THE GRAPH ISOMORPHISM ALGORITHM

ASHAY DHARWADKER

JOHN-TAGORE TEVET

Abstract

We present a new polynomial-time algorithm for determining whether two given graphs are
isomorphic or not. We prove that the algorithm is necessary and sufficient for solving the Graph
Isomorphism Problem in polynomial-time, thus showing that the Graph Isomorphism Problem is
in P. The semiotic theory for the recognition of graph structure is used to define a canonical
form of the sign matrix of a graph. We prove that the canonical form of the sign matrix is
uniquely identifiable in polynomial-time for isomorphic graphs. The algorithm is demonstrated
by solving the Graph Isomorphism Problem for many of the hardest known examples. We
implement the algorithm in C++ and provide a demonstration program for Microsoft Windows.

Recommendation: http://www.geocities.com/dharwadker/tevet/isomorphism/

CONTENTS
1. INTRODUCTION 3
1.1. Some Historical Observations 3
1.2. An Approach: Structure Semiotics 5
1.3. The Symmetry Problem 6
2. THE GRAPH ISOMORPHISM PROBLEM IS P 7
2.1. Introduction 7
2.2. Definitions 8
2.3. Algorithm 10
2.4. Necessity and Sufficiency 16
2.5. Complexity 18
2.6. Implementation 19
3. PROCESSING RESULTS: EXAMPLES 21
3.1. Isomorphism Cases 21
3.2. Non-Isomorphism Cases 26
References 33

http://www.geocities.com/dharwadker/tevet/isomorphism/

Ashay Dharwadker John-Tagore Tevet

H-501 Palam Vihar Research Group S.E.R.R.

District Gurgaon Eurouniversity

Haryana 122017 Tallinn

India Estonia

dharwadker@yahoo.com john.tevet@graphs.ee
Selgitus

Teavik on pithendatud graafide isomorfismiprobleemile, st graafide isomorfismi tuvastamise algoritmi
konstrueerimisele. See probleem vdis kerkida iilesse juba siis, kui A. Cayley [1857] tegeles orgaaniliste
isomeeride alaste uuringutega.

Isomorfismi tuvastamise iilesanne kujutab praegu endast graafiteooria keskset iilesannet. Klassifikaatori
,»,2000 Mathematics Subject Classification” (MSC2000) jargi on graafide isomorfismi tuvastamine koos
taastatavuse probleemiga kombinatoorne ndhtus indeksiga 05C60. Isomorfismi tuvastamine seisneb vaid
vastuses kiisimusele, kas graaf G, on isomorfne graafiga Gg ning esitada isomorfne substitutsioon.

Isomorfismi tuvastamise teoreetiline algoritm tdiesti olemas — see seisneb graafi Gg seosmaatriksi ridade
ja nendele vastavate veergude Umberpaigutamises (permuteerimises, iimberjirjestamises,
iibervahetamises) niikaua, kui see ei lange kokku graafi G seosmaatriksiga. Sellel on vaid iiks puudus —
see on viga keeruline, selle sammude arv ldheneb n! (n-faktoriaalini). Veel kiimmekond aastat tagasi
arvati, et 16! permutatsiooni arvutamine votaks kuni 40 aastat acga. Teiste lahenduste otsimine kestab.

Soovitus: http://www.graphs.ee

ISBN 978-9949-18-331-9 (publication)
ISBN 978-9949-18-332-6 (web)

© Structure Semiotic Research Group S.E.R.R.
Tallinn, 2009

mailto:dharwadker@yahoo.com
mailto:john.tevet@graphs.ee
http://www.graphs.ee/

1. INTRODUCTION

We present a historical perspective of the Graph Isomorphism Problem and discuss the reasons
why this problem has such a distinguished place in the history of mathematics and philosophy.

1.1. Some Historical Observations

Isomorphism (Greek word isos — same; morphe — form) constitutes a philosophical category, a
one-to-one correspondence between structures of objects [1][2]. Such a one-to-one
correspondence can only exist between abstract, idealized objects.

In mathematics we define isomorphism as a one-to-one mapping of one system onto another
system, which preserves the structure, i.e. relations, ordering, topology etc., of the systems. For
example: isomorphism of graphs (to be defined below), ordered sets, groups, vector spaces and
other algebraic structures; the image of a mapping and its mathematical expression.
Isomorphism is an invertible morphism, which has an opposite morphism, such that their
product is the unity morphism. A topological isomorphism is called a homeomorphism.

Structure (Latin word structura — building) is also a philosophical category, that is defined as
an unchangeable, constant connection, relation or organization form of the elements of a system
[1][3]. In other words, structure is an abstraction of the system, its “skeleton”, where its
elements and relations (connections) are abstracted from their empirical meanings and what
remains is only an elementary set of their organizing properties, such as connectivity, regularity,
symmetry etc. Mathematical means, concepts and methods are the most appropriate “langue” for
the expression of structure. With the concept of structure is due a special, but at the same time
universal, relation type — composition — that can be expressed by mathematical formulas,
equations, matrices, graphs etc. The differences of structural elements are expressed by their
conjugacy mode — positions — in the structure. The exact definition of structure can be give by
concept of the isomorphism. Since structure is a formation of related (connected) elements, it
may be represented by a graph. Immanuel Kant and Georg Wilhelm Friedrich Hegel are often
regarded as the originators of the structure concept.

The isomorphism problem is to design an algorithm that recognizes the isomorphism of two
objects. The graph isomorphism problem first came into prominence in 1857, when Arthur
Cayley reported his research on organic isomers. Subsequently, isomorphism became a central
problem in graph theory. According to the “2000 Mathematics Subject Classification”
(MSC2000), isomorphism recognition together with the reconstruction problem, is a
combinatorial phenomenon 05C60, even when graph theory itself is not yet classified as a
separate subject!

Two graphs are called isomorphic, if they differ only in the labeling of their vertices. An
isomorphic mapping from graph Ga to graph Gg is an isomorphic substitution ¢: Vo — Vg

Vi Vo ... Vi ... Vp
o(V1) ©(V2) ... ¢(Vi) ... ©(Vn)

Isomorphism recognition is an answer to the question, is graph Ga isomorphic to graph Gg? If
s0, one must also provide the isomorphic substitution. On the structural aspect we can be say
that graphs Ga and Gg are isomorphic if and only if these have one and the same structure.

A naive algorithm for isomorphism recognition obviously exists — try all possible substitutions
(permutations) of the rows and columns of the adjacency matrix of Gg until it coincides with
adjacency matrix of graph Ga. However, this is an impossible task to perform for all practical
purposes, since the number of permutations that one may need to check can go up to n! (n-
factorial). For example, checking 16! permutations could take up to 40 years of time on the
fastest computers presently available.

We must then begin to seek other, more useful ways for isomorphism testing. Ideally, we should
try to find a polynomial-time algorithm for the graph isomorphism problem. That is, we should
try to show that the graph isomorphism problem in P. During the 1970’s, this was a very
popular research activity. For example, S. Toida [4] presents for this purpose the concept of a
“distance matrix”. Non-isomorphism can be recognized by distance matrices “almost always”,
and isomorphism testing is possible in many cases, but not always.

Algorithms of this period were heavily criticized by R. C. Read, D. G. Corneil [5] and G. Gati
[6], who called this “hobby” the “isomorphism disease”. The isomorphism problem became
taboo during this period. This problem is avoided in some graph textbooks to this day. For
example, B. Bollobas’ “Modern Graph Theory” [7] dedicates only two words for the
isomorphism problem. Nevertheless, a small visual example of graph isomorphism is presented
in almost all textbooks — and nothing more is said.

There are numerous monographs dedicated specially to the isomorphism problem. The aspect of
group theory was treated by C. Hoffmann [8], who asserted that the “structure” of groups was
quite similar to the general isomorphism problem. Unfortunately, this similarity turned out to be
elusive. The isomorphism problem is treated in great depth by Netchepurenko et al [9] where
they also present corresponding algorithms and computer programs that work “almost always”.
In the monograph by G. Kdbler, H. Schonig and J. Toran [10] this problem is treated on the
basis of structural complexity.

Without good algorithms, the treatment of the isomorphism problem is senseless. Some partial
progress was made by L. Babai [11], who found that in certain cases a Monte-Carlo algorithm is
suitable. G. Tinhofer, M. Ldodeke, S. Baumann, L. Babel [12] feel convinced that isomorphism
testing is solvable by Weisfeiler-Leman algorithm. Vidya Raj and M. S. Shivakumar [13], give
some attributes for solving the problem under certain conditions. At the same time, some
monographs of algorithmic graph theory, such as N. Chistofiedes [14], have nothing to say
about isomorphism. S. Pemmaraju and S. Skiena [15] are limited to studying time complexity of
the isomorphism problem.

The isomorphism problem has mostly been studied just on the complexity aspect [16]. It is not
known whether this problem is NP-complete. Whereas nobody found any polynomial-time
solutions in P before us, it has been presented as an intermediary variant, marked SPP [17].

The methods of isomorphism recognition can be divides to: a) sorting or non-sorting methods;
and, b) methods with using local or global invariants.

An invariant is an attribute of an object, such as a size, form of an expression etc., which stays
unchangeable in case of certain transformations, i.e. it is an invariant in relation to these

transformations. For example, /local invariants can be degrees of the vertices, distances between
vertices, pair signs etc. Similarly, global invariants can be a degree frequency vector, various
codes, polynomials, spectrums etc. of a graph. If the observed transformation does not change
some attribute of an object, then it is a complete invariant [18]. For example, a complete
invariant of isomorphic graphs is their common structure that does not change in case of
relabelling (remarking) and/or transposition of their vertices.

The concept of invariants has been used in mathematics since the middle of the 19" century.
Invariant theory had great importance in geometry. Invariant theory is treated classically as an
algebraic theory [19]. Later, this specific concept was promoted to a philosophical category.

According to F. Harary [18], the isomorphism problem is solvable by complete system of global
invariants (polynomials, spectra) of graphs. S. Locke [20] found that 3-cube-codes (super-long
binary codes) are sometimes useful for isomorphism testing. From A. Zykov’s point of view
[21], the isomorphism problem is solvable on the basis of a system of local invariants that
characterize the compactness, cycles (girths), paths etc., of a graph.

