
D
A

N
 B

O
G

D
A

N
O

V

Sharem
ind: program

m
able secure com

putations w
ith practical applications

Tartu 2013

ISSN 1024–4212
ISBN 978–9949–32–216–9

DISSERTATIONES
MATHEMATICAE

UNIVERSITATIS
TARTUENSIS

83

DAN BOGDANOV

Sharemind: programmable secure
computations with practical applications

DISSERTATIONES MATHEMATICAE UNIVERSITATIS TARTUENSIS
83

DISSERTATIONES MATHEMATICAE UNIVERSITATIS TARTUENSIS
83

DAN BOGDANOV

Sharemind: programmable secure
computations with practical applications

Institute of Computer Science, Faculty of Mathematics and Computer Science,
University of Tartu, Estonia

Dissertation is accepted for the commencement of the degree of Doctor of Phi-
losophy (PhD) on January 21th, 2013 by the Council of the Institute of Computer
Science, University of Tartu.

Supervisor:
Dr. Tech. Sven Laur

University of Tartu
Tartu, Estonia

Opponents:
Prof. PhD. Nigel P. Smart

University of Bristol
Bristol, United Kingdom

Dr. Ir. Berry Schoenmakers
Eindhoven University of Technology
Eindhoven, Netherlands

The public defense will take place on February 28th, 2013 at 16:15 in Liivi 2-403.

The publication of this dissertation was financed by Institute of Computer Science,
University of Tartu.

ISSN 1024–4212
ISBN 978–9949–32–216–9 (print)
ISBN 978–9949–32–217–6 (PDF)

Copyright: Dan Bogdanov, 2013

University of Tartu Press
www.tyk.ee
Order No. 17

ss
s
ss

s s s

Contents

List of publications 8

Abstract 10

1 Introduction 11
1.1 Why do we need secrets? . 11
1.2 Background and claims of this work 12
1.3 Thesis outline and contributions of the author 13

2 Secure computation in practice 17
2.1 Overview of practical secure computation systems 17
2.2 Introduction to circuits . 17
2.3 Two-party computation using garbled Boolean circuits 19
2.4 From Boolean circuits to arithmetic circuits 21
2.5 Two-party computation using homomorphic encryption 23
2.6 Secure multiparty computation 24
2.7 Resource cost estimates . 27

3 The design of Sharemind 30
3.1 Design goals and intended purpose 30
3.2 Different flavors of privacy . 31

3.2.1 Record-level privacy . 31
3.2.2 Source-level privacy . 32
3.2.3 Output-level privacy . 32
3.2.4 Cryptographic privacy 33

3.3 The model of a SHAREMIND application 33
3.3.1 Overview of parties . 33
3.3.2 Encoding private data . 34
3.3.3 The overall threat model 35
3.3.4 Reducing the power of the adversary 36
3.3.5 The optimal number of computing parties 41

5

2

3.3.6 The case for passive security in SHAREMIND 42
3.3.7 Constructing simulators for secure computation protocols 42
3.3.8 From simulatability to security and composability 46
3.3.9 Guidelines for designing secure protocols for SHAREMIND

. 55
3.4 Secure storage in SHAREMIND 56

3.4.1 Design goals for secure storage 56
3.4.2 The structure of secret-shared databases 56
3.4.3 Manipulating secret-shared databases 58
3.4.4 A protocol for data collection 61

3.5 Protocols for secure computation 64
3.5.1 The general secure computation process 64
3.5.2 Protocols for addition and multiplication 65
3.5.3 Protocols for comparison 66
3.5.4 The secure computation capabilities of SHAREMIND . . . 68

3.6 Notes on the design of SHAREMIND protocols 68
3.7 The software implementation of SHAREMIND 70

4 Practical performance of Sharemind 71
4.1 The complexity and performance of SHAREMIND 71
4.2 Benchmarking methodology . 72

4.2.1 The built-in protocol profiler 72
4.2.2 Benchmarking tools . 73

4.3 Performance analysis . 74
4.3.1 SHAREMIND protocol execution pipeline 74
4.3.2 The importance of processor speed 76
4.3.3 The importance of parallelization 77
4.3.4 The importance of network bandwidth and latency 80

4.4 Optimization goals for future protocols 82

5 Programming secure computations 84
5.1 Motivation and design goals . 84
5.2 The SHAREMIND secure virtual machine and assembly language . 86
5.3 SECREC—a high-level imperative language for implementing se-

cure functionality . 87
5.3.1 Secure data types . 87
5.3.2 Secure operations and parallelism 88
5.3.3 Making private data public 90

