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Abstract. The paper presents a computation-oriented necessary and sufficient accessibility condition for the set of nonlinear higher-
order input-output differential equations. The condition is presented in terms of the greatest common left divisor of two polynomial
matrices, associated with the system of input-output equations. The basic difference from the linear case is that the elements of the
polynomial matrices belong to a non-commutative polynomial ring. The condition found provides a basis for finding the accessible
representation of the set of input-output equations, which is a suitable starting point for the construction of an observable and
accessible state space realization. Moreover, the condition allows us to check the transfer equivalence of two nonlinear systems.
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1. INTRODUCTION

Controllability is one of the fundamental concepts of mathematical control theory. In the nonlinear case
the famous Kalman rank condition branches into many different controllability notions, and among them,
the accessibility property stands out as a conceptually tractable and intuitively clear concept [23]. The
special notion of controllability, accessibility, refers to the case where every non-constant function of the
state is eventually influenced by the control variable of the system and hence cannot satisfy any autonomous
differential equation [6].

Our study is motivated by three sources. The first of them is the fundamental problem of accessibility
itself. There exist input–output (i/o) equations of interest that lack state-space realizations and therefore the
techniques that rely on state-space characterization of accessibility are unsuitable for such systems. Second,
the accessibility property plays a crucial role in the minimal realization problem; and third, accessibility is
related to the concept of transfer equivalence of two systems.

The goal of this paper is to suggest an accessibility definition as well as a computation-oriented
necessary and sufficient accessibility condition for nonlinear systems, described by the set of higher-order i/o
differential equations, not necessarily transformable into the state-space form. Our accessibility definition is
based on the concept of autonomous variable, introduced in [21], since this definition is not directly linked
to the state and is therefore flexible to be applied to various system classes. Formerly, this concept was
called irreducibility of i/o equations but it is more natural to call it accessibility since in the case of the
realizable i/o equations, our definition agrees with that given for the state equations: accessible i/o equations
have accessible realization. This is demonstrated by Example 2 below.
∗ Corresponding author, maris@cc.ioc.ee
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The results of this paper are based on the conference paper [13]. Compared with [13], in the present
paper irreducible system representation (accessible subsystem) is related to the recently introduced concept
of transfer matrix of the nonlinear system [8,9], whereas that in [13] was based on the notion of an irreducible
differential form, associated with the control system [6]. Moreover, the notion of the transfer equivalence of
systems is now defined via the equality of transfer matrices, exactly like in the linear case, and the reduction
problem is straightforwardly addressed. Furthermore, the proof of the main theorem is improved (while
only the sketch of the proof was given in [13]) and the role of non-uniqueness of the greatest common left
divisor to the solution is explained. Finally, comparison with alternative algebraic accessibility criteria is
added. Note that the single-input single-output (SISO) case was studied in [27]. For discrete-time nonlinear
systems the accessibility property was examined in [16], though the paper itself was focused on finding
the minimal realization of the set of i/o equations and accessibility was studied only from the viewpoint of
irreducibility of the i/o description of the system. The irreducibility problem for the SISO case has also been
treated in [12], being a generalization of [27] to the systems defined on homogeneous time-scales.

The paper is organized as follows. Section 2 describes the differential field and a polynomial matrix
representation, associated to nonlinear systems. Using the polynomial matrix description, in Section 3
necessary and sufficient accessibility condition is given. Section 4 is devoted to the system reduction and
concept of transfer equivalence. In Section 5 the obtained results are compared with the results of [4] and
illustrated by two examples, one realizable in the state-space form and the other not. Section 6 draws the
conclusions and drafts some future goals of study.

2. POLYNOMIAL MATRIX DESCRIPTION

Consider a multi-input multi-output (MIMO) nonlinear system described by the set of higher-order i/o
differential equations relating the inputs uk, k = 1, . . . ,m, the outputs yi, i = 1, . . . , p, and a finite number
of their time derivatives:

y(ni)
i = φi(y j, ẏ j, . . . ,y

(ni j)
j , j = 1, . . . , p, uk, u̇k, . . . ,u

(rik)
k , k = 1, . . . ,m),

i = 1, . . . , p.
(1)

In (1) φi are supposed to be real analytic functions. Notations u := [u1, . . . ,um]T, y := [y1, . . . ,yp]T,
n := n1 + · · ·+np, and r := max{rik} are used below for system (1). Moreover, we assume that the indices
in (1) satisfy the relations

n1 6 n2 6 · · ·6 np, ni j < n j,

ni j < ni, j 6 i, ni j 6 ni, j > i, (2)

rik < ni.

The conditions (2) mean that Eqs (1) are assumed to be in the form which is an extension of the echelon
canonical matrix fraction description, introduced in [22] for linear systems. This form is preferred since
it allows the explicit definition of the time-derivative operator in the differential field, associated with the
control system. This aspect is important in Mathematica R© implementation (see below). However, the main
results of the paper may also be proved (using a somewhat different mathematical setup) for the implicit
system description. Moreover, if the well-defined i/o equations are not in the form (1), one may apply the
i/o equivalence transformations1 from [11,24,25] to bring the system equations into the form (1).

Below we give a brief exposition of the linear algebraic approach, following [6]. Let R denote the
ring of analytic functions in a finite number of (independent) variables from the set C = {yi, . . . ,y

(ni−1)
i , i =

1 The transformation is called i/o equivalence transformation if the set of solutions of the original equations is the same as that
of the transformed equations.
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1, . . . , p, u(β )
k , k = 0, . . . ,m, β > 0}. Define the time derivative operator d/dt : R → R, associated with

system (1). For that purpose we first define d/dt for the elements of C

d
dt

y(α)
i := y(α+1)

i , i = 1, . . . , p, α = 0, . . . ,ni−2,

d
dt

y(ni−1)
i := φi(·), i = 1, . . . , p,

d
dt

u(β )
k := u(β+1)

k , k = 1, . . . ,m, β > 0,

and then for a({y(α)
i ,u(β )

k }) ∈R by

d
dt

a(·) =
p

∑
i=1

ni−1

∑
α=0

∂a

∂y(α)
i

· d
dt

y(α)
i +

m

∑
k=1

∑
β>0

∂a

∂u(β )
k

· d
dt

u(β )
k .

