
THE GRAPH ISOMORPHISM ALGORITHM
ASHAY DHARWADKER

JOHN-TAGORE TEVET

Abstract

We present a new polynomial-time algorithm for determining whether two given graphs are
isomorphic or not. We prove that the algorithm is necessary and sufficient for solving the Graph
Isomorphism Problem in polynomial-time, thus showing that the Graph Isomorphism Problem is
in P. The semiotic theory for the recognition of graph structure is used to define a canonical
form of the sign matrix of a graph. We prove that the canonical form of the sign matrix is
uniquely identifiable in polynomial-time for isomorphic graphs. The algorithm is demonstrated
by solving the Graph Isomorphism Problem for many of the hardest known examples. We
implement the algorithm in C++ and provide a demonstration program for Microsoft Windows.

Recommendation: http://www.geocities.com/dharwadker/tevet/isomorphism/

CONTENTS

1. INTRODUCTION 3
1.1. Some Historical Observations 3
1.2. An Approach: Structure Semiotics 5
1.3. The Symmetry Problem 6

2. THE GRAPH ISOMORPHISM PROBLEM IS P 7
2.1. Introduction 7
2.2. Definitions 8
2.3. Algorithm 10
2.4. Necessity and Sufficiency 16
2.5. Complexity 18
2.6. Implementation 19

3. PROCESSING RESULTS: EXAMPLES 21
3.1. Isomorphism Cases 21
3.2. Non-Isomorphism Cases 26

References 33

 1

http://www.geocities.com/dharwadker/tevet/isomorphism/

Ashay Dharwadker John-Tagore Tevet

H-501 Palam Vihar Research Group S.E.R.R.
District Gurgaon Eurouniversity
Haryana 122017 Tallinn
India Estonia

dharwadker@yahoo.com john.tevet@graphs.ee

Selgitus

Teavik on pühendatud graafide isomorfismiprobleemile, st graafide isomorfismi tuvastamise algoritmi
konstrueerimisele. See probleem võis kerkida ülesse juba siis, kui A. Cayley [1857] tegeles orgaaniliste
isomeeride alaste uuringutega.

Isomorfismi tuvastamise ülesanne kujutab praegu endast graafiteooria keskset ülesannet. Klassifikaatori
„2000 Mathematics Subject Classification” (MSC2000) järgi on graafide isomorfismi tuvastamine koos
taastatavuse probleemiga kombinatoorne nähtus indeksiga 05C60. Isomorfismi tuvastamine seisneb vaid
vastuses küsimusele, kas graaf GA on isomorfne graafiga GB ning esitada isomorfne substitutsioon.

Isomorfismi tuvastamise teoreetiline algoritm täiesti olemas – see seisneb graafi GB seosmaatriksi ridade
ja nendele vastavate veergude ümberpaigutamises (permuteerimises, ümberjärjestamises,
übervahetamises) niikaua, kui see ei lange kokku graafi GA seosmaatriksiga. Sellel on vaid üks puudus –
see on väga keeruline, selle sammude arv läheneb n! (n-faktoriaalini). Veel kümmekond aastat tagasi
arvati, et 16! permutatsiooni arvutamine võtaks kuni 40 aastat aega. Teiste lahenduste otsimine kestab.

Soovitus: http://www.graphs.ee

ISBN 978-9949-18-331-9 (publication)
ISBN 978-9949-18-332-6 (web)

© Structure Semiotic Research Group S.E.R.R.

Tallinn, 2009

 2

mailto:dharwadker@yahoo.com
mailto:john.tevet@graphs.ee
http://www.graphs.ee/

1. INTRODUCTION
We present a historical perspective of the Graph Isomorphism Problem and discuss the reasons
why this problem has such a distinguished place in the history of mathematics and philosophy.

1.1. Some Historical Observations

Isomorphism (Greek word isos – same; morphe – form) constitutes a philosophical category, a
one-to-one correspondence between structures of objects [1][2]. Such a one-to-one
correspondence can only exist between abstract, idealized objects.

In mathematics we define isomorphism as a one-to-one mapping of one system onto another
system, which preserves the structure, i.e. relations, ordering, topology etc., of the systems. For
example: isomorphism of graphs (to be defined below), ordered sets, groups, vector spaces and
other algebraic structures; the image of a mapping and its mathematical expression.
Isomorphism is an invertible morphism, which has an opposite morphism, such that their
product is the unity morphism. A topological isomorphism is called a homeomorphism.

Structure (Latin word structura – building) is also a philosophical category, that is defined as
an unchangeable, constant connection, relation or organization form of the elements of a system
[1][3]. In other words, structure is an abstraction of the system, its “skeleton”, where its
elements and relations (connections) are abstracted from their empirical meanings and what
remains is only an elementary set of their organizing properties, such as connectivity, regularity,
symmetry etc. Mathematical means, concepts and methods are the most appropriate “langue” for
the expression of structure. With the concept of structure is due a special, but at the same time
universal, relation type – composition – that can be expressed by mathematical formulas,
equations, matrices, graphs etc. The differences of structural elements are expressed by their
conjugacy mode – positions – in the structure. The exact definition of structure can be give by
concept of the isomorphism. Since structure is a formation of related (connected) elements, it
may be represented by a graph. Immanuel Kant and Georg Wilhelm Friedrich Hegel are often
regarded as the originators of the structure concept.

The isomorphism problem is to design an algorithm that recognizes the isomorphism of two
objects. The graph isomorphism problem first came into prominence in 1857, when Arthur
Cayley reported his research on organic isomers. Subsequently, isomorphism became a central
problem in graph theory. According to the “2000 Mathematics Subject Classification”
(MSC2000), isomorphism recognition together with the reconstruction problem, is a
combinatorial phenomenon 05C60, even when graph theory itself is not yet classified as a
separate subject!

Two graphs are called isomorphic, if they differ only in the labeling of their vertices. An
isomorphic mapping from graph GA to graph GB is an isomorphic substitution ϕ: VA → VB

 v1 v2 … vi … vn
ϕ(v1) ϕ(v2) … ϕ(vi) … ϕ(vn)

 3

Isomorphism recognition is an answer to the question, is graph GA isomorphic to graph GB? If
so, one must also provide the isomorphic substitution. On the structural aspect we can be say
that graphs GA and GB are isomorphic if and only if these have one and the same structure.

A naïve algorithm for isomorphism recognition obviously exists – try all possible substitutions
(permutations) of the rows and columns of the adjacency matrix of GB until it coincides with
adjacency matrix of graph GA. However, this is an impossible task to perform for all practical
purposes, since the number of permutations that one may need to check can go up to n! (n-
factorial). For example, checking 16! permutations could take up to 40 years of time on the
fastest computers presently available.

We must then begin to seek other, more useful ways for isomorphism testing. Ideally, we should
try to find a polynomial-time algorithm for the graph isomorphism problem. That is, we should
try to show that the graph isomorphism problem in P. During the 1970’s, this was a very
popular research activity. For example, S. Toida [4] presents for this purpose the concept of a
“distance matrix”. Non-isomorphism can be recognized by distance matrices “almost always”,
and isomorphism testing is possible in many cases, but not always.

Algorithms of this period were heavily criticized by R. C. Read, D. G. Corneil [5] and G. Gati
[6], who called this “hobby” the “isomorphism disease”. The isomorphism problem became
taboo during this period. This problem is avoided in some graph textbooks to this day. For
example, B. Bollobas’ “Modern Graph Theory” [7] dedicates only two words for the
isomorphism problem. Nevertheless, a small visual example of graph isomorphism is presented
in almost all textbooks – and nothing more is said.

There are numerous monographs dedicated specially to the isomorphism problem. The aspect of
group theory was treated by C. Hoffmann [8], who asserted that the “structure” of groups was
quite similar to the general isomorphism problem. Unfortunately, this similarity turned out to be
elusive. The isomorphism problem is treated in great depth by Netchepurenko et al [9] where
they also present corresponding algorithms and computer programs that work “almost always”.
In the monograph by G. Köbler, H. Schönig and J. Toran [10] this problem is treated on the
basis of structural complexity.

Without good algorithms, the treatment of the isomorphism problem is senseless. Some partial
progress was made by L. Babai [11], who found that in certain cases a Monte-Carlo algorithm is
suitable. G. Tinhofer, M. Lödeke, S. Baumann, L. Babel [12] feel convinced that isomorphism
testing is solvable by Weisfeiler-Leman algorithm. Vidya Raj and M. S. Shivakumar [13], give
some attributes for solving the problem under certain conditions. At the same time, some
monographs of algorithmic graph theory, such as N. Chistofiedes [14], have nothing to say
about isomorphism. S. Pemmaraju and S. Skiena [15] are limited to studying time complexity of
the isomorphism problem.

The isomorphism problem has mostly been studied just on the complexity aspect [16]. It is not
known whether this problem is NP-complete. Whereas nobody found any polynomial-time
solutions in P before us, it has been presented as an intermediary variant, marked SPP [17].

The methods of isomorphism recognition can be divides to: a) sorting or non-sorting methods;
and, b) methods with using local or global invariants.

An invariant is an attribute of an object, such as a size, form of an expression etc., which stays
unchangeable in case of certain transformations, i.e. it is an invariant in relation to these

 4

transformations. For example, local invariants can be degrees of the vertices, distances between
vertices, pair signs etc. Similarly, global invariants can be a degree frequency vector, various
codes, polynomials, spectrums etc. of a graph. If the observed transformation does not change
some attribute of an object, then it is a complete invariant [18]. For example, a complete
invariant of isomorphic graphs is their common structure that does not change in case of
relabelling (remarking) and/or transposition of their vertices.

The concept of invariants has been used in mathematics since the middle of the 19th century.
Invariant theory had great importance in geometry. Invariant theory is treated classically as an
algebraic theory [19]. Later, this specific concept was promoted to a philosophical category.