5.4 Developing secure SECREC programs 92
5.5 Additional developer tools . 94

5.5.1 The developer version of the SHAREMIND server 94

6

5.5.2 The SECRECIDE integrated development environment . . 95
5.6 A comparison of SECREC to other secure computation program-

ming languages . 97

6 Sharemind in practice 100
6.1 The process of developing a SHAREMIND application 100

6.1.1 Designing the application 100
6.1.2 Implementing the application 101
6.1.3 Deploying the application 102

6.2 Privacy-preserving application prototypes 103
6.2.1 Online surveys . 103
6.2.2 Frequent itemset mining 105
6.2.3 Privacy-preserving k-means clustering 108

6.3 The ITL financial benchmarking application 109

Conclusion 112

Bibliography 114

Acknowledgments 128

Kokkuvõte (Summary in Estonian) 129

Original Publications 132
Sharemind: A Framework for Fast Privacy-Preserving Computations . . 133
High-performance secure multi-party computation for data mining ap-

plications . 151
A universal toolkit for cryptographically secure privacy-preserving data

mining . 169

Curriculum Vitae 186

7

PUBLICATIONS INCLUDED IN THIS THESIS

The publications included in this thesis describe the main results achieved with
the Sharemind system developed by the author.

1. Bogdanov, D., Laur, S., Willemson, J.: Sharemind: A framework for fast
privacy-preserving computations. In: Jajodia, S., Lopez, J. (eds.) Proceed-
ings of the 13th European Symposium on Research in Computer Security,
ESORICS ’08. Lecture Notes in Computer Science, vol. 5283, pp. 192–206.
Springer (2008).

2. Bogdanov, D., Niitsoo, M., Toft, T., Willemson, J.: High-performance se-
cure multi-party computation for data mining applications. International
Journal of Information Security 11(6), 403–418 (2012)

3. Bogdanov, D., Jagomägis, R., Laur, S.: A universal toolkit for cryptograph-
ically secure privacy-preserving data mining. In: Chau, M., Wang, G.A.,
Yue, W.T., Chen, H. (eds.) Proceedings of the Pacific Asia Workshop on In-
telligence and Security Informatics, PAISI ’12. Lecture Notes in Computer
Science, vol. 7299, pp. 112–126. Springer (2012).

PUBLICATIONS NOT INCLUDED IN THIS THESIS

These publications by the author describe various aspects of SHAREMIND, but
are not included in this thesis. Some of the results achieved in these works are
referred to by the thesis. The list includes both papers and technical reports not
yet published as papers.

1. Bogdanov, D., Sassoon, R.: Privacy-preserving collaborative filtering with
sharemind. Tech. Rep. T-4-2, Cybernetica AS, Tartu, http://research.
cyber.ee/. (2008).

2. Bogdanov, D., Talviste, R.: A Comparison of Software Pseudorandom Num-
ber Generators. In: Cap, C. (ed.) Proceedings of Third Baltic Conference on
Advanced Topics in Telecommunication - BaSoTi 2009. pp. 61–71. Univer-
sität Rostock, Wissenschaftsverbund IuK (2009).

3. Bogdanov, D., Laur, S.: The design of a privacy-preserving distributed vir-
tual machine. In: Kaklamanis, C. (ed.) Collection of AEOLUS theoreti-
cal findings. Deliverable 1.0.6, pp. 269–280. Published online at http:
//aeolus.ceid.upatras.gr/deliverables (2010).

8

http://research.cyber.ee/
http://research.cyber.ee/
http://aeolus.ceid.upatras.gr/deliverables
http://aeolus.ceid.upatras.gr/deliverables

4. Bogdanov, D., Kamm, L.: Constructing privacy-preserving information sys-
tems using secure multiparty computation. Tech. Rep. T-4-13, Cybernetica
AS, Tartu, http://research.cyber.ee/. (2011).

5. Bogdanov, D., Talviste, R., Willemson, J.: Deploying secure multi-party
computation for financial data analysis - (short paper). In: Keromytis, A.D.
(ed.) Proceedings of the 16th International Conference on Financial Cryp-
tography and Data Security, FC ’12. Lecture Notes in Computer Science,
vol. 7397, pp. 57–64. Springer (2012).

OTHER PUBLISHED WORK OF THE AUTHOR

These publications by the author are on various topics in information security.