Sometimes the notation ȧ := d/dt(a) is also used. Note that whenever y(ni)
i occurs in the expression,

it has to be replaced by φi(·) determined by the i/o equations (1). The pair (R,d/dt) is a differential
ring (see [10]). The ring R is an integral domain, i.e. it does not contain any zero divisors. That is,
∀a,b ∈R, ab = 0 ⇒ a = 0 or b = 0. Let S := R \ {0}, and consider the set of left fractions denoted as
K := S −1R. Elements of K are meromorphic functions in the form b−1 a, where a ∈R, b ∈S . Since
R is an integral domain, the set K proves to be the field of fractions. The derivative operator d/dt can now
be extended so that d/dt : K →K . For b−1a ∈K we define

d
dt

(
b−1a

)
:= (b2)−1(ȧb−aḃ), a ∈R, b ∈S .

Thus the pair (K ,d/dt) is a differential field.
Over the field K one can define a vector space E := spanK {dϕ | ϕ ∈K }, spanned by the ordinary

differentials of the elements of K . For the definition of the operator d : K → E see [6]. The paper [7]
demonstrates when and how the operator d as used in this paper differs from Kähler differentials. The
derivative ω̇ of ω = ∑i αidϕi ∈ E , where αi,ϕi ∈K , is defined by ω̇ = ∑i α̇idϕi +αidϕ̇i. Note that operators
d and d/dt commute, i.e. for a ∈K ,

d
dt

(da) = d
(

d
dt

a
)

= dȧ. (3)

We say that ω ∈ E is an exact one-form if ω = da for some a ∈K . A one-form ω for which dω = 0 is
said to be closed. Every exact one-form is closed, but the converse holds only locally (see [6]). A subspace
is said to be closed or integrable if it has a basis which consists only of closed one-forms.

For system (1) a sequence of subspaces H1 ⊃ ·· · ⊃Hk∗ ⊃Hk∗+1 = Hk∗+2 = · · ·=: H∞ of E is defined
by

H1 = spanK {dy(α)
i , du(β )

k },
Hκ+1 = {ω ∈Hκ | ω̇ ∈Hκ}, κ > 1,

(4)

where j = 1, . . . , p, k = 1, . . . ,m, α = 0, . . . ,n j−1 and β = 0, . . . ,r.
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2.1. Non-commutative ring of polynomials

The differential field K and the differentiation operator d/dt induce a non-commutative ring of left
differential polynomials K [s;d/dt]. A polynomial p ∈K [s;d/dt] can be uniquely written as

p = pmsm + pm−1sm−1 + . . .+ p1s+ p0, (5)

where s is a formal variable and pi ∈K for i = 0, . . .m. Polynomial p 6= 0 iff at least one of the functions
pi is non-zero. If pm 6≡ 0, then the integer m is called the degree of p and denoted by deg(p). We set
additionally deg(0) = −∞. The addition of the polynomials is defined in the standard way. However, for
a ∈K ⊂K [s;d/dt] the multiplication is defined by the commutation rule

s ·a := as+ ȧ. (6)

It is easy to see that for s2 · a = as2 + 2ȧs + ä, a ∈ K , and in general, for n > 0 we obtain sn · a =
∑n

i=0
(n

i

)
a(n−i)si, where

(n
i

)
is binomial coefficient.

Proposition 1. [18] The ring K [s;d/dt] is an integral domain.

If p = p1 p2 and deg(p1) > 0, then p1 is called a left divisor of p. The degree of p satisfies
deg(p) = deg(p1) + deg(p2) = d1 + d2, since there are no zero divisors in K [s;d/dt]. To find the left
divisor, one can use the left Euclidean division algorithm (see [5]). The main idea behind this algorithm
is that for given polynomials p1 and p2 in the forms (5), with deg p1 > deg p2, there exists a unique left
quotient polynomial γ1 and a unique left remainder polynomial p3 such that

p1 = p2γ1 + p3, deg p3 < deg p2.

2.2. Polynomial matrices

We now consider a class of matrices P whose elements are polynomials p ∈ K [s;d/dt] of unbounded
degree. We write K [s;d/dt]v×q for the set of v×q matrices with entries in K [s;d/dt]. The purpose of this
subsection is to show that like in the linear case when the polynomials have real coefficients, the polynomial
matrix with entries in K [s;d/dt] can be transformed by a sequence of elementary column operations to the
lower left triangular form. This result allows us to obtain later the accessibility criterion.

Definition 2. The following three elementary column operations on the polynomial matrix P are defined:
1. interchange of columns i and j,
2. multiplication of column i by nonzero scalar in K ,
3. replacement of column i by itself plus any polynomial multiplied by any other column j.

Definition 3. A matrix U ∈K [s;d/dt]v×v is called unimodular if it is invertible in K [s;d/dt]v×v, that is,
there exists a matrix U−1 ∈K [s;d/dt]v×v such that U U−1 = U−1U = Iv.

Any sequence of elementary column operations on P is equivalent to post multiplication (right
multiplication) of P by an appropriate unimodular matrix UR.2

Definition 4. Two polynomial matrices P and P̂ will be called column equivalent iff one of them can be
obtained from the other by a sequence of elementary column operations.

The matrix P is thus column equivalent to P̂ if and only if P = P̂UR where UR is a unimodular matrix.