According to F. Harary [18], the isomorphism problem is solvable by complete system of global
invariants (polynomials, spectra) of graphs. S. Locke [20] found that 3-cube-codes (super-long
binary codes) are sometimes useful for isomorphism testing. From A. Zykov’s point of view
[21], the isomorphism problem is solvable on the basis of a system of local invariants that
characterize the compactness, cycles (girths), paths etc., of a graph.

In our historical journey so far, the question remains: is the graph isomorphism problem in P?
Clearly, some essential ideas are still missing.

1.2. An Approach: Structure Semiotics

Semiotics is the study of sign processes, or signification and communication, signs and symbols,
both individually and grouped into sign systems. It includes the study of how meaning is
constructed and understood.

A sign is an entity which signifies another entity. A natural sign is an entity which bears a
causal relation to the signified entity, as thunder is a sign of a storm. A conventional sign
signifies by agreement, as a full stop signifies the end of a sentence. Semiotics, epistemology,
logic, and philosophy of language are concerned about the nature of signs, what they are and
how they signify.

As far back as 1938, H. Hermes [22] was of the view that semiotics was a discipline suitable for
exploring the very foundations of mathematics. Structure semiotics or semiotics of structure
[23] is a research domain at the frontiers of graph theory and semiotics, where the subject of
investigation is the structure (i.e. graph) as such. It is a complex of heuristic methods for
exploring structure and its attributes. From the philosophical point of view, it is an object-
oriented study of semiotics.

Structure semiotics treats structural invariants (codes, vectors) on their meaning aspect, i.e.
treats them as signs. The pair signs characterize the shortest paths, girths, cliques, bridges etc of
a graph. Their systems in the form of a sign matrix S constitute a text of the structure of a graph.
Structure can be recognized and investigated just by its sign matrix [23].

The isomorphism problem is solvable on the grounds of structure semiotics, as a complete
invariant of a graph in the form of its sign matrix S. The first step in our graph isomorphism
algorithm, cf. procedures 2.3.1, 2.3.2 and 2.3.3, is to compute the sign matrices of the given
graphs in polynomial-time.

 5

1.3. The Symmetry Problem

When we compute the sign matrices of isomorphic graphs, the sets of row and column sign
frequency vectors are always the same. The second step in our graph isomorphism algorithm, cf.
procedure 2.3.3, is to arrange the sign frequency vectors in lexicographic order to obtain the
canonical forms of the sign matrices of the given graphs. The vertices of the graphs are
partitioned into equivalence classes or orbits. For isomorphic graphs, the unordered sets of
orbits are always the same. These constitute important attributes of structure and are directly
connected with symmetry properties of the graphs.

Symmetry (A) (Greek word symmetria) is a structural attribute that is expressed as a regular
repetition (recurrence) of similar components (parts, particles) of an object in space and/or time
[1].

Unfortunately, there is a commonly restricted understanding of symmetry as a “stump” of the
full definition of symmetry (A):

Symmetry (B) is a property of an object, where the components that are placed at the same
distance from a centre or axis are similar [3].

Both concepts are valid, and we may say that (B) is an “axle-symmetry” only.

Symmetry has the status of a philosophical category in countries of Mainland-Europe. However,
in Anglo-Saxon countries, and also in Estonia, symmetry has not yet been assigned such an
honour [24][25].

The general concept of symmetry (A) in mathematics is defined as the existence of the
transitivity domain of authomorphisms or orbits in Aut G, for example in a graph G. An orbit is
essentially an equivalence class. Symmetry is measurable. Its value is maximum, if there exists
only one orbit and its value is 0, if the number of orbits corresponds to the number of elements.
The general concept of symmetry is used in graph theory, structure-semiotics, arts etc.

The main symmetry properties of graphs are: a) vertex symmetry, if there exist only a vertex
orbit; b) edge symmetry, if there exist only an edge orbit; c) bisymmetry, if there exist only an
edge orbit and only a “non-edge” orbit, i.e. an orbit of disadjacent vertex pairs,

So far, our graph isomorphism algorithm computes the canonical forms of the sign matrices of
the given graphs in polynomial-time. However, it may still happen that the canonical forms of
the obtained sign matrices do not coincide for isomorphic graphs. Finally, we define a
polynomial-time procedure 2.3.4, that reorders the rows and columns of the sign matrices to
guarantee coincidence in the case of isomorphic graphs. Hence, we can say that the canonical
form of the sign matrix is uniquely identifiable in polynomial-time for isomorphic graphs.

*

To summarize, we prove that our graph isomorphism algorithm is necessary and sufficient for
solving the graph isomorphism problem: if graphs GA and GB are isomorphic, then the algorithm
finds an explicit isomorphism function; if graphs GA and GB are not isomorphic, then the
algorithm determines that no isomorphism function can exist. Finally, we show that the
algorithm has polynomial-time complexity. Thus, we prove that the Graph Isomorphism
Problem is in P.

 6

2. THE GRAPH ISOMORPHISM PROBLEM IS IN P

We are pleased to announce the discovery of a new polynomial-time algorithm for determining
whether two given graphs are isomorphic or not.

2.1. Introduction

One of the most fundamental problems in graph theory is the Graph Isomorphism Problem:
given two graphs GA and GB, are they isomorphic? Graphs GA and GB are said to be isomorphic if
their vertices can be rearranged so that the corresponding edge structure is exactly the same. To
show that graphs GA and GB are isomorphic, it suffices to find one such rearrangement of
vertices. On the other hand, to show that GA and GB are not isomorphic, one must prove that no
such rearrangement of vertices can exist. Without a good algorithm, this problem can be very
difficult to solve even for relatively small graphs.

Figure 2.1.1. Are graphs GA and GB isomorphic?

We present a new polynomial-time GRAPH ISOMORPHISM ALGORITHM for determining
whether two given graphs are isomorphic or not. If the given graphs are isomorphic, the
algorithm finds an explicit isomorphism function in polynomial-time. In Section 2.2, we provide
precise DEFINITIONS of all the terminology used and introduce the essential concept of a sign
matrix according to the semiotic theory for the recognition of graph structure. In Section 2.3, we
present a formal description of the ALGORITHM followed by an example to show how the
algorithm works step-by-step. In Section 2.4, we prove that the algorithm is NECESSARY AND
SUFFICIENT for solving the Graph Isomorphism Problem: if graphs GA and GB are isomorphic,
then the algorithm finds an explicit isomorphism function; if graphs GA and GB are not
isomorphic, then the algorithm determines that no isomorphism function can exist. In Section
2.5, we show that the algorithm has polynomial-time COMPLEXITY. Thus, we prove that the
Graph Isomorphism Problem is in P. In Section 2.6, we provide an IMPLEMENTATION of the
algorithm as a C++ program, together with demonstration software for Microsoft Windows.

 7

2.2. Definitions

To begin with, we present elementary definitions of all the terminology used, following [26].
Thereafter, we introduce the essential concept of a sign matrix according to the semiotic theory
for the recognition of graph structure, following [27].

A finite simple graph G consists of a set of vertices V, with |V| = n, and a set of edges E, such
that each edge is an unordered pair of distinct vertices. The definition of a simple graph G
forbids loops (edges joining a vertex to itself) and multiple edges (many edges joining a pair of
vertices), whence the set E must also be finite, with |E| = m. We label the vertices of G with the
integers 1, 2, ..., n. If the unordered pair of vertices {u, v} is an edge in G, we say that u is
adjacent to v and write uv ∈ E. Adjacency is a symmetric relationship: uv ∈ E if and only if vu
∈ E. The degree of a vertex v is the number of vertices that are adjacent to v. A (u, v)-path P in
G is a sequence of distinct vertices u = v1, v2, ..., vk = v such that vivi+1 ∈ E for i = 1, 2, ..., k-1. If
such a (u, v)-path P exists, then the vertices u and v are said to be connected by a path of length
k-1. Given any pair of vertices (u, v) in G, we define the distance

d(u, v) = 0, if u = v,
d(u, v) = the length of a shortest (u, v)-path, if u and v are connected, and
d(u, v) = ∞, otherwise.

We now introduce the key ingredients of semiotic theory. For any pair of vertices (u, v) in G, the
collateral graph G\uv is defined as follows:

• If uv ∈ , then G\uv is obtained by deleting the edge uv from G while preserving all the
vertices of G. We use the binary sign + to distinguish the distance function in this case.

E

• If uv ∉ E, then G\uv = G. We use the binary sign - to distinguish the distance function in
this case.

The pair graph Guv for any pair of vertices (u, v) in G is defined as follows:

• w is a vertex of Guv if and only if w belongs to a shortest (u, v)-path in G\uv, and
• wx is an edge of Guv if and only if wx is also an edge of G.

For any pair of vertices (u, v) in G, we write the (u, v)-sign, denoted by the symbol suv, as
follows:

suv = ± duv . nuv . muv

where

• the leading binary sign is positive if uv ∈ E, or negative if uv ∉ E;
• duv is the distance d(u, v) in the collateral graph G\uv ;
• nuv is the number of vertices of the pair graph Guv
• muv is the number of edges of the pair graph Guv.

The sign matrix S of the graph G is written as an n × n array with the (u, v)-sign suv as the entry
in row u and column v,

S = [suv] .

 8

The adjacency matrix of G is an n × n matrix with the entry in row u and column v equal to 1 if
uv ∈ E and equal to 0 if uv ∉ E. Thus, the adjacency matrix of the graph G can be recovered
from the leading binary signs of the entries of the sign matrix S. Note that for a simple graph G,
both the adjacency matrix and the sign matrix S are symmetric. We shall now define a canonical
form S* of the sign matrix by ordering the rows and columns of S in a certain way. First, write
the set of all distinct (u, v)-signs suv in lexicographic order s1, s2, ..., sr. Then, for each row i of
the sign matrix, i = 1, 2, ..., n, compute the sign frequency vector

fi = (fi
(1), fi

(2), ..., fi
(r))

Where fi

(k) is the number of times the sign sk occurs in row i. Since S is symmetric, the sign
frequency vector for column i is the same as the sign frequency vector for row i, for i = 1, 2, ...,
n. Now, write the sign frequency vectors f1, f2, ..., fn in lexicographic order fi1, fi2, ..., fin. Reorder
the rows and columns of the sign matrix according to the permutation i1, i2, ..., in of the vertices
1, 2, ..., n of G to obtain the canonical form S* of the sign matrix.