In our historical journey so far, the question remains: is the graph isomorphism problem in P?
Clearly, some essential ideas are still missing.

1.2. An Approach: Structure Semiotics

Semiotics is the study of sign processes, or signification and communication, signs and symbols,
both individually and grouped into sign systems. It includes the study of how meaning is
constructed and understood.

A sign is an entity which signifies another entity. A natural sign is an entity which bears a
causal relation to the signified entity, as thunder is a sign of a storm. A conventional sign
signifies by agreement, as a full stop signifies the end of a sentence. Semiotics, epistemology,
logic, and philosophy of language are concerned about the nature of signs, what they are and
how they signify.

As far back as 1938, H. Hermes [22] was of the view that semiotics was a discipline suitable for
exploring the very foundations of mathematics. Structure semiotics or semiotics of structure
[23] is a research domain at the frontiers of graph theory and semiotics, where the subject of
investigation is the structure (i.e. graph) as such. It is a complex of heuristic methods for
exploring structure and its attributes. From the philosophical point of view, it is an object-
oriented study of semiotics.

Structure semiotics treats structural invariants (codes, vectors) on their meaning aspect, i.e.
treats them as signs. The pair signs characterize the shortest paths, girths, cliques, bridges etc of
a graph. Their systems in the form of a sign matrix S constitute a fext of the structure of a graph.
Structure can be recognized and investigated just by its sign matrix [23].

The isomorphism problem is solvable on the grounds of structure semiotics, as a complete
invariant of a graph in the form of its sign matrix S. The first step in our graph isomorphism
algorithm, cf. procedures 2.3.1, 2.3.2 and 2.3.3, is to compute the sign matrices of the given
graphs in polynomial-time.

1.3. The Symmetry Problem

When we compute the sign matrices of isomorphic graphs, the sets of row and column sign
frequency vectors are always the same. The second step in our graph isomorphism algorithm, cf.
procedure 2.3.3, is to arrange the sign frequency vectors in lexicographic order to obtain the
canonical forms of the sign matrices of the given graphs. The vertices of the graphs are
partitioned into equivalence classes or orbits. For isomorphic graphs, the unordered sets of
orbits are always the same. These constitute important attributes of structure and are directly
connected with symmetry properties of the graphs.

Symmetry (A) (Greek word symmetria) is a structural attribute that is expressed as a regular
repetition (recurrence) of similar components (parts, particles) of an object in space and/or time

[1].

Unfortunately, there is a commonly restricted understanding of symmetry as a “stump” of the
full definition of symmetry (A):

Symmetry (B) is a property of an object, where the components that are placed at the same
distance from a centre or axis are similar [3].

Both concepts are valid, and we may say that (B) is an “axle-symmetry” only.

Symmetry has the status of a philosophical category in countries of Mainland-Europe. However,
in Anglo-Saxon countries, and also in Estonia, symmetry has not yet been assigned such an
honour [24][25].

The general concept of symmetry (A) in mathematics is defined as the existence of the
transitivity domain of authomorphisms or orbits in Aut G, for example in a graph G. An orbit is
essentially an equivalence class. Symmetry is measurable. Its value is maximum, if there exists
only one orbit and its value is 0, if the number of orbits corresponds to the number of elements.
The general concept of symmetry is used in graph theory, structure-semiotics, arts etc.

The main symmetry properties of graphs are: a) vertex symmetry, if there exist only a vertex
orbit; b) edge symmetry, if there exist only an edge orbit; c) bisymmetry, if there exist only an
edge orbit and only a “non-edge” orbit, i.e. an orbit of disadjacent vertex pairs,

So far, our graph isomorphism algorithm computes the canonical forms of the sign matrices of
the given graphs in polynomial-time. However, it may still happen that the canonical forms of
the obtained sign matrices do not coincide for isomorphic graphs. Finally, we define a
polynomial-time procedure 2.3.4, that reorders the rows and columns of the sign matrices to
guarantee coincidence in the case of isomorphic graphs. Hence, we can say that the canonical
form of the sign matrix is uniquely identifiable in polynomial-time for isomorphic graphs.

*

To summarize, we prove that our graph isomorphism algorithm is necessary and sufficient for
solving the graph isomorphism problem: if graphs G4 and G are isomorphic, then the algorithm
finds an explicit isomorphism function; if graphs G4 and Gy are not isomorphic, then the
algorithm determines that no isomorphism function can exist. Finally, we show that the
algorithm has polynomial-time complexity. Thus, we prove that the Graph Isomorphism
Problem is in P.

2. THE GRAPH ISOMORPHISM PROBLEM IS IN P

We are pleased to announce the discovery of a new polynomial-time algorithm for determining
whether two given graphs are isomorphic or not.

2.1. Introduction

One of the most fundamental problems in graph theory is the Graph Isomorphism Problem:
given two graphs G4 and Gs, are they isomorphic? Graphs G4 and Ga are said to be isomorphic if
their vertices can be rearranged so that the corresponding edge structure is exactly the same. To
show that graphs G4 and Ga are isomorphic, it suffices to find one such rearrangement of
vertices. On the other hand, to show that G4 and Gs are not isomorphic, one must prove that no
such rearrangement of vertices can exist. Without a good algorithm, this problem can be very
difficult to solve even for relatively small graphs.

Figure 2.1.1. Are graphs G4 and Gsisomorphic?

We present a new polynomial-time GRAPH ISOMORPHISM ALGORITHM for determining
whether two given graphs are isomorphic or not. If the given graphs are isomorphic, the
algorithm finds an explicit isomorphism function in polynomial-time. In Section 2.2, we provide
precise DEFINITIONS of all the terminology used and introduce the essential concept of a sign
matrix according to the semiotic theory for the recognition of graph structure. In Section 2.3, we
present a formal description of the ALGORITHM followed by an example to show how the
algorithm works step-by-step. In Section 2.4, we prove that the algorithm is NECESSARY AND
SUFFICIENT for solving the Graph Isomorphism Problem: if graphs G4 and Ga are isomorphic,
then the algorithm finds an explicit isomorphism function; if graphs G4 and Gz are not
isomorphic, then the algorithm determines that no isomorphism function can exist. In Section
2.5, we show that the algorithm has polynomial-time COMPLEXITY. Thus, we prove that the
Graph Isomorphism Problem is in P. In Section 2.6, we provide an IMPLEMENTATION of the
algorithm as a C++ program, together with demonstration software for Microsoft Windows.

2.2. Definitions

To begin with, we present elementary definitions of all the terminology used, following [26].
Thereafter, we introduce the essential concept of a sign matrix according to the semiotic theory
for the recognition of graph structure, following [27].

A finite simple graph G consists of a set of vertices V, with |V] = n, and a set of edges E, such
that each edge is an unordered pair of distinct vertices. The definition of a simple graph G
forbids loops (edges joining a vertex to itself) and multiple edges (many edges joining a pair of
vertices), whence the set £ must also be finite, with |E| = m. We label the vertices of G with the
integers 1, 2, ..., n. If the unordered pair of vertices {u, v} is an edge in G, we say that u is
adjacent to v and write uv € E. Adjacency is a symmetric relationship: uv € E if and only if vu
€ E. The degree of a vertex v is the number of vertices that are adjacent to v. A (u, v)-path P in
G is a sequence of distinct vertices u = vi, v2, ..., vk = v such that vivisi € Efori=1, 2, ..., k-1. If
such a (u, v)-path P exists, then the vertices u and v are said to be connected by a path of length
k-1. Given any pair of vertices (u, v) in G, we define the distance

du,v)=0,ifu=v,
d(u, v) = the length of a shortest (u, v)-path, if u and v are connected, and
d(u, v) = o, otherwise.

We now introduce the key ingredients of semiotic theory. For any pair of vertices (u, v) in G, the
collateral graph G\uv is defined as follows:

e Ifuv € E, then Gluv is obtained by deleting the edge uv from G while preserving all the
vertices of G. We use the binary sign + to distinguish the distance function in this case.

o [Ifuv & E, then Gluv = G. We use the binary sign - to distinguish the distance function in
this case.

The pair graph G, for any pair of vertices (u, v) in G is defined as follows:

e wis a vertex of G, if and only if w belongs to a shortest (u, v)-path in Gluv, and
e wxis an edge of G,, if and only if wx is also an edge of G.

For any pair of vertices (u, v) in G, we write the (u, v)-sign, denoted by the symbol s,,, as
follows:

Sw== duv « Nyy « Myy

where
o the leading binary sign is positive if uv € E, or negative if uv &€ E;
e d, is the distance d(u, v) in the collateral graph Gluv ;
e n, is the number of vertices of the pair graph G,,,

e m, is the number of edges of the pair graph G,,.
The sign matrix S of the graph G is written as an n X n array with the (u, v)-sign s,, as the entry
in row u and column v,

S=1[sw].

The adjacency matrix of G is an n X n matrix with the entry in row u and column v equal to 1 if

uv € E and equal to 0 if uv & E. Thus, the adjacency matrix of the graph G can be recovered
from the leading binary signs of the entries of the sign matrix S. Note that for a simple graph G,
both the adjacency matrix and the sign matrix S are symmetric. We shall now define a canonical
form S* of the sign matrix by ordering the rows and columns of § in a certain way. First, write
the set of all distinct (u, v)-signs s, in lexicographic order s1, s2, ..., s~. Then, for each row i of
the sign matrix, i = 1, 2, ..., n, compute the sign frequency vector

fi = (O, f%,., £)

Where f{* is the number of times the sign sk occurs in row i. Since S is symmetric, the sign
frequency vector for column i is the same as the sign frequency vector for row i, fori =1, 2, ...,
n. Now, write the sign frequency vectors fi, 2, ..., f» in lexicographic order fil, fiz, e 'i.. Reorder
the rows and columns of the sign matrix according to the permutation i1, i2, ..., i» of the vertices
1,2, ..., n of G to obtain the canonical form S* of the sign matrix.

The vertices of G are partitioned into equivalence classes consisting of vertices with the same
sign frequency vectors. Thus, the canonical form S* of the sign matrix is uniquely defined only
upto permutations of vertices within each equivalence class.

