the

development team and fixed.

In NModel toolkit, the conformance tester behaved unexpectedly with a certain

combination of command line parameters.

The ongoing work involves testing the behaviour of the WFM system in situations

where the system is shut down and started.

76

4 Summary

The WFM case study is an excellent example where model-based testing yields useful

results. Still, it also demonstrated that a significant amount of time was spent on learning

the modeling formalism and last but not least building the test harness, i.e. the adapter

between the model and the system under test.

Acknowledgements

We thank Toivo Vajakas for his help and support. This work was supported by the

ELIKO Competence Center. In addition, Juhan Ernits was partially supported by the

ITEA-2 D-MINT project and the Estonian Science Foundation grant No. 7667.

References

1. J. Jacky, M. Veanes, C. Campbell, and W. Schulte. Model-based Software Testing and Analysis
with C#. Cambridge University Press, 2007.

2. NModel. NModel web site, 2008. http://www.codeplex.com/NModel.

3. M. Veanes, C. Campbell, W. Grieskamp, L. Nachmanson, W. Schulte, and N. Tillmann.

Model-based testing of object-oriented reactive systems with Spec Explorer, 2005. Tech.

Rep. MSR-TR-2005-59, Microsoft Research. Preliminary version of a book chapter in the

forthcoming text book Formal Methods and Testing.

77

A Category-Theoretical Approach to the Formalisation of
Version Control in MDE

Adrian Rutle1, Alessandro Rossini2, Yngve Lamo1 and Uwe Wolter2

1Faculty of Engineering, Bergen University College, Norway
2Department of Informatics, University of Bergen, Norway

ABSTRACT
In Model-Driven Engineering models are the primary arte-
facts of the software development process. Similar to other
software artefacts, models undergo a complex evolution dur-
ing their life cycles. Version control is one of the key tech-
niques which enables developers to tackle this complexity.
Traditional version control systems are based on the copy-
modify-merge paradigm which is not fully exploited in MDE
because of the lack of model-specific techniques. In this pa-
per we give a formalisation of the copy-modify-merge para-
digm in MDE. In particular, we analyse how common mod-
els and merge models can be defined by means of category-
theoretical constructions. Moreover, we show how the prop-
erties of those constructions can be used to identify model
differences and conflicting modifications.

1. INTRODUCTION AND MOTIVATION
Software models are abstract representations of software

systems. These models are used to tackle the complexity
of present-day software by enabling developers to reason at
a higher level of abstraction. In Model-Driven Engineering
(MDE) models are first-class entities of the software develop-
ment process and undergo a complex evolution during their
life-cycles. Therefore, the need for techniques and tools to
support model evolution activities such as version control is
increasingly growing. Present-day MDE tools offer a lim-
ited support for version control of models. Typically, the
problem is addressed using a lock-modify-unlock paradigm,
where a repository allows only one developer to work on an
artefact at a time. This approach is workable if the devel-
opers know who is planning to do what at any given time
and can communicate with each other quickly. However, if
the development group becomes too large or too spread out,
dealing with locking issues might become a hassle.

On the contrary, traditional version control systems such
as Subversion enable efficient concurrent development of so-
urce code. These systems are based on the copy-modify-
merge paradigm. In this approach each developer accesses a
repository and creates a local working copy – a snapshot of
the repository’s files and directories. Then, the developers
modify their local copies simultaneously and independently.
Finally, the local modifications are merged into the reposi-
tory. The version control system assists with the merging by
detecting conflicting changes. When a conflict is detected,
the system requires manual intervention of the developer.

Unfortunately, traditional version control systems are fo-
cused on the management of text-based files, such as source
code. That is, difference calculation, conflict detection, and

source code merge are based on a per-line textual compar-
ison. Since the structure of models is graph-based rather
than text- or tree-based [1], the existing techniques are not
suitable for MDE.

Research has lead to various outcomes related to model
evolution during the last years: [2] for the difference cal-
culation, [3] for the difference representation and [4] for the
conflict detection, to cite a few. However, the proposed solu-
tions are not formalised enough to enable automatic reason-
ing about model evolution. For example, operations such as
add, delete, rename and move are given different semantics
in different works/tools. In addition, concepts such as syn-
chronisation, commit and merge are only defined semifor-
mally. Moreover, the terminology is not precise and unique,
e.g. the terms “create”, “add” and “insert” are frequently
used to refer to the same operations.

Our claim is that the adoption of the copy-modify-merge
paradigm is necessary to enable effective version control
in MDE. This adoption requires formal techniques which
are targeting graph-based structures. The goal of this pa-
per is the formalisation of the copy-modify-merge paradigm
in MDE. In particular, we show that common models and
merge models can be defined as pullback and pushout, re-
spectively. To achieve this, we use the Diagram Predicate
Framework (DPF)1 [5, 6, 7] which provides a formal ap-
proach to modelling based on category theory – the mathe-
matics of graph-based structures. In addition, DPF enables
us to define a language to represent model differences and a
logic to detect conflicting modifications.

2. VERSION CONTROL IN MDE
First we start with an example to present a usual sce-

nario of concurrent development in MDE. The example is
obviously simplified and only the details which are relevant
for our discussion are presented. Then, common models,
merge models and their computations are analysed in the
subsequent sections.

Suppose that two software developers, Alice and Bob, use
a version control system based on the copy-modify-merge
paradigm. The scenario is depicted in Fig. 1.

Alice checks out a local copy of the model V1 from the
repository and modifies it to V1A , where 1 is a version num-
ber and A stands for Alice. This modification takes place
in the evolution step e1A . Since the model in the repository
may have been updated in the mean time, she needs to syn-
chronise her model with the repository in order to integrate

1Formerly named Diagrammatic Predicate Logic (DPL).

78

Figure 1: The scenario for the example

her local copy with other developers’ modifications. This is
done in the synchronisation s1A . However, no modifications
of the model V1 has taken place in the repository while Alice
was working on it. Therefore, the synchronisation completes
without changing the local copy V1A . Finally, Alice commits
the local copy, which will be labelled V2 in the repository.
This is done in the commit c1A .

Afterwards, Bob checks out a local copy of the model V2

from the same repository and modifies it to V2B . Then,
he synchronises his model with the repository. Again, the
synchronisation completes without changing the local copy
V2B . Finally, Bob commits the local copy, which will be
labelled V3 in the repository.

Alice continues working on her local copy, which is still V2.
This model is not synchronised with the repository which
contains Bob’s modifications. She synchronises her model
with the repository where the last model is V3. Therefore,
the synchronisation computes the merge model V2B ,3. Now,
the version control system may report a conflict in the merge
model which forbids the commit c2B . The resolution of the
conflict requires the manual intervention of Alice, who must
review the model and decide to adapt it to Bob’s modifica-
tions, or, adapt Bob’s modifications to her own model.

2.1 Common Model
When Alice changes her local copy from V2 to V2A , her

development environment must keep track over what is com-
mon between the two models. The identification of what is
common is the same as the identification of what is not mod-
ified, which should be feasible to implement in any tool.

Every two model elements which correspond to each other
can be identified in a common model. For example, the
model C2A,3 is the common model of the models V2A and
V3. The usage of a common model makes the construction
of merge models at synchronisation step easier (explained
in Sec. 2.2). In some frameworks, what is common between
two models is defined implicitly by stating that structurally
equivalent elements imply that the elements are equal (soft-
linking). This approach has the benefit of being general, but
its current implementations are too resource greedy to be
used in production environment. In other frameworks, ele-
ments with equal identifiers are seen as equal elements (hard-
linking). Unfortunately, this approach is tool-dependent,
since the element identification is different for every environ-
ment. Our claim is that “recording”which elements are kept
unmodified during an evolution step addresses the problems
of the soft- and hard-linking approaches. That is, these
equalities are specified explicitly in common models as in
the following definition.

Definition 1. A model Ci,iU together with the injective
morphism injVi and the inclusion morphism incV

iU is a com-
mon model for Vi and ViU .

Ci,k

injCi,j

����
��

��
��

� �
incCj,k

����
��

��
��

P.B.

f

��

� �

g

��

Ci,j

injVi

����
��

��
��

� �
incVj

����
��

��
��

Cj,k

injVj

����
��

��
��

� �

incVk

����
��

��
��

Vi Vj Vk

Figure 2: Common models: Ci,j and Cj,k; and the
composition: Ci,k

In order to find the common model between two models
which are not subsequent versions of each other, i.e. for
which we do not have a direct common model, we can con-
struct the common model by the composition of the common
models of their intermediate models. We call this common
model for the composition of commons or the normal form.
A possible way to compute this common model is as follows
(see Fig. 2):

Proposition 1. Given the diagrams Vi Ci,j

injVi�� � �
incVj �� Vj

and Vj Cj,k

injVj�� � �incVk �� Vk , for j = i+1 and k = j+1, the

common model for Vi and Vk is Ci,k with the two morphisms
f and g where f = injCi,j ; injVi , g = incCj,k ; incVk , and,
Ci,k is the pullback (Ci,k, injCi,j : Ci,k → Ci,j , incCj,k :

Ci,k → Cj,k) of the diagram Ci,j
� �
incVj �� Vj Cj,k

injVj�� such

that incCj,k is an inclusion.

2.2 Merge Model
Recall that when Alice wanted to commit her local copy

V2A to the repository, she had to first synchronise it with the
repository. In the synchronisation s2A , a merge model V2A,3

was created. The merge model must contain the information
which is needed to distinguish which model elements come
from which model. But this is exactly one of the properties
of pushout; therefore, we use pushout construction to com-
pute merge models, as stated in the next proposition. The
properties of the pushout are then used to decorate merge
models such that added, deleted, renamed and moved ele-
ments are distinguished (explained in Sec. 2.4).

Proposition 2. Given the models Vi, Vj and Ci,j , the merge
model Vi,j is the pushout (Vi,j , mi : Vi → Vi,j , mj : Vj →
Vi,j) of the diagram Vi Ci,j

injVi�� � �
incVj �� Vj such that mj

is an inclusion.

2.3 Synchronisation and Commit
Fig. 3 outlines synchronisation and commit operations in

the copy-modify-merge paradigm. These operations are de-
fined as follows. In Fig. 3 and in the following definitions
and propositions, U stands for a username.

Definition 2. Given the local copy ViU , the last model
in the repository Vj and their merge model ViU ,j , the syn-
chronisation siU : (ViU , Vj) → VjU is an operation which
generates a synchronised local copy VjU such that

VjU :=

j
ViU if i = j;
ViU ,j if i < j, and ViU ,j /∈ CU where CU is the

set of conflicting merge models.

79

Ci,iU
� 	

incV
iU

����
��

��
�� injVi

		��
��

��
��

�
Ci,j
 �

incVj

��������������
injVi

����
��

��
��

�

ViU
�

mu
iU ��		

		
		

		

P.O.

Vi

mui��

mri ��		
		

		
		

	
e

iU��

P.O.

. . .

P.O.

 Vj��

mrj

����������������

��
�
�
�

�
�
�

Vi,iU

mu
iU ,i ����������

Vi,j

mri,j����
��

��
��

Vj+1

ViU ,j
�� VjU

c
iU

��������������

������������

Figure 3: Synchronisation and Commit

Definition 3. Given the synchronisation siU : (ViU , Vj)→
VjU , the commit ciU : VjU ⇒ Vj+1 is an operation which
adds the model VjU to the repository as Vj+1.

Whenever a local copy ViU is synchronised with a model
Vj from the repository, if the version numbers are the same,
i.e. i = j, then a synchronised local copy VjU will be created
such that VjU = ViU . However, if i < j, then a merge
model ViU ,j will be created such that VjU = ViU ,j only if

ViU ,j is not in a conflict state, i.e. ViU ,j /∈ CU . Finally, the
commit operation will add the synchronised local copy VjU

to the repository and will label it Vj+1. The next procedure
explains the details of our approach to the synchronisation
and commit operation.

Given the models ViU , Vi, Ci,iU and Vj , where i < j,
the synchronisation siU : (ViU , Vj) → VjU is computed as
follows:

1. compute the merge model Vi,iU

2. compute the common model Ci,j

3. compute the merge model Vi,j

4. compute the merge model (ViU ,j , muiU ,i, mri,j) as

the pushout of Vi,iU Vi

mri ��mui�� Vi,j

5. VjU := ViU ,j only if ViU ,j /∈ CU

2.4 Difference and Conflict
As mentioned, during a synchronisation operation siU :

(ViU , Vj) → VjU where i < j, the merge model ViU ,j may
contain conflicts. To detect these conflicts, we need a way
to identify the differences between ViU and Vj , i.e. the mod-
ifications which has occurred in the evolution step(s). Dif-
ference identification in the merge model ViU ,j can be done
by distinguishing common elements, ViU -elements and Vj-
elements from each other. However, since this is one of the
properties of merge models, we only need a language to ex-
press the differences.