The vertices of G are partitioned into equivalence classes consisting of vertices with the same
sign frequency vectors. Thus, the canonical form S* of the sign matrix is uniquely defined only
upto permutations of vertices within each equivalence class.

Graphs GA and GB are said to be isomorphic if there exists a bijection

φ: VA → VB

from the vertices of graph GA to the vertices of graph GB, such that uv is an edge in graph GA if
and only if φ(u)φ(v) is an edge in graph GB. The graph isomorphism problem is to determine
whether two given graphs are isomorphic or not.

An algorithm is a problem-solving method suitable for implementation as a computer program.
While designing algorithms we are typically faced with a number of different approaches. For
small problems, it hardly matters which approach we use, as long as it is one that solves the
problem correctly. However, there are many problems for which the only known algorithms take
so long to compute the solution that they are practically useless. For instance, the naïve
approach of computing all n! possible permutations of the n vertices to show that a pair of
graphs GA and GB are not isomorphic is impractical even for small inputs.

A polynomial-time algorithm is one whose number of computational steps is always bounded by
a polynomial function of the size of the input. Thus, a polynomial-time algorithm is one that is
actually useful in practice. The class of all problems that have polynomial-time algorithms is
denoted by P. If graphs GA and GB are isomorphic then they must have the same sign frequency
vectors in lexicographic order fi1, fi2, ..., fin and we shall show that our algorithm obtains identical
canonical forms of their sign matrices SA* and SB* in polynomial time, thus exhibiting an
explicit isomorphism function φ. Conversely, we shall show that our algorithm determines in
polynomial-time that the sign matrices SA* and SB* cannot be expressed in identical canonical
forms if and only if the graphs GA and GB are not isomorphic. Thus, we have a polynomial-time
algorithm for solving the graph isomorphism problem, showing that the graph isomorphism
problem is in P.

 9

2.3. Algorithm

We are now ready to present a formal description of the algorithm. After that, the steps of the
algorithm will be illustrated by an example. We begin by defining four procedures.

2.3.1. Procedure. This procedure is Dijkstra's algorithm [28]. Given a graph G and a vertex u,
we compute shortest (u, v)-paths to all vertices v of G. Define a(u, v) = 1 if uv ∈ E and a(u, v) =
∞ if uv ∉ E. We maintain a set Vknown of vertices to which the shortest (u, v)-path is known and a
tentative distance d'(u, w) for each vertex w outside Vknown.

• Initialization: Set Vknown = {u}, d(u, u) = 0 and d'(u, w) = a(u, w) for each vertex w
outside Vknown.

• Iteration: Select a vertex wmin outside Vknown such that d'(u, wmin) is a minimum. Add
wmin to Vknown and update the tentative distance d'(u, w) = min{d'(u, w), d(u, w) +
a(u, w)} for each vertex w outside Vknown.

• Termination: Iterate until Vknown contains all the vertices of G or until d'(u, w) = ∞ for
each vertex w outside Vknown. In the later case, no further vertex can be selected and the
remaining vertices are not connected to the vertex u.

2.3.2. Procedure. Given a graph G and vertices u and v, we compute the distance d(u, v) in the
collateral graph G\uv and the pair graph Guv.

• Using Procedure 2.3.1, compute shortest (u, x)-paths to all vertices x of G\uv.
• Using Procedure 2.3.1, compute shortest (v, y)-paths to all vertices y of G\uv.
• In particular, the length of any shortest (u, v)-path in G\uv is the distance d(u, v).
• If u = u1, u2, ..., ur and v = v1, v2, ..., vs are shortest paths found above such that ur = vs

and the sum of the lengths of the two paths is the distance d(u, v) in the collateral graph
G\uv, then the union of vertices of the two paths are vertices of the pair graph Guv. Every
vertex w of the pair graph Guv is obtained this way, because any shortest (u, v)-path
containing w is obtained by connecting some shortest (u, w)-path with some shortest (w,
v)-path in G\uv. Thus, at least one pair of shortest paths found above must satisfy ur = vs
= w, for each vertex w of the pair graph Guv.

2.3.3. Procedure. Given a graph G, we compute the sign matrix S and its canonical form S*.

• Using Procedure 2.3.2, for every pair of vertices u and v, we compute the distance
d(u, v) in the collateral graph G\uv and the pair graph Guv.

• The entry in row u and column v of the sign matrix S is suv = ± duv.nuv.muv, where the
leading binary sign is positive if uv ∈ E, and negative if uv ∉ E; duv is the distance d(u,
v) in the collateral graph G\uv; nuv is the number of vertices of the pair graph Guv; and
muv is the number of edges of the pair graph Guv.

• Write the set of all distinct signs suv in lexicographic order s1, s2, ..., sr.
• For each row i of the sign matrix S, i = 1, 2, ..., n, compute the sign frequency vector

fi = (fi
(1), fi

(2), ..., fi
(r)), where fi

(k) is the number of times the sign sk occurs in row i. Since
S is symmetric, the sign frequency vector for column i is the same as the sign frequency
vector for row i, for i = 1, 2, ..., n.

• Write the sign frequency vectors f1, f2, ..., fn in lexicographic order fi1, fi2, ..., fin.

 10

http://www.geocities.com/dharwadker/tevet/isomorphism/main.html#8

• Reorder the rows and columns of the sign matrix according to the permutation
i1, i2, ..., in of the vertices 1, 2, ..., n of G to obtain the canonical form S*.

2.3.4. Procedure. Given graphs GA and GB such that the sign frequency vectors in lexicographic
order for SA* and SB* are the same, (f

Ai1, f
Ai2, ..., f

Ain) = (f
Bi'1, f

Bi'2, ..., f
Bi'n), we compute a

reordering i''1, i''2, ..., i''n of the vertices of GB such that either the first entry of SB* that does not
match the corresponding entry of SA* occurs at the greatest possible index in row major order or
SA* = SB*.

• Set A = SA* and B = SB*.
• Read the matrices A and B in row major order (read each row from left to right and read

the rows from top to bottom). If all corresponding entries Aij and Bij of A and B match,
then stop. Else, find the first entry Bij in B that does not match the corresponding entry
Aij in A. Find k > i such that interchanging rows (k, j) and columns (k, j) of B ensures that
the first mismatch occurs later than Bij in row major order (or there is no mismatch at
all). If no such k exists, then stop. Repeat this process until the corresponding k cannot be
found or all corresponding entries of A and B match.

• We obtain a reordering i''1, i''2, ..., i''n of the vertices of GB such that either the first entry
of B that does not match the corresponding entry of A occurs at the greatest possible
index in row major order or A = B.

2.3.5. Algorithm. Given graphs GA and GB, we determine whether GA and GB are isomorphic or
not. If GA and GB are isomorphic, we exhibit an explicit isomorphism function.

• Using Procedure 2.3.3, we compute the canonical forms of the sign matrices SA* and
SB*. If the sign frequency vectors in lexicographic order for SA* and SB* are different,
then GA and GB are not isomorphic and we stop.

• Else, the sign frequency vectors in lexicographic order for SA* and SB* are the same, (
f
Ai1, fAi2, ..., fAin) = (fBi'1, fBi'2, ..., fBi'n).

o For k = 1, 2, ..., n :
 Set A = SA* and B = SB*.
 Interchange rows (1, k) and columns (1, k) of B.
 Using Procedure 3.4, if A = B then stop. Else, start with the next value of

k. If k = n then stop.
o If A ≠ B, then GA and GB are not isomorphic. Else A = B, GA and GB are

isomorphic and the reordering i''1, i''2, ..., i''n of the vertices of GB to obtain
SB* = B provides an explicit isomorphism function φ(i1) = i''1, φ(i2) = i''2, ..., φ(in)
= i''n.

2.3.6. Example. We demonstrate the steps of the algorithm with an example. The input consists
of Turán [29] graphs GA and GB, with vertices labeled VA = {1, 2, 3, 4, 5, 6, 7, 8} and VB = {1, 2,
3, 4, 5, 6, 7, 8} as shown below in Figure 2.3.6.1.

 11

http://www.geocities.com/dharwadker/tevet/isomorphism/main.html#8

Figure 2.3.6.1. An example to demonstrate the steps of the algorithm : input

The algorithm first computes all the pair graphs of GA. To see how this is done, let us explicitly
compute the pair graph G12 for the pair of vertices (1, 2). First, Procedure 2.3.2 computes the
shortest paths from vertex 1 in GA\12 as (1), (1, 7, 2), (1, 7, 3), (1, 7), (1, 8),
(1, 4), (1, 5) and (1, 6). Then, Procedure 2.3.2 computes the shortest paths from vertex 2 in
GA\12 as (2), (2, 7, 1), (2, 7, 3), (2, 7), (2, 8), (2, 4), (2, 5) and (2, 6). The distance d(1, 2) = 2 is
given by the length of any shortest (1, 2)-path found in GA\12 so far. Now, Procedure 2.3.2
obtains the shortest (1, 2)-paths (1, 7, 2), (1, 8, 2), (1, 4, 2), (1, 5, 2) and (1, 6, 2) whose union
gives the 7 vertices of the pair graph {1, 2, 4, 5, 6, 7, 8}. The pair graph has 16 edges {1,7},
{1,8}, {1,4}, {1,5}, {1,6}, {2,7}, {2,8}, {2,4}, {2,5}, {2,6}, {7,4}, {7,5}, {8,4}, {8,5}, {4,6}
and {5,6}. Since {1, 2} is not an edge in GA, the leading binary sign is negative and Procedure
2.3.3 computes the sign s12 = -2.7.16. Similarly, Procedure 2.3.3 computes all the signs sij for i, j
= 1, 2, 3, 4, 5, 6, 7, 8. Note that for i = j the sign is always -0.1.0. Thus, Procedure 2.3.3
computes the sign matrix SA. Then, Procedure 2.3.3 counts the number of times each sign occurs
in a column of SA and obtains the sign frequency vectors for each column of SA. Finally,
Procedure 2.3.3 reorders the rows and columns of SA according to the lexicographic order of the
sign frequency vectors, to obtain the canonical form of the sign matrix SA*. We use the
following convention to display the sign matrix: the row and column headers show the vertex
labels and the equivalence classes of vertices are distinguished by different shades of blue; the
sign frequency vectors, vertex degrees and equivalence class numbers are displayed along the
column footers.