1. Bogdanov, D., Crispino, M.V., Čyras, V., Lapin, K., Panebarco, M., Zu-
liani, F.: Virtual World Platform VirtualLife: P2P, Security, Rule of Law
and Learning Support. In: Proceedings of 2009 NEM Summit "Towards
Future Media Internet". Distributed as an eBook. NEM Initiative (2009).

2. Ahmed, A.S., Bogdanov, D.: A Model for Automatically Evaluating Trust
in X.509 Certificates. Tech. Rep. T-4-11, Cybernetica AS, Tartu, http:
//research.cyber.ee/. (2010).

3. Bogdanov, D., Livenson, I.: VirtualLife: Secure Identity Management in
Peer-to-Peer Systems. In: Daras, P., Ibarra, O.M., Akan, O., Bellavista, P.,
Cao, J., Dressler, F., Ferrari, D., Gerla, M., Kobayashi, H., Palazzo, S.,
Sahni, S., Shen, X.S., Stan, M., Xiaohua, J., Zomaya, A., Coulson, G. (eds.)
Proceedings of the 1st International ICST Conference on User Centric Me-
dia, UCM ’10. Lecture Notes of the Institute for Computer Sciences, Social
Informatics and Telecommunications Engineering, vol. 40, pp. 181–188.
Springer (2010).

9

3

http://research.cyber.ee/
http://research.cyber.ee/
http://research.cyber.ee/

ABSTRACT

Information about the health, personal beliefs and wealth of an individual is con-
sidered sensitive and special care needs to be taken to ensure its privacy. Organi-
zations processing such data must take precautions to prevent its leakage to unau-
thorized parties. However, at the same time, both public and private organizations
are motivated to share information to make better decisions.

Secure multiparty computation is a cryptographic method for securely pro-
cessing data among several parties. While the first protocols were proposed in the
1980s, the first practical implementations were developed early this century.

In this thesis, we present SHAREMIND—a complete solution for building data
processing applications that use secure multiparty computation. The author is
both the designer and implementer of SHAREMIND. The thesis describes secure
computation and storage methods, performance measurements, application devel-
opment techniques and introduces several practical applications.

In the thesis, we describe and analyze the real-world threat model of secure
multiparty computation systems. We present a suite of protocols that is highly
optimized for secure data collection and processing in this model.

We introduce a secure database design based on secret sharing and describe
techniques for querying and updating this database. We show how data in a secret-
shared database can be processed using secure multiparty computation.

We present a performance analysis of the SHAREMIND system and its compu-
tation protocols. SHAREMIND achieves high performance in laboratory and cloud
settings, performing hundreds of thousands of secure operations each second.

We have created two languages for programming the SHAREMIND system—a
low-level assembly language and a high-level imperative programming language
called SECREC. Both allow the user to combine public and private computations.

Finally, we describe and benchmark several application prototypes and intro-
duce one real-world application of SHAREMIND—a financial information analysis
tool. This tool is, to our knowledge, the world’s first secure multiparty computa-
tion system running on the public Internet.

10

CHAPTER 1

INTRODUCTION

Should everyone who self-discloses information lose control over
that information forever, and have no say about whether and when the
Internet forgets this information? Do we want a future that is forever
unforgiving because it is unforgetting? (Viktor Mayer-Schönberger,
Delete: The Virtue of Forgetting in the Digital Age)

1.1 Why do we need secrets?

Digital computing technology has enabled the collection and processing of infor-
mation on a global scale. Every organization has the possibility to gather data
from its environment and study it in order to learn new ways for achieving its
goals. This includes monitoring the behavior of people and companies to find
patterns that could help predict their future interactions with the organization.

Retail companies study the shopping habits of customers to increase sales. Fi-
nancial institutions and insurance providers study people and companies to assess
whether they will default on loans or trigger contingencies that lead to insurance
payments. Governments analyze their populations to understand trends in migra-
tion, employment and welfare.

These actions are driven by our desire for efficiency and survivability. Indeed,
by understanding the future, we can adjust our own strategies to reach this future
in a more advantageous position than our competition. For example, having the
best information about one’s surroundings may become an essential requirement
of survival for a company.

However, as most companies now understand the value of information, they
have become more cautious about sharing it even if such sharing would ultimately
benefit them. Such fears are caused by the simple truth that once you disclose data
in digital form, it becomes trivially and perfectly copiable and thus the owner of

11

the data loses control over what else can be done with it. Indeed, attempts to con-
trol the use of digital content through techniques like digital rights management
have not been very successful.