Since models are graph-based, we need a diagrammatic
language to tag the model elements as common, added, dele-
ted, renamed and moved. Therefore, we use DPF to de-
fine such a diagrammatic language. In DPF each mod-
elling language L corresponds to a diagrammatic signature
ΣL and a metamodel MML. L-models are represented by
ΣL-specifications which consist of a graph and a set of con-
straints. The graph represents the structure of the model,
and predicates from ΣL are used to add the constraints to
the graph [7].

We define a signature ΣΔ for our language. ΣΔ consists of
five predicates: [common], [add], [delete], [rename], and

[move]. The merge models will be decorated by predicates
from the signature ΣΔ in addition to the predicates from
ΣL. For example, an element in Vi,iU will be tagged with
[add] if it does not exist in Vi, with [delete] if it does not
exist in ViU , and with [common] if it exists in both.

We have also developed a logic for ΣΔ which is used for
two main purposes: to obtain the synchronised local copy
VjU from ViU ,j ; and to detect conflicts in the decorated
merge model ViU ,j . The synchronised local copy is obtained
by interpreting the predicates as operations, e.g. if an el-
ement is tagged with the predicate [delete], it will not
exist in VjU . The detection of conflicts is done by checking
the tagged elements against some predefined set of conflict-
ing modifications, e.g. if an element is tagged with [re-

name] twice, it is in conflict. Although conflicts are context-
dependent, we have recognised some situations where syn-
tactic conflicts will arise. The following is a summary of the
concurrent modifications which we identify as conflicts:

– adding structure to an element which has been deleted

– renaming an element which has been renamed

– moving an element which has been moved

3. SUMMARY AND FUTURE WORK
The copy-modify-merge paradigm is proven to be an ef-

fective solution to tackle the complexity of version control of
text-based artefacts. In this paper, we have shown how this
paradigm can be exploited for version control of graph-based
structures such as software models. We have formalised the
concepts of the copy-modify-merge paradigm in MDE, by
means of pullback and pushout constructions. In addition,
we have defined a proof-of-concept diagrammatic language
for the representation of model differences, and a logic for
the detection of syntactic conflicts.

In a future work, we will consider semantic conflicts. More-
over, a prototype implementation will be developed to verify
the efficiency of the proposed techniques.

4. REFERENCES
[1] L. Baresi and R. Heckel. Tutorial Introduction to

Graph Transformation: A Software Engineering
Perspective. In ICGT 2004, volume 3256 of LNCS,
pages 431–433. Springer, 2004.

[2] C. Brun, J. Musset, and A. Toulmé. EMF Compare.
http://www.eclipse.org/emft/projects/compare/.

[3] A. Cicchetti, D. Di Ruscio, and A. Pierantonio. A
Metamodel Independent Approach to Difference
Representation. Journal of Object Technology,
6(9):165–185, October 2007.

[4] T. Mens, G. Taentzer, and O. Runge. Detecting
Structural Refactoring Conflicts Using Critical Pair
Analysis. ENTCS, 127(3):113–128, 2005.

[5] A. Rutle, U. Wolter, and Y. Lamo. Diagrammatic
Software Specifications. In NWPT’06, October 2006.

[6] A. Rutle, U. Wolter, and Y. Lamo. A Diagrammatic
Approach to Model Transformations. In EATIS 2008,
2008.

[7] A. Rutle, U. Wolter, and Y. Lamo. A Formal Approach
to Modeling and Model Transformations in Software
Engineering. Technical Report 48, Turku Centre for
Computer Science, Finland, 2008.

80

Automatic Definition of Model Transformations at Instance
Level

Adrian Rutle1, Alessandro Rossini2, Yngve Lamo1 and Uwe Wolter2

1Faculty of Engineering, Bergen University College, Norway
2Department of Informatics, University of Bergen, Norway

ABSTRACT
A model transformation is the generation of a target model
from a source model. Usually, it is defined for metamodels,
i.e. models at the meta-level, and executed by a transfor-
mation engine to transform instances of those metamodels.
In some cases, it is also desired to transform the instances of
the transformed models. In this paper, we use the Diagram
Predicate Framework to show how model transformations
which are defined at the metamodel level can be used as
guidelines to automatically define model transformations at
the model level. This requires a special relationship between
the metamodel and the instances of its instances in order to
inherit all the properties of the transformations from the
metamodel level. A formalisation of this relationship is out-
lined in this paper.

1. INTRODUCTION AND MOTIVATION
Software models are abstract representations of software

systems. These models are used to tackle the complexity
of present-day software systems by enabling developers to
reason at a higher level of abstraction. In Model-Driven
Engineering (MDE), we refer to four levels of abstraction,
which are summarized in the following modelling hierarchy :

M3

conformsTo

��

M2

conformsTo

��

M1

conformsTo

��

M0

conformsTo

��

Models at the M0-level are called in-
stances which represent the running sys-
tem. These instances must conform to
models at the M1-level, which are struc-
tures specifying what instances should
look like. These models, in their turn,
must conform to a metamodel at the
M2-level, against which models can be
checked for validity. Metamodels cor-
respond to modelling languages, for ex-
ample the Unified Modeling Language
(UML) and Common Warehouse Model
(CWM). The highest level of abstraction
(as defined by the Object Management
Group [2]) is the M3-level. A model at
this level is often called meta-metamodel ;
it conforms to itself and it is used to describe metamodels.

In MDE models are the primary artefacts of the devel-
opment process. Model transformations play a central role
and have many applications in MDE, such as; model integra-
tion, model refinement, model evolution, multi-modelling,
and code-generation, to mention a few. These transforma-
tions are defined at the metamodel level, and executed at
the model level. For example, when we want to transform
a Java object, we define the transformation for its class. In

the same way, when we want to transform a Java class, we
define the transformation for the meta-type of Java classes,
which is the class Class.

An advantage of using the metamodel level is to enable the
definition of transformations at a higher level of abstraction.
Another advantage is to work with a smaller set of model
elements. This is because metamodels are typically smaller
and more compact than their instances.

The focus of this paper will be on the automatic defi-
nition of transformations at the model level based on the
transformation definition at the metamodel level. This kind
of automatisation is investigated algebraically using pull-
backs [1], however, our approach is more generic and is not
bound to a specific algebraic operation. A requirement for
the automatisation is the existence of a special relationship
between metamodels and the instances of their instances. A
short description of this relationship is given in Section 2.

2. DIAGRAM PREDICATE FRAMEWORK
Diagram Predicate Framework (DPF)1 [3, 4, 5] provides

a formal approach to modelling based on category theory –
the mathematics of graph-based structures. In DPF each
modelling language L corresponds to a diagrammatic signa-
ture ΣL and a metamodel MML. L-models are represented
by ΣL-specifications2 which consist of a graph and a set
of constraints. The graph represents the structure of the
model, and predicates from ΣL are used to add the con-
straints to the graph [5]. Signatures, constraints and dia-
grammatic specifications are defined as follows:

Definition 1. A (diagrammatic predicate) signature Σ :=
(Π, α) is an abstract structure consisting of a collection of
predicate symbols Π with a mapping that assigns an arity
(graph) α(p) to each predicate symbol p ∈ Π.

Definition 2. A constraint (p, δ) in a graph G(M) is given
by a predicate symbol p and a graph homomorphism δ :
α(p)→ G(M), where α(p) is the arity of p.

Definition 3. A Σ-specification M := (G(M), M(Π)), is a
graph G(M) with a set M(Π) of constraints (p, δ) in G(M)
with p ∈ Π.

Fig. 1a shows an example of a Σ-specification M = (G(M),
M(Π)). G(M) in Fig. 1b is the graph of M without any

1Formerly named Diagrammatic Predicate Logic (DPL).
2For the rest of the paper we use the terms “model” and
“diagrammatic specification” interchangeably.

81

Figure 1: A Diagrammatic Specification: (a) M =
(G(M), M(Π)), (b) its graph G(M).

constraints on it. In M , every university educates one or
more students; this is forced by the constraint ([total], δ1)
on the arrow educates, which is visualised as a filled circle at
the beginning of the arrow. Moreover, every student stud-
ies at exactly one university; this is forced by the constraint
([single−valued], δ2) on the arrow studies, which is visualised
as the marker [1] at the cap of the arrow.

A signature with details of the semantics of its predicates
is shown in [5]. Here, only an informal definition of the
concept of instances of diagrammatic specifications is given.
An instance (ιM , I) of a diagrammatic specification M is a
graph homomorphism ιM : I → G(M), i.e. the elements
of I are typed by G(M), the graph of M , such that the
constraints in M are satisfied. The set of the instances of a
diagrammatic specification M is denoted Inst(M).

As mentioned, in a modelling hierarchy each model at
Mi-level conforms to a model at Mi+1-level, for 0 ≤ i <
3. In a modelling hierarchy with transitive conformance, if
an instance I at M0-level conforms to a model M at M1-
level, and M in its turn conforms to a metamodel MM
at M2-level, then I also conforms to MM . This property
is formalised in the next definition; its importance for the
automatic definition of model transformations at the model
level based on transformation definition at the metamodel
level is explained in Sec. 3.

Definition 4. In a modelling hierarchy with transitive con-
formance, given any diagrammatic specification MM , for
each (ιMM , M) ∈ Inst(MM) if (ιM , I) ∈ Inst(M) then
(ιM ; ιMM , I) ∈ Inst(MM).

3. MODEL TRANSFORMATIONS
As an example, suppose we want to generate a relational

database model from a class model. The class model con-
tains a hierarchy of classes with references between them.
The relational database model contains a set of database
tables and relationships between them. We can easily de-
velop a model transformation to transform the elements of
a specific class model to a database model. Alternatively,
we can define a generic transformation which can be used to
transform any class model to a database model. Obviously
the former procedure is less convenient since it implies that
for every class model we have to define a new transforma-
tion. To achieve the latter, we define the transformation for
the metamodels of class models and database models. Then
we use a transformation engine to (automatically) transform
any model that conforms to the metamodel of class models,
to a model which conforms to the metamodel of relational
databases.

Moreover, in some cases, we want also to transform in-
stances of these class models. Thus we have to define a new
model transformation between the models themselves. The

MM
MT−def.

�� MM ′

Inst(MM)
MT−exec.

��
MT−engine

�� Inst(MM ′)

Figure 2: Model transformations: overview.

P

ιP

����
��

��
��

�
m

��

K
� � inP ′ ��� �

inP		 P ′

ιP ′

��
��

��
��

�

m′

��

� [[r]] ��

MM MιMM

		
[=]

M
′

ιMM′
��

[=]

MM ′

Figure 3: A transformation rule r : P → P ′.

results of this paper enables us to reuse the model transfor-
mation which was defined at the metamodel level to define
the model transformation at the model level. This is out-
lined in Sec. 3.1. But first, we have to explain some concepts
which are used in model transformations.

Fig. 2 shows the overview of model transformations. Each
model transformation is given by a transformation definition
MT-def which describes how instances of a source model
MM can be transformed to instances of a target model
MM ′. The transformation definition is specified in a trans-
formation language, and is executed by a transformation
engine. That is, given a model transformation definition, a
source model, and a target model, the transformation en-
gine tries to create an instance of the target model for each
instance of the source model.

Every transformation definition consists of a set of trans-
formation rules. Each rule defines which elements of the
source instances are to be transformed to which elements
of the target instances. This is done through an input pat-
tern P and an output pattern P ′, as shown in Fig. 3. Thus
the transformation engine generates a match of the output
pattern in the target instance whenever it finds a match of
the input pattern in the source instance. Details of how
the transformation engine is controlled and how patterns
are coordinated (through the coordination set K) are given
in [4]. Here, patterns and matches of patterns are defined
as follows:

Definition 5. A pattern P over a diagrammatic specifica-
tion MM is an instance (ιP , P) of MM , where the items in
P are formal parameters or variables.

Definition 6. A match m : P → M of a pattern P in an
instance (ιMM , M) of a diagrammatic specification MM is
a graph homomorphism m : P → M where variables in P
are assigned values from M , and m; ιMM = ιP .

For a match m : P → M , the analogy is that P is the
formal parameter of m and some part of M is the actual
parameter. That is, a pattern P can be seen as a scheme
and a match m assigns values from M to the variables in P .
We use Match(P) to denote the set of all matches of P in
Inst(MM), i.e. all matches of P in all instances (ιMM , M)
of MM . Moreover, we use MatchM (P) for M ∈ Inst(MM)
to denote the set of all matches of the pattern P in M .

Recall that each transformation definition consists of a set
of transformation rules. These rules and their semantics are
defined as follows:

82

Definition 7. A transformation rule r is declared by r :
(ιP , MM) → (ιP ′ , MM ′) (abbreviated r : P → P ′) where
both P and P ′ are patterns over the models MM and MM ′,
respectively.

Definition 8. The semantics of a transformation rule r :
P → P ′ is a mapping [[r]] which assigns to each match m ∈
Match(P) a match m′ ∈ Match(P ′), i.e. [[r]] : Match(P)→
Match(P ′).