2 Similarly, any sequence of elementary row operations on P is equivalent to premultiplication (left multiplication) of P by an
appropriate unimodular matrix UL.
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Theorem 5. Any q×v (q 6 v) polynomial matrix P is column equivalent to the lower left triangular matrix
shown below, i.e. one can always find a sequence of elementary column operations which reduces P to the
lower left triangular form where P̂ = [GL 0] and

GL =




g11 0 . . . 0
g21 g22 . . . 0

...
...

...
gq1 gq2 . . . gqq


 . (7)

Furthermore, in the above form, the polynomials gk1, . . . ,gk,k−1 are of lower degree than gkk for all
k = 1, . . . ,v if deg gkk > 0, and are all zero if gkk is a nonzero scalar in K .

Proof. If the first row of P, p1i 6≡ 0, one may choose a polynomial of the least degree from its elements
and, by permutation of the columns, make it the new (1,1) entry p̃11. We then apply the left Euclidean
division algorithm to every other nonzero entry in the first row. That is, we divide every other nonzero
element p̃1i in the first row by p̃11 obtaining the quotients q̃1i and remainders r̃1i according to the relationship
p̃1i = p̃11q̃1i + r̃1i where either q̃1i = 0 or deg r̃1i < deg p̃11. We then subtract from each nonzero ith column
the first column multiplied by q̃1i. If not all of the remainders r̃1i are zero, we choose one of the least
degree and make it the new (1,1) entry by another permutation of the columns. The purpose of repeating
this process as many times as necessary is to reduce step by step the degree of the polynomial element in
the (1,1) entry. Since the degree of the (1,1) entry is finite, this repeated process ends at some steps, in
particular, when all of the remaining elements of the first row are identically zero.

Next consider the second row of this matrix and, ignoring the first column for the moment, apply the
above procedure to the elements beginning with the second column and second row. In this way we zero all
the elements to the right of the (2,2) entry.

If the (2,1) element is of equal or higher degree than that of the (2,2) element, the division algorithm
can be employed to reduce the (2,1) element to the remainder term associated with the division of the (2,1)
entry by the (2,2) entry, or to zero if both elements are scalars. Continuing in this manner, with the elements
beginning with the third column and third row next, we eventually reduce P to the appropriate form. ¤
Definition 6. If three polynomial matrices satisfy the relation P = CL Q, then CL is called a left divisor of P
and P is called a right multiple of CL. The greatest common left divisor (gcld) of two polynomial matrices
V and W is a common left divisor which is a right multiple of every common left divisor of V and W .

Theorem 7. Consider the pair {P,Q} of polynomial matrices which have the same number of rows. If the
composite matrix [P |Q ] is reduced to the lower left triangular form [GL | 0 ] as in the proof of Theorem 5,
then GL is a gcld of P and Q.

The proof is analogous with the discrete time case (see [16], Theorem 10) and therefore omitted.
The gcld is, in general, not unique, since any two gclds, G1

L and G2
L, are related by definition as

G1
L = G2

LW1, G2
L = G1

LW2, where W1 and W2 are polynomial matrices and if G1
L is nonsingular, then W1

and W2 are unimodular. The concept of a gcld now enables us to extend to the matrix case the notion of a
pair of relatively left prime polynomials.

Definition 8. A pair {P,Q} of polynomial matrices which have the same number of rows is said to be
relatively left prime iff their gclds are unimodular matrices.

The notion of a pair of relatively left prime polynomial matrices implies the inability to factor some
non-unimodular matrix from the left side of both members of the pair.

2.3. Polynomials as the operators

A left differential polynomial a ∈K [s;d/dt] may be interpreted as an operator a(s) : E → E . Define for
j = 1, . . . , p, k = 1, . . . ,m, and dy j,duk ∈ E

sdy j := dẏ j, sduk := du̇k. (8)
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It is natural to extend (8) for a = ∑k
i=0 aisi as a(s)(αdζ ) := ∑k

i=0 ai(si ·α)dζ with ai,α ∈ K and dζ ∈
{dy1, . . . ,dyp,du1, . . . ,dum}. Using (8), every one-form

ω =
p

∑
j=1

n j−1

∑
α=0

a j,αdy(α)
j +

m

∑
k=1

`

∑
β=0

bk,β du(β )
k ∈ E ,

where a j,α ,bk,β ∈K and ` > 0, may be expressed in terms of the left differential polynomials as

ω =
p

∑
j=1

(
n j−1

∑
α=0

a j,αsα

)
dy j +

m

∑
k=1

(
`

∑
β=0

bk,β sβ

)
duk := [a1(s), . . . ,ap(s)]dy+[b1(s), . . . ,bm(s)]du,

where a j = ∑n j−1
α=0 a j,αsα , bk = ∑`

β=0 bk,β sβ , dy = [dy1, . . . ,dyp]
T, and du = [du1, . . . ,dum]T. It is easy to see

that sω = ω̇ , for ω ∈ E .

2.4. Polynomial description of linearized equations

By applying the operator d to (1) we obtain for i = 1, . . . , p

dy(ni)
i −

p

∑
j=1

ni j

∑
α=0

∂φi

∂y(α)
j

dy(α)
j −

m

∑
k=1

rik

∑
β=0

∂φi

∂u(β )
k

du(β )
k = 0. (9)

Since dy(α)
j = sαdy j and du(β )

k = sβ duk, (9) can be rewritten as

P(s)dy+Q(s)du = 0, (10)

where P ∈ K [s;d/dt]p×p and Q ∈ K [s;d/dt]p×m are polynomial matrices, whose elements pi j,qik ∈
K [s;d/dt] are

pi j =





sni −
ni j

∑
α=0

pi j,αsα , if i = j,

−
ni j

∑
α=0

pi j,αsα , if i 6= j,
qik =−

rik

∑
β=0

qik,β sβ , (11)

whereas

pi j,α =
∂φi

∂y(α)
j

∈K , qik,β =
∂φi

∂u(β )
k

∈K .

Equation (10) describes the (globally) linearized system, associated with Eqs (1).