Graphs G4 and Ga are said to be isomorphic if there exists a bijection
¢:VA— VB

from the vertices of graph G4 to the vertices of graph Ga, such that uv is an edge in graph Gu if
and only if @(u)p(v) is an edge in graph Gs. The graph isomorphism problem is to determine
whether two given graphs are isomorphic or not.

An algorithm is a problem-solving method suitable for implementation as a computer program.
While designing algorithms we are typically faced with a number of different approaches. For
small problems, it hardly matters which approach we use, as long as it is one that solves the
problem correctly. However, there are many problems for which the only known algorithms take
so long to compute the solution that they are practically useless. For instance, the naive
approach of computing all n/ possible permutations of the n vertices to show that a pair of
graphs G4 and Gs are not isomorphic is impractical even for small inputs.

A polynomial-time algorithm is one whose number of computational steps is always bounded by
a polynomial function of the size of the input. Thus, a polynomial-time algorithm is one that is
actually useful in practice. The class of all problems that have polynomial-time algorithms is
denoted by P. If graphs G4 and Ga are isomorphic then they must have the same sign frequency
vectors in lexicographic order”i 1 fiz, ...,fin and we shall show that our algorithm obtains identical
canonical forms of their sign matrices S4* and Sz* in polynomial time, thus exhibiting an
explicit isomorphism function ¢. Conversely, we shall show that our algorithm determines in
polynomial-time that the sign matrices S4* and Sz* cannot be expressed in identical canonical
forms if and only if the graphs G4 and Gs are not isomorphic. Thus, we have a polynomial-time
algorithm for solving the graph isomorphism problem, showing that the graph isomorphism
problem is in P.

2.3. Algorithm

We are now ready to present a formal description of the algorithm. After that, the steps of the
algorithm will be illustrated by an example. We begin by defining four procedures.

2.3.1. Procedure. This procedure is Dijkstra's algorithm [28]. Given a graph G and a vertex u,
we compute shortest (u, v)-paths to all vertices v of G. Define a(u, v) =1 if uv € E and a(u, v) =

o if uv € E. We maintain a set Vi, of vertices to which the shortest (u, v)-path is known and a
tentative distance d'(u, w) for each vertex w outside Vigwn.

o Initialization: Set Vi,onn = {u}, d(u, u) = 0 and d'(u, w) = a(u, w) for each vertex w
outside Vinown-

o Iteration: Seclect a vertex wy,;, outside Viuow, such that d'(u, wy,) is @ minimum. Add
Wain 10 Vinown and update the tentative distance d'(u, w) = min{d'(u, w), d(u, w) +
a(u, w)} for each vertex w outside Viuoun-

e Termination: Iterate until Vj,,., contains all the vertices of G or until d'(u, w) = « for
each vertex w outside Vy,own. In the later case, no further vertex can be selected and the
remaining vertices are not connected to the vertex u.

2.3.2. Procedure. Given a graph G and vertices u and v, we compute the distance d(u, v) in the
collateral graph Gluv and the pair graph G,,,.

e Using Procedure 2.3.1, compute shortest (u, x)-paths to all vertices x of Gluv.

e Using Procedure 2.3.1, compute shortest (v, y)-paths to all vertices y of Gluv.

e In particular, the length of any shortest (u, v)-path in Gluv is the distance d(u, v).

o Ifu=uy,u, .., u and v = vy, v, ..., v are shortest paths found above such that u, = v,
and the sum of the lengths of the two paths is the distance d(u, v) in the collateral graph
Gluv, then the union of vertices of the two paths are vertices of the pair graph G,,. Every
vertex w of the pair graph G,, is obtained this way, because any shortest (u, v)-path
containing w is obtained by connecting some shortest (u#, w)-path with some shortest (w,
v)-path in Gluv. Thus, at least one pair of shortest paths found above must satisfy u, = v
= w, for each vertex w of the pair graph G,,.

2.3.3. Procedure. Given a graph G, we compute the sign matrix S and its canonical form S*.

e Using Procedure 2.3.2, for every pair of vertices u and v, we compute the distance
d(u, v) in the collateral graph Gluv and the pair graph G,.

e The entry in row u and column v of the sign matrix S is s,y = £ d,y.Hy.m,,, Where the
leading binary sign is positive if uv € E, and negative if uv ¢ E; d,, is the distance d(u,
v) in the collateral graph Gluv; n,, is the number of vertices of the pair graph G,,; and
my,, 1s the number of edges of the pair graph G,,,.

o Write the set of all distinct signs s,, in lexicographic order sy, 52, ..., 5.

e For each row i of the sign matrix S, i = 1, 2, ..., n, compute the sign frequency vector
Fi=(fW, 2, ., D), where ﬁ(k) is the number of times the sign s; occurs in row i. Since
S is symmetric, the sign frequency vector for column i is the same as the sign frequency
vector forrow i, fori=1, 2, ..., n.

« Write the sign frequency vectors fi, f5, ..., f; in lexicographic order /iy, /i, ..., i,.

10

http://www.geocities.com/dharwadker/tevet/isomorphism/main.html#8

e Reorder the rows and columns of the sign matrix according to the permutation
i1, iy, ..., iy of the vertices 1, 2, ..., n of G to obtain the canonical form S*.

2.3.4. Procedure. Given graphs G, and Gp such that the sign frequency vectors in lexicographic
order for S4* and Sp* are the same, (fAil, fAiz, s i)=(fBi’l, fBi’z, s i,), we compute a
reordering i, i'>, ..., i", of the vertices of G such that either the first entry of Sz* that does not
match the corresponding entry of S4* occurs at the greatest possible index in row major order or
S A *= SB *

e Setd=S,*¥and B=Sp*.

e Read the matrices 4 and B in row major order (read each row from left to right and read
the rows from top to bottom). If all corresponding entries 4; and B;; of 4 and B match,
then stop. Else, find the first entry B;; in B that does not match the corresponding entry
A;;in 4. Find k > i such that interchanging rows (, j) and columns (%, j) of B ensures that
the first mismatch occurs later than B;; in row major order (or there is no mismatch at
all). If no such £ exists, then stop. Repeat this process until the corresponding &k cannot be
found or all corresponding entries of 4 and B match.

e We obtain a reordering i"}, i", ..., i", of the vertices of G such that either the first entry
of B that does not match the corresponding entry of 4 occurs at the greatest possible
index in row major order or 4 = B.

2.3.5. Algorithm. Given graphs G, and G, we determine whether G, and G are isomorphic or
not. If G4 and G are isomorphic, we exhibit an explicit isomorphism function.

e Using Procedure 2.3.3, we compute the canonical forms of the sign matrices S,* and
Sp*. If the sign frequency vectors in lexicographic order for S4* and Sz* are different,
then G4 and G are not isomorphic and we stop.

o Else, the sign frequency vectors in lexicographic order for S,* and Sz* are the same, (

fo. f feN_y(foor [f -
ALl ATy ey aln) = (78I, Bi", ooy B).

o Fork=1,2,..,n:
= Setd=S,*and B=Sp*.
» Interchange rows (1, k) and columns (1, k) of B.
= Using Procedure 3.4, if 4 = B then stop. Else, start with the next value of
k. If k = n then stop.
o If A # B, then G, and G are not isomorphic. Else 4 = B, G, and Gj are
isomorphic and the reordering i";, i's, ..., i", of the vertices of Gp to obtain
Sp* = B provides an explicit isomorphism function @(i;) =i"}, ¢(i2) =i, ..., 0(i,)

—
=i",.

2.3.6. Example. We demonstrate the steps of the algorithm with an example. The input consists
of Turén [29] graphs G, and G, with vertices labeled V, = {1,2,3,4,5,6,7,8} and V3 = {1, 2,
3,4,5,6,7, 8} as shown below in Figure 2.3.6.1.

11

http://www.geocities.com/dharwadker/tevet/isomorphism/main.html#8

Figure 2.3.6.1. An example to demonstrate the steps of the algorithm : input

The algorithm first computes all the pair graphs of G4. To see how this is done, let us explicitly
compute the pair graph G, for the pair of vertices (1, 2). First, Procedure 2.3.2 computes the
shortest paths from vertex 1 in G412 as (1), (1, 7, 2), (1, 7, 3), (1, 7), (1, 8),
(1, 4), (1, 5) and (1, 6). Then, Procedure 2.3.2 computes the shortest paths from vertex 2 in
G4\12as(2),(2,7,1),(2,7,3),(2,7),(2,8),(2,4), (2,5) and (2, 6). The distance d(1, 2) =2 is
given by the length of any shortest (1, 2)-path found in G412 so far. Now, Procedure 2.3.2
obtains the shortest (1, 2)-paths (1, 7, 2), (1, 8, 2), (1, 4, 2), (1, 5, 2) and (1, 6, 2) whose union
gives the 7 vertices of the pair graph {1, 2, 4, 5, 6, 7, 8}. The pair graph has 16 edges {1,7},
{18}, {14}, {1,5}, {1,6}, {2,7}, {2,8}, {2,4}, {2,5}, {2,6}, {7.4}, {7.5}, {8,4}, {85}, {4,6}
and {5,6}. Since {1, 2} is not an edge in G4, the leading binary sign is negative and Procedure
2.3.3 computes the sign sj, =-2.7.16. Similarly, Procedure 2.3.3 computes all the signs s;; for i, j
=1,2,3,4,5, 6,7, 8 Note that for i = j the sign is always -0.1.0. Thus, Procedure 2.3.3
computes the sign matrix S4. Then, Procedure 2.3.3 counts the number of times each sign occurs
in a column of S, and obtains the sign frequency vectors for each column of S,. Finally,
Procedure 2.3.3 reorders the rows and columns of S, according to the lexicographic order of the
sign frequency vectors, to obtain the canonical form of the sign matrix S4* We use the
following convention to display the sign matrix: the row and column headers show the vertex
labels and the equivalence classes of vertices are distinguished by different shades of blue; the
sign frequency vectors, vertex degrees and equivalence class numbers are displayed along the
column footers.