 12

SA* 4 5 1 2 3 7 8 6

4 -0.1.0 -2.8.21 +2.5.7 +2.5.7 +2.5.7 +2.5.7 +2.5.7 +2.5.7

5 -2.8.21 -0.1.0 +2.5.7 +2.5.7 +2.5.7 +2.5.7 +2.5.7 +2.5.7

1 +2.5.7 +2.5.7 -0.1.0 -2.7.16 -2.7.16 +2.4.5 +2.4.5 +2.4.5

2 +2.5.7 +2.5.7 -2.7.16 -0.1.0 -2.7.16 +2.4.5 +2.4.5 +2.4.5

3 +2.5.7 +2.5.7 -2.7.16 -2.7.16 -0.1.0 +2.4.5 +2.4.5 +2.4.5

7 +2.5.7 +2.5.7 +2.4.5 +2.4.5 +2.4.5 -0.1.0 -2.7.16 -2.7.16

8 +2.5.7 +2.5.7 +2.4.5 +2.4.5 +2.4.5 -2.7.16 -0.1.0 -2.7.16

6 +2.5.7 +2.5.7 +2.4.5 +2.4.5 +2.4.5 -2.7.16 -2.7.16 -0.1.0

Signs 4 5 1 2 3 7 8 6

-2.7.16. 0 0 2 2 2 2 2 2

-2.8.21. 1 1 0 0 0 0 0 0

-0.1.0. 1 1 1 1 1 1 1 1

+2.4.5. 0 0 3 3 3 3 3 3

+2.5.7. 6 6 2 2 2 2 2 2

Degrees 6 6 5 5 5 5 5 5

Classes 1 1 2 2 2 2 2 2

Similarly, Procedure 2.3.3 obtains the canonical form of the sign matrix SB* :

SB* 1 8 7 2 3 4 5 6

1 -0.1.0 -2.8.21 +2.5.7 +2.5.7 +2.5.7 +2.5.7 +2.5.7 +2.5.7

8 -2.8.21 -0.1.0 +2.5.7 +2.5.7 +2.5.7 +2.5.7 +2.5.7 +2.5.7

7 +2.5.7 +2.5.7 -0.1.0 +2.4.5 -2.7.16 +2.4.5 +2.4.5 -2.7.16

2 +2.5.7 +2.5.7 +2.4.5 -0.1.0 +2.4.5 -2.7.16 -2.7.16 +2.4.5

3 +2.5.7 +2.5.7 -2.7.16 +2.4.5 -0.1.0 +2.4.5 +2.4.5 -2.7.16

4 +2.5.7 +2.5.7 +2.4.5 -2.7.16 +2.4.5 -0.1.0 -2.7.16 +2.4.5

5 +2.5.7 +2.5.7 +2.4.5 -2.7.16 +2.4.5 -2.7.16 -0.1.0 +2.4.5

6 +2.5.7 +2.5.7 -2.7.16 +2.4.5 -2.7.16 +2.4.5 +2.4.5 -0.1.0

Signs 1 8 7 2 3 4 5 6

-2.7.16. 0 0 2 2 2 2 2 2

-2.8.21. 1 1 0 0 0 0 0 0

-0.1.0. 1 1 1 1 1 1 1 1

+2.4.5. 0 0 3 3 3 3 3 3

+2.5.7. 6 6 2 2 2 2 2 2

Degrees 6 6 5 5 5 5 5 5

Classes 1 1 2 2 2 2 2 2

 13

Next, the algorithm checks that the sign frequency vectors in lexicographic order for SA* and
SB* are the same,

(fA4, fA5, fA1, fA2, fA3, fA7, fA8, fA6) = (fB1, fB8, fB7, fB3, fB6, fB4, fB5, fB2)=

= (01106, 01106, 20132, 20132, 20132, 20132, 20132, 20132).

Finally, the algorithm runs through the loop k = 1, 2, 3, 4, 5, 6, 7, 8 to find an explicit
isomorphism if it exists. Starting with k = 1, set A = SA* and B = SB* :

Matrix A 4 5 1 2 3 7 8 6

4 -0.1.0 -2.8.21 +2.5.7 +2.5.7 +2.5.7 +2.5.7 +2.5.7 +2.5.7

5 -2.8.21 -0.1.0 +2.5.7 +2.5.7 +2.5.7 +2.5.7 +2.5.7 +2.5.7

1 +2.5.7 +2.5.7 -0.1.0 -2.7.16 -2.7.16 +2.4.5 +2.4.5 +2.4.5

2 +2.5.7 +2.5.7 -2.7.16 -0.1.0 -2.7.16 +2.4.5 +2.4.5 +2.4.5

3 +2.5.7 +2.5.7 -2.7.16 -2.7.16 -0.1.0 +2.4.5 +2.4.5 +2.4.5

7 +2.5.7 +2.5.7 +2.4.5 +2.4.5 +2.4.5 -0.1.0 -2.7.16 -2.7.16

8 +2.5.7 +2.5.7 +2.4.5 +2.4.5 +2.4.5 -2.7.16 -0.1.0 -2.7.16

6 +2.5.7 +2.5.7 +2.4.5 +2.4.5 +2.4.5 -2.7.16 -2.7.16 -0.1.0

Matrix B 1 8 7 2 3 4 5 6

1 -0.1.0 -2.8.21 +2.5.7 +2.5.7 +2.5.7 +2.5.7 +2.5.7 +2.5.7

8 -2.8.21 -0.1.0 +2.5.7 +2.5.7 +2.5.7 +2.5.7 +2.5.7 +2.5.7

7 +2.5.7 +2.5.7 -0.1.0 +2.4.5 -2.7.16 +2.4.5 +2.4.5 -2.7.16

2 +2.5.7 +2.5.7 +2.4.5 -0.1.0 +2.4.5 -2.7.16 -2.7.16 +2.4.5

3 +2.5.7 +2.5.7 -2.7.16 +2.4.5 -0.1.0 +2.4.5 +2.4.5 -2.7.16

4 +2.5.7 +2.5.7 +2.4.5 -2.7.16 +2.4.5 -0.1.0 -2.7.16 +2.4.5

5 +2.5.7 +2.5.7 +2.4.5 -2.7.16 +2.4.5 -2.7.16 -0.1.0 +2.4.5

6 +2.5.7 +2.5.7 -2.7.16 +2.4.5 -2.7.16 +2.4.5 +2.4.5 -0.1.0

Since k = 1, there is no initial interchange of rows and columns of B. Now, the algorithm uses
Procedure 2.3.4. The entries of A and B are read in row major order. The first mismatch is found
in the third row and fourth column, shown underlined. The algorithm finds that exchanging the
fourth column with the fifth column (and the fourth row with the fifth row) of B will push the
first mismatch further along the row major order:

 14

Matrix B 1 8 7 3 2 4 5 6

1 -0.1.0 -2.8.21 +2.5.7 +2.5.7 +2.5.7 +2.5.7 +2.5.7 +2.5.7

8 -2.8.21 -0.1.0 +2.5.7 +2.5.7 +2.5.7 +2.5.7 +2.5.7 +2.5.7

7 +2.5.7 +2.5.7 -0.1.0 -2.7.16 +2.4.5 +2.4.5 +2.4.5 -2.7.16

3 +2.5.7 +2.5.7 -2.7.16 -0.1.0 +2.4.5 +2.4.5 +2.4.5 -2.7.16

2 +2.5.7 +2.5.7 +2.4.5 +2.4.5 -0.1.0 -2.7.16 -2.7.16 +2.4.5

4 +2.5.7 +2.5.7 +2.4.5 +2.4.5 -2.7.16 -0.1.0 -2.7.16 +2.4.5

5 +2.5.7 +2.5.7 +2.4.5 +2.4.5 -2.7.16 -2.7.16 -0.1.0 +2.4.5

6 +2.5.7 +2.5.7 -2.7.16 -2.7.16 +2.4.5 +2.4.5 +2.4.5 -0.1.0

The first mismatch is found in the third row and fifth column, shown underlined. The algorithm
finds that exchanging the fifth column with the eighth column (and the fifth row with the eighth
row) of B will push the first mismatch further along the row major order:

Matrix B 1 8 7 3 6 4 5 2

1 -0.1.0 -2.8.21 +2.5.7 +2.5.7 +2.5.7 +2.5.7 +2.5.7 +2.5.7

8 -2.8.21 -0.1.0 +2.5.7 +2.5.7 +2.5.7 +2.5.7 +2.5.7 +2.5.7

7 +2.5.7 +2.5.7 -0.1.0 -2.7.16 -2.7.16 +2.4.5 +2.4.5 +2.4.5

3 +2.5.7 +2.5.7 -2.7.16 -0.1.0 -2.7.16 +2.4.5 +2.4.5 +2.4.5

6 +2.5.7 +2.5.7 -2.7.16 -2.7.16 -0.1.0 +2.4.5 +2.4.5 +2.4.5

4 +2.5.7 +2.5.7 +2.4.5 +2.4.5 +2.4.5 -0.1.0 -2.7.16 -2.7.16

5 +2.5.7 +2.5.7 +2.4.5 +2.4.5 +2.4.5 -2.7.16 -0.1.0 -2.7.16

2 +2.5.7 +2.5.7 +2.4.5 +2.4.5 +2.4.5 -2.7.16 -2.7.16 -0.1.0

Now there is no mismatch, A = B. The algorithm exits the final loop and reports that an
isomorphism has been found. The explicit isomorphism φ is given by reading the vertex labels
of A and B in this order:

Graph GA Graph GB

4 1

5 8

1 7

2 3

3 6

7 4

8 5

6 2

 15

If the graphs GA and GB are redrawn with vertices ordered in this way, the isomorphism φ is
easy to visualize.