3.1 Automatisation of Transformations
An overview of the automatic construction of transfor-

mation rules at the model level is shown in Fig. 4. Based
on the execution of each transformation rule r : P → P ′

at the metamodel level, a (set of) transformation rule(s) r∗

at the model level will be created. These transformation
rules use PM , where M ∈ Inst(MM) and MatchM (P) 	= ∅,
as input patterns; and PM′

, where M ′ ∈ Inst(MM ′) and

MatchM′
(P ′) 	= ∅, as output patterns. These patterns are

defined as follows:

Definition 9. PM is the set of input patterns such that

∀m(P) ∈ MatchM (P) : ∃P ∗ ∈ PM , and PM′
is the set of

input patterns such that ∀m′(P ′) ∈ MatchM′
(P ′) : ∃P ∗′ ∈

PM′
.

The input and output patterns in PM and PM′
are cre-

ated by adding a free variable to the matches of the pat-
terns of r. In Fig. 5, these constructions are abbreviated

as f : M ⇒ PM and g : M ′ ⇒ PM′
. For example, if

a transformation rule r takes the pattern P = x:Class as
input and the pattern P ′ = x:Table as output, then for
the input matches Student:Class3 and University:Class

in the model M , the construction f∗ : MatchM (P) → PM

will create x1:Student:Class and x2:University:Class as
input patterns P ∗

1 and P ∗
2 for the rules r∗1 and r∗2 , respec-

tively. Similarly, for the output matches Student:Table

and University:Table in the model M ′, the construction

g∗ : MatchM′
(P ′) → PM′

will create x1:Student:Table

and x2:University:Table as output patterns P ∗′
1 and P ∗′

2

for r∗1 and r∗2 , respectively.

Definition 10. f∗ : MatchM (P) → PM is a construction
such that, ∀m(P) ∈ MatchM (P), f∗(m(P)) = P ∗ where P ∗

is a pattern over M . g∗ is defined similarly.

Theorem 1. Given a transformation rule r : P → P ′ at
the metamodel level, it is possible to create a set of trans-

formation rules R∗ : PM → PM′
at the model level.

Corollary 1. The semantics of a transformation rule r∗i ∈
R∗ : PM → PM′

is a mapping [[r∗i]] which assigns to each

match m∗ : P ∗ ∈ PM→ I a match m∗′ : P ∗′ ∈ PM′ → I ′,
i.e. [[r∗i]] : Match(PM)→Match(PM′

).

In modelling hierarchies with transitive conformance, the
application of automatically generated model transforma-
tions at the M1-level – which are based on model trans-
formations at the M2-level – will generate models at the
M0-level which are instances of the target metamodel. This

3Notice that (Student:Class) is a “user-friendly” notation
for the assignment (ιMM : Student → Class).

MM
MT−def.

�� MM ′

M

ιMM

��

MT−exec.
��

MT−engine

��

MT−def.

��
Auto.��

M ′

ιMM′

��

I

ιM

��

MT−exec.
��

MT−engine

�� I ′

ιM′

��

Figure 4: Model transformations: automatisation.

P

ιP

��
��

��
��

�
m

��

K
� � inP ′ ��� �

inP		 P ′

ιP ′

����
��

��
��

�

m′

��

� [[r]] ��

MM MιMM

		
[=]

f

��

M
′

ιMM′
��

[=]

g

��

MM ′

PM

m∗

��

PM ′

m∗′

��

� [[r∗
i]] ��

I

ιM

��

[=]

ιM ;ιMM

�����������������������

I
′

ιM′

��

[=]

ιM′ ;ιMM′

�����������������������

Figure 5: Creation of the transformation rules r∗

based on the transformation rule r.

feature is important in order to inherit the properties of the
model transformations which are defined at a higher level
of abstraction. For example, if a model transformation at
the M2-level is correct, then the automatically constructed
model transformation at the M1-level will also be correct.

4. SUMMARY
Transformation rules which are defined between meta-

models can be used to automatically derive transformation
rules between models. Moreover, if this technique is used
for modelling hierarchies with transitive conformance, the
properties of the model transformations at the M2-level are
preserved in the model transformations at the M1-level.

5. REFERENCES
[1] Z. Diskin and J. Dingel. A metamodel Independent

Framework for Model Transformation: Towards
Generic Model Management Patterns in Reverse
Engineering. In ATEM 2006.

[2] Object Management Group. Web site, October 2008.
http://www.omg.org.

[3] A. Rutle, U. Wolter, and Y. Lamo. Diagrammatic
Software Specifications. In NWPT’06, October 2006.

[4] A. Rutle, U. Wolter, and Y. Lamo. A Diagrammatic
Approach to Model Transformations. In EATIS 2008.

[5] A. Rutle, U. Wolter, and Y. Lamo. A Formal Approach
to Modeling and Model Transformations in Software
Engineering. Technical Report 48, Turku Centre for
Computer Science, Finland, 2008.

83

On Operational Termination of Deterministic
Conditional Rewrite Systems�

Felix Schernhammer and Bernhard Gramlich
TU Wien, Austria, {felixs,gramlich}@logic.at

Abstract. We characterize the practically important notion of operational ter-
mination of deterministic conditional term rewriting systems (DCTRSs) by con-
text-sensitive termination of a transformed TRS on original terms. Experimen-
tal evaluations show that this new approach yields more power when verifying
operational termination than existing ones. Moreover, it allows us to disprove
operational termination of DCTRSs.

1 Introduction and Overview

Conditional term rewriting systems (CTRSs) are a natural extension of unconditional
such systems (TRSs) allowing rules to be guarded by conditions. Conditional rules tend
to be very intuitive and easy to formulate and are therefore used in several rule based
programming and specification languages, such as Maude or ELAN.

Here we focus on the particularly interesting class of deterministic (oriented) CTRSs
(DCTRSs) which allows for extra variables in conditions (corresponding to let-constructs
or where-clauses in other functional-(logic) languages) and has been used for instance in
proofs of termination of (well-moded) logic programs [4].

When analyzing the termination behaviour of conditional TRSs, it turns out that
the proof-theoretic notion of operational termination is more adequate than ordinary
termination in the sense that practical evaluations w.r.t. operationally terminating DC-
TRSs always terminate (which is indeed not true for other similar notions like effective
termination [5]).

We propose the notion of context-sensitive quasi-reductivity ([6]), that will be proved
to be equivalent to operational termination of DCTRSs. Furthermore, we use a simple
modification of unraveling transformations ([7], [9]) that allows us to completely char-
acterize the new property of context-sensitive quasi-reductivity of a DCTRS by means
of termination of a context-sensitive (unconditional) TRS on original terms.

In the following, we assume familiarity with the basic concepts and notations of
(context-free, context-sensitive and conditional) term rewriting (cf. e.g. [2], [6], [9]).
In this work we are exclusively concerned with deterministic conditional term rewrite
systems (DCTRSs).

2 Proving operational termination of DCTRSs via
context-sensitive quasi-reductivity

The main goal of this work is to provide methods for proving operational termination
of DCTRSs. For that purpose we will now introduce the concept of context-sensitive
quasi-reductivity which is equivalent to operational termination while being practically
easier to verify for given systems.

Definition 1. A DCTRS R (R = (Σ,R)) is called context-sensitively quasi-reductive
(cs-quasi-reductive) if there is an extension of the signature Σ′ (Σ′ ⊇ Σ), a replacement

� Preliminary results of our approach have been presented at WST’07 (Paris, France, 2007).

84

μ (s.t. μ(f) = {1, ..., ar(f)} for all f ∈ Σ) and a μ-monotonic, well-founded partial or-
der �μ on T (Σ′, V) satisfying for every rule l → r ⇐ s1 →∗ t1, ..., sn →∗ tn, every
σ : V → T (Σ, V) and every i ∈ {0, ..., n− 1}:1
– If σsj μ σtj for every 1 ≤ j ≤ i then σsi+1 ≺st

μ σl.
– If σsj μ σtj for every 1 ≤ j ≤ n then σr ≺μ σl.

The ordering ≺st
μ is defined as (≺μ ∪ �μ)+ where t �μ s if and only if s is a proper

subterm of t at some position p ∈ Posμ(t).

Now, we define a transformation from DCTRSs into CSRSs, such that μ-termination of
the transformed CSRS implies cs-quasi-reductivity of the original DCTRS. The trans-
formation is actually a variant of the one in [9].

Definition 2. [9] Let R = (Σ, R) be a DCTRS. For every rule α : l → r ⇐ s1 →∗

t1, ..., sn →∗ tn we use n new functions symbols Uα
i (i ∈ {1, ..., n}). Then α is trans-

formed into a set of unconditional rules in the following way:

l → Uα
1 (s1, V ar(l))

Uα
1 (t1, V ar(l)) → Uα

2 (s2, V ar(l), EV ar(t1))...
Uα

n (tn, V ar(l), EV ar(t1), ..., EV ar(tn−1)) → r

Here V ar(s) denotes the sequence of variables in a term s rather than the set. The set
EV ar(ti) is V ar(ti) \ (V ar(l) ∪ ⋃i−1

j=1 V ar(tj)). Again, abusing notation, by EV ar(ti)
we mean an arbitrary but fixed sequence of the variables in the set EV ar(ti). Any
unconditional rule of R is transformed into itself. The transformed system Ucs(R) =
((U(Σ), U(R), μ) is obtained by transforming each rule of R where U(Σ) is Σ extended
by all new function symbols. Furthermore, the replacement map μ is given by μ(f) = {1}
if f ∈ U(Σ) \Σ and μ(f) = {1, . . . , ar(f)} otherwise.

Apart from analyzing operational termination, this transformation can also be used
to exactly simulate conditional derivations.

Theorem 1. Let R = (Σ,R) be a DCTRS and Ucs(R) its transformed CSRS. For every
s, t ∈ T (Σ, V) we have s →+

R t if and only if s →+
Ucs(R) t.

Unfortunately, and interestingly, cs-quasi-reductivity of a DCTRS R does not imply
μUcs(R)-termination of Ucs(R), cf. [9, Ex. 7.2.51]. However, it implies μUcs(R)-termination
of Ucs(R) on original terms (i.e., terms over the original signature of R), thus allowing
us to characterize cs-quasi-reductivity.

Theorem 2. Let R = (Σ, R) be a DCTRS. The following properties of R are equiv-
alent: μUcs(R)-termination of Ucs(R) on T (Σ,V), cs-quasi-reductivity and operational
termination.

From a practical point of view these results yield two contributions for the analysis of
operational termination of DCTRSs. First, when reducing the task of proving operational
termination of DCTRSs to the task of proving (context-sensitive) termination of TRSs, it
is now sufficient to prove termination on original terms. In order to exploit this relaxation
of the termination property, we developed a dedicated method based on the dependency
pair framework of [3] and [1], that allows us to prove termination of CSRSs obtained
by the proposed transformation on original terms. First experimental results with a
prototype implementation are promising. In particular, we were able to automatically
1 Note that – in contrast to the definition of quasi-reductivity – the substitution maps variables

only into terms over the original signature. This restriction is crucial for some of our main
results.

85

prove termination on original terms of systems that are not terminating in the general
sense.

Secondly, our results provide the basis for automatically disproving operational ter-
mination of DCTRSs, which was, to the authors’ knowledge, impossible with transfor-
mational approaches before. On the other hand, as proving non-termination on original
terms may be significantly harder than proving ordinary non-termination, the practi-
cal benefits of the latter results seem unclear. However, we were able to show that the
proposed transformation is sound and complete with respect to collapse-extended termi-
nation (cf. e.g. [9]), so from (ordinary) non-termination of a transformed system we can
at least conclude that the original DCTRS does not enjoy collapse-extended termination.

3 Related Work and Discussion

Our notion of cs-quasi-reductivity provides a new sufficient (in fact, equivalent) criterion
for operational termination. Furthermore, cs-quasi-reductivity can be verified by proving
termination of the resulting CSRS (on original terms). We have shown that the proposed
transformation, which has already been discussed in [8] regarding simulation soundness
and completeness and briefly in [10] regarding termination analysis, yields operational
termination of strictly more DCTRSs than Ohlebusch’s context-free transformation. Fur-
thermore, we developed methods for the termination analysis that are tailored to verify
termination on original terms. We implemented a prototype termination prover which,
besides other well-known techniques, makes essential use of these methods. Our imple-
mentation was able to automatically prove operational termination of several DCTRSs,
taken from the standard literature, for which all existing approaches failed. Finally, our
work is the first to provide means for disproving operational termination.

References

1. B. Alarcón, F. Emmes, C. Fuhs, J. Giesl, R. Gutiérrez, S. Lucas, P. Scheider-Kamp
and R. Thiemann. Improving context-sensitive dependency pairs. Technical Report:
Aachener Informatik Berichte (AIB), 2008-13

2. F. Baader and T. Nipkow. Term rewriting and all that. Cambridge University Press,
New York, NY, USA, 1998.

3. Jürgen Giesl, René Thiemann, Peter Schneider-Kamp and Stephan Falke. Mechaniz-
ing and Improving Dependency Pairs. Journal of Automated Reasoning , 37(3):155–
203, 2006.