12

Next, the algorithm checks that the sign frequency vectors in lexicographic order for S,* and
Sp* are the same,

(fA4’ fAssfAlafAzafA39fA7,fA89fA6) = (fBlafBgafB7afB3afB6’fB4a stafBz)z
=(01106, 01106, 20132, 20132, 20132, 20132, 20132, 20132).

Finally, the algorithm runs through the loop & =1, 2, 3, 4, 5, 6, 7, 8 to find an explicit
isomorphism if it exists. Starting with k=1, set 4 =S,* and B = Sp*:

Since k = 1, there is no initial interchange of rows and columns of B. Now, the algorithm uses
Procedure 2.3.4. The entries of 4 and B are read in row major order. The first mismatch is found
in the third row and fourth column, shown underlined. The algorithm finds that exchanging the
fourth column with the fifth column (and the fourth row with the fifth row) of B will push the
first mismatch further along the row major order:

14

The first mismatch is found in the third row and fifth column, shown underlined. The algorithm
finds that exchanging the fifth column with the eighth column (and the fifth row with the eighth
row) of B will push the first mismatch further along the row major order:

Now there is no mismatch, 4 = B. The algorithm exits the final loop and reports that an
isomorphism has been found. The explicit isomorphism ¢ is given by reading the vertex labels
of A and B in this order:

15

If the graphs G4 and Gp are redrawn with vertices ordered in this way, the isomorphism ¢ is
easy to visualize.

Figure 2.3.6.2. An example to demonstrate the steps of the algorithm: output

2.4. Necessity and Sufficiency

Here we prove that the algorithm is necessary and sufficient for solving the Graph Isomorphism
Problem:

o if graphs G4 and Gj are isomorphic, then the algorithm finds an explicit isomorphism
function;

o if graphs G4 and G are not isomorphic, then the algorithm determines that no
isomorphism function can exist.

2.4.1. Proposition. If graphs G4 and Ga are isomorphic, then the algorithm finds an
1somorphism.

Proof. Suppose graphs G4 and Ga are isomorphic and let ¢: V4 — Va be an isomorphism from
the vertices of G4 to the vertices of Gs. Note that distances are preserved bijectively under the
1somorphism,

d(u,v) = d(o(u), o(v))

for all vertices u, v of G,4. Thus, all the corresponding pair graphs are isomorphic and the signs

Suv = Se@)e(v)

16

are also preserved bijectively under the isomorphism for all vertices u, v of G4. Hence, the sign
frequency vectors in lexicographic order for the canonical sign matrices S;* and Sz* are the
same,

(fAilafAi25 seey Aln) - (Bl l, Bl 2, . :/Bl’n)

Since ¢ is surjective, the algorithm finds a value of & such that if vertex v; is the label of row 1
and column 1 of 4 = S4* then vertex @(v;) is the label of row k and column & of B = Sz*. Then,
rows (1, k) and columns (1, k) of B are interchanged. We now use induction on the rows of B to
show that Procedure 2.3.4 matches each row of B with the corresponding row of A. For the base
of the induction, consider row 1 of B. Since vertex v; is the label of row 1 of 4 and ¢(v) is the
label of row 1 of B, the corresponding sign frequency vectors are equal. By counting sign
frequencies, as long as there is a mismatch in row 1, it is always possible to interchange the
columns of B such that row 1 of 4 and row 1 of B are perfectly matched by Procedure 2.3.4. For
the induction hypothesis, assume that rows 1, ..., # of 4 and B have been perfectly matched by
Procedure 2.3.4 such that the vertex labels for the rows 1, ..., t of 4 are vy, ..., v, and the vertex
labels for the rows 1, ..., ¢ of B are @(v;) = v, ..., ¢(v;) = v/, respectively. Since the sign matrices
are symmetric, Procedure 2.3.4 also ensures that the columns 1, ..., of 4 and B are perfectly
matched with the same vertex labels as the rows. Thus, the first entry B; in B that does not
match the corresponding entry 4; in 4 must now occur in row i = t+1 and column
j > t+1. By the induction hypothesis, the subgraph G, of G, with vertices
{v1, ..., v} and the subgraph G5 of Gz with vertices {@(vi) = V', ..., ¢(v,) = v} are isomorphic
under ¢. Thus, there must be a vertex v of G4 outside the subgraph G, such that the
corresponding vertex @(v;+1) of G is outside the subgraph G'. Since there is a mismatch at the
entry By, the vertex ¢(v;+1) must be the label for a column j' > j. Hence, Procedure 2.3.4 will
always interchange rows (j, j') and columns (j, j') of B and repeat the process until rows i =
t+1 of A and B are perfectly matched and the vertex label for row #+1 of B is @(v¢1) = v'i11. This
completes the induction, showing that Procedure 2.3.4 matches each row of B with the
corresponding row of A. Thus, the algorithm finds an explicit isomorphism function ¢(v;) = v';,

ey (V) =V U

2.4.2. Proposition. If graphs G4 and G are not isomorphic, then the algorithm determines that
there cannot be an isomorphism.

Proof. Suppose graphs G, and Gp are not isomorphic. The algorithm first computes the
canonical forms of the sign matrices S,* and Sz*. If the sign frequency vectors in lexicographic
order for S4* and Sp* are different, then the algorithm concludes that G, and Gp are not
isomorphic. If the 51gn frequency vectors in lexicographic order for S;* and Sp* are the same, (

-’Azl, fAzz, . ,fAzn)= (Bl 1,f3l Dy ees Bz »), then the algorithm runs through the final loop for k=1,

2, ..., n and cannot find any 1s0m0rphlsm By Proposition 2.4.1, if G4 and G were isomorphic,

then the algorithm would have found an explicit isomorphism for some value of k. Therefore,
the algorithm concludes that there cannot be an isomorphism. [

From Propositions 2.4.1 and 2.4.2, we have

2.4.3. Theorem. The algorithm solves the Graph Isomorphism Problem. []

2.5. Complexity

17

We shall now show that the algorithm terminates in polynomial-time, by specifying a
polynomial of the larger of the two number of vertices n of the input graphs, that is an upper
bound on the total number of computational steps performed by the algorithm. Note that we
consider

o checking whether a given pair of vertices is connected by an edge in G4 or G, and
e comparing whether a given integer is less than another given integer

to be elementary computational steps. Thus, we shall show that the Graph Isomorphism
Problem is in P.

2.5.1. Proposition. Given a graph G with n vertices, Procedure 2.3.1 takes at most
3n* + 3n steps to find shortest paths from an initial vertex u to all other vertices.

Proof. Initialization takes at most 37 steps. To find the minimum distance of an unknown vertex
from the initial vertex u takes at most n steps and to update the tentative distances takes at most
n steps. There are at most 7 iterations until all the vertices are known. Finally, it takes at most n°
steps to recover the vertices of the shortest paths. Thus, Procedure 2.3.1 terminates after at most
3n+n(n+n)+n* =3n"+ 3n steps. O

2.5.2. Proposition. Given a graph G with n vertices, Procedure 2.3.2 takes at most
7n” + Tn steps to compute the distance d(u, v) in the collateral graph Gluv and the pair graph G,
for a given pair of vertices u and v.

Proof. The graph Gluv also has n vertices. By Proposition 2.5.1, Procedure 2.3.1 takes at most
3n” + 3n steps to find shortest paths from the initial vertex u to all other vertices and at most 3n°
+ 3n steps to find shortest paths from the initial vertex v to all other vertices. Then it takes at
most n steps to determine the distance d(u, v). Finally, it takes at most n” steps to run through
pairs of shortest paths to find the vertices of the pair graph G,,. Thus, Procedure 2.3.2 terminates
after at most 3n” + 3n + 3n” + 3n+ n+n* = Tn*> + Tn steps. (]

2.5.3. Proposition. Given a graph G with n vertices, Procedure 2.3.3 takes at most
7n* + 7n’ + 2n* steps to compute the canonical form of the sign matrix S*.

Proof. By Proposition 2.5.2, for each pair of vertices it takes at most 7n> + 7n steps to compute
the sign s.,. Since there are n” signs, it takes at most n*(7n* + 7n) = Tn* + 7n’ steps to compute
the sign matrix S. Then it takes at most n” steps to compute the sign frequency vector and at
most n” steps to sort it in lexicographic order. Thus, Procedure 2.3.3 terminates after at most 7n°
+ 70 + n*+ n* =Tn*+ 70’ + 2n” steps. O

2.5.4. Proposition. Given a sign matrices S;* and Sp* such that the sign frequency vectors in
lexicographic order (fAil,fAiz, ...,fAin)=(fBi’l,fBi’z, ...,fBi’n), Procedure 2.3.4 takes at most 2nt

steps to terminate.

Proof. Since there are n” entries in Sg*, it takes at most n” steps to find a mismatch (i, /) with the
corresponding entry in S,* in row major order. Then, it takes at most n” steps along the row i to
find a column ;' such that interchanging rows (j, /') and columns (j, j') leads to a mismatch
later in the row major order. This may be repeated at most n” times until either the

18

corresponding interchange column ;' cannot be found or all the entries in the sign matrices are
perfectly matched. Thus, Procedure 2.3.4 terminates after at most n*(n” + n%) = 2n” steps. [

2.5.5. Proposition. Given graphs G, and Gz with n vertices, the algorithm takes at most 2n° +
14n* + 14n° + 4n” steps to terminate.

Proof. By Proposition 2.5.3, Procedure 2.3.3 takes at most 2(7n* + 7n° + 2n%) = 14n* + 14n° +
4n’ steps to compute the canonical forms of the sign matrlces SA and Sp*. If the sign frequency
vectors in lexicographic order (fAil, /giz, s Azn)= (Bl'1, Bl by s f}gi '») are the same, then by
Proposition 2.5.4 the final loop for £ = 1, 2, ..., n takes at most n(2n4) =21’ steps. Thus, the

algorithm terminates after at most 2n° + 14 + 141> + 4n” steps. O
From Theorem 2.4.3 and Proposition 2.5.5, we have

2.5.6. Theorem. The Graph Isomorphism Problem is in P. []

2.6. Implementation

We provide a demonstration program for the Graph Isomorphism Algorithm written in C++ for
Microsoft Windows. The input consists of the files Graph A.txt and Graph B.txt containing the
adjacency matrices of graph G4 and graph G respectively. The program computes the sign
matrices S4* and Sp* in canonical form and determines whether G4 and Gs are isomorphic or
not, in polynomial-time.

r Graph Isomorphism Algorithm L_&J
Graph A Graph B Result Visualizer Examples Help

THE GRAPH ISOMORPHISM ALGORITHM

ASHAY DHARWADKER & JOHN TAGDRE TEVET

Find |zomorphizm

Graph & and Graph B are isomarphic. See result birl for details.

