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Abstract. A mathematical model for predicting the vibrational response of a non-homogeneous visco-elastic rectangular plate was 
developed to assist design engineers and researchers. In the presented model, thermally induced vibrations of a four-sided 
clamped rectangular plate of non-uniform thickness is discussed. Non-homogeneity in the material is characterized exponentially 
in Poisson’s ratio while temperature variation is considered bi-parabolic. A boundary value fourth order partial differential 
equation of motion is formulated for the parabolic tapered rectangular plate. Visco-elastic properties of the material are of Kelvin 
type, and deflection is considered small and linear. This paper focuses on the effects of structural parameters, i.e. thermal gradient, 
taper constant, aspect ratio, and non-homogeneity constant on the vibrational behaviour of rectangular plates. The Rayleigh–Ritz 
method is used to obtain results for the time period and deflection for the first two modes of vibration. Comparison of the results 
of the present paper with others available in the literature is visualized with the help of graphs. 
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Nomenclature 

 

a  – length of the rectangular plate, m D  – visco-elastic operator 
b  – breadth of the rectangular plate, m   – density of the plate material, kg/m3 

,x y  – co-ordinates in the plane of the plate t  – time, s 
h  – thickness of the plate, m   – visco-elastic constant, N·s/m2 

,x yM M  – bending moments, N·m ( , , )w x y t  – deflection, m 

xyM  – twisting moment, N·m ( , )x y  – deflection function, m 
E  – Young’s modulus, N/m2 ( )t  – time function, s 
G  – shear modulus, N/m2   – taper constant 
  – Poisson’s ratio   – thermal gradient 

1D  – flexural rigidity, N·m 1  – non-homogeneity constant 
 
 
1. INTRODUCTION 
 
The designs of complex structures, i.e. jet engines, helicopter yokes, submarines, etc., are based on the 
vibrational analysis of the structural system. Due to the variability in the mechanical prospective of the 
structure, the vibrational behaviour of the structure is affected. Therefore, it becomes necessary to analyse 
the behaviour of structural systems for the preliminary phase of designing structures so that their 
hydrodynamic performance and stability during navigation and operations can be significantly improved. 
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Tapered visco-elastic plates are commonly used in various engineering applications and structures, e.g. 
the aerospace industry, missiles, etc., under the influence of elevated temperature. Since elevated tempera-
ture directly affects the mechanical properties of the material of plates, the effect of temperature variations 
can not be neglected. Hence, active vibration control in engineering structures and systems has attracted 
the attention of mathematical physicists and design engineers for many years. 

Abu et al. [1] discussed two dimensional transient wave propagation in visco-elastic layered media. 
Avalos and Laura [2] treated transverse vibrations of a simply supported plate of generalized anisotropy 
with oblique cut-outs. Hasheminejad et al. [4] discussed the exact solution for free vibrations of an 
eccentric elliptical plate. Hosseini-Hashemi et al. [5] made a mathematical study on the free vibration of 
stepped thickness circular/annular Mindlin functionally graded plates. Khanna and Arora [7] discussed 
thermally induced vibration of a tapered parallelogram plate with mixed boundary conditions. Khanna and 
Sharma [10] obtained natural vibration of a visco-elastic plate of varying thickness with the thermal effect. 
Lal and Kumar [11] evaluated transverse vibrations of non-homogeneous rectangular plates with bi-linear 
thickness variation. Lal et al. [12] discussed transverse vibrations of non-homogeneous rectangular plates 
of uniform thickness using boundary characteristic orthogonal polynomials. Leissa [13] provided a collec-
tion of research papers on the vibration of plates of various shapes and size in his monograph. Tariverdilo 
et al. [16] analysed asymmetric free vibration of a coupled system including a clamped circular plate in 
contact with an incompressible bounded fluid. Sharma et al. [15] worked on the effect of pasternak 
foundation on the axisymmetric vibration of polar orthotropic annular plates of varying thickness. Wang 
and Chen [17] discussed the axisymmetric vibration and damping analysis of rotating annular plates with 
constrained damping layer treatments. 