4. H. Ganzinger and U. Waldmann. Termination proofs of well-moded logic programs
via conditional rewrite systems. In Proc. CTRS’92, Pont-à-Mousson, France, July
1992, pp. 430–437, LNCS 656, Springer,, 1993.

5. S. Lucas, C. Marchè, and J. Meseguer. Operational termination of conditional term
rewriting systems. Inf. Process. Lett., 95(4):446–453, 2005.

6. S. Lucas. Context-sensitive computations in functional and functional logic programs.
J. of Functional and Logic Programming, 1998(1), January 1998.

7. M. Marchiori. Unravelings and ultra-properties. In Proc. ALP’96, Aachen, LNCS
1139, pp. 107–121. Springer, September 1996.

8. N. Nishida, M. Sakai, and T. Sakabe. Partial inversion of constructor term rewriting
systems. In J. Giesl, ed., Proc. RTA’05, Nara, Japan, April 19-21, 2005, LNCS 3467,
pp. 264–278. Springer, 2005.

9. Enno Ohlebusch. Advanced topics in term rewriting. Springer-Verlag, London, UK,
2002.

10. F. Durán, S. Lucas, J. Meseguer, C. Marché, and X. Urbain. Proving operational
termination of membership equational programs. Higher-Order and Symbolic Com-
putation, 21:59–88, 2008.

86

Secure Open Networks

Neva Slani∗ Francisco Martins†

Introduction. This paper presents a method to reason about resource usage and the

related security issues for a mobile calculus in an open network. By an open network

we mean a network that is only partially known at compile time. Hence, the statical

enforcement of security policies is just possible for a fragment of the network, contrast-

ing most of the work done in the area that assumes a total knowledge of the network at

compile time.

The Dπ-calculus [1] has long been used to model distributed, mobile systems. Its

rich type system [1, 2] allows for the static control of resource usage policies prescribed

beforehand by a network administrator. However, to enforce type safety all the network

source code must be present at compile time, which is impractical for large networks,

and even impossible in a realistic scenario.

By lifelike setting one usually has in mind the Internet (or mobile phone network

etc.), where the system as a whole is incomprehensible, and new entities constantly

emerge. It is a challenge to reason about such systems and establish desired security

guarantees. Our goal is to present a model that:

1. reflects the open nature of large networks: only a partial perception (of network’s

locations and resources) is attainable, and new agents and resources can always

be revealed;

2. provides mechanisms for managing correct resource usage, by all the agents

involved, known or unknown, according to permissions prescribed by the owner.

Our work is inspired by Hennessy’s and Riely’s work, namely [1] and [3]. In the latter

the authors ensure safe resource access for open networks (meaning that resources,

such as printers, servers or web-services do not get spoilt after interactions), but leave

open the problem of authorised resource access (being usage of resources according

to the owner’s written permissions), hinting the usage of the type system from [1] as a

solution. The model we propose has several advantages over Riely’s and Hennessy’s

work, and tends to overcome what we consider fragilities in [3]:

1. We claim that our networks are “more open” than those in [3]. In that paper

static typing is performed with an explicit awareness of untyped sites, called bad. On

the other side, good sites do not acquire essentially new knowledge. Communication

with the previously unknown locations (for example a printer that some site might want

to reveal to us) is impossible. Also, good sites may actually unpunished behave badly.

2. Our proposal performs less run-time type-checks. As opposed to the two-fold

checks of migrating processes and communicating values, we check only once, and

when possible in Necula’s proof-carrying code style.

∗University of Zagreb, Croatia, nslani@fsb.hr
†LASIGE/DI-FCUL, University of Lisbon, Portugal, fmartins@di.fc.ul.pt

87

3. The type system in [1] is designed in such a way that security is dispersed along

the network, in the sense that resource access capabilities are released to the client

sites. Further, it is not obvious how the distribution of such rights is controlled, or to

which sites authorisations are granted. We leave space to a different treatment of access

policies.

Concurrent model. We start by studying the openness problem in a concurrent setting,

using a simplified version of the asynchronous π-calculus. This allows for a clear

introduction of the problem in a setting that is rich enough to enable us to understand

some of the subtleties of dealing with an open environment. We identify two distinct

processes running in parallel, [P]Γ |Q, that we designate as a system. Process P , named

secure process, is syntactically isolated inside a separate shell and is statically typed

by type environment Γ; and process Q, named untrusted process, is not type-checked.

Both P and Q are standard π-calculus processes.

We carefully define the operational semantics by reductions (→) on system, and

build a model that enjoys type safety at run-time. The rules describing interactions

between the secure and the untrusted processes reveal the core of the model (the same

is valid for the distributed model described below).
Γ � a : r〈τ〉

[a〈v〉 |P]Γ | a(x).P1 |P2 → [P]Γ |P1{v/x} |P2
(R-DCOMM1)

Γ � a : w〈τ〉 Γ ! {v : τ} well-defined

[a(x).P |P1]Γ | a〈v〉 |P2 → [P{v/x} |P1]Γ�{v : τ} |P2
(R-DCOMM2)

Rule R-DCOMM1 regulates the sending of value through a channel named a from the

secure to the untrusted region. Channel a must posses read capabilities (Γ � a : r〈τ〉;
it altogether means that a is a read-write channel in Γ). When an untrusted process

wants to write to a channel inside a secure region, rule R-DCOMM2, then we first verify

if it is allowed to write on that channel (Γ � a : w〈τ〉) and whether value v has a

type consistent with what we possibly already might know about v in Γ (Γ ! {v : τ}
well-defined). If this is true than the secure process learns value v and includes it in

its knowledge (Γ ! {v : τ}, where ! is the operation of “adding” knowledge). The

types used enable control of channels (resources) usage (i.e. capabilities of reading and

writing), and they are as in [1], an extension of standard Pierce and Sangiorgi types.

Accordingly to the types, we define as a run-time the situation where the secure process

is trying to read from (or write to) a channel that it is not supposed to read (or write),

or even confuses a channel with something else (data). Systems, ranged over by R, are

well-typed if environment Γ types P in [P]Γ |Q; this is true even if R = (νn)R′, i.e.

typing rules and scope extrusion treat carefully restriction operator. The main result is

Theorem 1 (Type Safety) Well-typed system R after reducing does not produce run-
time errors.

Distributed model. We extend the previous results to a distributed, mobile setting,

choosing the Dπ as the referent calculus. The Dπ-calculus comprises a flat network N
of sites running in parallel, put together using composition operator | . Sites repre-

sent (physical or logical) computational shells, hosting channels (resources). Code can

be sent from one site to another, which is expressed by a migration construct in the

calculus. We extend the Dπ distinguishing two kinds of sites: secure and untrusted,

dividing the network (the world) in two areas, as before: the protected one and an

outer, untrusted one. The intuition is that trusted sites are those that you administer

and therefore possess all the (compile-time) information about their behaviour; for in-

stance, the sites of a private wide-area network. All the other sites that you interact

88

with and have no means of checking their behaviour, e.g. sites from the Internet, are

considered untrusted.

A secure site k[P]Γ; Δ consists of the site’s name k, a process P running on it, and

two type environments Γ and Δ containing information (e.g. security) about sites and

their resources. Set Γ contains (global, static) knowledge about secure sites, whereas

set Δ contains the knowledge of a particular site instance acquired during its interaction

with other sites at run-time. In the Dπ-calculus a site is unique but may appear split (in

instances) across the network. An untrusted site k is of the form k{P}, having sites’s

name k and hosting process P . During computation secure sites may have an untrusted

part resulting from the interaction with untrusted sites. This untrusted part is a kind of

sandbox of the site. Therefore, network k[P]Γ; Δ | k{Q} represents a site k running a

secure process P and having a process Q that requires special attention, since its origin

is from an untrusted location. Communication between those two is achieved by rules

analogous to R-DCOMM1 and R-DCOMM2. The rest of the reductions are in Dπ-style,

but including local knowledge transfer when the typed sites are sending code one to

another.

A network is well-typed when all of its protected sites are typed under the same

global knowledge Γ, leaving the untrusted sites untyped. Defining the run-time error

as before, we obtain: as it reduces, a well-typed network never incurs in a run-time

errors.

Conclusions and future work. In this paper we study resource access control for

open networks. We start by investigating the problem within the π-calculus. Collecting

type information we protect the typed processes of channel abuses in interaction with

the untyped processes; therefore obtain type safety. The same idea is extended to a

distributed model of open network, built upon the following principles:

• openness of the network characterized by the possible increment of the number

of actors (locations and resources);

• explicit knowledge-guided behaviour, knowledge acquisition and transfer;

• as much as possible security verifications is performed statically, lessening dy-

namic type-checking.

The result is an open network model with the type system guaranteeing safe resource

access. Authorised resource access component is a further work and builds on result

of Martins and Vasconcelos [2]. We feel comfortable with joining the two models

as we foresee that it is an adequate basis for the continuation of our work—dynamic

acquisition and changing of access policies, in an open environment.

References
[1] M. Hennessy and J. Riely. Resource access control in systems of mobile agents.

Journal of Information and Computation, 173:82–120, 2002.

[2] F. Martins and V. Vasconcelos. History-based access control for distributed pro-

cesses. In Proceedings of TGC’05, volume 3705 of LNCS, pages 98–115. Springer-

Verlag, 2005.

[3] J. Riely and M. Hennessy. Trust and partial typing in open systems of mobile

agents. In Proceedings of POPL’99, pages 93–104, 1999.

89

Parametricity for Haskell with

Imprecise Error Semantics

Florian Stenger� and Janis Voigtländer

Institut für Theoretische Informatik
Technische Universität Dresden

01062 Dresden, Germany

Abstract:

Error raising, propagation, and handling in the functional programming language
Haskell can be imprecise in the sense that a language implementation’s choice of
local evaluation order, and optimising transformations to apply, may influence
which of a number of potential failure events hidden somewhere in a program is
actually triggered. While this has pragmatic advantages from an implementation
point of view, it also complicates the meaning of programs and thus requires extra
care when reasoning about them. The proper semantic setup is one in which
every erroneous value represents a whole set of potential (but not arbitrary)
failure causes [PRH+99]. The associated propagation rules are somewhat askew
to standard notions of program flow and value dependence. As a consequence,
standard reasoning techniques are cast into doubt, and rightly so. We study this
issue for one such reasoning technique, namely the derivation of (equational and
inequational) free theorems from polymorphic types [Rey83,Wad89]. Continuing
earlier work [JV04], we revise and extend the foundational notion of relational
parametricity, as well as further material required to make it applicable. More
generally, we believe that our new development and proofs help direct the way
for incorporating further and other extensions and semantic features that deviate
from the “naive” setting in which reasoning about Haskell programs often takes
place. Let us elaborate a bit.

As is well known, functional languages come with a rich set of conceptual tools
for reasoning about programs. For example, structural induction and equational
reasoning tell us that the standard Haskell functions

takeWhile :: (α→ Bool)→ [α]→ [α]
takeWhile p [] = []
takeWhile p (x : y)

| p x = x : takeWhile p y

| otherwise = []

map :: (α→ β)→ [α]→ [β]
map h [] = []
map h (x : y) = h x : map h y

satisfy the following law for appropriately typed p, h, and l:

takeWhile p (map h l) = map h (takeWhile (p ◦h) l) . (1)

� This author was supported by the DFG under grant VO 1512/1-1.

90

But programming language reality can be a tough game, leading to unex-
pected failures of such near-obvious laws. For example, [PRH+99] proposes a
design for error handling based on a certain degree of impreciseness. The major
implementations GHC and Hugs (as well as one distribution of the language
Clean) have integrated this design years ago. However, the attendant semantics
betrays law (1) to be wrong. An instantiation showing this is p = null , h = tail ,
and l = [[i] | i ← [1..(div 1 0)]] (or any other immediately failing expression of
type list-of-lists), where

null :: [α]→ Bool
null [] = True
null (x : y) = False

tail :: [α]→ [α]
tail [] = error “Prelude.tail: empty list”
tail (x : y) = y

are standard Haskell functions as well. The problem with (1) now is that its
left-hand side yields exactly the “divide by zero”-error coming from l, whereas
its right-hand side may also yield the “Prelude.tail: empty list”-error. This is so
due to the semantics of pattern-matching in the design of [PRH+99] (and also
[MLP99]). In short, it prescribes that when pattern-matching on an erroneous
value as scrutinee, not only are any errors associated with it propagated, but
also are the branches of the pattern-match investigated in “error-finding mode”
to detect any errors that may arise there independently of the scrutinee. This is
done in order to give the language implementation more freedom in arranging
computations, thus allowing more transformations on the code prior to execu-
tion. But here it means that when takeWhile (null ◦ tail) encounters an erroneous
value, also (null ◦ tail) x is evaluated, with x bound to a special value Bad ∅
that exists only to trigger the error-finding mode. And indeed, the application
of tail on that x raises the “Prelude.tail: empty list”-error, which is propagated
by null and then unioned with the “divide by zero”-error from l. In contrast,
takeWhile null on an erroneous value does not add any further errors, because
the definition of null raises none. And, on both sides of (1), map h only ever
propagates, but never introduces errors.