3. ACCESSIBILITY OF THE i/o EQUATIONS

Definition 9. [6] A non-constant (possibly vector) function3 ϕr (with components) in K is said to be an
autonomous variable for system (1) if there exist an integer µ > 1 and a non-zero meromorphic (again
possibly vector) function F such that

F(ϕr,ϕ
(1)
r , . . . ,ϕ(µ)

r ) = 0. (12)

3 In the notation ϕr the subscript r is abbreviation from the word reduced, not a varying index.
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Note that ϕr denotes a variable as well as a function of y,u, and their time derivatives. While ϕr is a
function of y(i) and u( j), 0 6 i 6 n− µ , 0 6 j 6 n− µ , it is also governed by the autonomous differential
equation (12). For any initial condition, the solution ϕr is uniquely determined by this autonomous
differential equation and is consequently independent of the external input u. In this sense ϕr is an
autonomous variable which represents the lack of controllability of the nonlinear system [21].

The notion of autonomous variable can be used to define the accessibility of the nonlinear system (1) as
follows:

Definition 10. System (1) is said to be accessible if it does not admit any non-constant autonomous variable.
Otherwise the system is called non-accessible.

Theorem 11. The nonlinear system (1) is accessible iff the polynomial matrices P and Q in (10) are
relatively left prime.

Proof. Sufficiency. The proof is by contradiction. Suppose that P and Q are relatively left prime but contrary
to our claim, system (1) is not accessible. Then, according to Definition 10, there exist (at least one) function
ϕr ∈K , an integer µ > 1, and F = (F1, . . . ,Fp)T, such that (12) holds. Denote ϕ̃ := F(ϕr, ϕ̇r, . . . ,ϕ

(µ)
r ). Then

ϕ̃ ∈K ,

dϕr =
p

∑
j=1

`

∑
i=0

∂ϕr

∂y(i)
j

dy(i)
j +

m

∑
k=1

`

∑
j=0

∂ϕr

∂u( j)
k

du( j)
k , (13)

and

dϕ̃ =
µ

∑
k=0

∂F

∂ϕ(k)
r

dϕ̃(k)
r , (14)

where ` 6 n− µ . Since sidy j = dy(i)
j , s jduk = du( j)

k , and skdϕr = dϕ(k)
r , (13) and (14) can be rewritten in

terms of left differential polynomials:

dϕr =

(
`

∑
i=0

∂ϕr

∂y(i)
1

si . . .
`

∑
i=0

∂ϕr

∂y(i)
p

si

)
·




dy1
...

dyp


+

(
`

∑
j=0

∂ϕr

∂u( j)
1

s j . . .
`

∑
j=0

∂ϕr

∂u( j)
m

s j

)
·




du1
...

dum




:= P̂(s)dy+ Q̂(s)du

and

dϕ̃ =
µ

∑
k=0

∂F

∂ϕ(k)
r

skdϕr := Ĝ(s)dϕr.

Then the equation dϕ̃ = 0 can be rewritten as Ĝ(s)[P̂(s)dy + Q̂(s)du] = 0. The remaining part of the proof
relies on the fact that p + ν differential forms, defined by p rows of P(s)dy−Q(s)du and ν rows of dϕ̃ ,
are dependent. In order to simplify the proof, we assume that F contains a single element, i.e. F = (F1)
and ν = 1. The proof of the general case is analogous. Let dϕi := ∑ j pi j(s)dy j−∑k qik(s)duk, i = 1, . . . , p,
where pi j and qik are the elements in the ith rows of the matrices P and Q, respectively. Then there exist
αi ∈K , i = 1, . . . , p, at least one of them non-zero such that dϕ̃ = ∑p

i=1 αidϕi. Without loss of generality
one can assume that α1 6= 0. Then we have




Ĝ(s)dϕr
dϕ2

...
dϕp


 =




α1 α2 . . . αp
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1


 ·




dϕ1
dϕ2

...
dϕp


 (15)
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yielding 


dϕ1
dϕ2

...
dϕp


 =




1
α1

Ĝ(s) −α2
α1

. . . −αp
α1

0 1 . . . 0
...

...
. . .

...
0 0 . . . 1


 ·




dϕr
dϕ2

...
dϕp


 .

Therefore P(s)dy+Q(s)du = GL(s) ·
[
P̃(s)dy+ Q̃(s)du

]
, where

GL =




1
α1

Ĝ(s) −α2
α1

. . . −αp
α1

0 1 . . . 0
...

...
. . .

...
0 0 . . . 1


 .

Since deg Ĝ = µ > 0, the gcld of the matrices P and Q, i.e. the matrix GL is not unimodular. Hence P and
Q are not relatively left prime.

Necessity. The proof of the necessity part is by contradiction. Assume that system (1) is accessible but
the matrices P and Q are not relatively prime. The latter means that P and Q have a gcld GL in the form (7),
which is not unimodular, such that Eq. (10) can be written as

P(s)dy+Q(s)du = GL(s)[P̃(s)dy+ Q̃(s)du] = GL(s)ω = 0, (16)

where
ω = [ω1, . . . ,ωp]T := P̃(s)dy+ Q̃(s)du (17)

is a column-vector of irreducible differential one-forms.
We proceed to show that the components of one-form ω are exact or can be made exact by multiplying

ω with a unimodular matrix U from the left. The elements of ω may be classified as follows: they are either
differentials of the original irreducible equations (integrable by definition) or the elements of H∞, defined
by (4). According to [1], the subspace H∞ is closed. This means that its basis vectors are exact or can be
made exact by multiplying ω with a certain unimodular matrix U from the left. This just corresponds to
changing the gcld GL by GLU−1 =: G′

L, note that GL is unique up to multiplication with the unimodular
matrix from the right. From (16) we now obtain

GL(s)U−1Uω = GL(s)U−1dϕr = G′
L(s)dϕr = 0,

where dϕr = [dϕr1, . . . ,dϕrp]T. The vector of one-forms G′
L(s)dϕr = P(s)dy + Q(s)du corresponds to the

original linearized equations (10) and is thus integrable. This means that the coefficients of polynomials
in G′

L either depend only on the components of ϕr or are real numbers. Since G′
L is non-unimodular, there

exists at least one component of F , for instance Fi, and at least one component of ϕr, for instance ϕr j, such
that Fi(. . . ,ϕ

(µ)
r j , . . .) = 0, µ > 1. According to Definition 9, the system admits autonomous variable ϕr j, and

hence (1) is not accessible. ¤

Remark 12. Observe that unimodular GL will give µ = 0 in (12), whenever the equations F1(·) =
0, . . . ,Fp(·) = 0 are transformed into the form (1); see also the following example.