In the present model, the authors analysed the vibrational behaviour of a non-homogeneous rectangular 
plate. It is assumed that the thickness of the rectangular plate varies parabolically in -direction.x  The 
Rayleigh–Ritz technique is used to determine the frequency equation of the plate. The time period and 
deflection at different points for the first two modes of vibration are obtained for various values of 
structural parameters. 

 
 

2. GEOMETRY  OF  THE  PLATE 
 

In the present study, a rectangular plate of varying thickness in one direction ( ),h x  exponential varying 
Poisson’s ratio ( ),x  and constant density   is investigated as shown in Fig. 1. Plate OABC is assumed 
to be placed in such a way that point O is the origin of the xy-plane and sides OA and OC overlap on  
x- and y-axis, respectively. The domain of the plate in the xy-plane is 0 x a   and 0 ,y b   where a  
and b  are the length and breadth of the plate, respectively. 

 
 

 
 

Fig. 1. Rectangular plate in Cartesian coordinate (xy-plane). 



A. Khanna and N. Kaur: Effect of structural parameters on vibrational response 129

3. DIFFERENTIAL  EQUATION  OF  MOTION 
 
The equation of motion of a visco-elastic plate of variable thickness is [6] 

 

, , , ,2 ,x xx xy xy y yy ttM M M hw                                                      (1) 
 

where 
 

1 , , 1 , , 1 , .( ), ( ), (1 )x xx yy y yy xx xy xyM DD w w M DD w w M DD w                             (2) 
 

Here, ‘,’ denotes partial differentiation with respect to the following suffix. 
Using Eq. (2) in Eq. (1), one gets [3] 

 

2
2 2 4

1 1 2
[ ( ) (1 ) ( , )] 0,

w
D D w D w h

t
  

      


                                       (3) 

where 
2 2 22 2 2

4 1 1 1
1 2 2 2 2
,( ) 2

D D Dw w w
D w

x y x yy x x y

    
   

      
 is the die operator and 

2 2
2

2 2x y

 
  

 
 is the 

Laplacian operator. 
The solution of Eq. (3) can be assumed as 

 

( , , ) ( , ) ( ).w x y t x y t                                                            (4) 
 

Substituting Eq. (4) into Eq. (3), one obtains 
 

4 4 4 3 3 3 3
1 1

1 4 2 2 4 3 2 3 2

2 2 22 2 2 2 2
1 1 1

2 2 2 2 2 2

2 2 2

2 2 2(1 ) / ,

D D
D
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D D D
h D

x y x yx x y y y x

      

          

             
                           

         
                       



    

(5)

 

 

where the dots denote differentiation with respect to .t  
Both sides of the preceding equation are independent. Therefore, it is satisfied if both sides are equal to 

a positive constant, i.e. 2 .  In this case, one gets 
 

3 34 4 4 3 3
1 1

1 4 2 2 4 3 23 2

2 2 22 2 2 2 2
21 1 1

2 2 2 2 2 2
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2 2 2(1 ) 0
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D
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                       

            

 (6)

 

 

and 
 

2 .0D                                                                        (7) 
 

Eq. (6) and Eq. (7) are differential equations of motion and time function for a visco-elastic rectangular 
plate, respectively. 

Here, 1D  is flexural rigidity of a rectangular plate [14], i.e. 
 

3
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.
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Eh
D





                                                                   (8) 
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4. LIMITATIONS 
 

Assessment of vibrations of structures is very much complicated due to the variability in structural 
parameters. Therefore, some restrictions are required for predicting the vibration response of structures. 
The authors assumed the following limitations in the present model for further investigation: 
(i) Most structures are usually worked in the presence of high temperature. Temperature distributions in 

any structural system vary from point to point. Due to variations in the temperature field, vibrational 
properties of the structure vary significantly. So, it becomes necessary to analyse the temperature 
effect on the vibrations of structures or systems. 