Thus, if we do not want to take the risk of introducing previously nonexistent
errors, then in an implementation that builds on the semantics of [PRH+99] we
cannot use (1) as a transformation from left to right, even though this might
have been beneficial (by bringing p and h together for further analysis or for
subsequent transformations potentially improving efficiency). The supposed se-
mantic equivalence simply does not hold. Impreciseness in the semantics has its
price, and if we are not ready to abandon the overall design, then we better learn
how to cope with it when reasoning about programs.

The above discussion regarding a concrete instantiation of p, h, and l does
not provide any positive information about conditions under which (1) actually
is a semantic equivalence. Moreover, it is relative to the particular definition of
takeWhile given at the very beginning, whereas laws like (1) are often derived
more generally as free theorems [Rey83,Wad89] from types alone, without con-
sidering concrete definitions. In the study reported here we undertake to develop
the theory of free theorems for Haskell with imprecise error semantics. This con-
tinues earlier work [JV04] for Haskell with all potential error causes (including

91

nontermination) conflated into a single erroneous value ⊥. That earlier work
gives that in this setting (1) is a semantic equivalence provided p �= ⊥ and h is
strict and total in the sense that h ⊥ = ⊥ and for every x �= ⊥, h x �= ⊥. The
task set ourselves involves finding the right generalisations of such conditions for
a setting in which not all errors are equal. Questions like the following ones arise:

– From which erroneous values should p be different?
– For strictness, is it enough that h preserves the least element ⊥, which in

the design of [PRH+99] denotes the union of all error causes, including non-
termination?

– Or do we need that also every other erroneous value (denoting a collection
of only some potential error causes, maybe just a singleton set) is mapped
to an erroneous one? To the same one? Or to ⊥?

– For totality, is it enough that “non-⊥ goes to non-⊥”?
– Does this allow “non-⊥ goes to non-⊥ but erroneous”?
– Or do we need “nonerroneous goes to nonerroneous”?

Our investigation is very much goal-directed by studying proof cases of the (re-
lational) parametricity theorem, which is the foundation for all free theorems,
and trying to adapt the proof to the imprecise error setting. This leads us to
discover, among other formal details and ingredients, the appropriate generalised
conditions sought above (first as restrictions on relations, then specialised to the
function level). In fact, we think that beside our results for the imprecise error
setting, our study can also serve as a guide on how to go about extending rela-
tional parametricity to new language features and semantic designs in general.
We have established both equational and inequational parametricity theorems,
including one for the refinement order of [MLP99]. And while we do not deal
with error recovery through exception handling in the IO monad, we have made
some initial steps into the realm of exceptions as first class citizens by integrat-
ing a primitive (Haskell’s mapException) that allows manipulating already raised
errors (respectively, their descriptive arguments) from inside the language.

References

[JV04] P. Johann and J. Voigtländer. Free theorems in the presence of seq. In Prin-

ciples of Programming Languages, Proceedings, pages 99–110. ACM Press,
2004.

[MLP99] A. Moran, S.B. Lassen, and S.L. Peyton Jones. Imprecise exceptions, Co-
inductively. In Higher Order Operational Techniques in Semantics, Proceed-

ings, volume 26 of ENTCS, pages 122–141. Elsevier, 1999.
[PRH+99] S.L. Peyton Jones, A. Reid, C.A.R. Hoare, S. Marlow, and F. Henderson. A

semantics for imprecise exceptions. In Programming Language Design and

Implementation, Proceedings, pages 25–36. ACM Press, 1999.
[Rey83] J.C. Reynolds. Types, abstraction and parametric polymorphism. In Infor-

mation Processing, Proceedings, pages 513–523. Elsevier, 1983.
[Wad89] P. Wadler. Theorems for free! In Functional Programming Languages and

Computer Architecture, Proceedings, pages 347–359. ACM Press, 1989.

92

Consistency Check for Component-based Design of Embedded

Systems using SAT-solving

Peter V. B. Sørensen & Jan Madsen, IMM, DTU, {pbs,jan}@imm.dtu.dk

Introduction

Today, embedded applications are increasingly relying on customized heterogeneous multi-
processor systems to provide the computational power and flexibility needed to meet the ever
increasing demands on performance, features and reliability. Because of tight time-to-market
constraints it is imperative that the application and platform are developed in parallel. One
way to enable parallel development of application and platform is through the use of a program-
ming model [1, 2], which serves as an abstraction layer between the application written in some
high-level programming language and the platform. Tools and methods exist that automati-
cally generate an implementation of such a model for some restricted classes of platforms [3, 4],
whereas in the case of arbitrary platforms, implementing a programming model is a manual,
error prone and time consuming undertaking.

The long term goal of this work is to devise a method to automatically generate an imple-
mentation in the context of a component-based design methodology. In such a methodology,
a platform is assembled from a library of pre-defined components and combined with a speci-
fication of the application. Some components may require access to services provided by other
components in order to function properly and, similarly, part of the specification mapped to
one processing element may be dependent on having access to other parts which are mapped
to different processing elements. Ensuring that a system is consistent with respect to such de-
pendencies is a necessary first step toward automatically synthesizing an implementation – this
consistency check is the focus here.

The Service Relation Model

We have developed a formalism, called the service relation model, useful to analyze the flow
and availability of services in a system composed of components. In a service relation model of
a system the components represent platform entities (e.g. processors, interconnects, operating
systems) as well as entities from the specification (e.g. processes, functions, variables) providing
and consuming services. Figure 1 shows a simple streaming application, consisting of three
processes (Pi) communicating via two memory regions (MRj), and a possible mapping onto
a simple multi-processor platform. In general, deciding on a mapping is a complex problem
and verifying that all inter-application dependencies are satisfied by the mapping is a challenge.
A central concept to the service relation model is service aggregation. A service s1 is said to

93

P0 P2P1 MR1

Bus

CPU0

PAL0

CPU1

TIMER0

OS0 OS1

MEM1

TIMER1

MR0

MEM0 MEM2

P0 P2P1

MR1MR0

Ap
pl

ic
at

io
n

Sy
st

em

Hardware

Middleware

Platform abstraction layer
(programming model)

Memory region

Process

Legend

Dependency

PAL1 PAL2

slave

slave slave

master master

Mapping

Figure 1: Platform, Platform Abstraction Layer and Application

aggregate another service s2 if s2 is accessible through s1. In the example, the memories (MEMk)
are associated with a service representing the possibility of other components to read and write
its content. Connected to the MEM1 memory is a component representing a memory region
MR1 which has two services associated with it – representing the possibility to read and write
it’s content. These two services are aggregated by the service of the memory meaning that the
memory region can be read and written through the service provided of the memory component.
Similarly, the interconnect provides a service (the ability of master attachments to read and write
slave attachments) which aggregates the services provided by the slave attachments (MEM1 and
the timers). We also say that an aggregated service is available at the aggregating service.
Also, we consider any services available at an aggregated service to also be available at the
aggregating service. The effect of this, in the example, is that the set of services available at
the bus is the union of the services available at the three slave attachments. The platform
abstraction layer components (PALl), also depicted in figure 1, represents the implementation
of the programming model that we aim to synthesize. A system like the one in figure 1 can
be captured in the service relation model using a few dosen components at a rather coarse
granularity. In a real-world scenario, however, a system will have in the order of hundreds
or perhaps thousands of components and services. The literature contains many examples
of component models that can be used to analyze various properties of systems composed of
components (e.g. [5, 6, 7]). The service relation model differs from these models in it’s ability to
cope with both hardware, middleware and application specific software components uniformly
and, most notably, it’s intended use.

Testing Simple Service Dependencies

Given a service relation model of a system a directed (and possibly cyclic) graph called a service
flow graph, can be extracted. The relationship between the services are explicitly represented in

94

this graph. We can determine the sets of services available at any point in the system using, for
instance, a worklist algorithm [8]. Using this information, testing if a dependency is satisfiable
amounts to testing whether or not the service is in the set of available services. This procedure
can only be used to test if it is possible to access a given service from a given component and
assumes that the service is available in “sufficient quantities”.

Testing Exclusive Service Dependencies

In some cases a service cannot be shared. For example, assume that the two operating systems in
the preceding example requires access to a timer in order to do time-sliced preemptive scheduling.
In this case the timer resource cannot (in general) be shared and consequently simply testing if
a timer service is available for the operating systems will not suffice. To test any such exclusive
service dependencies we construct a Boolean satisfiability (SAT) problem based on the service
flow graph and the service availability information previously mentioned. The constructed SAT
problem is an encoding of the different paths between providers and consumers of services where
any illegal paths have been removed using the service availability information. By applying a
SAT solver to the problem we may determine if the system is consistent with respect to such
exclusive service dependencies. In addition, if the problem is satisfiable then a valid allocation
of services to service consumers can be extracted from a satisfying variable assignment.

Conclusion & Future Work

We have presented two procedures for checking the consistency of two different kinds of service
dependencies – one to test service availability based on a graph worklist algorithm and one
to test exclusive service usage using a SAT solver. We have run experiments on a number of
different synthetic examples, using the HySAT [9] and Z3 solvers [10], and we are working on
including one or more real-world examples. There are numerous interesting extensions that
could be explored in the future: We have so far assumed that there is either an infinite amount
of service available (availability testing) or only a single entity (exclusive availability testing). In
case of memory, for instance, there is a finite quantity of service available (bytes in the memory)
that potentially can be shared between multiple consumers. To handle this, a hybrid SAT solver,
such as [9], could be applied. We can see no principle difficulties in this extension. Finally, it is
interesting to employ optimization methods in order to minimize the cost of using resources.

References

[1] A.A. Jerraya, A. Bouchhima and F. Pétrot, “Programming models and HW-SW interfaces abstraction
for multi-processor SoC”, DAC ’06: Proceedings of the 43rd annual conference on Design automation, pp.
280–285, 2006.

[2] P. van der Wolf, E. de Kock, T. Henriksson, W. Kruijtzer and G. Essink, “Design and Programming of
Embedded Multiprocessors: An Interface-Centric Approach”, CODES-ISSS ’04 International conference on
Hardware/software codesign and system synthesis, pp. 206–217, 2004.

[3] P.G. Paulin, C. Pilkington, E. Bensoudane, M. Langevin and D. Lyonnard “Application of a Multi-Processor
SoC Platform to High-Speed Packet Forwarding”, DATE ’04: Proceedings of the conference on Design,
automation and test in Europe, 2004.

95

[4] H. Nikolov, T. Stefanov and E. Deprettere, “Systematic and Automated Multiprocessor System Design,
Programming, and Implementation”, IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol.27, no. 3, pp. 542–555, 2008.

[5] L. Alfaro and T. A. Henzinger, “Interface automata”, Proceedings of the Ninth Annual Symposium on
Foundations of Software Engineering (FSE), ACM, 2001.

[6] D. Garlan, R.T. Monroe and D. Wile, “Acme: architectural description of component-based systems”,
Foundations of component-based systems, Campridge University Press, pp. 47–67, 2000.

[7] R. van Ommering, F. van der Linden, J. Kramer and J. Magee, “The Koala Component Model for Consumer
Electronics Software”, IEEE Computer, vol. 33, no. 3, pp. 78–85, 2000.

[8] F. Nielson, H. R. Nielson and C. Hankin, “Principles of Program Analysis”, Corrected 2nd Printing, Springer-
Verlag, ch. 6, pp. 355–392, 2005.

[9] M. Fränzle and C. Herde, “HySAT: An efficient proof engine for bounded model checking of hybrid systems”,
Formal Methods in System Design, Springer, vol. 30, no. 3, pp. 179–198, 2007.

[10] L. de Moura and N. Bjørner, “Z3: An Efficient SMT Solver”, Tools and Algorithms for the Construction
and Analysis of Systems, Lecture Notes in Computer Science, Springer, vol. 4963, pp. 337–340, 2008.

96

Quantitative Simulations of Weighted Transition Systems

Claus Thrane, Uli Fahrenberg, Kim G. Larsen
Dept. of Computer Science, Aalborg University, Denmark

{crt,uli,kgl}@cs.aau.dk

We present research motivated by the Challenge on
embedded systems design, posed by Henzinger and Sifakis
in [5]. Henzinger and Sifakis express the need for a co-
herent theory of embedded systems design, where concern
for physical constraints is supported by the computational
models used to model software, thus achieving a more het-
erogeneous approach to systems design. Highly distilled,
Henzinger and Sifakis call for a new mathematical basis
for systems modeling, which facilitates modeling of be-
havioural properties as well as environmental constraints.