Figure 2.6.1. A demonstration program for Microsoft Windows [download]

19

http://www.geocities.com/dharwadker/tevet/isomorphism/isomorphism.zip�

We show how to write the input for the computation performed in Example 2.3.6:

RPRRRRPROOO
RPRRRRPOOO
RPRRRRPOOO
RPRPROORRER
RPRPROORRER
OCoOoORRRRER
CoOoORRRRER
OCoOoORRRRER
ORRRRRLRRLRO
RPRROOROR
RPOORRORE
RPRRPROOROR
PRRPROOROR
RPOORRORE
RPOORRORE
ORRRRRLRRLRO

Figure 2.6.2. Input for the demonstration program

The C++ program is shown below:

#include <iostream> -
#include <fstream>

#include <string>

#include <vector>

#include <map>

#include <set>

#include <algorithm>

using namespace std;

vector<vector<int> > dijkstra(vector<vector<int> > graph);
vector<vector<int> > reindex(vector<vector<int> > graph, vector<int> index);
vector<int> inv(vector<int> index);

vector<int> transform(map<vector<int>,vector<int> > signmatrixA,
map<vector<int>,vector<int> > signmatrixB, vector<int> vertexA,

vector<int> vertexB, vector<int> isoB);

ifstreaminfileA("graphA.txt");

ifstream infileB("graphB.txt");

ofstream outfile("result.txt");

int main()

{

cout<<"The Graph Isomorphism Algorithm'<<end|

cout<<"by Ashay Dharw adker and John-Tagore Tevet"<<end];
cout<<"http://w w w .geocities.com/dharw adker/tevet/isomorphism/'<<end|;
cout<<"Copyright (c) 2009"<<end|

[~
K1 b

Figure 2.6.3. A C++ program for the graph isomorphism algorithm [download]

The output of the program for the input in Figure 2.6.2 is shown in Example 2.3.6. The next
section shows many more examples of input/output files. The download package also contains a
visualizer for drawing graphs according to the output of the demonstration program.

20

3. PROCESSING RESULTS: EXAMPLES

We demonstrate the processing results of algorithm by solving the Graph Isomorphism Problem
for several examples in cases of recognition the isomorphism and non-isomorphism.

3.1. Isomorphism Cases

We now demonstrate the Graph Isomorphism Algorithm for several examples of graphs in the
hardest known cases.. The first set of examples 3.1.1-3.1.5 consists of isomorphic graphs whose

vertices have been permuted randomly so that the isomorphism is well and truly hidden.

3.1.1. Example. We run the program on isomorphic Petersen [30] graphs A and B as input:

10
0100101000
1010000100
0101000010
0010100001
1001010000
0000100110
1000000011
0100010001
0010011000
0001001100

POOORORLROOOO
OO0OORrRORrRFLPOOO
PORPPOOOOOO
OO0ORrRPROOOO0OO0ORR
PRPOOOOOORrO
ORPORrPROOOOOR
OO0OO0OORrROORrRERLO
ORrPrO0OO0OO0OOFrRrLrOO
OORrRPRORFLPROOOO
OO0OO0CO0OORrORrOR

The algorithm finds an explicit isomorphism, shown below.

21

Figure 3.1.1. The bisymmetric and strongly regular Petersen graphs are isomorphic

3.1.2. Example. We run the program on isomorphic Icosahedron [31] graphs A and B as input:

0O0000O0dA—AdAA—HO
0O00O0OAddHOOHOH
OO0 HAH1OOOHAO A
OCO0O—Hd+100O0O—HO0O—10
O -H1O0O0OO0O-1O0OH0O
—HOO0OO0O0OdHOHOOdAH
1O O01O0-1000-H0
[eR o NoR NoR NoNoNoR_ K _Ne
OHd-"dO1000dA+H00
O 1000 "A100O0
O A dAdHOO0OO0OO0O0O

ﬂOllOOlllOOOO

4100 -H000—"—+H00
OO0 11O Addd000O0
L EeNoNoR_ER-NoloNeoNaR |
A 100001000
O-ddd10000+H0O-A0O
O0O0OddHOOOHAHAO
1O 10001000
O-HO-Hd0O0OHO0OO-HOd
el _NeoloR_NoR_R_NoNok_Ne)
sieleololoR _NoR_R_Nok_Ne)
[eNoNeoRoR _NoNoR_ R NoNel]

nl/.OOlOOlOOllOl

The algorithm finds an explicit isomorphism, shown below.

Figure 3.1.2. The vertex- and edge-symmetric Icosahedron graphs are isomorphic

22

3.1.3. Example. We run the program on isomorphic Ramsey [32] graphs A and B as input:

O 1000 A1 1000100
OO0 0O0OA1000"10A—+HO
O-d000dd100O0 10 dd0O
100011000 —H1O0O A0 dA-d0
OO0 1HOOOd1O0OAdAd1O0OAHO
OCO0Od"1000dO0A"10d+10d0
Odd100 010 d 10O A1 0+H0O0
OO0 10110 d101400O0
[pEecleNol _NoR_R_oNol_R_oNoR_NoNoNel_]
COO0OHHO A 1O A—HO 1O OO -
OCO-HdO A1 0O A 1010000
O-dO0O A0 A0 —1000-wA+d0O0
O A1 0 dd1010001H4H00O0
Od 1010100011000«
A O A 101000110000
1O A 101000 A1 000-H0O

NOllOlOOOllOOOlOll

000100 HdO0OAddAdAHOHOO
10010 dd10 1410140000
14104000010 Hd000Od
O dO0O 1A 100" 10140000
O O00000O0OdO—dO A
Odd000dd 1000 Ad100d
sEeR o NeoR _Nol_loR_NeoloNeoNoNaR_R_RK_|
OO0 HdAdAd 100000 A1 O
OO A1 00100 A1 O100O
A OO A 1O 1001000 H0O
OO0-HHOO0OHd OO0 A A1 00O
O A—T1O0O O A 1010001100
Oddd10000—dd—1O0OO0OA0OAO
OO0 0 ddO0ddd0O000Hd0OdHA
OH100dH"dH1000Ad—H4O0OAH0O0O
OO0 -dHdH1HO0OO0O-1000dAH0OA—HO

NOOOOOlOllOlOllllO

The algorithm finds an explicit isomorphism, shown below.

Figure 3.1.3. The self-complemented, bisymmetric and strongly regular Ramsey graphs are

isomorphic

23

3.1.4. Example. We run the program on isomorphic Dodecahedron [31] graphs A and B as

input:

OCO0OO0O0O000O0O0O0O0O0O-HOOHOO-HO
[ejoloNojoooNololaol_ o ojoNoNoNal NoR|
OCO0OO0O0O0O00O0OHOO0OO0OOOOO-HO-A0O
OCO0OO0O0O0O0O-HOOOOO0OOOOHO-H0OO
[ejojojojojojojojojojoNojooR Noi_NoNok_|
OO0OO0OO0O0O-1000000O0OHOHOOO0OO
100000000000 -HOHOOOOO
OCO0OO0O00000O0O0O0-HO0OHOOOOO
O-d0000000O0-HH0-HO0OO0OO0OO0OO0OO0OO0O
OCO0OO0O0O0O00O0O0OHO1OOOOOO-0O
OCOHHO0OO0OO0OO0OO0OHOHOOOOOOOOO
OCO0OO0000O0HOHOOOOOOO-O0OO
OCO0OO0O-H0O0HO10O00O0OO0OOOOO0OO0OO0OO0OO0O
OCO0O0O0O0-0OH1000O0OO0O0O0OO-00O0
OCO0OO0O0O-O0O-HOO0OO0OO0OO0OO0OOHOOOOO
OO0 0000000O0O0O0000O0
OCO0O-HO-"10O0H100000O0O0OO0O00O0O0
OO0 0000-1000O0O0O0OO00O0O0
O —"100000000-1000O0O000O0
m01001000000001000000

OCO0OO0O000O0O00O0O-HOOOO-0O0OH0O
OO0 0O0H10000O0O0OO0OO0O00O0O
OCO0O0O-0O0HO100O0O0O0OO0OO0OO0OO0OO0OO0O
OCO0OO0O00O0O-HOOOOHOOO-OOOO
OCO0OO0OO0O0O0CO0O0OO0OHOOOOOOHOOH
OO0 O010000-1000000O00O0O0O
0001000000010 00O0O0O0O0
OCO0OO0O0O0O0CO0O0OO0OHO0OHOHOOOOOO
OCO0OO0O0O000O0O-HH0O0O0OHOOO-HOOO
OCO0OO0OO0O0O0O0O-HO0OO0OO0OO0OOOHOOOO
OO0OO0000O0O-HOO0OO0OOHOO-OOOO
OCO0O0O0O-00000O0HOOOOOHOO
OO0 00O0O0O0OdHOOOOOOOOO
OCO0OO0O0O0O0O0O000O0O0O0O0O0O0HHAAHO
1000000000000 -10000O0
O-H1000000-1000O0OH0O0O0OO0OOOO
Odd1000000000O0O000O0-HOO
OCO0OO0OH0O0OO0OO0OO0OO0OO0OO0O0O0OHOOOHO
OO0 ddd00000O0O0O0OO0O0O0O00O0O0O
m00000101000001000000

The algorithm finds an explicit isomorphism, shown below.