       In the present model, the authors assumed bi-parabolic variation in the temperature field as 
        follows: 

 

2 2

0 2 2
1 1 .

x y

a b
 

  
    

  
                                                            (9) 

 

 The temperature dependence of the modulus of elasticity for most engineering materials can be 
expressed as: 

 

0 (1 ),E E                                                                    (10) 
 

 where 0E  is the value of Young’s modulus at reference temperature, i.e. 0,   and   is the slope of 
the variation of E  with .  After substituting   form Eq. (9), Eq. (10) becomes 

 

2 2

0 2 2
1 1 1 ,

x y
E E

a b


   
      

    
                                                     (11) 

 

 where 0.   
(ii) To fulfil the twofold requirement of safety and economy, plates of variable thickness are commonly 

used in engineering applications, e.g. to make blades of turbines, bridge plates, fins of plane, etc. In 
order to investigate the effect of tapering on the vibrational behaviour of plates, the authors assumed 
parabolic tapering in this model: 

 

2

0 2
1 ,

x
h h

a


 
  

 
                                                                (12) 

 

 where 0h  is the thickness of the plate at 0.x y   
(iii) Physical properties of materials, i.e. their density, Poisson’s ratio, etc., vary point to point in case of 

non-homogeneity is present in the material. In the present model, the authors assumed exponential 
variation in Poisson’s ratio as 

 

1

0 ,
x

ae


                                                                     (13) 
 

 where 0  denotes Poisson’s ratio at reference temperature and 1  is non-homogeneity constant. 
Since the maximum value of Poisson’s ratio is less than 0.5, the numerical value of 1  (as it varies 
exponentially in this paper) can not be greater than 0.16 (approximately). Hence, the variation in 
Poisson’s ratio is taken from 0.0 to 0.15 (at most) in the calculation. 

     On using Eqs (11), (12), and (13) in Eq. (8), one obtains 
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          

 
  
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                                  (14) 

 

(iv) The ends of the visco-elastic rectangular plate are supposed to be clamped. Due to the clamped 
boundary, the following conditions must be satisfied by deflection function ( , ):x y  

 

,

,

0, 0,
.

0, 0,
x

y

x a

y b

 

 

   
   

                                                            (15) 

 

 Also, the corresponding two-term deflection function ( , )x y  is taken as [8] 
 

1 2( , ) ( , ) ( , ),x y x y x y                                                           (16) 
 

 where 
2

1( , ) 1 1 ,
x y x y

x y
a b a b

             
 and 2 1 2( , ) 1 1 ,

x y x y
x y

a b a b
          

  
 

 where 1  and 2  are arbitrary constants. 

 Here 1( , )x y  satisfies all boundary conditions and 2 ( , )x y  provides two modes of vibration. 
 
 
5. SOLUTION  OF  THE  DIFFERENTIAL  EQUATION  OF  MOTION 
 
To obtain a frequency equation for the vibration of the rectangular plate, the authors used the Rayleigh–
Ritz method. This method is based on the principle of conservation of energy, i.e. the maximum strain 
energy P  must be equal to the maximum kinetic energy .K  So, it is necessary for the problem under 
consideration that [8] 

 

( ) 0,P K                                                                     (17) 
 

where  

2 2

0 0

(0.5)
a b

dyK h dx                                                            (18) 

and 
 

2 2 22 2 2 2 2

1 2 2 2 2
0 0

.(0.5) 2 2(1 )
a b

P D dydx
x yx y x y

     
                                

                   (19) 

 

To simplify and parameterize the present problem, non-dimensionalization is introduced as 
 

.,
x y

X Y
a a

                                                                  (20) 

 

After using Eq. (20) in Eq. (18) and Eq. (19), one gets 
 

1 /
* 2 2 2 2

0
0 0
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b a

K a h X dYdX                                                   (21) 
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and 
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   