In this work we propose a notion of weighted transi-
tion systems (WTS), a quantitative extension of the clas-
sical computational model of labeled transition systems
[7]. Specifically, a notion of weights is added, with the
intention to facilitate modeling of extra-functional prop-
erties, such as power or resource consumption in general.
The proposed formalisms and metrics have been designed
for general approximate reasoning about reactive systems,
but for now we are especially interested in the subclass
generated by weighted timed automata [3, 2]. Applica-
tions to other real-time formalisms as e.g. TCCS, or to
probabilistic formalisms, are also possible.

Traditionally, equivalences have been employed when
comparing systems. Many different behavioural and lan-
guage equivalences have been proposed, see e.g. the sur-
vey provided in [9]. The use of equivalences gives rise
to classical decision problems of the form: is A equal
to B, which may have the specific purpose of express-
ing that one system, the implementation A, conforms to
some desired specification B. In a quantitative setting,
such equivalences may be replaced by metrics which as-
sign to pairs of systems, i.e. initial states, a real valued
distance; intuitively the problem is lifted such that

{true, false} becomes �≥0 .

Here a distance of 0 (zero) represents a verdict of true
for the binary decision problem. All values ε > 0 are
mapped back to false, but are intended to give indication
of systems which are not equal, yet related up to some er-
ror margin given by their distance ε. Note that problems
of computing a distance ε between systems A, B can be
reformulated to decision problems R(A, B, ε).

When generalizing from binary decision problems to
distances, one has a number of choices on what is to be
measured. In this work we concentrate on three differ-
ent metrics, point-wise, accumulated, and maximum-lead,
but a number of others are also relevant and interesting.
Some of these have been considered in the literature; for
real-time systems see e.g. [6, 4], and also for probabilistic
systems there is a body of work on approximate distances.
We show that the three metrics we consider are interesting
from an application point of view, and that they measure
inherently different properties.

More specifically, we show that for all three metrics
mentioned above, bisimulation (resp. trace equivalence)
may be lifted to a family of ε-bisimulations (resp. ε-trace
distances) on weighted transition systems, such that p ∼ q
and p =L q are generalized to p ∼ε q and |p, q| = ε, where
states p and q are related if they have a (bisimulation resp.
trace) distance which is no more than ε. We show that
also in the quantitative setting, p ∼ε q implies |p, q| = ε.

1 Quantitative models

Our notion of weighted transition system, or WTS, is a
simple extension of the well-known labeled transition sys-
tem formalism. Transition systems have been used to de-
fine (operational) semantics for a wide range of systems;
similarly, weighted transition systems should be applica-
ble for a number for formalisms. Here we shall concentrate
on timed automata [1] and weighted timed automata [3, 2].

Definition 1 A weighted transition system is a triple
(S, w, lg) where
• S = 〈S, s0, Γ, R〉 is a labeled transition system, with

states S, initial state s0, alphabet Γ, and transitions
R ⊆ S × Γ× S,

• w : R → �≥0 assigns weights to transitions, and
• lg : Γ → �≥0 assigns lengths to labels.

We write s
α,ω−−→ s′ whenever (s, α, s′) ∈ R and ω =

w((s, α, s′)). Moreover, we let c(s, α, s′) = w((s, α, s′)) ·
lg(α) denote the actual cost of taking the transition.

The use both of weights on transitions and lengths of
labels is to some extent superfluous; either one could be

97

omitted without changing expressibility, however we shall
see later that there is a good motivation.

1.1 Weighted timed automata

Weighted timed automata [3, 2] is a useful formalism for
modeling optimal scheduling and control problems. Their
semantics is usually given as a weighted timed transition
system, but we shall instead translate them to WTS. Note
that by setting prices and rates to zero, one obtains a
usual timed automaton, hence our translation also applies
to these.

Definition 2 A weighted timed automaton is a tuple
(L, l0, C, I, E, p, r) where
• L is a finite set of locations, with l0 initial,
• C is a finite set of real-valued clocks,
• I : L→ Ψ(C) assigns invariants to locations,
• E ⊆ L×Ψ(C)× 2C × L is a set of edges,
• p : E → � is a edge price function, and
• r : L→ � is a location rate function.

Again, we write l
ψ,C−−→ l′ instead of (l, ψ, C, l′) ∈ E.

The set Ψ(C) of clock constraints above is generated by
the grammar

ψ ::= x �� k | x− y �� k | ψ1 ∧ ψ2

for x, y ∈ C, k ∈ �, �� ∈ {≤, <,=,≥, >}.
The semantics of a WTA A is given by a WTS

W = (S, w, lg), where S = (S, (l0, v0), {�} ∪ �≥0, T) is
the (usual) labeled transition system associated with the
underlying TA of A, lg(�) = 1, lg(δ) = δ for δ ∈ �≥0,
and for t ∈ T ,

w(t) =

{
p(e) if t = (l, v) �−→ (l′, v′) and e = l

ψ,C−−→ l′ ∈ E

r(l) if t = (l, v) δ−→ (l, v + δ)

2 Quantifying relations

We propose three different distances between WTS, both
in linear and branching versions. Our first is a point-wise
distance, comparing matching steps without considering
the past or future. The second is an accumulating dis-
tance, using discounting. Finally, an accumulating dis-
tance which allows catch-up describes the maximum lead
of accumulated weights.

For the definitions below, we fix a WTS (S, w, lg) and
a discounting factor λ ∈ [0, 1]. Tr(s) denotes the set of
(finite or infinite) traces emanating from s, and for a
trace σ, σ(i) denotes the ith transition in the trace, and
si(σ) =

∑i
j=0 lg(σ(j)) denotes its accumulated length.

2.1 Trace distances

The point-wise trace distance between states s, t ∈ S is
defined by

‖s, t‖• = (1)

max

⎧⎪⎨
⎪⎩

sup
σ∈Tr(s)

inf
σ′∈Tr(t)

{sup
i

λsi(σ)|c(σ(i))− c(σ′(i))|}

sup
σ∈Tr(t)

inf
σ′∈Tr(s)

{sup
i

λsi(σ)|c(σ(i))− c(σ′(i))|}

The accumulating trace distance between s and t is

‖s, t‖+ = (2)

max

⎧⎪⎨
⎪⎩

sup
σ∈Tr(s)

inf
σ′∈Tr(t)

{
∑

i

λsi(σ)|c(σ(i))− c(σ′(i))|}

sup
σ∈Tr(t)

inf
σ′∈Tr(s)

{
∑

i

λsi(σ)|c(σ(i))− c(σ′(i))|}

The maximum-lead distance between s and t is

‖s, t‖± = (3)

max

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

sup
σ∈Tr(s)

inf
σ′∈Tr(t)

{
sup

j
{λsi(σ)|

j∑
i=0

c(σ(i))−
j∑

i=0

c(σ′(i))|}}

sup
σ∈Tr(t)

inf
σ′∈Tr(s)

{
sup

j
{λsi(σ)|

j∑
i=0

c(σ(i))−
j∑

i=0

c(σ′(i))|}}

All of the distances above take the value ∞ whenever
s �=L t – i.e. when states s and t are not unweighted trace
equivalent.

Hence the point-wise distance measures the largest
difference between the cost of corresponding single tran-
sitions, whereas the accumulating distance adds up all
these differences. The maximum-lead distance allows the
traces to “play catch-up”; here, accumulated delays can
also decrease instead of only increasing.

2.2 ε-Bisimulation relations

Matching the trace distances above, we define three bisim-
ulation relations ∼̇ε,

+∼ε, and ±∼ε:
A family of relations R = {Ṙε ⊆ S × S | ε ≥ 0} is

a point-wise bisimulation family if (s, t) ∈ Ṙε ∈ R and
α ∈ Γ imply that
• if s

α,c−−→ s′ then t
α,d−−→ t′ with |c− d| ≤ ε/lg(α) and

(s′, t′) ∈ Ṙε′ ∈ R for some d, t′ and ε′ ≤ ε
λlg(α) ,

• if t
α,c−−→ t′ then s

α,d−−→ s′ with |c− d| ≤ ε/lg(α) and
(s′, t′) ∈ Ṙε′ ∈ R for some d, t′ and ε′ ≤ ε

λlg(α) .
We write s ∼̇ε t whenever (s, t) ∈ Ṙε ∈ R for some point-
wise bisimulation family R.

A family of relations R = {Rε ⊆ S × S | ε ≥ 0} is an
accumulating bisimulation family if (s, t) ∈ Rε ∈ R and
α ∈ Γ imply that
• if s

α,c−−→ s′ then t
α,d−−→ t′ with |c− d| ≤ ε/lg(α) and

(s′, t′) ∈ Rε′ ∈ R for some d, t′ and ε′ ≤ ε−|c−d|
λlg(α) ,

• if t
α,c−−→ t′ then s

α,d−−→ s′ with |c− d| ≤ ε/lg(α) and
(s′, t′) ∈ Rε′ ∈ R for some d, t′ and ε′ ≤ ε−|c−d|

λlg(α) .

98

We write s
+∼ε t whenever (s, t) ∈ Rε ∈ R for some accu-

mulating bisimulation family R.
A family of relations R = {Rε,δ ⊆ S × S | ε ≥

0,−ε ≤ δ ≤ ε} is a maximum-lead bisimulation family
if (s, t) ∈ Rε,δ ∈ R and α ∈ Γ imply that

• if s
α,c−−→ s′ then t

α,d−−→ t′ with δ+(c−d)lg(α) ≤ ε and
(s′, t′) ∈ Rε′,δ′ ∈ R for some d, t′ and ε′ ≤ ε

λlg(α) ,
δ′ ≤ δ+(c−d)lg(α)

λlg(α) ,

• if t
α,c−−→ t′ then s

α,d−−→ s′ with δ+(c−d)lg(α) ≤ ε and
(s′, t′) ∈ Rε′,δ′ ∈ R for some d, t′ and ε′ ≤ ε

λlg(α) ,
δ′ ≤ δ+(c−d)lg(α)

λlg(α) .
We write s

±∼ε t whenever (s, t) ∈ Rε,0 ∈ R for some
maximum-lead bisimulation family R.

3 Results and open problems

We can show that, analogous to the unweighted setting,
our trace and bisimulation distances are related in the
sense that for each of the three pairs, membership in an
ε-bisimulation relation implies a trace distance not greater
than ε.

We can also prove that all six distances are metrics
in the technical sense, hence each of them gives a metric-
space structure on the set of WTS. Perhaps surprisingly,
all these spaces are mutually topologically inequivalent,
indicating that the metrics are indeed measuring very dif-
ferent properties.

We also have a logical characterization of our point-
wise bisimulation distance [8], and we believe that similar
can be found for the other two distances.

In [6] it is shown that for timed automata, maximum-
lead bisimulation distance is computable in a certain
sense. Whether this also holds for weighted timed au-
tomata is an open question, as is computability of the
other bisimulation distances, both for (weighted) timed
automata and for other interesting formalisms.

References

[1] R. Alur and D. Dill. Automata for modeling real-time
systems. In Proc. ICALP’90, volume 443 of Lecture

Notes in Computer Science, pages 322–335. Springer-
Verlag, 1990.

[2] R. Alur, S. La Torre, and G. J. Pappas. Optimal
paths in weighted timed automata. In Proc. 4th Int.
Workshop Hybrid Systems: Computation and Control
(HSCC’01), volume 2034 of Lecture Notes in Com-
puter Science, pages 49–62. Springer-Verlag, 2001.

[3] G. Behrmann, A. Fehnker, T. Hune, K. G. Larsen,
P. Pettersson, J. Romijn, and F. Vaandrager.
Minimum-cost reachability for priced timed automata.
In Proc. 4th Int. Workshop on Hybrid Systems: Com-
putation and Control (HSCC’01), volume 2034 of
Lecture Notes in Computer Science, pages 147–161.
Springer-Verlag, 2001.

[4] Vineet Gupta, Thomas A. Henzinger, and Radha
Jagadeesan. Robust timed automata. In Proc.
HART’97, volume 1201 of Lecture Notes in Computer
Science, pages 331–345. Springer-Verlag, 1997.

[5] Thomas A. Henzinger and Joseph Sifakis. The embed-
ded systems design challenge. In 14th International
Symposium on Formal Methods (FM), Lecture Notes
in Computer Science, pages 1–15. Springer, September
2006.

[6] Thomas A. Henzinger, Rupak Majumdar, and
Vinayak Prabhu. Quantifying similarities between
timed systems. In Proc. FORMATS’05, volume 3829
of Lecture Notes in Computer Science, pages 226–241.
Springer-Verlag, 2005.

[7] G. D. Plotkin. A structural approach to op-
erational semantics. Technical Report DAIMI
FN-19, University of Aarhus, 1981. URL
citeseer.ist.psu.edu/plotkin81structural.html.

[8] Claus Thrane. On weighted labelled transition sys-
tems, quantitative relations and logic. Technical Re-
port 1213005970, Dept. of Computer Science, Aalborg
University, 2008.

[9] R. van Glabbeek. The linear time – branching time
spectrum I: The semantics of concrete, sequential pro-
cesses. URL citeseer.ist.psu.edu/328833.html.