The problem is also relevant when personal data are considered. People may
have many reasons why they would like to have their past actions or statements
forgotten. These concerns are typically an afterthought when those past actions or
statements have already caused harm in the present. However, with the systematic
tracking and profiling of individuals using digital services, potentially harmful in-
formation is continuously collected and placed outside the reach of the individuals
themselves.

To conclude, the main risk with digital personal information and business data
is that initially, they may be collected for a valid purpose. However, as they are
stored for an unspecified amount of time and out of the reach of their owners, they
can be used for any other purpose without the original owner being able to stop
it. In the digital world, the existence of secrets is being justified with the lack of
control over data.

1.2 Background and claims of this work

Cryptography is the mathematical science of secrets. Cryptography has given us
encryption schemes as a tool for confidentiality, digital signatures as a tool for
non-repudiation, message authentication codes and hashing as tools for check-
ing integrity and many other useful primitive operations that are used in digital
communications.

However, many of these primitives are final—once you transform data us-
ing a cryptographic function, the resulting form usually cannot be meaningfully
modified anymore without reversing the transformation. There are exceptions—
cryptographic functions whose output is homomorphic. Such functions can be
used to perform secure computation—to manipulate data even when it has been
encrypted or digitally signed while preserving the security guarantees offered by
the cryptographic primitive.

Secure computation has been researched for at least three decades. Recent
developments in the field are becoming more and more efficient to the point that
we can use the technology in real-life applications.

Research on secure multiparty computation focuses on the complexity of pro-
tocols, the strength of security guarantees and efficient solutions for particular
problems. However, the results are rarely taken outside the academical environ-
ment to solve real world problems in real world settings with actual stakeholders.

This work approaches secure computation from a more practical standpoint.
We claim that secure multiparty computation can be made suitable for use in ev-

12

eryday applications. More specifically, we make three claims. First, we claim that
secure multiparty computation can provide building blocks for creating complex
data processing tools without the need to design new protocols for each task. Sec-
ond, a secure multiparty computation implementation can be made fast enough
for processing databases with millions of records on easily obtainable hardware.
Third, we claim that secure multiparty computation can be packaged as a tool so
that it can successfully be applied by specialists in any field who do not have the
training of a cryptographer.

To achieve these goals, we take secure computation all the way from elegant
mathematical constructions to a deployment at the customer with their individual
wishes and requests. This work focuses on how to deliver secure computation
capability to applications, what kind of tools are needed to implement the appli-
cations and their business logic, and what kind of processes have to be followed
to ensure that the assumptions we bring from the theoretical solutions also hold in
the final application.

1.3 Thesis outline and contributions of the author

The author is the designer, architect and implementer of the SHAREMIND secure
multiparty computation system. This thesis provides the rationale and decisions
that directed the design of SHAREMIND. The author has also developed several
tools to measure the performance of SHAREMIND and direct its optimization ef-
forts. This thesis describes how the system is constructed, explains the security
guarantees and measures performance. The author developed the secure virtual
machine that can execute cryptographic protocols to perform secure computa-
tions, integrated this machine with a secure database and created interfaces for
end-user applications. The author has designed protocols that enable the secure
virtual machine to collect and store data and has actively participated in the design
of computation protocols.

The author of the thesis has designed developer tools such as the SECREC pro-
gramming language to simplify the creation of SHAREMIND applications and has
developed the necessary interfaces for integrating these tools into the SHAREMIND
system. The programming language interpreters and compilers have been im-
plemented in co-operation with students. Finally, the author has analyzed the
real-world deployment issues, including the necessity for software development
procedures, user interfaces, maintenance and economic aspects. This analysis is
based on prototype applications that the author has designed and implemented
with co-authors.

In the following, we introduce the thesis chapter by chapter and describe the
author’s contribution to different parts of SHAREMIND and the associated tools.

13

4

Chapter 2 describes secure computation and provides an overview of general-
purpose secure computation implementations. The thesis presents different secure
computation paradigms and provides a survey of published implementations of
general-purpose secure computation systems.

Chapter 3 introduces the SHAREMIND secure computation system and its de-
sign decisions. The thesis describes the design goals and the security model of
SHAREMIND secure computation protocols. The work continues with an expla-
nation of the storage model and data management protocols of SHAREMIND and
an overview of the software implementation of the system.

The chapter refers to the following papers included in this thesis.