(22) 

where 
3

0 0
2

.
24

E h
Q

a
  

Using Eq. (21) and Eq. (22) in Eq. (17), one obtains 
 

* 2 * .( ) 0E EP K                                                                 (23) 
 

Here, 
2 4

2
2

0 0

12 a

E h

   is the frequency parameter. Equation (23) contains two unknown constants, i.e. 1  

and 2 ,  arising due to the substitution of .( , )x y  These two constants are to be determined as follows: 
 

* 2 *

.
( )

0, 1, 2E E

n

P K
n

 



                                                          (24) 

 

On simplifying Eq. (24), one gets 
 

1 1 2 2 0, 1,2,n nC C n                                                              (25) 
 

where 1,nC  2nC  for 1, 2n   involve structural parameters and the frequency parameter 2
.  

Equation (25) is a set of two simultaneous homogeneous equations with variables 1  and 2  having an 
infinite number of solutions. If one choose 1 1,   one can easily evaluate 2,  i.e.  

 

1
2

2

.n

n

C

C
 

  

 

For a non-trivial solution, the determinant of the coefficients of Eq. (25) must be zero, i.e. 
 

11 12

21 22

0.
C C

C C
                                                                  (26) 

 

Equation (26) is a quadratic equation in 2  from which two values of 2  can be extracted. 
The time period of the vibration of the visco-elastic plate is given by 

 

2
.K




                                                                      (27) 

 
 
6. SOLUTION  FOR  THE  TIME  FUNCTION  ( )t  
 
Time functions of free vibration of visco-elastic plates are defined by the general ordinary differential 
Eq. (7). Its form depends on the visco-elastic operator .D  
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For Kelvin’s model, one gets [6] 
 

1 .
d

D
G dt


                                                                   (28) 

 

After using Eq. (28) in Eq. (7), Eq. (7) is modified as follows: 
 

2 1 0,
d

G dt

      
 

  

 

2 2 0.
G

                                                                     (29) 

 

Now, Eq. (29) is a differential equation of order two with respect to t  for the time function .  The 
solution of Eq. (29) can be obtained as [6] 

 

1
1 1 2 1( ) ( cos sin ),a tt e C b t C b t                                                          (30) 

 

where  
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2

1 1 ,
2

b
G

     
 

  

 

and 1C  and 2C  are constants which can be determined easily from the initial conditions of the plate. 
Let us take the initial conditions as 

 

1   at 0t                                                                     (31) 
 

and 
 

0   at 0.t                                                                          (32) 
 

Substituting Eq. (31) in Eq. (30), one gets 
 

1 1.C                                                                          (33) 
 

After using Eq. (32) in Eq. (30), one obtains 
 

1
2

1

.
a

C
b


                                                                      (34) 

 

Substituting 1C  and 2C  from Eq. (33) and Eq. (34) in Eq. (30), Eq. (30) becomes 
 

1 1
1 1

1

( ) cos sin .a t a
t e b t b t

b


  
   

   
                                                (35) 

 
 
7. FORMULATION  OF  DEFLECTION 
 
With the help of the values of 1  and 2 ,  one can obtain deflection function   as 

 

2

11

12

(1 ) 1 1 (1 ) 1 .
Ca a a a

XY X Y XY X Y
b b C b b


                         

                     (36) 
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On using Eq. (35) and Eq. (36) in Eq. (4), one gets 
 

1

2

11 1
1 1

12 1

(1 ) 1 1 (1 ) 1 cos sin .a tC aa a a a
w XY X Y XY X Y e b t b t

b b C b b b

                                                      
 

(37) 
 
 
8. RESULTS  AND  DISCUSSION 
 
In calculations, the following parameters are used for duralumin (an alloy of aluminium) [9]: 

 

10 10 5 3
0 2 2 2 3

0 0

kg
7.08 10 , 2.632 10 , 14.612 10 , 2.80 10 ,

m m m m
0.345, 0.01m.