99

Slicing For Uppaal

Claus Thrane, Uffe Sørensen and Kim G. Larsen
Dept. of Computer Science, Aalborg University, Denmark

{crt,us,kgl}@cs.aau.dk

We present slicing for the model-checking tool Uppaal [5]. Slicing is a technique based on static
analysis used here to reduce the syntactic size of models based on an extension of Timed Automata [1].
We show how our approach will obtain reachability preserving reductions of models, possibly improving
the performance of the tool. Finally, we present the results of experimental conducted to further validate
our claims.

Whereas traditionally, slicing is used for debugging and testing purposes, the goal here is to apply
slicing to improve model-checking capabilities of Uppaal. Using automated slicing in Uppaal drastically
reduces the need for manual adaptation of models for faster verification of individual properties. More-
over, it allows less experienced users, which unknowingly may design models, containing unnecessary
large amounts of data, to verify properties which Uppaal otherwise would have been unable to check.
With the rich imperative language of Uppaal 4.0 – including structured and user-defined types as well
as C-style expressions and functions – the need for automated slicing support is becoming increasingly
important.
Similar to the mental analysis performed when debugging software, automated slicing is performed by
analysing the control-flow of a model, computing dependencies among components. We present an ap-
proach which given Uppaal model will produce a possibly smaller model, containing only elements of
interest w.r.t. some specific reachability analysis. Our approach incorporates a graph based data struc-
ture known as a System Dependency Graph (SDG) used to represent dependencies from the combined
control-flow of timed automata (TA) and C-style imperative functions, used in updates and guards. More-
over, it entails an analysis in the from of a work-list algorithm for computing the relevant components
from SDG. Finally, it defines how the sliced model is constructed using only the relevant components.

Occ

Free

e : id_t
appr[e]?
enqueue(e)

e : id_t
e == front()
leave[e]?
dequeue()

stop[tail()]!

len > 0
go[front()]!

e : id_t
len == 0
appr[e]?
enqueue(e)

(a) The gate

Safe

Stop

Cross
x<=5

Appr
x<=20

Start
x<=15

x>=10
x=0

x<=10
stop[1]?

x>=3
leave[1]!

nrOfCrosses++

appr[1]!
x=0

x>=7
x=0

go[1]?
x=0

(b) A train instance

Figure 1: The Timed Automata from the Train-Gate Model

1 By Example

In the following we show how slicing reduces an endowed version of the the train-gate model, which is
part of the official Uppaal distribution1. It demonstrates how one, may model the design of a railway

1Note that the model it self is if no importance in this context

100

intersection, as TA, in order to verify certain properties, such that; all approaching trains eventually
may cross without the possibility of collisions. The agents of the model are expressed as extended timed
automata. Fig. 1(a) shows the model of the gate governing the intersection and Figure 1(b) shows an
instance of a train approaching.

The agents communicate through (arrays of) channels e.g. go[x] and leave[x] where x a train id.
Notice that some locations of the trains are restricted by invariants, limiting its delay in this position
(state). As an example, whenever a train has announced its approach, it moves to the location Appr
where it may wait at most 20 time units (x ≤ 20) before taking action again. Furthermore, a train takes
3 time units to cross the gate, modeled by a guard (x ≥ 3) on the outgoing edge from location cross.

1 i d t l i s t [N+1] ;
2 i n t [0 ,N] l en ;
3 i n t noOfTrainsWaitingToCross ;
4
5 void enqueue (i d t element)
6 {
7 noOfTrainsWaitingToCross++;
8 l i s t [l en++] = element ;
9 }

10
11 void dequeue ()
12 {
13 in t i = 0 ;
14
15 i f (noOfTrainsWaitingToCross > 0)
16 {
17 noOfTrainsWaitingToCross−−;
18 }
19
20 len−−;
21
22 whi le (i < l en)
23 {
24 l i s t [i] = l i s t [i + 1] ;
25 i++;
26 }
27
28 l i s t [i] = 0 ;
29 }

i d t l i s t [N+1] ;
i n t [0 ,N] l en ;

void enqueue (i d t element)
{

l i s t [l en++] = element ;
}

void dequeue ()
{

i n t i = 0 ;

len−−;

whi le (i < l en)
{

l i s t [i] = l i s t [i + 1] ;
i++;

}

l i s t [i] = 0 ;
}

Original Sliced

Figure 2: Slicing the C code of the Train-Gate model.

The lefthand side of Fig. 2 shows the imperative code of the Train-gate model. Observe that the
presence of the variable noOfTrainsWaitingToCross has no impact on the semantics of the enqueue
and dequeue functions. Thus it, has no obvious relevance w.r.t. the model’s behavior. But in order to
conclude this formally, we must consider the combined control-flow of both automata and code. Using
our approach we may show that, it and any reference to it, may indeed be removed in order to reduce
the state-space, during model-checking. Resulting code is shown to the right.

2 Experiments

Based on our theory, we have developed a prototype implementation as preprocessor for Uppaal. The
results obtained from running our prototype on two example models can be seen in Table 1. The
examples used here is a model of a CAN bus2 and the Train-Gate Example seen above. The experiments
are conducted by monitoring the symbolic states explored, memory consumption and cpu time before
and after slicing.

The first half of Table 1, shows results from the train-gate example, which was tested for the
absence of deadlocks (A[]not deadlock) and that it is possible for all trains to cross the gate (e.g.
E<> Train1.Cross). The second half, shows test from the CAN Bus Model. Also here a test of show-
ing deadlock freeness was attempted. This example was brought to our attention specifically because
Uppaal could not verify deadlock freeness, verification of the original model thus failed due to resource
consumption. After slicing, Uppaal detected an overflow error in the model, which had otherwise gone
undetected. The experiment was restarted after the error had been corrected.

2Donated by anonymous students in the dept of Control at AAU

101

Table 1: The test results of the Train-Gate experiments. VT = Verification Time, MU = Memory Usage,
SS = Symbolic States explored, NS = Number of Statements and NV = Number of Variables

Deadlock free VT MU SS NS NV
Before Slicing N/A 4GB+ 77636326+ 34 14
After Slicing 0.2sec 2848KB 413 28 10
Train may cross VT MU SS NS NV
Before Slicing 0.11sec 2856KB 14 34 14
After Slicing 0.10sec 2848KB 14 28 10
Before Slicing N/A 4GB+ 85587630+ 12 6
After Slicing 11.12sec � 66572KB 786391 6 3
After Fix VT MU SS NS NV
Before Slicing 0.11sec 2862KB 2074 12 6
After Slicing 0.10sec 2852KB 199 6 3

3 Conclusion – Related and Future Work

Work on slicing has previously been produced for a number of imperative languages. J. Hatcliff [2] shows
how the traditional slicing concepts described by Wieser [6] and later S. Horwitz, T. Reps and D. Binkley
[3] may be extended to slicing a more complicated model of multi-threaded Java programs with JVM
concurrency primitives. More closely related is the work by Janowska and Janowski [4], who show how
slicing may be used for the formalism of TA defined by Alur and Dill [1]. Although both show that slicing
is applicable for non-trivial languages, no one has (to our knowledge) ventured to show that slicing may
be performed on a complex hybrid language of imperative code and timed automata, similar to what is
found in Uppaal.

Its obvious by the above experiments, that slicing is a very effective tool for optimizing the perfor-
mance of Uppaal. Nevertheless, the current state of the proved theory only supports truly unnecessary
variables, which are then completely removed, a more involved analysis should make attempts at reduc-
ing the declared size of variables, which is a more common source of excessive state-space use. Also the
control-flow induced by the communication of automata should be studied further.

References

[1] Alur, Courcoubetis, and Dill. Model-checking for real-time systems. In LICS: IEEE Symposium on
Logic in Computer Science, 1990.

[2] John Hatcliff, James Corbett, Matthew Dwyer, Stefan Sokolowski, and Hongjun Zheng. A formal
study of slicing for multi-threaded programs with JVM concurrency primitives. In Agostino Cortesi
and Gilberto Filé, editors, Static Analysis, volume 1694 of Lecture Notes in Computer Science, pages
1–18. Springer, 1999.

[3] S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing using dependence graphs. In PLDI
’88: Proceedings of the ACM SIGPLAN 1988 conference on Programming Language design and
Implementation, pages 35–46, New York, NY, USA, 1988. ACM Press.

[4] Agata Janowska and Pawel Janowski. Slicing of timed automata with discrete data. pages 181–195.
Fundamenta Informaticae, 2006.

[5] Kim Guldstrand Larsen, Paul Pettersson, and Wang Yi. UPPAAL in a nutshell. International
Journal on Software Tools for Technology Transfer, 1(1-2):134–152, 1997.

[6] Mark D. Weiser. Program Slices: Formal, Psychological, and Practical Investigations of an Automatic
Program Abstraction Method. PhD thesis, The University of Michigan, 1979.

102

Towards Model Checking Bounded Response in
Real-Time Maude (Extended Abstract)

Peter Csaba Ölveczky and Daniela Lepri
Department of Informatics, University of Oslo

I. INTRODUCTION

Real-Time Maude [1], [2] is a high-performance tool that

extends the rewriting-logic-based Maude [3] system to support

the formal modeling and analysis of real-time systems. Real-

Time Maude is characterized by its general and expressive,

yet simple and intuitive, modeling formalism. Real-Time

Maude is particularly useful for specifying and analyzing

advanced distributed object-based systems with novel forms

of communications and/or complex and unbounded data types.

The tool has been successfully applied to a wide array of

advanced state-of-the-art applications that are beyond the pale

of timed automata, including the CASH scheduling algo-

rithm [4], density and topology control algorithms for wireless

sensor networks [5]–[7], commercial embedded car software,

a 50+ pages multicast protocol suite for active networks [8],

resource-sharing algorithms [9], etc.

Real-Time Maude supports a range of formal analysis meth-

ods, including rewriting for simulation, reachability analysis,

and untimed linear temporal logic model checking. However,

there is sometimes a need to analyze also metric (or timed)

temporal logic properties such as

“an X-ray should be taken within two seconds after
the button has been pushed”

in which the duration of/between events is crucial.

This paper represents a first step in our investigation of

how important classes of metric linear temporal logic (MLTL)

properties can be model checked in Real-Time Maude. In

particular, Section III defines a metric temporal logic for Real-

Time Maude by introducing the well known time-bounded

temporal operator U≤t. Section III also explains that certain

classes of MLTL properties can be model checked using the

existing features of Real-Time Maude.

One of the most useful classes of MLTL properties is

bounded response: any p-state must be followed by a q-

state within time r (in MLTL: � (p → �≤r q)). The main

contribution of this paper is to show how bounded response

properties can be model checked in object-oriented Real-Time

Maude specifications. We use a transformational approach

where a bounded response problem is transformed into a

reachability problem that can be analyzed using Maude’s effi-

cient reachability checker. With this method, we can analyze

bounded response for a large class of systems that cannot be

modeled as timed automata.

II. BACKGROUND ON REAL-TIME MAUDE

A Real-Time Maude timed module specifies a real-time
rewrite theory [10] of the form (Σ, E, IR,TR), where:

• (Σ, E) is a membership equational logic [11] theory with

Σ a signature1 and E a set of conditional equations. The

theory (Σ, E) specifies the system’s state space as an

algebraic data type.

• IR is a set of conditional instantaneous rewrite
rules specifying the system’s instantaneous (i.e., zero-

time) local transitions, each of which is written

crl t => t′ if cond. The rules are applied modulo
the equations E.2

• TR is a set of tick (rewrite) rules, written with syntax
crl {t} => {t′} in time τ if cond .

that model time elapse. τ is a term of sort Time that

denotes the duration of the rewrite.

The initial states must be ground terms that are reducible to

terms of the form {t} using the equations in the specifications.

In object-oriented modules, a class declaration

class C | att1 : s1, ... , attn : sn .

declares a class C with attributes att1 to attn of sorts s1

to sn. An object of class C in a given state is represented

as a term < O : C | att1 : val1, ..., attn : valn >
where O is the object’s identifier, and where val1 to valn
are the current values of the attributes att1 to attn. In a

distributed object-oriented system, the state is a term of the

sort Configuration. It has the structure of a multiset made

up of objects and messages. Multiset union for configurations

is denoted by a juxtaposition operator (empty syntax) that

is declared associative and commutative, so that rewriting is

multiset rewriting supported directly in Real-Time Maude. The

dynamic behavior of a system is axiomatized by specifying

each of its concurrent transition patterns by a rewrite rule. For

example, the rule

rl m(O,w) < O : C | a1 : x, a2 : O’ >
=>
< O : C | a1 : x + w > m’(O’) .

defines a family of transitions in which a message m, with

parameters O and w, is read and consumed by an object O of

class C. The transitions have the effect of altering the attribute

a1 of the object O and of sending a new message m’(O’).

1i.e., Σ is a set of declarations of sorts, subsorts, and function symbols
2Operationally, a term is reduced to its E-normal form before any rewrite

rule is applied.