Figure 3.1.4. The vertex- and edge-symmetric Dodecahedron graphs are isomorphic

24

http://www.geocities.com/dharwadker/tevet/isomorphism/main.html#8

3.1.5. Example. We run the program on isomorphic Coxeter [33] graphs A and B as input:

1000000000000 00O0OHOOOOOOOOOOOHO
OCO0OO0O0000O0O00O0OTOO0O0O000O0O0O0OO0OO0O0O0O0COHO
[eloloNoloNoR_NolojojojoojojoloooojoNooooNoNoR_Noi, No]
OCO0OO0O0000O0O0000O0O0O0O0O0O0O0OHOOOOOHOHOO
OO0 00000000O0O0O0O00O0O0O0O0OO0OO0O0O-HOHOOO
OCO0OO0O0000O0O0000O0O0O0OHOOOOOO0OO-HOHOOOO
OCO0OO00000O0O0O0T0O000O0000O0O0O0OHOHOOOOO
OCO0OO00O0H1000000O0O0O0O0O0O0O0O0OHOHOOOOOO
1000000000000 00O0O0O0O0O0HOHOOOOOOO
OCO0OO00000O0O0000O0OHOOOOOHOHOOOOOOOO
OCO0OO0000O0O0O0000O0O0O0O0O0O0OHOHOOOOOHOOO
OCO0OO000000O0O-H0O00O0O0O0O0TOH1HO0OO0OOOOOOOO0OO
OCO0OO0O0O-00000000O0O0O0H1O0OHOOOOOOOOOO0OO
OO0OO00000000O0O0O0O0O0OHOHOOOOOOOOOOO
OCO0OO00000O0O0000O0O0OHOH1OOOOOOO-HOOOOO
OCO0OO0O0O00O0OHOOOOOHOHOOOOOOOOOOOOOO
OCO0OO000000000O0HOHOOOOOHOOOOOOOOO
OCO0OO0O-HO000000O0-"O100000O0O0OO0OO0O0OO0O0OOO0OO0O
OCO0OO00000O0O0O0TO0O1000000O0O0OO0OO0O0O0O0OO-HO0O
OCO0OO00000O0O0HOTO0OO00O0000O0O0OO0OO0O-0OO0OOO0OO0O
[ejejojojojojojoh_ Noih jojojojojojojol NeojojojojojojojojojoNa)
O O0O000O0HO1000000000O0O0O0OO0O0O0O0OO0OO0O
OCO0OO000O0HOHOOOOO-10O0OOOOOOOOOOOOO0OO
OCO0OO00O0HOHOOOOOOO0OO0OO0OO0OO0OOO0OOO0OO0OO0OO0OOHOO
OO0OO0OO0O-1O0O10000000O00O0O0O0O0O0O0OT0O0O0O0O0OO0O
OCO0OO0O-HOd0000000O000O0-T0OO0O0O0OO0O0OO0O0OOO0OO0O
OCO-HO1000000O0100000O0O0O0OO0OO0O0O0O0OOO0OO0O
OdO0O—"10000000O000O0O0O0O0O0O0OO0OO0OO0O0OHOOOO
1O 1000001000000 0O000O0O0O0O0O0OO0OO0O0O00O0O0O
nwOl0000000000000000000100000001

OCO0OO0O00000O0O00000O0O0O0OHOTOOOOOOOOHO
OCO0OO0O00000O0O0000O0O0O0O0O0O0O0O0OHOOOHAOO
OO0 000000O0O0-1000O0O0O000O0O0O0O-HOOOOOO
OCO0OO0O0O0O-100000000O0O0O0O0O0O0O0O0OO0OO0O0OHOOHO
OCO0OO000000O0O00O0-T0O0O00O00O0OHOOOOOHOOO
Od0000-1000000000O0H1H0O0O0O0OO0OO0OO0OO0OOO0O
OO0 00000O0000O0H100O0OO0OO0O0O0OO0OO0O0O0OHOO
[ejoNololoolol _NeolojojoooR_NolojojojooolojojooNoNok_ No]
OCO0OO0000000O0OHO0O0OO0OO0O0OHOOOOOOOOOOOO
Odd 0000000000000 O0000O0O0O0OO0O0O-HOOOO
[ejoNolooooNoolol_ooooR_JojojojooojolojooNoNoNai_]
OCO0OO0000O0-H1000O0O0O-10O0O0O0O00O0OHOOOOOOOO
0000000000000 0O0O0O0O0O0OO0O0O0O0OHOOOO
OO0OO0O0O0OHd+HOOOO0OO0OO0OO0OO0OO0OOO0OO0OO0OO-TOO0OOO0OOOOO
OO0OO0O0O000O0HdHOOOO0OO0OO0OO0OO0OO0O100O0OO0OO0OO0OO0OOO0OO
OO0OO0O-1000000O00O0O0O0O0O0O0O0O0O0O0OHHOOOOOO
"0 0000000000-T0000O0-100O0O0O00O0O0O0O0O0
OCO0OO000000O0HOOOTOO0OO0OO0OO0OO0OO0OO0OO0OO0OO0O-HOOOO
OCO0OO0O0O0-"1001000000O0DO0O00O0O0O0O0OO0O0O0O0OHOO
OO0O10000000O00O0O0O0O0O0O0O0OHOTOO0OO0OO0OO0OOO0OO
OCO0OO0O-H0O00O000O00O0-1001000O0O0O0OO0OO0OO0OO0O0OO0OO0O
OCO0OO0O0O-H00000O0-100O01000O0O0O0ODO0OO0OO0OO0O0OO0O0O
OO0OO0OO0O10000000O00O0O0O0O0O100O0OHO0OO0OO0OO0OOOO
OCO0OO0O-100000000000O0O-HOOOOOO0OO-O0OOOO0OO
OCO0OO0000O000O0O0-000O0O-HOOOOOO0OO0OO0OO0OHOOO
Od00000dd100000000D000O0O0O0OO0O0O0O0O00O0O0O
OCO0OO000O0-O0OO0-HO0OO0OO0OO0O10000O0O0O0O0OO0OO0OO0O0OO0O0O
OCO0OO0000O000O0O-H0O0OO0OO0O0O0O0O0O0OHOOHOOOOOO
OCO0OO0OO0O10000000O00O0O0O0O0O0O0OHOOOHOOOOO
%000000000000010001000000000100

25

The algorithm finds an explicit isomorphism, shown below.

OCO0OO000O0000O0O0-100HO A0
OCO0OO0OO0O0O00O0O0O0OHOOOOHAdAHOH
OCO0OO000O00O0O0OHOOHOOO1O
OCO0O0OO00O00O0OHOO0OO0OOHO0OOO A
OCO0O0O00O0O0O1000O0Oddd000-H0
[ejojojojojaol _Neojojojolok R Noi_ NoloNal}
OCO0O0O0O0OH00O0OO0O0OO1O0Ad1d100O0
OCO0O0OO0O100000O0O0O0AdAd10+10O0
OCO0O0O-HOOOO A0 O0OOO0OO0OOO0OO -
OO0 000O0Hd-"1OHOOOOOO-H0O
O-HOO0OO0OO0OO0O0OHOAHOOOOO-HOO
HOO0OO0OO0OO0OO0OO0OOAddHOOOOH0O0O0O
OO0 dddd1000000O0O0O1000O0
OCO-HO 010000001000 O0O0O
OO0 0"dd100000+H000O00OO0O
0000 dAdd10000-"1000O0O0O0O0O
HAA 1000010001000 O00O00O0
1O 1001000100000 O0O00O0
O A 1010001000000 O0O00O0
m01111000100000000000

26

Figure 3.1.5. The vertex- and edge-symmetric Coxeter graphs are isomorphic

The second set of examples 3.2.1-3.2.4 consists of graphs that are not isomorphic and yet have a
very similar structures, hence deciding that they are not isomorphic in polynomial-time

demonstrates the power of the algorithm.
3.2.1. Example. We run the program on non-isomorphic Praust [34] graphs A and B as input:

3.2. Non-Isomorphism Cases

OCO0O0O0O0O100000O0O10HO0OO A0
OO0O0OO00O00O0O0O0O-HOOHAOHAAHOOH
OCO0O0O00O0O0O1000O010HdOHO0OOdA
[ejojojojojojojol, jojojolol, Noi, Noi_R No}
OCO0OO00O000000O0-HOAHO 10O
OCo0oo0oo0O0OO0OHOOOOOHOOHOHO
OCO0OO00O0000O0-100HO0OOHA10-H0O
OCO0O0O0O1000000O0O0OAdHdOOHOd
OCO0OO0OHO0OO0OO0OO0OddHOOOOH0OOOO
OO0-HHO0O0O0O0O0OAdHOHOOOOOOH0O
el Neolololololoh_NoR_R_oNok_NololoNoloNe}
slieleololololoNoNoRoRoRNololoNoR_NolleNe)
OO0 dddd100000O0O0O00O0-H0OO
OCOr-HOAdd0—100000O0O-H10000OO0O
O OO0 d+"100000O0000O0O
1000000001000 O000O0
1000010001000 O0O0O0O0O0
T O 1001000100000 O000O0
O A1 0100010000000 00O0
NOIllIOOOlOOOOOOOOOOO

so their

b

Graph A and Graph B have the same sign frequency vectors in lexicographic order

structure is very similar. The algorithm determines that the graphs are not isomorphic, shown

below.