Figure 2.3.6.2. An example to demonstrate the steps of the algorithm: output

2.4. Necessity and Sufficiency

Here we prove that the algorithm is necessary and sufficient for solving the Graph Isomorphism
Problem:

• if graphs GA and GB are isomorphic, then the algorithm finds an explicit isomorphism
function;

• if graphs GA and GB are not isomorphic, then the algorithm determines that no
isomorphism function can exist.

2.4.1. Proposition. If graphs GA and GB are isomorphic, then the algorithm finds an
isomorphism.

Proof. Suppose graphs GA and GB are isomorphic and let φ: VA → VB be an isomorphism from
the vertices of GA to the vertices of GB. Note that distances are preserved bijectively under the
isomorphism,

d(u, v) = d(φ(u), φ(v))

for all vertices u, v of GA. Thus, all the corresponding pair graphs are isomorphic and the signs

suv = sφ(u)φ(v)

 16

are also preserved bijectively under the isomorphism for all vertices u, v of GA. Hence, the sign
frequency vectors in lexicographic order for the canonical sign matrices SA* and SB* are the
same,

(fAi1, fAi2, ..., fAin) = (fBi'1, fBi'2, ..., fBi'n).

Since φ is surjective, the algorithm finds a value of k such that if vertex v1 is the label of row 1
and column 1 of A = SA* then vertex φ(v1) is the label of row k and column k of B = SB*. Then,
rows (1, k) and columns (1, k) of B are interchanged. We now use induction on the rows of B to
show that Procedure 2.3.4 matches each row of B with the corresponding row of A. For the base
of the induction, consider row 1 of B. Since vertex v1 is the label of row 1 of A and φ(v1) is the
label of row 1 of B, the corresponding sign frequency vectors are equal. By counting sign
frequencies, as long as there is a mismatch in row 1, it is always possible to interchange the
columns of B such that row 1 of A and row 1 of B are perfectly matched by Procedure 2.3.4. For
the induction hypothesis, assume that rows 1, ..., t of A and B have been perfectly matched by
Procedure 2.3.4 such that the vertex labels for the rows 1, ..., t of A are v1, ..., vt and the vertex
labels for the rows 1, ..., t of B are φ(v1) = v'1, ..., φ(vt) = v't respectively. Since the sign matrices
are symmetric, Procedure 2.3.4 also ensures that the columns 1, ..., t of A and B are perfectly
matched with the same vertex labels as the rows. Thus, the first entry Bij in B that does not
match the corresponding entry Aij in A must now occur in row i = t+1 and column
j ≥ t+1. By the induction hypothesis, the subgraph GA

t of GA with vertices
{v1, ..., vt} and the subgraph GB

t of GB with vertices {φ(v1) = v'1, ..., φ(vt) = v't} are isomorphic
under φ. Thus, there must be a vertex vt+1 of GA outside the subgraph GA

t such that the
corresponding vertex φ(vt+1) of GB is outside the subgraph GB

t. Since there is a mismatch at the
entry Bij, the vertex φ(vt+1) must be the label for a column j' > j. Hence, Procedure 2.3.4 will
always interchange rows (j, j') and columns (j, j') of B and repeat the process until rows i =
t+1 of A and B are perfectly matched and the vertex label for row t+1 of B is φ(vt+1) = v't+1. This
completes the induction, showing that Procedure 2.3.4 matches each row of B with the
corresponding row of A. Thus, the algorithm finds an explicit isomorphism function φ(v1) = v'1,
..., φ(vn) = v'n. ☐

2.4.2. Proposition. If graphs GA and GB are not isomorphic, then the algorithm determines that
there cannot be an isomorphism.

Proof. Suppose graphs GA and GB are not isomorphic. The algorithm first computes the
canonical forms of the sign matrices SA* and SB*. If the sign frequency vectors in lexicographic
order for SA* and SB* are different, then the algorithm concludes that GA and GB are not
isomorphic. If the sign frequency vectors in lexicographic order for SA* and SB* are the same, (
f
Ai1, f

Ai2, ..., f
Ain) = (f

Bi'1, f
Bi'2, ..., f

Bi'n), then the algorithm runs through the final loop for k = 1,
2, ..., n and cannot find any isomorphism. By Proposition 2.4.1, if GA and GB were isomorphic,
then the algorithm would have found an explicit isomorphism for some value of k. Therefore,
the algorithm concludes that there cannot be an isomorphism. ☐

From Propositions 2.4.1 and 2.4.2, we have

2.4.3. Theorem. The algorithm solves the Graph Isomorphism Problem. ☐

2.5. Complexity

 17

We shall now show that the algorithm terminates in polynomial-time, by specifying a
polynomial of the larger of the two number of vertices n of the input graphs, that is an upper
bound on the total number of computational steps performed by the algorithm. Note that we
consider

• checking whether a given pair of vertices is connected by an edge in GA or GB, and
• comparing whether a given integer is less than another given integer

to be elementary computational steps. Thus, we shall show that the Graph Isomorphism
Problem is in P.

2.5.1. Proposition. Given a graph G with n vertices, Procedure 2.3.1 takes at most
3n2 + 3n steps to find shortest paths from an initial vertex u to all other vertices.

Proof. Initialization takes at most 3n steps. To find the minimum distance of an unknown vertex
from the initial vertex u takes at most n steps and to update the tentative distances takes at most
n steps. There are at most n iterations until all the vertices are known. Finally, it takes at most n2
steps to recover the vertices of the shortest paths. Thus, Procedure 2.3.1 terminates after at most
3n + n(n + n) + n2 = 3n2 + 3n steps. ☐

2.5.2. Proposition. Given a graph G with n vertices, Procedure 2.3.2 takes at most
7n2 + 7n steps to compute the distance d(u, v) in the collateral graph G\uv and the pair graph Guv
for a given pair of vertices u and v.

Proof. The graph G\uv also has n vertices. By Proposition 2.5.1, Procedure 2.3.1 takes at most
3n2 + 3n steps to find shortest paths from the initial vertex u to all other vertices and at most 3n2
+ 3n steps to find shortest paths from the initial vertex v to all other vertices. Then it takes at
most n steps to determine the distance d(u, v). Finally, it takes at most n2 steps to run through
pairs of shortest paths to find the vertices of the pair graph Guv. Thus, Procedure 2.3.2 terminates
after at most 3n2 + 3n + 3n2 + 3n + n + n2 = 7n2 + 7n steps. ☐

2.5.3. Proposition. Given a graph G with n vertices, Procedure 2.3.3 takes at most
7n4 + 7n3 + 2n2 steps to compute the canonical form of the sign matrix S*.

Proof. By Proposition 2.5.2, for each pair of vertices it takes at most 7n2 + 7n steps to compute
the sign suv. Since there are n2 signs, it takes at most n2(7n2 + 7n) = 7n4 + 7n3 steps to compute
the sign matrix S. Then it takes at most n2 steps to compute the sign frequency vector and at
most n2 steps to sort it in lexicographic order. Thus, Procedure 2.3.3 terminates after at most 7n4
+ 7n3 + n2+ n2 = 7n4 + 7n3 + 2n2 steps. ☐

2.5.4. Proposition. Given a sign matrices SA* and SB* such that the sign frequency vectors in
lexicographic order (f

Ai1, f
Ai2, ..., f

Ain) = (f
Bi'1, f

Bi'2, ..., f
Bi'n), Procedure 2.3.4 takes at most 2n4

steps to terminate.

Proof. Since there are n2 entries in SB*, it takes at most n2 steps to find a mismatch (i, j) with the
corresponding entry in SA* in row major order. Then, it takes at most n2 steps along the row i to
find a column j' such that interchanging rows (j, j') and columns (j, j') leads to a mismatch
later in the row major order. This may be repeated at most n2 times until either the

 18

corresponding interchange column j' cannot be found or all the entries in the sign matrices are
perfectly matched. Thus, Procedure 2.3.4 terminates after at most n2(n2 + n2) = 2n4 steps. ☐

2.5.5. Proposition. Given graphs GA and GB with n vertices, the algorithm takes at most 2n5 +
14n4 + 14n3 + 4n2 steps to terminate.

Proof. By Proposition 2.5.3, Procedure 2.3.3 takes at most 2(7n4 + 7n3 + 2n2) = 14n4 + 14n3 +
4n2 steps to compute the canonical forms of the sign matrices SA* and SB*. If the sign frequency
vectors in lexicographic order (f

Ai1, f
Ai2, ..., f

Ain) = (f
Bi'1, f

Bi'2, ..., f
Bi'n) are the same, then by

Proposition 2.5.4 the final loop for k = 1, 2, ..., n takes at most n(2n4) = 2n5 steps. Thus, the
algorithm terminates after at most 2n5 + 14n4 + 14n3 + 4n2 steps. ☐

From Theorem 2.4.3 and Proposition 2.5.5, we have

2.5.6. Theorem. The Graph Isomorphism Problem is in P. ☐

2.6. Implementation

We provide a demonstration program for the Graph Isomorphism Algorithm written in C++ for
Microsoft Windows. The input consists of the files Graph A.txt and Graph B.txt containing the
adjacency matrices of graph GA and graph GB respectively. The program computes the sign
matrices SA* and SB* in canonical form and determines whether GA and GB are isomorphic or
not, in polynomial-time.