103

In object-oriented real-time systems, time elapse is typically

modeled by the tick rule [2]:

var C : Configuration . var T : Time .
crl {C} => {delta(C, T)} in time T

if T <= mte(C) .

The function delta defines the effect of time elapse on a

configuration, and the function mte defines the maximum

amount of time that can elapse before some action must take

place. These functions distribute over the objects and messages

in a configuration.

Real-Time Maude’s search command uses breadth-first

search to analyze all possible behaviors of the system, by

checking whether a state matching a pattern and satisfying a

condition can be reached from the initial state t. The command

that searches for one state satisfying the search criteria has

syntax

(utsearch [1] t =>* pattern such that cond .)

Real-Time Maude also extends Maude’s linear temporal
logic model checker [3] to check whether each behavior, possi-

bly up to a certain duration as explained in [2], satisfies a tem-

poral logic formula. State propositions are terms of sort Prop,

and their semantics should be given by (possibly conditional)

equations of the form {statePattern} |= prop = b, for b
a term of sort Bool, which defines the state proposition prop
to hold in all states {t} where {t} |= prop evaluates to true.

A temporal logic formula is constructed by state propositions

and temporal logic operators such as True, ˜ (negation), /\,

\/, -> (implication), [] (“always”), <> (“eventually”), and

U (“until”).

III. METRIC LTL FOR REAL-TIME MAUDE

As shown in [12], a common way of incorporating timing

requirements in a propositional temporal logic formula is to

introduce time-bounded versions (such as the time-bounded

until operator U≤r) of the temporal operators. This approach

has been proposed by Koymans, Vytopil, and de Roever in

[13]–[15]. Given a set of atomic propositions AP , we can

therefore define the formulas of metric linear temporal logic

(MLTL) inductively as follows:

φ ::= True | p | ¬ φ | φ1 ∧ φ2 | φ1 U≤r φ2

where p ∈ AP and U≤r is the time-bounded until operator.

Other MLTL operators can be defined in the usual way, for

instance �≤r φ = TrueU≤r φ; we can also define unbounded

temporal operators: U φ = U≤INF φ, �φ = �≤INF φ, etc.,

where INF denotes infinity value in Real-Time Maude.

Satisfaction of MLTL formulas in Real-Time Maude is

defined in the expected way; details are not given in this

abstract. Informally, a bounded until property φ1 U≤r φ2 is

satisfied along a path if φ2 holds within r time units and φ1

holds in all states before that point.

It is worth noticing that, if P and Q are boolean com-

binations of atomic propositions, then �≤r P , �≤r P , and

P U≤r Q can be directly model checked using Real-Time

Maude’s time-bounded LTL model checker, that analyzes all

behaviors up to a given duration r.

IV. MODEL CHECKING BOUNDED RESPONSE PROPERTIES

IN OBJECT-ORIENTED SPECIFICATIONS

We transform the bounded response model checking prob-

lem R, t0 |= � (P −→ �≤r Q), for P and Q as above, into

the untimed model checking problem R̃, t̃0 |= � (CP,Q ≤ r),
where CP,Q is a “clock” that measures the time since P held

without Q holding in the meantime. The general idea is to

add a “clock” CP,Q to the system, and update the clock as

follows:

1) If the clock CP,Q is turned off, and a state satisfying

P ∧ ¬Q is reached, the clock is set to 0 and is turned

on.

2) The clock is turned off when a state satisfying Q is

reached.

3) A clock that is on is increased according to the elapsed

time in the system.

A. An Automatic Way of Model Checking Bounded Response
for Flat Object-Oriented Specifications

The method suggested above is fairly general. For the very

useful class of “flat” object-oriented specifications specified

according to the guidelines in [2]—all advanced Real-Time

Maude applications have been so specified—we can automate

the transformation from (R, L,{t0}, P, Q)3 into a CP,Q-

extension as follows:4

1) Add the following class for the “clock:”
class BRClock | clock : Time, status : OnOff .
sort OnOff . ops on off : -> OnOff [ctor] .

2) A clock object is added to the initial state

{t0}, so that the initial state becomes

{t0 < cP,Q : BRClock | clock : 0, status : x >},

where x is on if P ∈ L({t0}) and Q �∈ L({t0}),
and is off otherwise. Note that P ∈ L({t0})
can be checked in Maude by checking whether

{t0} |= P = true.
3) Each instantaneous rule t => t′ if cond in R is

replaced by the rules
crl {t REST < cP,Q : BRClock | status : on >}

=>
{t′ REST < cP,Q : BRClock | >}

if {t′ REST} |= Q =/= true ∧ cond

crl {t REST < cP,Q : BRClock | status : on >}
=>
{t′ REST < cP,Q : BRClock | status : off >}

if {t′ REST} |= Q ∧ cond

crl {t REST < cP,Q : BRClock | status : off >}
=>

3L is the function which gives the set of atomic propositions holding in a
state.

4We may assume without loss of generality that P and Q are atomic
propositions, since if P is, say, p ∧ ¬q, it can be defined as an atomic
proposition as follows:

op P : -> Prop . var S : State .
eq {S} |= P = ({S} |= p) and ({S} |= q =/= true) .

104

{t′ REST
< cP,Q : BRClock | clock : 0, status : on >}

if {t′ REST } |= P and
{t′ REST} |= Q =/= true ∧ cond

crl {t REST < cP,Q : BRClock | status : off >}
=>
{t′ REST < cP,Q : BRClock | >}

if {t′ REST} |= Q or
{t′ REST} |= P =/= true ∧ cond.

for REST a variable of sort Configuration that

does not appear in the original rule. REST matches the

“other” objects and messages in the state.

4) We keep the “standard” object-oriented tick rule and

define the function delta on clocks in the expected

way (so that the clock value increases according to the

elapsed time when it is on) and ensure that mte is not

affected by the new object:
eq delta(< B : BRClock | status : on,

clock : T >, T’) =
< B : BRClock | status : on,

clock : T + T’ > .
eq delta(< B : BRClock | status : off >, T’) =

< B : BRClock | > .
eq mte(< B : BRClock | >) = INF .

The original bounded response property � (P −→ �≤r Q)
is equivalent to the clock value being less than r in each

state in the transformed module, which can be analyzed by the

following search command that searches for a state in which

the clock value is greater than r:

(utsearch [1]
{t0 < cP,Q : BRClock | clock: 0, status : s >}
=>*
{C:Configuration
< cP,Q : BRClock | clock : T:Time >}

such that T:Time > r .)

The semantic foundations and the correctness proofs of our

method will appear elsewhere.

V. CONCLUDING REMARKS

We have shown an implementable method for model check-

ing bounded response properties for the important class of

object-based Real-Time Maude specifications. This class cap-

tures many systems that cannot be specified as timed automata;

indeed, all advanced Real-Time Maude applications have been

so specified.

The techniques have been successfully applied on a small

network of medical devices [16], as well as on a traffic

intersection system developed in the context of a Lockheed-

Martin-led research project.

We are currently working on implementing our method in

Real-Time Maude. Future work includes developing methods

for model checking other fragments of MLTL and on applying

the techniques on more applications.

REFERENCES

[1] Ölveczky, P.C., Meseguer, J.: The Real-Time Maude tool. In Ramakr-
ishnan, C.R., Rehof, J., eds.: Tools and Algorithms for the Construction
and Analysis of Systems (TACAS’08). Volume 4963 of Lecture Notes
in Computer Science., Springer (2008) 332–336

[2] Ölveczky, P.C., Meseguer, J.: Semantics and pragmatics of Real-Time
Maude. Higher-Order and Symbolic Computation 20(1-2) (2007) 161–
196

[3] Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart-Oliet, N., Meseguer,
J., Talcott, C.: All About Maude - A High-Performance Logical
Framework. Volume 4350 of Lecture Notes in Computer Science.
Springer (2007)

[4] Ölveczky, P.C., Caccamo, M.: Formal simulation and analysis of the
CASH scheduling algorithm in Real-Time Maude. In Baresi, L., Heckel,
R., eds.: Fundamental Approaches to Software Engineering (FASE’06).
Volume 3922 of Lecture Notes in Computer Science., Springer (2006)
357–372

[5] Ölveczky, P.C., Thorvaldsen, S.: Formal modeling and analysis of
the OGDC wireless sensor network algorithm in Real-Time Maude.
In Bonsangue, M.M., Johnsen, E.B., eds.: Formal Methods for Open
Object-Based Distributed Systems (FMOODS’07). Volume 4468 of
Lecture Notes in Computer Science., Springer (2007) 122–140

[6] Ölveczky, P.C., Thorvaldsen, S.: Formal modeling, performance esti-
mation, and model checking of wireless sensor network algorithms in
Real-Time Maude. Theoretical Computer Science (2008) To appear.

[7] Katelman, M., Meseguer, J., Hou, J.: Redesign of the LMST wireless
sensor protocol through formal modeling and statistical model checking.
In Barthe, G., de Boer, F., eds.: Formal Methods for Open Object-Based
Distributed Systems (FMOODS’08). Volume 5051 of Lecture Notes in
Computer Science., Springer (2008) 150–169

[8] Ölveczky, P.C., Meseguer, J., Talcott, C.L.: Specification and analysis
of the AER/NCA active network protocol suite in Real-Time Maude.
Formal Methods in System Design 29(3) (2006) 253–293

[9] Ölveczky, P.C., Prabhakar, P., Liu, X.: Formal modeling and analysis
of real-time resource-sharing protocols in Real-Time Maude. In: 22nd
International Parallel and Distributed Processing Symposium (IPDPS
2008), IEEE Computer Society Press (2008)

[10] Ölveczky, P.C., Meseguer, J.: Specification of real-time and hybrid
systems in rewriting logic. Theoretical Computer Science 285 (2002)
359–405

[11] Meseguer, J.: Membership algebra as a logical framework for equational
specification. In Parisi-Presicce, F., ed.: Proc. WADT’97. Volume 1376
of Lecture Notes in Computer Science., Springer (1998) 18–61

[12] Alur, R., Henzinger, T.: Logics and models of real time: A survey. In
de Bakker, J., Huizing, K., de Roever, W.P., Rozenberg, G., eds.: Real
Time: Theory in Practice. Volume 600 of Lecture Notes in Computer
Science., Springer (1992) 74–106

[13] Koymans, R., Vytopil, J., de Roever, W.P.: Real-time programming and
asynchronous message passing. In: PODC. (1983) 187–197

[14] Koymans, R., de Roever, W.P.: Examples of a real-time temporal logic
specification. In Denvir, B.T., Harwood, W.T., Jackson, M.I., Wray, M.J.,
eds.: The Analysis of Concurrent Systems. Volume 207 of Lecture Notes
in Computer Science., Springer (1983) 231–251

[15] Koymans, R.: Specifying real-time properties with metric temporal logic.
Real-Time Systems 2(4) (1990) 255–299

[16] Ölveczky, P.C.: Towards formal modeling and analysis of networks of
embedded medical devices in Real-Time Maude. In: Ninth ACIS In-
ternational Conference on Software Engineering, Artificial Intelligence,
Networking and Parallel/Distributed Computing (SNPD 2008), IEEE
Computer Society (2008) 241–248

105

Author index

Beringer, L. 11

Bhattacharya, S. 15

Bortin, M. 19

Clarke, D. 7

Cortesi, A. 15

Dahl, M. 22

Danos, V. 8

Degen, M. 25

Demangeon, R. 28

Dovland, J. 31

Ernits, J. 75

Fahrenberg, U. 97

Fenech, S. 34

Fränzle, M. 9

Gramlich, B. 84

Grigorenko, P. 37

Gruska, D. 40

Gu, Z. 43

Guan, N. 43

Hassan, A. 47

Hovland, D. 51

Hüttel, H. 22, 54

Johnsen, E. B. 31

Jonsson, P. A. 57

Knoll, I. 60

Kyas, M. 63

Lamo, Y. 78, 81

Larsen, K. G. 97, 100

Lepri, D. 103

Lüth, C. 19

Mackie, I. 47

Madsen, J. 93

Martins, F. 87

Nordlander, J. 57

Nummenmaa, T. 66

Owe, O. 31

Pace, G. 34

Prisacariu, C. 69

Rafnsson, W. T. 54

Ratschan, S. 72

Ravn, A. P. 60

Roo, R. 75

Rossini, A. 78, 81

Rutle, A. 78, 81

Sato, S. 47

Schernhammer, F. 84

Schneider, G. 34

Skou, A. 60

Slani, N. 87

Smaus, J.-G. 72

Stam, A. 63

Steffen, M. 31, 63

Stenger, F. 90

Sørensen, P. 93

Sørensen, U. 100

Thiemann, P. 25

Thrane, C. 97, 100

Torjusen, A. 63

Veanes, M. 10

Voigtländer, J. 90

Walter, D. 19

Wolter, U. 78, 81

Wehr, S. 25

Ölveczky, P. 103

Yi, W. 43

Yu, G. 43

106