Figure 3.2.1. The vertex-symmetric Praust graphs are not isomorphic

27

3.2.2. Example. We run the program on nonisomorphic Mathon [35] graphs A and B as input:

OO0 A0 dd1000000O00000O0O0O00O00O0
OO0 ddd0O0O100000O0O0000O0O0O00O00O0
OCO-HOO0OAddd1000000O00000O0O0O00O00O0
OCO0O-HO1000Ad1000000000O0O0O00O00O0
OO Hdd1O01000-1000000000O0O0O00O00O0
Od 000 dd010000000000O0O0O00O00O0
OO0 00H1O01000000000O0O0O00O00O0
OO0 0d100-+1000000000O0O0O00O00O0
Od-d1O0000dd10000000000O0O0O00O00O0
1000000 dd1000000O0O000O0O0COO0O0O
0000101010000 00O0O000O0O0COO0OO0O
1001000100000 00O0O0000O0CO00O0O0O
OO0 1010000000000 O000O0O0COO0OO0O
T 00 d-1000000000O0O0O0O00O0O0CO0O0O0O
TATA A1 0000000000000 O0O00O0O0CO0OO0O
OCO0OO0000000000O0O0OHAHOA"1O0OA100O0
OCO0OO0000000000O0HOHAHOOHOH0O 0O
O000000000O0O0O0OHHOHAOHOOOHO
O0000000000O0OHOOHOHOHOOHO
OCO0OO00000O000O0-00-HOO0OO0OOHAHAO A0
OCO0OO0O0O000O0O0O0O0OTHOOOOOHOOAHO A
OCO0OO00O000O00O0-00HOO0OO10O0OHOO
OCO0OO0O0O000O0O0O0OHO0OHOOOHOOOAdAAdAH0OO
O00000000O0OHHOOOOAHAA10O0OO0O0O0

%0000000000111111000000000

OO0 IO dd1000000O00000O0O0O00O00O0
OO0 ddd00O0O-1000000000O0O0O00O00O0
OO0 O0ddd100000000000O0O0O00O00O0
OO0 -1000d+1000000000O0O0O00O00O0
OO ddO0Od00100000O0O0000O0O0O00O00O0
O 000 dd010000000000O0O0O00O00O0
O O0OO0-d00 1100000000000 O0O00O00O0
OO0 0d100-+1000000000O0O0O00O00O0
Odd10000H10-1000000000O0O0O00O00O0
1000000 Add1000000O0O000O0O0COO0O0O
0000101010000 00O0O0000O0CO0O0O0O
0010001000000 0O00000O0CO0O0O0O
O 1010100000000 O0O0O0O000O0COO0OO0O
T 00 d10000000000O0O0O00O0O0CO0OO0O
TATA A1 0000000000000 O0O00O0O0CO0O0O0O
OCO0OO0O0000O0O0000O0O0OHAd1000—H0O—H0O
OCO0OO0000000000O0HOHOOAAAH1OOO
O00O0000000O0O0O0OHdHOHOHOOOHO
OO00O0000000O0O0OHOOHOHOHOOHOH
OCO0OO00000000O0-0O0-HOOOOHAHAO A0
OCO0OO0O0000O0O0O0O0OTHOOOOOHOOAHO A
OCO0OO0O0O00000O0-00HOO0OO10O0OHOO
OCO0OO0O0000O0O0O0OH1HO0OHOOOHOOOAdAAdAH0OO
O00000000O0OHHOOOOAHAAA10O0OO0O0OO0O

%0000000000111111000000000

Graph A and Graph B have the same sign frequency vectors in lexicographic order, so their

structure is very similar. The algorithm determines that the graphs are not isomorphic, shown

below.

28

http://www.geocities.com/dharwadker/tevet/isomorphism/main.html#8

Figure 3.2.2. The bipartite Mathon graphs are not isomorphic

3.2.3. Example. We run the program on nonisomorphic Weisfeiler [36] graphs A and B as

input:

OCO0OHdO0O0OAdddO0OHOOAdO0O A 1000 A0 AHO
O0HdO0OHO A 1O A 140001010 ddO0OHOOH
O0dO0 110 1100101000110 1100 d
OO0 HdHO0OO0OHOHOOAddHOOOAdOOAAHO
OO0 1101000 A 1100 "Ad1O0 14O 1400 A0d
OO0 dd 100010 —HdOAdO0OOAAd1O0OOAdO O
O+H00O0OdAdAddO0O 14000 A 101000 AAHO
O—100 10 dO0O1dd0 1000 A 10 Add—10O0dH0O0O
Od0O0A"1O0O0OAddO0OO0O A A 100101000
Od0d100 11001011000 Add10O0O0OdA
O—10 101000 A 11010010 HdO0O"Ad0O0 O
OO0 11001000 A0 ddd0000AdAH0OH
0000110140 414010 A 10010100 d
sEeleoloR_NoR_NeoloR_E_NeoR_E_RE_leolol_loNeoR_R_EK_NeoNe)
aleNeoNoR_R_NoR NeleoNeoR_R_NeoR_ R _NeNeR_RE_E_ NeoNeoR_ Neo)
100100 A A 10010010 A-1O00—100O -
0010 -H1O0O 101001000 AdAdAOAH0OO
00O A1 000 A dd100 101001000
4100000010110 0H1O0OA10O0O A0 A
A1 100000101010 A0 A0 A0 A0 A0
A 10000100 110100 dd1O0100AH0O
A 10000 dd-d1000dAd1000"Ad+100O0
AT O A A A 1000000000000 Ad A
O A dddd1000000dddddd0OO0O0O0O0O0O

To]
NOHAA-ddddddddd 1000000000000

29

http://www.geocities.com/dharwadker/tevet/isomorphism/main.html#8

25

0111111111111000000
101111100000011111

-
-
-

1101111000000000000111

[eNeR]
o -0
O
— O O
— O
—— O
[eoNeR]
[eR_Ne)
O
— OO
— O
—— O
[eNeR_]
[eR_Ne)
O -
— OO
— O
— O
o oo
o oo
o oo
[oNeoNe)
-
-
-

A1 000—d—d10—
A0 A1 000+d0-
Od—100—1000+H0O
010110400
OO0 dd0O0A+1000
OCOO0OHO A0
1O A1 000dA-d0
O A 1010100
[cNoR_R_NoNeoR_R_R- Nole]
41 O0OO0O0OAdAdd10O0
OO0 O A1 00O
O-HdO0OOHdOHdO0OO
OO A A1 010
—HO0Od1 01010 d+H0O
O-HHOOOddAAdd100
—TATA 10001000
OO0 -"100—d0O
OO0 d100+H0-H0O
OO0O0O-HOAHOOHO
OO0O-d1O 1O HAO O
OO0 dd1O0Od100
Od-"dd100O0OddAHO
10000000000
1000000
A ddAdA4A40000

OCO0OO0OO0OdA+dA-H0O

—
—

010010
100010

01
01

00
11

11
10

01101010010101110

0 1

0 1
10100011011000111011

01
111
00O

— O
oo
oo
- O
ooo

o

1

o
o

0O
oo0od
OO
-+ 0OO0
O+ 0O
OO
——+4 00
OO
OO
— OO
OO
[cNoNoR_]
—+4 00
— O -0
[cNoR_Ne
O
O
—A O -
OO
O+ +H0O
O OO
L I
oOooo
oOooo

Graph A and Graph B have common pair signs but different sign frequency vectors in
lexicographic order. The algorithm determines that the graphs are not isomorphic, shown below.

Figure 3.2.3. The self-complemented and strongly regular Weisfeiler graphs are not isomorphic

30

3.2.4. Example. We run the program on nonisomorphic Siberian [9] graphs A and B as input

A4 110000010 AH100000—+10OH00000O0+HO0000O0—+0OO0 =00
4H000H0+H0000HOHOHO0O0OO0OHOOHO0OO—HO 1000000 =00
OC0O0HHOO0OHO A0 1000000000010 000O0HOH0OO0OOHO =
440000 H0+H000HH10+H000HOO0OH0OO10O000O0—H0O00O0O—H0O
0OH000HOHAAA1000 40000000 AddO10O000000O0O0O0O0
4000 HOOHdH1000000+dH1OH000—H000000H+H000000O«
HO0H00000HOAHA00H00O0O+dHOH0O0O 10000 HO—H0O0O0O0OO0O0O
0000 HAH0O0OHH10000AHO0OAdAA100000000000000O—HOO
OHOHdAd1Hd0000000000~+H00000+HO0O+1000000—d—H0O+4000
OCO0HOO0OOHOOOOOO0O0O0OH0OO0OO0OHOO0OAHOAHO A0 00O —HOO=HHO
400 H0O0OHH00H00H0O0O+H0O0O0H0O00O0O—HO+HOO0OH0OO0O—H40O0O0O00O
HO0HO0HA 1000010 H000OH10000—10O100000000000O-HO
0000 HAHOH00O0OHOH0O0OO0O—H0O0O0OH0O0OO0O00OHAH000O0O—H00O -
OC0OHHO0OH00O0OHdHAOHAdd0O 1000000000000 HAH0000000O0
OCO0OHHAH0000H0OO0H0O0OO0O+HO0OO0OHO000O0OH00O0AH10000O0—++4000
000000000 -HO0O0000O0HHOHOHO0OO 10000 A—HO0OHOHO A =HO
OH0OH000000HOO0OHO000OHFHOAH00OO0O0O0—HOH0O0O—H—+H000O0
400 HH000000000AH0—HOO0OAH10O 4100100000000 —H00O0
OCO0OHHO0O0OHddd00 1000000000 H100000000+A—H0000HO
O+4H100H0+H00000H00O0O—HOHOOHOH0O0O0O0OH0OO0O+H0O0000O -
00000 HOOOOOHHOH0O0OO0OO0O0OHOOHOHd000O0OHOAA—HO0OH400 0
000000000000 HHOAH0O00000AH00HHd00+ddd00000O«
000000 HOHOHAAHO00O0O+H00O0HOHOHO 40O +400000—+0000O0
OO0 H000O0+H0000O0HAH0d1000000—1000H0OO0O 404000 HO
40 H0000+H000HO000O0O+HO0O—+4000 10004000 HOH0O0O—+H4000
0OH00H000O0OHOHOHO0O0O+HO0O0OHOO0OH00O++H0O0000O—H000O0HO
0000000 HdHI0000H000—HOH0O0O 100 —HO 41000000 —A=H00O
0000000 HOOHO0O00O0O0OHddTHAOHO0O0Od"d10000000O0—HO =
000 HOOHH00000O0AH0 40100000000 —H0000—HO0O—H0OHO =
4400 H0000000HO0OO0O0O—HO000O0—H0O0—+H00H0O0OA—H0O 40 H0 0
00000 H00000O0HH000000HO0OAd{d00000HO0O—d—H000O
OC0OH0O0OH0OO0O0O000O0OHOOA—HO0OO0OH0000O0OHO000O0dddA=A00
0000 HOOOOOOHAHO 40000 HAH1000000O0HO—HO0OH—H0O0HO
0O+H0000000HO 100000 —HO00O0H0000O0HAddd100O0+400 0
00 H0000+H000000000O0HAH0000O0+dAA00—AH00 4000
OC0OH000O0OH0OO0OHO0OO0OH000000O0HO0O0OHOAH0O0—AH0 400 H0 0
00000 HOOO0OOHOO0O0O0OHO00OOAAd0d"d00 10400000 —HO =
0OH00H0O0OO0O+H000000+H000O0AH000d—H0OH0H00—400000O-
0OC0H00O0OHO0O0O0OHOO0O0OHO+HO00O0OH0OO0O 10000000 —H00O0—HHO =