Figure 2.6.1. A demonstration program for Microsoft Windows [download]

 19

http://www.geocities.com/dharwadker/tevet/isomorphism/isomorphism.zip�

We show how to write the input for the computation performed in Example 2.3.6:

Graph A.txt

8
 0 0 0 1 1 1 1 1
 0 0 0 1 1 1 1 1
 0 0 0 1 1 1 1 1
 1 1 1 0 0 1 1 1
 1 1 1 0 0 1 1 1
 1 1 1 1 1 0 0 0
 1 1 1 1 1 0 0 0
 1 1 1 1 1 0 0 0

Graph B.txt

8
 0 1 1 1 1 1 1 0
 1 0 1 0 0 1 1 1
 1 1 0 1 1 0 0 1
 1 0 1 0 0 1 1 1
 1 0 1 0 0 1 1 1
 1 1 0 1 1 0 0 1
 1 1 0 1 1 0 0 1
 0 1 1 1 1 1 1 0

Figure 2.6.2. Input for the demonstration program

The C++ program is shown below:

#include <iostream>
#include <fstream>
#include <string>
#include <vector>
#include <map>
#include <set>
#include <algorithm>
using namespace std;

vector<vector<int> > dijkstra(vector<vector<int> > graph);
vector<vector<int> > reindex(vector<vector<int> > graph, vector<int> index);
vector<int> inv(vector<int> index);
vector<int> transform(map<vector<int>,vector<int> > signmatrixA,
map<vector<int>,vector<int> > signmatrixB, vector<int> vertexA,
vector<int> vertexB, vector<int> isoB);
ifstream infileA("graphA.txt");
ifstream infileB("graphB.txt");
ofstream outf ile("result.txt");

int main()
{
cout<<"The Graph Isomorphism Algorithm"<<endl;
cout<<"by Ashay Dharw adker and John-Tagore Tevet"<<endl;
cout<<"http://w w w .geocities.com/dharw adker/tevet/isomorphism/"<<endl;
cout<<"Copyright (c) 2009"<<endl;

Figure 2.6.3. A C++ program for the graph isomorphism algorithm [download]

The output of the program for the input in Figure 2.6.2 is shown in Example 2.3.6. The next
section shows many more examples of input/output files. The download package also contains a
visualizer for drawing graphs according to the output of the demonstration program.

 20

3. PROCESSING RESULTS: EXAMPLES

We demonstrate the processing results of algorithm by solving the Graph Isomorphism Problem
for several examples in cases of recognition the isomorphism and non-isomorphism.

3.1. Isomorphism Cases

We now demonstrate the Graph Isomorphism Algorithm for several examples of graphs in the
hardest known cases.. The first set of examples 3.1.1-3.1.5 consists of isomorphic graphs whose
vertices have been permuted randomly so that the isomorphism is well and truly hidden.

3.1.1. Example. We run the program on isomorphic Petersen [30] graphs A and B as input:

Graph A

10
 0 1 0 0 1 0 1 0 0 0
 1 0 1 0 0 0 0 1 0 0
 0 1 0 1 0 0 0 0 1 0
 0 0 1 0 1 0 0 0 0 1
 1 0 0 1 0 1 0 0 0 0
 0 0 0 0 1 0 0 1 1 0
 1 0 0 0 0 0 0 0 1 1
 0 1 0 0 0 1 0 0 0 1
 0 0 1 0 0 1 1 0 0 0
 0 0 0 1 0 0 1 1 0 0

Graph B

10
 0 0 0 1 0 1 0 0 0 1
 0 0 0 1 1 0 1 0 0 0
 0 0 0 0 0 0 1 1 0 1
 1 1 0 0 0 0 0 1 0 0
 0 1 0 0 0 0 0 0 1 1
 1 0 0 0 0 0 1 0 1 0
 0 1 1 0 0 1 0 0 0 0
 0 0 1 1 0 0 0 0 1 0
 0 0 0 0 1 1 0 1 0 0
 1 0 1 0 1 0 0 0 0 0

The algorithm finds an explicit isomorphism, shown below.

 21

Figure 3.1.1. The bisymmetric and strongly regular Petersen graphs are isomorphic

3.1.2. Example. We run the program on isomorphic Icosahedron [31] graphs A and B as input:

Graph A

12
 0 1 1 0 0 1 1 1 0 0 0 0
 1 0 1 1 1 1 0 0 0 0 0 0
 1 1 0 1 0 0 0 1 1 0 0 0
 0 1 1 0 1 0 0 0 1 1 0 0
 0 1 0 1 0 1 0 0 0 1 1 0
 1 1 0 0 1 0 1 0 0 0 1 0
 1 0 0 0 0 1 0 1 0 0 1 1
 1 0 1 0 0 0 1 0 1 0 0 1
 0 0 1 1 0 0 0 1 0 1 0 1
 0 0 0 1 1 0 0 0 1 0 1 1
 0 0 0 0 1 1 1 0 0 1 0 1
 0 0 0 0 0 0 1 1 1 1 1 0

Graph B

12
 0 0 1 0 0 1 0 0 1 1 0 1
 0 0 0 1 1 0 0 1 1 0 0 1
 1 0 0 0 0 1 0 1 1 0 1 0
 0 1 0 0 1 0 1 1 0 0 1 0
 0 1 0 1 0 0 1 0 0 1 0 1
 1 0 1 0 0 0 1 0 0 1 1 0
 0 0 0 1 1 1 0 0 0 1 1 0
 0 1 1 1 0 0 0 0 1 0 1 0
 1 1 1 0 0 0 0 1 0 0 0 1
 1 0 0 0 1 1 1 0 0 0 0 1
 0 0 1 1 0 1 1 1 0 0 0 0
 1 1 0 0 1 0 0 0 1 1 0 0

The algorithm finds an explicit isomorphism, shown below.

Figure 3.1.2. The vertex- and edge-symmetric Icosahedron graphs are isomorphic

 22

3.1.3. Example. We run the program on isomorphic Ramsey [32] graphs A and B as input:

Graph A

17
 0 1 1 0 1 0 0 0 1 1 0 0 0 1 0 1 1
 1 0 1 1 0 1 0 0 0 1 1 0 0 0 1 0 1
 1 1 0 1 1 0 1 0 0 0 1 1 0 0 0 1 0
 0 1 1 0 1 1 0 1 0 0 0 1 1 0 0 0 1
 1 0 1 1 0 1 1 0 1 0 0 0 1 1 0 0 0
 0 1 0 1 1 0 1 1 0 1 0 0 0 1 1 0 0
 0 0 1 0 1 1 0 1 1 0 1 0 0 0 1 1 0
 0 0 0 1 0 1 1 0 1 1 0 1 0 0 0 1 1
 1 0 0 0 1 0 1 1 0 1 1 0 1 0 0 0 1
 1 1 0 0 0 1 0 1 1 0 1 1 0 1 0 0 0
 0 1 1 0 0 0 1 0 1 1 0 1 1 0 1 0 0
 0 0 1 1 0 0 0 1 0 1 1 0 1 1 0 1 0
 0 0 0 1 1 0 0 0 1 0 1 1 0 1 1 0 1
 1 0 0 0 1 1 0 0 0 1 0 1 1 0 1 1 0
 0 1 0 0 0 1 1 0 0 0 1 0 1 1 0 1 1
 1 0 1 0 0 0 1 1 0 0 0 1 0 1 1 0 1
 1 1 0 1 0 0 0 1 1 0 0 0 1 0 1 1 0

Graph B

17
 0 0 0 0 0 1 0 1 1 0 1 0 1 1 1 1 0
 0 0 1 1 1 0 0 1 0 0 0 1 1 0 1 1 0
 0 1 0 0 1 1 1 0 0 0 1 1 0 1 1 0 0
 0 1 0 0 1 1 0 1 1 1 0 0 0 0 1 0 1
 0 1 1 1 0 0 0 0 1 1 1 0 0 1 0 1 0
 1 0 1 1 0 0 1 1 0 1 0 0 0 1 1 0 0
 0 0 1 0 0 1 0 1 0 1 1 1 0 0 0 1 1
 1 1 0 1 0 1 1 0 1 0 0 1 0 0 0 1 0
 1 0 0 1 1 0 0 1 0 0 1 1 0 1 0 0 1
 0 0 0 1 1 1 1 0 0 0 0 0 1 1 0 1 1
 1 0 1 0 1 0 1 0 1 0 0 0 0 0 1 1 1
 0 1 1 0 0 0 1 1 1 0 0 0 1 1 0 0 1
 1 1 0 0 0 0 0 0 0 1 0 1 0 1 1 1 1
 1 0 1 0 1 1 0 0 1 1 0 1 1 0 0 0 0
 1 1 1 1 0 1 0 0 0 0 1 0 1 0 0 0 1
 1 1 0 0 1 0 1 1 0 1 1 0 1 0 0 0 0
 0 0 0 1 0 0 1 0 1 1 1 1 1 0 1 0 0

The algorithm finds an explicit isomorphism, shown below.

Figure 3.1.3. The self-complemented, bisymmetric and strongly regular Ramsey graphs are
isomorphic

 23

3.1.4. Example. We run the program on isomorphic Dodecahedron [31] graphs A and B as
input:

Graph A

20
 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0
 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0
 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0
 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0
 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1
 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0
 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1
 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0
 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0
 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1
 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0

Graph B

20
 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0
 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0
 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0
 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0
 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0
 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0
 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0
 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1
 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0
 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1
 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0
 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0
 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1
 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0

The algorithm finds an explicit isomorphism, shown below.

Figure 3.1.4. The vertex- and edge-symmetric Dodecahedron graphs are isomorphic

 24

http://www.geocities.com/dharwadker/tevet/isomorphism/main.html#8

3.1.5. Example. We run the program on isomorphic Coxeter [33] graphs A and B as input:

Graph A

30
 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
 1 0 1 0 0 0 0 0 1 0
 0 1 0 1 0 1 0 0 0 0
 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 1 0 0 0 0 0 1 0 1 0
 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1
 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0
 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0
 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0
 0 0 1 0 1 0 1 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0
 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0
 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0

Graph B

30
 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0
 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0
 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 1 0 0 0 0 0 1 1 0
 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0
 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0
 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0
 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
 1 0 1 0 0 0 0 1
 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
 0 1 1 0 1 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0
 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0
 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
 0 1 0 0 0 1 0 0 1
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0

 25

The algorithm finds an explicit isomorphism, shown below.