Example 1. Let dϕr1 = d(ẏ1−u1), dϕr2 = d(ẏ2−u2y1), and

GL =
(

ẏ1−u1 −s
−ẏ1 +u1 s+1

)
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be unimodular but involving polynomials of degree 1. Then GL[dϕr1 dϕr2]T yields, after integration of the
one-forms,

ψ1 := −ÿ2 +u2y1 +u2ẏ1 + 1
2 ẏ2

1− ẏ1u1 + 1
2 u2

1 = 0,

ψ2 : = ÿ2−u2y1−u2ẏ1 + ẏ2−u2y1− 1
2 ẏ2

1 + ẏ1u1 + 1
2 u2

1 = 0.
(18)

Obviously ψ1 = F1(·) = −ϕ̇r2 + 1
2 ϕ2

r1 = 0, ψ2 = F2(·) = ϕ̇r2 + ϕr2− 1
2 ϕ2

r1 = 0, which creates an illusion as
if µ = 1 in F and system (18) is reducible. Next, transform Eqs (18) into the form (1). It can be done
following the algorithm in [11], but for this simple example it is easy to see that ψ1 + ψ2 = ẏ2− u2y1 = 0
and ψ1 + ψ̇1 + ψ̇2 = 1

2(ẏ1−u1)2 = 0. The obtained equations

ψ ′
1 := ẏ1−u1 = 0,

ψ ′
2 := ẏ2−u2y1 = 0

(19)

are in the form (1), and now F ′1 = ϕr1, F ′2 = ϕr2, thus µ = 0. Finally, note that by the results of [11],
unimodular transformation dϕ = U(s)dϕr means that systems ϕ = 0 ja ϕr = 0 are i/o equivalent.

4. SYSTEM REDUCTION AND TRANSFER EQUIVALENCE

Note that the gcld of polynomial matrices P and Q is not unique. If GL is a gcld of P and Q, then multiplying
it by a unimodular matrix from the right, we get another gcld of P and Q. In general, we get the class of
matrices (gclds) that are column equivalent, i.e. one of them can be obtained from the other by a sequence of
elementary column operations. Therefore, if a gcld is unimodular, then all gclds must be unimodular. Taking
from the class of column equivalent matrices different gclds, we get different vectors ω = P̃(s)dy− Q̃(s)du
that are, however, i/o equivalent [11].

By the proof of Theorem 11 the irreducible differential forms ω are either exact or can be made exact
by multiplying ω from the left by a unimodular matrix U . So, one can write P(s)dy−Q(s)du = dϕr, where
dϕr = [dϕr1, . . . ,dϕrp]T, and P =UP̃, Q =UQ̃. Then the equations ϕr(·) = 0 are called irreducible equations
of system (1).

System reduction. If GL is the non-unimodular gcld of P and Q, system (1) is not accessible. In such
a case one may find the accessible (irreducible) subsystem ϕr(·) = 0. The matrices P and Q, describing
the irreducible system, are relatively left prime and their gclds are unimodular matrices. If GL is non-
unimodular, then the procedure of finding the new system ϕr = 0 is called system reduction. If GL is
unimodular, then system (1) is already in irreducible form, the new system ϕr = 0 is i/o equivalent with (1)
(see [11]), and no reduction occurs. System reduction can be performed by the following algorithm:
Algorithm
Input: Set of i/o equations in the form (1)
Output: Set of reduced i/o equations ϕr = 0
1. Compute matrices P and Q as in (10)
2. Find GL := gcld(P,Q)
3. If GL is unimodular Then ’System is irreducible’ Else

(a) Solve the equations P = GLP̃ and Q = GLQ̃ for P̃ and Q̃
(b) ω := P̃dy+ Q̃du
(c) Integrate ω i.e. find unimodular matrix U and ϕr such that Uω = dϕr
(d) Return irreducible equations ϕr = 0

Transfer equivalence. From the ring K [s;d/dt] one can construct a non-commutative field of fractions,
which is required to describe the transfer matrix of the nonlinear system. Define a set V := K [s;d/dt]\{0}.
Consider the set of left fractions denoted by K (s;d/dt) = V −1K [s;d/dt]. Elements of K (s;d/dt) are
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left fractions in the form b−1 a, where a ∈ K [s;d/dt], b ∈ V . Since the ring K [s;d/dt] is an integral
domain, K (s;d/dt) is the field. Then one can consider a class of matrices, whose elements are left
fractions f ∈ K (s;d/dt) (see [8]). Let K (s;d/dt)p×m be the set of p×m matrices with their entries
from K (s;d/dt). Multiplying the globally linearized system equations (10) from the left by P−1 allows us
to rewrite (10) as

dy = P−1(s)Q(s)du ,

whenever the i/o equations (1) are independent, i.e. whenever the Dieudonné determinant of the matrix P is
nonzero [14]. The inverse matrix P−1 ∈K (s;d/dt)p×p can be computed by the Gauss–Jordan elimination
method, adapted for non-commutative polynomials in [20]. If the polynomial matrices P and Q are not
relatively left prime, i.e. P = GL · P̃ and Q = GL · Q̃ (GL is the non-unimodular gcld of P and Q), we get

dy = P−1(s)Q(s)du = P̃−1(s)G−1
L (s)GL(s) Q̃(s)du = P̃−1(s) Q̃(s)du.