N N Ns
E G

h

 



       

 
 

 

Table 1 presents the time period for the first two modes of vibration with a fixed aspect ratio  1.5a b   
for different values of the non-homogeneity constant 1  (i.e. 1 0.0, 0.05, 0.10, 0.15)   at the following 
combinations of the thermal gradient   and the taper constant :

 
 

0.0;      0.2;      0.6;      0.8.    
 

It is interesting to note that the time period for the first two modes of vibration decreases with 
increasing 1  for all combinations of   and .  As the combined value of   and   increases from 0.0 to 
0.8, the time period also decreases for both modes of vibration. 

Table 2 tabulates the time period for the first two modes of vibration for fixed values of the thermal 
gradient and the taper constant, i.e. 0.2,    for different values of the non-homogeneity constant 1  
and the aspect ratio .a b  Here, the authors found a continuous decrement in the time period (for both 
modes) as 1  increases from 0.0 to 0.15 and a b  increases simultaneously from 0.25 to 1.5. 

 
 

Table 1. Time period vs non-homogeneity constant at a/b = 1.5 
 

α = β = 0.0 α = β = 0.2 α = β = 0.6 α = β = 0.8 α1 

Mode 1 Mode 2 Mode 1 Mode 2 Mode 1 Mode 2 Mode 1 Mode 2 

0.0 668.23 169.09 658.30 167.11 641.08 163.35 635.91 161.86 
0.05 665.99 168.52 656.07 166.52 638.91 162.73 633.80 161.22 
0.10 663.62 167.92 653.70 165.90 636.59 162.06 631.52 160.53 
0.15 661.11 167.28 651.17 165.24 634.09 161.35 629.06 159.79 

 
 

Table 2. Time period vs aspect ratio at α = β = 0.2 
 

α1 = 0.0 α1 = 0.05 α1 = 0.10 α1 = 0.15 a/b 

Mode 1 Mode 2 Mode 1 Mode 2 Mode 1 Mode 2 Mode 1 Mode 2 

0.25 1705.27 416.69 1698.59 415.00 1691.35 413.17 1683.48 411.16 
0.5 1585.19 395.12 1579.16 393.56 1572.64 391.85 1565.57 390.00 
0.75 1367.51 347.39 1362.52 346.06 1357.15 344.62 1351.35 343.06 
1.0 1100.30 281.61 1096.44 280.58 1092.30 279.47 1087.86 278.27 
1.25 853.26 217.90 850.33 217.13 847.22 216.30 843.89 215.41 
1.5 658.30 167.11 656.07 166.52 653.70 165.90 651.17 165.24 
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For 0 1, 0 1X Y     the deflection function ( , )x y  assumed in Eq. (16) shows the following 
properties: 

, 1 , ,

, ,1 ,

, 1 ,1 .

a a
X Y X Y

b b

a a
X Y X Y

b b

a a
X Y X Y

b b

 

 

 

       
   
       
   
        
   

 

 

Therefore, it has the same values for 0.2X   and 0.8X   as well as 0.4X   and 0.6.X   The same is valid for 
( ) .a b Y  Also for 0.0X   and 1.0X   or 0.0Y   and 1.0,Y   deflection becomes zero. The deflection for 

both modes of vibration is reported at different values of X  and Y  for various values of plate parameters in 
Tables 3–5 as follows: 

Table 3: 10.0; 1.5; 0.0, 0.05, 0.10, 0.15; 0 , 5 .a b K K         
Table 4: 10.6; 1.5; 0.0, 0.05, 0.10, 0.15; 0 , 5 .a b K K         
Table 5: 10.2; 0.1; 0.25, 0.50, 0.75,1.0,1.25,1.5; 0 , 5 .a b K K         
In Table 3, both modes of deflection (at 0K   and 5 )K   continuously decrease as the non-

homogeneity constant 1  increases for each paired value of X  and .Y  Also, it is interesting to note that 
the values of deflection for both modes of vibration are greater at 0K   as compared to 5 .K   