Figure 3.1.5. The vertex- and edge-symmetric Coxeter graphs are isomorphic

3.2. Non-Isomorphism Cases

The second set of examples 3.2.1-3.2.4 consists of graphs that are not isomorphic and yet have a
very similar structures, hence deciding that they are not isomorphic in polynomial-time
demonstrates the power of the algorithm.

3.2.1. Example. We run the program on non-isomorphic Praust [34] graphs A and B as input:

Graph A

20
 0 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
 1 0 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0
 1 1 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0
 1 1 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0
 1 0 0 0 0 1 1 1 0 0 0 0 1 0 0 0 0 0 0 0
 0 1 0 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0
 0 0 1 0 1 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0
 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0
 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 0 0 0
 0 1 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 1 0 0
 0 0 1 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 1 0
 0 0 0 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 1
 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0
 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 1 1 0 0 0
 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 1 0 0 0 1
 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 0 0 0 1 0
 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 1 1
 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 1 1
 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 0 1
 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 1 0

 26

Graph B

20
 0 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
 1 0 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0
 1 1 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0
 1 1 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0
 1 0 0 0 0 1 1 1 0 0 0 0 1 0 0 0 0 0 0 0
 0 1 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1
 0 0 1 0 1 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0
 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0
 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 0 0 0
 0 1 0 0 0 0 0 0 1 0 1 1 0 1 0 0 0 0 0 0
 0 0 1 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 1 0
 0 0 0 1 0 0 0 0 1 1 1 0 0 0 0 1 0 0 0 0
 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 1 0 1
 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 1 0 1 0
 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 1 0 1
 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 1 0
 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 1 1 0
 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 1 0 0 1
 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 0 1
 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 1 1 0

Graph A and Graph B have the same sign frequency vectors in lexicographic order, so their
structure is very similar. The algorithm determines that the graphs are not isomorphic, shown
below.

Figure 3.2.1. The vertex-symmetric Praust graphs are not isomorphic

 27

3.2.2. Example. We run the program on nonisomorphic Mathon [35] graphs A and B as input:

Graph A

25
 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 1 1 1 0 0
 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 1
 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 1 0 1 1
 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 1 0 1 1 0
 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 0 1 0 1
 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 0 0 0 1 0 1
 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 1 0 1 0 1 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 1 1 0 0 0
 1 1 1 1 0
 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 1 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 1 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 1 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 1 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 1 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 1 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 1 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Graph B

25
 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 1 1 1 0 0
 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 1
 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 1 0 1 1
 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 1 0 1 1 0
 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 0 1 0 1
 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 0 0 0 1 0 1
 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 1 1 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 1 0 1 0
 1 1 1 1 0
 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 1 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 1 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 1 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 1 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 1 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 1 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 1 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Graph A and Graph B have the same sign frequency vectors in lexicographic order, so their
structure is very similar. The algorithm determines that the graphs are not isomorphic, shown
below.

 28

http://www.geocities.com/dharwadker/tevet/isomorphism/main.html#8

Figure 3.2.2. The bipartite Mathon graphs are not isomorphic

3.2.3. Example. We run the program on nonisomorphic Weisfeiler [36] graphs A and B as
input:

Graph A

 25
 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
 1 0 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0
 1 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1
 1 1 1 0 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0
 1 1 1 0 0 0 0 1 0 0 1 1 0 1 0 0 1 1 0 1 0 0 1 1 0
 1 1 1 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
 1 1 1 0 0 0 0 0 0 1 0 1 1 0 0 1 0 1 1 0 0 1 0 1 1
 1 0 0 1 1 0 0 0 1 1 1 0 0 1 0 1 0 0 1 0 0 0 1 1 1
 1 0 0 1 0 1 0 1 0 1 0 0 1 0 0 0 1 1 1 1 0 1 1 0 0
 1 0 0 1 0 0 1 1 1 0 0 1 0 0 1 0 1 1 0 0 1 0 0 1 1
 1 0 0 0 1 1 0 1 0 0 0 1 1 0 1 1 0 0 1 1 1 0 0 1 0
 1 0 0 0 1 0 1 0 0 1 1 0 1 1 1 0 0 1 0 0 1 1 1 0 0
 1 0 0 0 0 1 1 0 1 0 1 1 0 1 0 1 1 0 0 1 0 1 0 0 1
 0 1 0 1 1 0 0 1 0 0 0 1 1 0 1 1 1 0 0 0 0 1 1 0 1
 0 1 0 1 0 1 0 0 0 1 1 1 0 1 0 0 1 0 1 0 1 1 0 1 0
 0 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 0 1 1 1 1 0 0 0 1
 0 1 0 0 1 1 0 0 1 1 0 0 1 1 1 0 0 1 0 1 0 0 0 1 1
 0 1 0 0 1 0 1 0 1 1 0 1 0 0 0 1 1 0 1 1 1 0 1 0 0
 0 1 0 0 0 1 1 1 1 0 1 0 0 0 1 1 0 1 0 0 0 1 1 1 0
 0 0 1 1 1 0 0 0 1 0 1 0 1 0 0 1 1 1 0 0 1 1 0 1 0
 0 0 1 1 0 1 0 0 0 1 1 1 0 0 1 1 0 1 0 1 0 0 1 0 1
 0 0 1 1 0 0 1 0 1 0 0 1 1 1 1 0 0 0 1 1 0 0 1 1 0
 0 0 1 0 1 1 0 1 1 0 0 1 0 1 0 0 0 1 1 0 1 1 0 0 1
 0 0 1 0 1 0 1 1 0 1 1 0 0 0 1 0 1 0 1 1 0 1 0 0 1
 0 0 1 0 0 1 1 1 0 1 0 0 1 1 0 1 1 0 0 0 1 0 1 1 0

 29

http://www.geocities.com/dharwadker/tevet/isomorphism/main.html#8

Graph B

 25
 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
 1 0 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0
 1 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1
 1 1 1 0 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0
 1 1 1 0 0 0 0 1 0 0 1 1 0 1 0 0 1 1 0 1 0 0 1 1 0
 1 1 1 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
 1 1 1 0 0 0 0 0 0 1 0 1 1 0 0 1 0 1 1 0 0 1 0 1 1
 1 0 0 1 1 0 0 0 1 1 1 0 0 1 0 1 0 0 1 0 0 0 1 1 1
 1 0 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 1 0 0 0 1 1 0 1
 1 0 0 1 0 0 1 1 1 0 0 0 1 0 0 0 1 1 1 1 1 0 0 1 0
 1 0 0 0 1 1 0 1 0 0 0 1 1 1 1 0 0 0 1 0 1 1 0 1 0
 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 1 0 0
 1 0 0 0 0 1 1 0 0 1 1 1 0 1 0 1 1 0 0 1 1 0 0 0 1
 0 1 0 1 1 0 0 1 0 0 1 0 1 0 0 1 1 1 0 0 1 1 0 0 1
 0 1 0 1 0 1 0 0 1 0 1 1 0 0 0 1 1 0 1 1 0 1 0 1 0
 0 1 0 1 0 0 1 1 0 0 0 1 1 1 1 0 0 0 1 1 0 0 1 0 1
 0 1 0 0 1 1 0 0 1 1 0 0 1 1 1 0 0 1 0 1 0 0 0 1 1
 0 1 0 0 1 0 1 0 1 1 0 1 0 1 0 0 1 0 1 0 1 1 1 0 0
 0 1 0 0 0 1 1 1 0 1 1 0 0 0 1 1 0 1 0 0 1 0 1 1 0
 0 0 1 1 1 0 0 0 0 1 0 1 1 0 1 1 1 0 0 0 1 0 1 1 0
 0 0 1 1 0 1 0 0 0 1 1 0 1 1 0 0 0 1 1 1 0 1 1 0 0
 0 0 1 1 0 0 1 0 1 0 1 1 0 1 1 0 0 1 0 0 1 0 0 1 1
 0 0 1 0 1 1 0 1 1 0 0 1 0 0 0 1 0 1 1 1 1 0 0 0 1
 0 0 1 0 1 0 1 1 0 1 1 0 0 0 1 0 1 0 1 1 0 1 0 0 1
 0 0 1 0 0 1 1 1 1 0 0 0 1 1 0 1 1 0 0 0 0 1 1 1 0

Graph A and Graph B have common pair signs but different sign frequency vectors in
lexicographic order. The algorithm determines that the graphs are not isomorphic, shown below.