Therefore, system (1) can be characterized by a matrix from K (s;d/dt)p×m. In our case it is the matrix
F = P−1Q = P̃−1Q̃. Note that every matrix of left fractions from K (s;d/dt)p×m, represented in the form
A−1B, does not correspond to a control system, since the set of one-forms A(s)dy+B(s)du is not necessarily
integrable.

Definition 13. [8] A matrix F ∈K (s;d/dt)p×m such that dy = F(s)du is said to be the transfer matrix of
the MIMO nonlinear system (1).

Definition 14. Two systems Σ1 and Σ2, defined by the equations of the form (1), are called transfer equivalent
if they have the same transfer matrix.

From the above definition we can conclude that the irreducible set of equations is transfer equivalent to
the original system description (1).

5. DISCUSSION, EXAMPLES, AND MATHEMATICA R© IMPLEMENTATION

In this section we first compare the notion of accessibility, introduced in this paper, with the notion of
controllability, as it is defined in [4] for the set of i/o equations. The comparison obviously holds only for
the subclass of systems studied in [4], that is for systems, defined by polynomial equations in variables y,
ẏ, ÿ, etc. over the field of rational functions of the variables u, u̇, ü, etc. For this class of systems the two
notions practically coincide. Really, controllability is defined as R being differentially algebraically closed
in the differential field K , defined by the system equations (1). This just means that system (1) does not
admit a variable φr ∈K that satisfies an autonomous differential algebraic equation F(φr, φ̇r, . . . ,φ

(µ)
r ) = 0

for some µ > 1. Note that in our paper F may be a meromorphic function. Moreover, the paper [4] does not
provide a method for finding the accessible (irreducible) system description, though the method for checking
accessibility is given in [17].

The algorithms for checking the accessibility and reduction of a non-accessible (reducible) system have
been implemented in the computer algebra system Mathematica R© as a part of the package NLControl,
devoted to modelling, analysis, and synthesis problems of nonlinear control systems. The functions are also
available on the NLControl website www.nlcontrol.ioc.ee. The main benefit of the website is that the user
does not need Mathematica R© to be installed into a local computer; only internet connection and a browser
are necessary to run the functions. Note the difference in terminology: on the NLControl website the
accessibility of the i/o system can be checked using the function Irreducibility. The irreducible equations,
which also represent the accessible subsystem, can be found by the function Reduction.

Example 2. Consider the system described by the i/o differential equations

ÿ1 =−y2 +u2y2 + y2u̇1 + y2u̇2− ẏ1− ẏ2 +u1ẏ2 +u2ẏ2− ÿ2,
...y 2 =−3y2 +2u1y2 +3u2y2−3ẏ1−2ẏ2 +2u̇1ẏ2 + y2ü1 +u1ÿ2.

(20)
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System (20) satisfies conditions (2). Linearized equations of (20) as in (10) are determined by the
polynomial matrices

P =
(

s2 + s s2 +(1−u1−u2)s+1−u2− u̇1− u̇2
−3s s3−u1s2 +(2−2u̇1)s+3−2u1−3u2− ü1

)
,

Q =
( −y2s− ẏ2 −y2s− y2− ẏ2
−y2s2−2ẏ2s−2y2− ÿ2 −3y2

)
.

According to Theorem 7, one can find a gcld GL of P and Q by reducing the composite matrix [P |Q ] into
the lower left triangular form [GL | 0 ]. Following the algorithm in the proof of Theorem 5 yields

GL =
(

y2 0
−y2s2−2ẏ2s+ y2− ÿ2 s3 + s2− s+2

)
.

Since GL is not a unimodular matrix (the maximum degree of the polynomials on the main diagonal is higher
than 0), system (20) is not accessible. It also means that the system can be reduced. That is, one can find
the polynomial matrices P̃ and Q̃ that define the reduced linearized system equations P̃(s)dy + Q̃(s)du = 0
by solving P = GLP̃ and Q = GLQ̃ for P̃ and Q̃, respectively4:

P̃ =
( 1

y2
s2 + 1

y2
s 1

y2
s2 + 1−u1−u2

y2
s+ 1−u2−u̇1−u̇2

y2

s s−u1−u2 +1

)
,

Q̃ =
(−s− ẏ2

y2
−s−1− ẏ2

y2

−y2 −y2

)
.

In the reduction process we have assumed that y2 6= 0, (i.e. y2 ∈S ). This guarantees that the coefficients
of the polynomials are from the field K . Now, by (17), the one-forms ω1 and ω2 may be found, such that
GL(s)[ω1,ω2]T = 0:

ω1 =
1
y2

dẏ1 +
1
y2

dÿ1 +
1−u2− u̇1− u̇2

y2
dy2 +

1−u1−u2

y2
dẏ2

+
1
y2

ÿ2− ẏ2

y2
du1−du̇1−

(
1+

ẏ2

y2

)
du2−du̇2,

ω2 = dẏ1 +(1−u1−u2)dy2 +dẏ2− y2du1− y2du2.

(21)

Note that the one-form ω2 is exact, ω2 = dϕr2, but ω1 is only closed, and one has to multiply it by an
integrating factor y2 to obtain the exact one-form dϕr1 = y2ω1. Altogether, it means multiplying ω by the
unimodular matrix

U =
(

y2 0
0 1

)

from the left, which can be considered as choice of the different gcld5

G′
L = GLU−1 =

(
1 0

−s2 +1 s3 + s2− s+2

)
.

Indeed, the system P(s)dy+Q(s)du = 0 may be rewritten as

GL(s)U−1U
(

ω1
ω2

)
= G′

L(s)U
(

ω1
ω2

)
= G′

L(s)
(

dϕr1
dϕr2

)
= 0.