QOO000+H000HH0000H000000H0000044000 040

A4 10000040 4100000101000 000—+1000000—H0O0 =00
4000 HO0OH000O0OHOHOH0O0O0OOH0OOH0O0OO—HO 1000000 0O
0O0O0OHH0O0OO0OHOHHO0OH10O000000000H0O000O0O—HOHA00O0HO
40000 H0OH00O0OHAH0OH000HO0O0OH0OO0OH40000O0HOO0OOOO—HOO
0OHO0O0O0OHOHAAAAH000 10000000 HdA10H0O00000000000
H1000HO0O0OHHH1000000+AH1OH000H00000O0HAH00000O0OH
0100000 HO0OAH100H00O0OdHO 10010000 HOHOO0OOOOOOO
0000 HdHIO0O0HAH0000 A0 AAdH1000000000000000=H00
OHOHAddd10000000000H0O000O0OHOHO0OO0O0OO0OOHHOHO OO
0O0OHO0OO0OO+HOO0O0000O0OHOO0O0OH0O0OHdAOHHO0O {40000 HOO A0
€00 HO0O0OHH00+d00H0O0O+H000OHO0000—H0O 100100 {00000
HO0HO0HAAH10000H0H00O0—4H1O0000—H0OH400000000000OHO
0000 HdHdO0OH00O0HO0O—1000H0O0OO0O—+1O00O000O0O+H—H0O000H00O
0CO0HHO0H000HA0dddd0O 1000000000000+ H0O0000000
0O0HHH0000H0OO0O+H00O0OHO0OO0OH0O0O0OO0OHO00OO0O+H+H0O000O0H+H000
000000000 HOOOO0O0OOOHHOHOHOO0OHO000O0O—H—HOHAOHO =d O
0OHOHO0OO0OO0O0O0OO0OHOOHO0OO00OOHHO0OdH100000H0O—H000HH0000
00 HH1000000000H10HO0O0OA10 1100100000000~ 000
0CO0HH0O0OHdAAH100 4000000000+ 10O000000O0AH000 0O
OHH00+H0H00000+H000HOHO0O0O—HO 1000040010000 0O
00000 HO0000O0HHO 100000400 Hd0OH000O0O—HOAAHO0O 4000
000000000000 HHOAH1000000AdHA00AH0O0dAH10000O0
000000 HOHOAHH00O0H00O0OHO0O 4O HO0OHO+H0O0O0O0O0OHO0OOOO
0OHOH0OO0OO0OO0OHO0OO00OO—HHOHAH00000O0H0O0O0O—H0O0HOH0O0 OO
HO0H0000+H000H0000OHO0O—Hd000H00O0O—H00O0—HOH0 O #0000
0OHO0OO0OH0O0O0OO0OHOHOHO0OO0OHO0O0OH0O0O—+HO00OO0OHH0000O0H000 OO
0000000 HAHO000O0O—HO00O0HO0OH0O0Hd0O0HOA—H400000O0A=H00
0000000 HOOHO0OO0O0OOHAHOHO00O0OHA1H10000000O0HO
0C0O0OHOOHH0O0000O0O—+HdOHO0OH00000000—H000O0HOHO HO
4400 H0000000—H0000—H00000H00O—H0O0HO0OO0OA—HO0O =40+ 0
00000 H0O0O0O00OO0OHH000000OHO0O0OAdH00000HOd—H000O«
0C0OHOO+H0O00000O0HOO0OHAH000O—H00000H0000O0OHAAA=H00
0000 H00000O0OHdHIO 4000044000000 0—H0O—H00OHH00 -0
0OHO0OO0OO0OO0O0O0O0OHOHOO0OO0O0OOHOO0OH00O0OOHAddddd000H000
€00 H000O0OH0O000000000HdHO00000ddHdO0O0OAH00 4000
0C0OH0O0O0O0OHOOHOO0OO—HO00O0000O0O—HO0O0HOAH0O0O 410 H00 =400
00000 -H0000O0H000O0HOO0O0O0OAddTHdOAH0O0O 40400000 =0
0OHO0OO0OH00OO0OH0O0O000O0HO000O0+dH000HAH0+H0O—+400H0000O0
0C0H00OO0O+HO00O0OH0OO0O0O—HOH000—H00 40000000 —+0O0OAdO

-

QOO000H000H+40000+H000000H000004H000"~0H0d

Graph A and Graph B have the same sign frequency vectors in lexicographic order, so their

structure is very similar. The algorithm determines that the graphs are not isomorphic, shown

below.

31

http://www.geocities.com/dharwadker/tevet/isomorphism/main.html#8

Figure 3.2.4. The bisymmetric and strongly regular Siberian graphs are not isomorphic. It was
a more complicated case for isomorphism testing.

32

References

[1] Filosoofia leksikon, Tallinn, 1985.
[2] Hosas dunocodckas sunukioneaus, Mocksa, 2001.
[3] H. Schmidt, Philosophisches Worterbuch. Stuttgard, 1991.

[4] S. Toida, Isomorphism of graphs — Proc 16™ Midwest Symp. Circuit Theory, Waterloo, 1973,
XVIL5.1-5.7.

[5] R.C.Read and D. G. Corneil, The graph isomorphism disease. — J. of Graph Theory, 1 (1977), 339-
363.

[6] G. Gati, Further annotated bibliography on the isomorphism disease. — J. of Graph Theory, 3
(1979), 95-109.

[71 B. Bollobas, Modern Graph Theory, Springer, 1998.
[8] C. Hoffmann, Group-Theoretic Algorithms and Graph Isomorphism. Springer, 1982.

[9] M. Netchepurenko et al., Algorithms and programs for solution of problems in graphs and
networks, Novosibirsk, 1990.

[10] G. Kobler, H. Schonig and J. Toran, The Graph Isomorphism Problem: Its Structural Complexity,
1993.

[11] L. Babai, http://cs.mu.o0z.au/481/Author/BABAI-L.

[12] G. Tinhofer, M. Lddecke, S. Baumann, L. Babel, STABCOL, Graph Isomorphism Testing on the
Weisfeiler-Leman Algorithm, 1997,
http://citeseerx.ist.psu.edu/viewdoc/summary/dol=10.1.1.56.6704

[13] C. V. Raj and M. S. Shivakumar, 2008, http://www.informatik.uni-trier.de/ ~ley/indices/a-
trees/S/Shivakumar.M=_S=html

[14] N. Chistofiedes, Graph Theory: An algorithmic approach. Academic Press, 1975.

[15] S. Pemmaraju and S. Skiena, Computational Discrete Mathematics: Combinatorics and Graph
Theory with Mathematica®, Cambrige University Press, 2003.

[16] E. Reingold, J. Nievergelt, N. Deo, Combinatorial Algorithms: Theory and Practice, 1977.

[17] V. Arvind, P. P. Kurur, Graph isomorphism is in SPP, 2006,
http://www.portal.acm.org/citation.cfm?1d=1149036

[18] F. Harary, Graph Theory, Addison-Wesley, 1969.

[19] R. Wetzenbdck, Invarianten-Theorie. Groningen, 1923.
[20] S. Locke, www.math.fau.edu/locke/isotest.

[21] A. Zykov, Ocnoevr meopuu epaghos. Mocksa, 1987,

[22] H. Hermes, Semiotik: eine Theorie der Zeichengestalten als Grundlage fiir Untersuchungen von
formalisierte Sprachen. Leipzig, 1938.

[23] John-Tagore Tevet, Structure Semiotic Approach to the Graphs. S.E.R.R., Tallinn, 2006.
http://ester.nlib.ee:80/record=b2367627~S1*est

[24] The Oxford Companion of Philosophy, 1995.
[25] L. Meos, Filosoofia pohiprobleemid. Tallinn, 1998.

[26] Ashay Dharwadker and Shariefuddin Pirzada, Graph Theory, Orient Longman and Universities
Press of India, 2008.

33

http://cs.mu.oz.au/481/Author/BABAI-L.
http://citeseerx.ist.psu.edu/viewdoc/summary/dol=10.1.1.56.6704
http://www.informatik.uni-trier.de/%20%7Eley/indices/a-trees/S/Shivakumar.M=_S=html
http://www.informatik.uni-trier.de/%20%7Eley/indices/a-trees/S/Shivakumar.M=_S=html
http://www.portal.acm.org/citation.cfm?ld=1149036
http://www.math.fau.edu/locke/isotest
http://ester.nlib.ee/record=b2367627%7ES1*est

[27] John-Tagore Tevet, Recognition of the Structure, Symmetry and Systems of Graphs, Baltic
Horizons, No. 8 (107), Special Issue Dedicated to 270 Years of Graph Theory, 2007.

[28] E. W. Dijkstra, 4 note on two problems in connexion with graphs, Numerische Mathematik, 1,
1959.

[29] P. Turan, An extremal problem in graph theory, Mat. Fiz. Lapok, 1941.

[30] J. Petersen, Die Theorie der reguldren Graphen, Acta Math., 1891.

[31] Plato, Timaeaus, circa 350 B.C.

[32] F.P. Ramsey, On a problem of formal logic, Proc. London Math. Soc., 1930.

[33] H.S.M. Coxeter and W.T. Tutte, The Chords of the Non-Ruled Quadratic in PG(3,3), Canad. J.
Math., 1958.

[34] John-Tagore Tevet, Constructive Representation of Graphs: A Selection of Examples, S.E.R.R.,
Tallinn, 2008. http://ester.nlib.ee:80/record=b2161461~S1*est

[35] R. Mathon, Sample graphs for isomorphism testing, Proc. 9th S-E. Conf. Combinatorics, Graph
Theory and Computing, 1980.

[36] B. Weisfeiler, On Construction and Identification of Graphs, Springer Lecture Notes Math., 558,
1976.

34

http://ester.nlib.ee/record=b2161461%7ES1*est