Figure 3.2.3. The self-complemented and strongly regular Weisfeiler graphs are not isomorphic

 30

3.2.4. Example. We run the program on nonisomorphic Siberian [9] graphs A and B as input:

Graph A

40
 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 1 1 0 1 0 1 1
 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 1
 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 1 1 0 1 0 1 0 0 1 0 0 0 0 0 1
 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1 1 0 1 1 0 0 1 0 1 0 0 0 0 0 1 0 1
 0 0 1 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 0
 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 1 0 0 1 1 0 0 1 0 0 1 0
 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 1 1 1 1 1 0 0 0 1 0 0 0
 0 0 0 0 1 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 1 0 0 1 1 0 0 1 0
 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 1 0 0
 1 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 1 1 1 0 0 0 0 0 1 0 1 1 0 0 0 1
 1 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 1 0 1 0 1 0 0
 0 0 0 1 0 0 1 1 0 0 0 0 0 0 1 1 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 1 0 1
 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 1 1 0 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 1 0 1 1
 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 1 1 0 0 0 0 0 0 1 1 0 0
 0 1 0 0 1 0 0 0 0 1 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 1 0
 1 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 1 0 0 0
 0 1 0 1 0 0 0 0 1 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 1 0 0 0 1 0
 0 0 0 0 0 0 1 0 1 0 1 1 1 0 0 0 1 0 0 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 1 1 0 0 1 1 0 0 1 1 1 0 0 0 0 0 1
 0 0 0 0 0 1 0 0 0 0 0 1 1 0 1 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 1 0 1 1 1 0 1 0 0 0
 0 1 1 0 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1
 0 0 1 1 0 0 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0
 1 0 0 1 1 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 1 1 0 1 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
 0 1 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 1 0 1 1 0 0 0 0 0 1 0 1 0 0 0 1 1 0 0 0 0
 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 1 0 1 0 0 1 0 0 0 0 1 1 0 1 0 1 0 1 1 0
 0 0 1 1 1 0 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0
 0 0 1 1 0 1 0 0 0 1 1 0 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
 0 0 0 0 1 1 1 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 1
 1 0 1 0 1 1 1 0 0 0 0 1 0 1 0 0 0 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0
 1 0 0 1 0 0 1 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 0 0 0
 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 1 0 1 1 0 1 0 0 0 0 1 0 0 1 1 0
 0 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 1 0 0 0
 0 0 0 0 1 1 1 0 0 1 1 0 0 0 0 1 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
 1 0 1 0 0 0 0 0 1 0 1 1 0 0 1 0 0 0 1 1 0 1 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0
 1 0 0 0 1 0 0 1 1 1 0 0 0 0 0 0 1 1 0 1 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1
 0 1 0 0 0 1 0 1 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
 1 1 0 0 0 0 1 0 1 0 0 0 1 1 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0
 0 0 0 1 1 0 0 0 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 1 0 1 1
 1 1 0 0 0 1 0 1 0 0 0 0 1 0 1 0 1 0 0 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0
 1 1 1 1 0 0 0 0 0 1 0 1 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0

Graph A

40
 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 1 1 0 1 0 1 1
 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 1
 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 1 1 0 1 0 1 0 0 1 0 0 0 0 0 1
 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1 1 0 1 1 0 0 1 0 1 0 0 0 0 0 1 0 1
 0 0 1 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 0
 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 1 0 0 1 1 0 0 1 0 0 1 0
 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 1 1 1 1 1 0 0 0 1 0 0 0
 0 0 0 0 1 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 1 0 0 1 1 0 0 1 0
 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 1 0 0
 1 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 1 1 1 0 0 0 0 0 1 0 1 1 0 0 0 1
 1 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 1 0 1 0 1 0 0
 0 0 0 1 0 0 1 1 0 0 0 0 0 0 1 1 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 1 0 1
 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 1 1 0 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 1 0 1 1
 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 1 1 0 0 0 0 0 0 1 1 0 0
 0 1 0 0 1 0 0 0 0 1 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 1 0
 1 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 1 0 0 0
 0 1 0 1 0 0 0 0 1 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 1 0 0 0 1 0
 0 0 0 0 0 0 1 0 1 0 1 1 1 0 0 0 1 0 0 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 1 1 0 0 1 1 0 0 1 1 1 0 0 0 0 0 1
 0 0 0 0 0 1 0 0 0 0 0 1 1 0 1 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 1 0 1 1 1 0 1 0 0 0
 0 1 1 0 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1
 0 0 1 1 0 0 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0
 1 0 0 1 1 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 1 1 0 1 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
 0 1 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 1 0 1 1 0 0 0 0 0 1 0 1 0 0 0 1 1 0 0 0 0
 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 1 0 1 0 0 1 0 0 0 0 1 1 0 1 0 1 0 1 1 0
 0 0 1 1 1 0 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0
 0 0 1 1 0 1 0 0 0 1 1 0 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
 0 0 0 0 1 1 1 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 1
 1 0 1 0 1 1 1 0 0 0 0 1 0 1 0 0 0 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0
 1 0 0 1 0 0 1 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 0 0 0
 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 1 0 1 1 0 1 0 0 0 0 1 0 0 1 1 0
 0 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 1 0 0 0
 0 0 0 0 1 1 1 0 0 1 1 0 0 0 0 1 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
 1 0 1 0 0 0 0 0 1 0 1 1 0 0 1 0 0 0 1 1 0 1 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0
 1 0 0 0 1 0 0 1 1 1 0 0 0 0 0 0 1 1 0 1 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1
 0 1 0 0 0 1 0 1 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
 1 1 0 0 0 0 1 0 1 0 0 0 1 1 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0
 0 0 0 1 1 0 0 0 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 1 0 1 1
 1 1 0 0 0 1 0 1 0 0 0 0 1 0 1 0 1 0 0 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0
 1 1 1 1 0 0 0 0 0 1 0 1 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0

Graph A and Graph B have the same sign frequency vectors in lexicographic order, so their
structure is very similar. The algorithm determines that the graphs are not isomorphic, shown
below.

 31

http://www.geocities.com/dharwadker/tevet/isomorphism/main.html#8

Figure 3.2.4. The bisymmetric and strongly regular Siberian graphs are not isomorphic. It was

a more complicated case for isomorphism testing.

 32

References

[1] Filosoofia leksikon, Tallinn, 1985.

[2] Новая философская энциклопедия, Москва, 2001.

[3] H. Schmidt, Philosophisches Wörterbuch. Stuttgard, 1991.

[4] S. Toida, Isomorphism of graphs – Proc 16th Midwest Symp. Circuit Theory, Waterloo, 1973,
XVI.5.1-5.7.

[5] R.C. Read and D. G. Corneil, The graph isomorphism disease. – J. of Graph Theory, 1 (1977), 339-
363.

[6] G. Gati, Further annotated bibliography on the isomorphism disease. – J. of Graph Theory, 3
(1979), 95-109.

[7] B. Bollobas, Modern Graph Theory, Springer, 1998.

[8] C. Hoffmann, Group-Theoretic Algorithms and Graph Isomorphism. Springer, 1982.

[9] M. Netchepurenko et al., Algorithms and programs for solution of problems in graphs and
networks, Novosibirsk, 1990.

[10] G. Kobler, H. Schönig and J. Toran, The Graph Isomorphism Problem: Its Structural Complexity,
1993.

[11] L. Babai, http://cs.mu.oz.au/481/Author/BABAI-L.

[12] G. Tinhofer, M. Lödecke, S. Baumann, L. Babel, STABCOL, Graph Isomorphism Testing on the
Weisfeiler-Leman Algorithm, 1997,
http://citeseerx.ist.psu.edu/viewdoc/summary/dol=10.1.1.56.6704

[13] C. V. Raj and M. S. Shivakumar, 2008, http://www.informatik.uni-trier.de/ ~ley/indices/a-
trees/S/Shivakumar.M=_S=html

[14] N. Chistofiedes, Graph Theory: An algorithmic approach. Academic Press, 1975.

[15] S. Pemmaraju and S. Skiena, Computational Discrete Mathematics: Combinatorics and Graph
Theory with Mathematica®, Cambrige University Press, 2003.

[16] E. Reingold, J. Nievergelt, N. Deo, Combinatorial Algorithms: Theory and Practice, 1977.

[17] V. Arvind, P. P. Kurur, Graph isomorphism is in SPP, 2006,
http://www.portal.acm.org/citation.cfm?ld=1149036

[18] F. Harary, Graph Theory, Addison-Wesley, 1969.

[19] R. Wetzenböck, Invarianten-Theorie. Gröningen, 1923.

[20] S. Locke, www.math.fau.edu/locke/isotest.

[21] A. Zykov, Основы теории графов. Москва, 1987.

[22] H. Hermes, Semiotik: eine Theorie der Zeichengestalten als Grundlage für Untersuchungen von
formalisierte Sprachen. Leipzig, 1938.

[23] John-Tagore Tevet, Structure Semiotic Approach to the Graphs. S.E.R.R., Tallinn, 2006.
http://ester.nlib.ee:80/record=b2367627~S1*est

[24] The Oxford Companion of Philosophy, 1995.

[25] I. Meos, Filosoofia põhiprobleemid. Tallinn, 1998.

[26] Ashay Dharwadker and Shariefuddin Pirzada, Graph Theory, Orient Longman and Universities
Press of India, 2008.

 33

http://cs.mu.oz.au/481/Author/BABAI-L.
http://citeseerx.ist.psu.edu/viewdoc/summary/dol=10.1.1.56.6704
http://www.informatik.uni-trier.de/%20%7Eley/indices/a-trees/S/Shivakumar.M=_S=html
http://www.informatik.uni-trier.de/%20%7Eley/indices/a-trees/S/Shivakumar.M=_S=html
http://www.portal.acm.org/citation.cfm?ld=1149036
http://www.math.fau.edu/locke/isotest
http://ester.nlib.ee/record=b2367627%7ES1*est

[27] John-Tagore Tevet, Recognition of the Structure, Symmetry and Systems of Graphs, Baltic
Horizons, No. 8 (107), Special Issue Dedicated to 270 Years of Graph Theory, 2007.

[28] E. W. Dijkstra, A note on two problems in connexion with graphs, Numerische Mathematik, 1,
1959.

[29] P. Turán, An extremal problem in graph theory, Mat. Fiz. Lapok, 1941.

[30] J. Petersen, Die Theorie der regulären Graphen, Acta Math., 1891.

[31] Plato, Timaeaus, circa 350 B.C.

[32] F.P. Ramsey, On a problem of formal logic, Proc. London Math. Soc., 1930.

[33] H.S.M. Coxeter and W.T. Tutte, The Chords of the Non-Ruled Quadratic in PG(3,3), Canad. J.
Math., 1958.

[34] John-Tagore Tevet, Constructive Representation of Graphs: A Selection of Examples, S.E.R.R.,
Tallinn, 2008. http://ester.nlib.ee:80/record=b2161461~S1*est

[35] R. Mathon, Sample graphs for isomorphism testing, Proc. 9th S-E. Conf. Combinatorics, Graph
Theory and Computing, 1980.

[36] B. Weisfeiler, On Construction and Identification of Graphs, Springer Lecture Notes Math., 558,
1976.

 34

http://ester.nlib.ee/record=b2161461%7ES1*est