4 For the sake of simplicity the polynomial coefficients (elements of K ) are written in the form a
b = a−1b. No confusion is

caused since only left fractions are considered.
5 Recall that the gcld of P and Q is not unique.
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The reduced i/o equations can be found by integrating dϕr1 and dϕr2:

y2−u2y2− y2u̇1− y2u̇2 + ẏ1 + ẏ2−u1ẏ2−u2ẏ2 + ÿ1 + ÿ2 = 0,

y2−u1y2−u2y2 + ẏ1 + ẏ2 = 0.
(22)

Note that system (20) can be rewritten as F1(·) = ϕr1 = 0, F2(·) = ϕr1 + 2ϕr2− ϕ̇r2− ϕ̈r1 + ϕ̈r2 +
...ϕ r2 = 0,

but the reduced Eq. (22) are not in the form (1). It is easy to notice that Eq. (22) can be simplified further
and transformed into the form (1), using the linear i/o equivalence transformations [11]. Namely, choosing
ϕ r1 := ϕr1− ϕ̇r2 = y2−u2y2 + ẏ1 and ϕ r2 := ϕ r1−ϕr2 = u1y2− ẏ2 yields the i/o equivalent system description

ẏ1 = u2y2− y2, ẏ2 = u1y2. (23)

Replacing (22) by (23) may be just interpreted as a different choice of the gcld

GL =
(

s+1 s
3 s2 +2

)
.

Really, note that matrices G′
L and GL are column equivalent due to the relation

GL = G′
LV, where V =

(
s+1 s

1 1

)

is a unimodular matrix since

V−1 =
(

1 −s
−1 s+1

)
.

Therefore

GL(s)
[
P̃(s)dy− Q̃(s)du

]
= GL(s)

[
P(s)dy−Q(s)du

]
= GL(s)

[(
s 1−u2
0 s−u1

)
dy−

(
0 −y2
−y2 0

)
du

]
.

Now the one-forms, corresponding to the irreducible equations, are simpler

P(s)dy−Q(s)du =
(

dẏ1 +(1−u2)dy2− y2du2
dẏ2−u1dy2− y2du1

)
,

and are both exact. Their integration will yield the irreducible i/o equations (23). According to Defini-
tion 14, systems (20) and (23) are transfer equivalent. Finally, note that (20) can be rewritten as F1(·) =
ϕ r1 + ϕ̇ r1 + ϕ̇ r2 = 0, F2(·) = 3ϕ r1− ϕ̈ r2 +2ϕ r2 = 0.

As recalled in the introduction, reduction of the i/o equations is an integral part of finding the minimal
realization. The state-space description

ẋ = f (x,u), y = h(x), x(t) ∈ Rn (24)

is said to be a realization of the set of the i/o equations (1) if equations (1) and (24) have the same solution
sets {u(t),y(t)}. System (1) is called realizable if the state-space form (24) exists for it. The realizability
property can be checked using the sequence of subspaces (4): system (1) has an observable realization in the
form (24) iff the subspace Hr+2, r being the highest order of input derivative in (1), is integrable. Integrating
the basis vectors of Hr+2 yields the state coordinates [3]. Moreover, note also that the realization of the i/o
equations (1) is accessible, iff Eq. (1) are irreducible [6].

Observe that the realization of the reducible Eq. (20), as expected, is not accessible. Indeed, the
state variables for system (20) may be defined as x1 = y1, x2 = y2, x3 = ẏ2− u1y2, x4 = ÿ2− y2u̇1− u1ẏ2,
x5 = ẏ1−u2y2, which yield the state equations ẋ1 = u2x2 +x5, ẋ2 = u1x2 +x3, ẋ3 = x4, ẋ4 =−3x2−2x3−3x5,
ẋ5 = −x2 − u1x2 − x3 − x4 − x5. According to [6], the system is accessible iff H∞ = {0}. For the state
equations above we obtain H∞ = spanK {dx3,dx4,dx2 +dx5} 6= {0}.

For Eq. (23) one may choose the state variables as x1 = y1 and x2 = y2, and then the state equations have
the form ẋ1 = (u2− 1)x2, ẋ2 = u1x2. For the latter system H∞ = {0}, thus the accessibility condition is
fulfilled.
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The i/o equation in Example 3 below lacks the state-space form.

Example 3. Consider the model of “ball and beam”, [6,19], described by the SISO equation
(

J
R2 +m

)
ÿ+mgsinu−mru̇2 = 0, (25)

where angle u is the input of the system, y is the position of the ball and is considered as the output of the
system, J, R, m, and g are constant parameters.

Compute H1 = spanK {dy,dẏ,du,du̇}, H2 = spanK {dy,dẏ,du}, and Hr+2 = H3 = spanK {dy,Adẏ−
2mR2yu̇du}, where A = J + mR2. The subspace H3 is not integrable and thus the i/o equation (25) is not
realizable. However, the accessibility of (25) may be checked directly by Theorem 11. Globally linearized
equations (10) for system (25) are represented by matrices

P =
(
−

(
m+

J
R2

)
s2 +mu̇2

)
, Q = (2myu̇s−gmcosu) .

Since P and Q both contain a single element, the transformation of the composite matrix [P |Q ] into
the triangular form reduces to the computation of the gcld of two polynomials. We obtain GL = (γ ) =
(−[Ag2 cosu2 + 8Aẏ2u̇2 + 2gy((3A − 2J)u̇2 sinu + 3Aücosu) + 2Aẏu̇(3gcosu + 4yü) + y2(8(J − A)u̇4 +
8Aü2−4Au̇

...u )]/(2Ryu̇)2 ). For u̇ ∈S , we assume that u̇ 6= 0. Since degγ = 0, the matrix GL is unimodular
and thus, system (25) is, by Theorem 11, accessible.