In Table 4, deflection shows different variations for 0K   and 5 .K   At 0 ,K   deflection for 
both modes of vibration continuously increases as the non-homogeneity constant 1  increases for each 
paired value of X  and .Y  At 5 ,K   the first mode of deflection continuously decreases but the second 
mode of deflection continuously increases as the non-homogeneity constant 1  increases for each paired 
value of X  and .Y  

Variation in deflection for both modes of vibration for various values of the aspect ratio can be 
explained with the help of Table 5. A rapid increment is found in deflection for both modes of vibration as 
the aspect ratio a b  increases for each paired value of X  and Y  at 0K   and 5 .K   
 
 

Table 3. Deflection ( 10–5) vs the non-homogeneity constant for 0.0;    / 1.5a b   at ψ = 0K and ψ = 5K (in 

parentheses) 
 

0.2 0.4 α1 X 
 

Y Mode 1 Mode 2 Mode 1 Mode 2 

0.0 114.6210 
(50.4673) 

39.5098 
(1.8094) 

259.8370 
(114.3570) 

6.3376 
(0.2902) 

0.05 114.6330 
(50.3336) 

39.5099 
(1.8036) 

259.8770 
(114.1080) 

6.3378 
(0.2893) 

0.10 114.6360 
(50.1875) 

39.5100 
(1.7987) 

259.8900 
(113.7790) 

6.3383 
(2.8856) 

0.15 

0.2 

114.6450 
(50.0341) 

39.5103 
(1.7939) 

259.9190 
(113.4350) 

6.3393 
(2.8784) 

0.0 20.8718 
(9.1859) 

14.9592 
(0.6847) 

47.1142 
(20.7443) 

27.1595 
(1.2435) 

0.05 20.8727 
(9.1649) 

14.9593 
(0.6830) 

47.1174 
(20.6886) 

27.1595 
(1.2400) 

0.10 20.8730 
(9.1381) 

14.9593 
(0.6810) 

47.1184 
(20.6283) 

27.1595 
(1.2364) 

0.15 

0.6 

20.8737 
(9.1098) 

14.9593 
(0.6792) 

47.1207 
(20.5647) 

27.1596 
(1.2331) 
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Table 4. Deflection ( 10–5) vs the non-homogeneity constant for 0.6;    / 1.5a b   at ψ = 0K and ψ = 5K (in parentheses) 
 

0.2 0.4 α1 X 
 

Y Mode 1 Mode 2 Mode 1 Mode 2 

0.0 126.2400 
(53.6841) 

39.5098 
(1.7888) 

299.0520 
(127.1730) 

6.3376 
(0.3114) 

0.05 126.3370 
(53.5692) 

39.6812 
(1.7898) 

299.3780 
(126.9420) 

6.9159 
(0.3119) 

0.10 126.4450 
(53.4472) 

39.6836 
(1.7921) 

299.7450 
(126.6990) 

6.9243 
(0.3127) 

0.15 

0.2 

126.5740 
(53.3206) 

39.6865 
(1.7958) 

300.1800 
(126.4540) 

6.9339 
(0.3137) 

0.0 21.7864 
(9.2647) 

14.9592 
(0.6750) 

50.2011 
(21.3482) 

27.1595 
(1.2264) 

0.05 21.7940 
(9.2410) 

14.9729 
(0.6753) 

50.2268 
(21.2971) 

27.2050 
(1.2271) 

0.10 21.8026 
(9.2157) 

14.9729 
(0.6761) 

50.2556 
(20.2426) 

27.2056 
(1.2286) 

0.15 

0.6 

20.8127 
(9.1888) 

14.9732 
(0.6775) 

50.2899 
(21.1851) 

27.2064 
(1.2311) 

 
 

Table 5. Deflection ( 10–5) vs the aspect ratio for 0.2;    1 0.1   at ψ = 0K and ψ = 5K (in parentheses) 
 