Example 4. In the paper it was silently assumed that F(0, . . . ,0) = 0 in (12), yielding ϕr = 0. This
assumption is not natural in the nonlinear case, though widely used in the literature (for instance in [6]).
However, in some (rare) cases such assumption may yield a situation when the irreducible one-form for the
system can be found, while the reduced i/o equations do not exist [26]. Such an example is given by the i/o
equation

ϕ := ÿu− ẏu̇ = 0. (26)

In [26] it was shown that the minimal realization6 of (26) is not accessible. The irreducible form of (26)
is ϕr = ẏ/u, but taking ϕr = 0 results in a degenerate i/o equation ẏ = 0. For this reason system (26) is
considered irreducible in [26] (and its realization minimal), and it serves as a counterexample for the fact
that the minimal realization is accessible. This conclusion is in disagreement with the classical realization
theory. Replacing the assumption F(0, . . . ,0) = 0 by F(c,0, . . . ,0), as done in [2], allows us to avoid such
mismatch. However, understanding c as a variable leads to several irreducible equations (one for each fixed
c). Establishing a theory without the restriction F(0, . . . ,0) = 0 brings along unexpected results. Namely,
a time-invariant reducible i/o equation of the form (1) may admit only a time-varying irreducible equation;
thus extension is neither trivial nor direct (see more in [15]).

Computing the transfer function for system (26) yields: p := p11 = us2− u̇s, q := q11 = ẏs− ÿ. Transfer
function f := p−1q = (us2− u̇s)−1(ẏs− ÿ). Since p and q have the gcld gL := g11 = u2s with the degree 1
and from p = gL p̃, q = gL q̃, we obtain p̃ = (1/u)s and q̃ = (ẏ/u2). So, the transfer function may be reduced:
f = p̃−1g−1

L gLq̃ = p̃−1q̃ = s−1(ẏ/u). It is obvious that ẏ/u = 0 is a singular point of the transfer function f .
Moreover, since ϕ = kF(ϕ1, ϕ̇r) = u2ϕ̇r, one has to assure that u 6= 0.

6. CONCLUSIONS

The paper presented accessibility definition and a computation-oriented necessary and sufficient
accessibility condition for nonlinear multi-input multi-output differential equations which are formulated
in terms of the gcld of the polynomial matrices associated with the globally linearized system equations.

6 In the sense of state dimension.
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Note that the polynomials are defined over the differential field, and unlike the linear case, belong to a
non-commutative polynomial ring. On the basis of the above condition a constructive algorithm using
the Euclidean left division is suggested to examine the system accessibility. The proposed condition and
algorithm are consistent with those for the linear system and SISO nonlinear system in [27]. Note that
though the accessibility property can be checked within the polynomial approach, this is not so with the
system reduction. The algorithm described in this paper results in the vector of one-forms ω = [ω1, . . . ,ωp]

T,
related to the irreducible system description. To find the irreducible equations themselves, one has to
integrate ω . Though the set of one-forms ω1, . . . ,ωp is, in principle, proved to be integrable, in general
one has to multiply ω with the unimodular polynomial matrix from the left to make the components of the
one-forms exact. This amounts to finding another gcld from the class of all column-equivalent gclds.

Recall that the reduction algorithm, based largely on the proof of Theorem 7, does not necessarily result
in the reduced equations of the form (1). Though there exist the algorithm to transform the reduced equations
into such a form [11], it would be nice to develop the reduction algorithm that will give directly the reduced
equations in the form (1).
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2. Bartosiewicz, Z., Kotta, Ü., Pawłuszewicz, E., Tõnso, M., and Wyrwas, M. Reducibility condition for nonlinear discrete-time
systems: behavioral approach. Control and Cybernetics, 2013, 42(2), 329–347.
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9. Halás, M. and Kotta, Ü. Transfer functions of discrete-time nonlinear control systems. Proc. Estonian Acad. Sci. Phys. Math.,

2007, 56(4), 322–335.
10. Kolchin, E. R. Differential Algebra and Algebraic Groups. Academic Press, 1973.
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Mittelineaarse juhtimissüsteemi ligipääsetavuse tingimus polünoomide terminites

Ülle Kotta, Maris Tõnso ja Yu Kawano

Lineaarse süsteemi juhitavuse mõistet võib mittelineaarsete süsteemide jaoks üldistada mitmel erineval
viisil, käesolevas artiklis on uuritud üht võimalikku üldistust, nimelt süsteemi ligipääsetavust. On esitatud
tarvilik ja piisav tingimus mittelineaarse süsteemi ligipääsetavuse kontrollimiseks, kusjuures süsteem on
kirjeldatud sisendeid ning väljundeid siduvate kõrgemat järku diferentsiaalvõrrandite abil. Täisdiferentsiaali
operaatorit kasutades on süsteemi võrrandid lineariseeritud globaalselt ja seejärel esitatud kahe maatriksi
abil, mille elemendid on lineaarse süsteemi korral polünoomid üle reaalarvude korpuse, kuid mittelineaarse
süsteemi korral (mittekommutatiivsed) polünoomid üle meromorfsete funktsioonide korpuse. Süsteem on
ligipääsetav parajasti siis, kui maatriksite suurim vasakpoolne ühistegur on unimodulaarne, st selle pöörd-
maatriks on samuti polünoommaatriks. Esitatud tingimus lubab kontrollida ka selliste süsteemide ligi-
pääsetavust, mis ei ole kirjeldatavad olekuvõrrandite abil. Suurima vasakpoolse ühisteguri abil saab leida
mittelineaarse süsteemi ligipääsetava alamsüsteemi, mis on sobiv lähtepunkt jälgitavate ja ligipääsetavate
olekuvõrrandite leidmiseks. Ühtlasi võimaldab tingimus kontrollida kahe mittelineaarse süsteemi ekviva-
lentsust, kusjuures ekvivalentsetena mõistame süsteeme, mille ülekandemaatriksid on võrdsed.