0.2 0.4 /a b  X 
 

Y Mode 1 Mode 2 Mode 1 Mode 2 

0.25 5.9672 
(4.3158) 

4.9304 
(1.3069) 

13.6413 
(9.8662) 

10.1422 
(2.6884) 

0.5 21.6542 
(15.2833) 

14.9759 
(3.6924) 

49.7548 
(35.1165) 

27.2157 
(6.7102) 

0.75 43.0981 
(28.7808) 

25.2114 
(5.1270) 

98.6381 
(65.8702) 

38.2705 
(7.7828) 

1.0 67.2904 
(40.7444) 

33.0856 
(4.6322) 

153.3770 
(92.8699) 

37.9359 
(5.3113) 

1.25 92.5818 
(48.4822) 

37.7701 
(2.9799) 

211.2140 
(110.6060) 

26.2240 
(2.0690) 

1.5 

0.2 

117.2980 
(50.7121) 

39.5381 
(1.7872) 

268.8740 
(116.2440) 

6.4331 
(0.2907) 

 
 
9. COMPARISON  AND  CONCLUSIONS 
 
The frequency for both modes of vibration in the present paper is compared with the frequency in [8] at 
the corresponding values of structural parameters for two cases: 

Case (i) 10.0; 0.1; 0.0, 0.2, 0.4, 0.6, 0.8.      
Case (ii) 10.0; 0.1; 0.0, 0.2, 0.4, 0.6, 0.8.      

A graphical representation is provided for both the above cases (Fig. 2, Graph I for case (i) and Graph II for 
case (ii)). Graph I clearly shows that the frequency in the present paper is less than the frequency in [8] for 
both modes of vibration. But in Graph II, both modes of frequency in the present paper are greater than in [8]. 

The frequencies in the present paper and in [8] coincide only at 1 0.0.      
Based on the above graphical comparison, the authors conclude the following: 

(i) In case of bi-parabolic variation in temperature, low frequency vibrations comparable to [8] can be 
obtained. 

(ii) Tapering directly affects the vibrational behaviour of structures or plates. Frequency is higher in case 
of parabolic tapering (present paper) as compared to exponential tapering [8]. 
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Fig. 2. Comparison of the frequencies of the two modes in the present study and in [8]. Graph I: β = 0.0; Graph II: α = 0.0. 
 
 

(iii) Frequency can be controlled actively by using appropriate values of structural  parameters. 
(iv) The present study confirms previous findings and also provides futuristic numerical data for 

researchers and design engineers to enhance the efficiency and reliability of machines and 
mechanical structures. 
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Struktuursete  parameetrite  mõju  ristkülikulise  mittehomogeense  
viskoelastse  plaadi  vibratsioonidele 

 
Anupam Khanna ja Narinder Kaur 

 
On arendatud matemaatilist mudelit ristkülikulise mittehomogeense viskoelastse plaadi vibratsioonide 
kirjeldamiseks. On käsitletud termiliselt genereeritud vibratsioone neljast küljest jäigalt kinnitatud muu-
tuva paksusega plaadis. Materjali mittehomogeensust arvestatakse kui eksponentsiaalset muutust Poissoni 
teguris ja temperatuur varieerub nii plaadi pikkuse kui ka laiuse sihis paraboolselt. On püstitatud raja-
väärtusülesanne neljandat järku osatuletistega liikumisvõrrandile. On kasutatud Kelvini tüüpi viskoelastse 
materjali mudelit ja läbipainded on lineaarsele teooriale kohaselt väikesteks arvatud. Artiklis on vaadeldud 
termilise gradiendi, muutuva plaadi paksuse, plaadi pikkuse-laiuse suhte ja mittehomogeensuse konstandi 
mõju plaadi vibratsioonidele. Kasutades Rayleigh’i-Ritzi meetodit, on esitatud tulemused esimese kahe 
võnkevormi perioodi ja läbipainde jaoks. Tulemusi on võrreldud muude kirjanduses leiduvate andmetega. 

 