1. Bogdanov, D., Laur, S., Willemson, J.: Sharemind: A framework for fast
privacy-preserving computations. In: Jajodia, S., Lopez, J. (eds.) Proceed-
ings of the 13th European Symposium on Research in Computer Security,
ESORICS ’08. Lecture Notes in Computer Science, vol. 5283, pp. 192–206.
Springer (2008).
This paper contains the secure computation protocols designed by the au-
thor and the co-authors. The author’s contributions include the software
architecture of the SHAREMIND system, the implementation of the vector-
ized secure computation protocols, the design and implementation of the
networking layer, secure database, controller library, profiling mechanism
and performance analysis tools. The author also conducted benchmarking
experiments and analyzed performance results.

2. Bogdanov, D., Niitsoo, M., Toft, T., Willemson, J.: High-performance se-
cure multi-party computation for data mining applications. International
Journal of Information Security 11(6), 403–418 (2012).
This paper proposes a new set of secure computation protocols that are sig-
nificantly more efficient than the ones in the original paper [25]. The au-
thor collaborated in the design and implementation of the new protocols
in the SHAREMIND system. The author’s personal contributions include
the design of the new secure protocol implementation interface that sup-
ports secure batch execution of larger vector operations, the benchmarking
and performance analysis of the new protocols in comparison with the old
protocols, the design, implementation and benchmarking of the privacy-
preserving k-means clustering algorithm.

The chapter also refers to several other works of the author.

1. A preliminary version of the SHAREMIND design was proposed in the au-
thor’s Master’s thesis [20].

14

2. The overall architecture of SHAREMIND is described in a technical re-
port [24]. The report describes the design of the storage and computation
features in SHAREMIND that are designed and implemented by the author.

Chapter 4 is an in-depth discussion on the performance and practical feasibility
of secure computations with SHAREMIND. The thesis lists the measurement and
analysis methods used to build the performance model of secure computations.
Several different aspects of the performance are considered, including computa-
tional complexity and communication complexity. The thesis describes experi-
ments that validate the analysis.

Parts of the chapter are based on joint work with students:

1. The performance analysis of SHAREMIND with different pseudorandom
generators is joint work with Riivo Talviste [29].

2. The performance analysis of SHAREMIND in different network settings and
in a cloud deployment is joint work with Reimo Rebane. The full analysis
appears in [106].

Chapter 5 explains the programming model of the SHAREMIND system. The
thesis explains the choices that have driven the design of the SHAREMIND pro-
gramming languages. Two languages—the SHAREMIND assembly language and
the SECREC language—have been implemented as joint work of the author and
his students. The thesis introduces both languages and gives an overview of their
features and use.

The thesis discusses how to ensure that privacy is preserved in SHAREMIND
programs and introduces a new analysis tool for detecting privacy leaks in SECREC
programs. The thesis also shows how an integrated development environment for
the SECREC language can simplify the development of secure applications. The
chapter ends with a survey of other secure multiparty computation languages.

Parts of this chapter are based on joint work with students:

1. The design and implementation of the SHAREMIND assembly language in-
terpreter is joint work with Roman Jagomägis [70].

2. The design and implementation of the SECREC language compiler is joint
work with Roman Jagomägis [71].

3. The design of the SECREC privacy leak analyzer is joint work with Jaak
Ristioja [107].

4. The design and implementation of the SECRECIDE integrated development
environment is joint work with Reimo Rebane [105].

15

Chapter 6 explains how to use the SHAREMIND framework in application de-
velopment and presents a list of practical secure computation applications that
have been built using the SHAREMIND framework. The thesis gives guidance for
developing secure applications that make use of secure computing. Several exam-
ple applications and algorithms are then discussed, including the first real-world
application of SHAREMIND.

The chapter gives an overview of the application. The detailed design of data
mining applications can be found in the following paper that is also a part of this
thesis.

1. Bogdanov, D., Jagomägis, R., Laur, S.: A universal toolkit for cryptograph-
ically secure privacy-preserving data mining. In: Chau, M., Wang, G.A.,
Yue, W.T., Chen, H. (eds.) Proceedings of the Pacific Asia Workshop on In-
telligence and Security Informatics, PAISI ’12. Lecture Notes in Computer
Science, vol. 7299, pp. 112–126. Springer (2012).
The paper presents SHAREMIND as a universal toolkit for creating privacy-
preserving data mining applications based on secure multiparty computa-
tion. The author collaborated with the co-authors on the design, imple-
mentation and optimization of the secure frequent itemset mining algo-
rithms presented in the paper. The author’s personal contributions include
the presentation of the generic data mining framework, descriptions of the
deployment and optimization options, the comparison of SHAREMIND to
other secure computation frameworks. The author also designed and im-
plemented the performance testing tools and performed benchmarking on
the SHAREMIND implementations of the algorithms

Parts of this chapter are based on the following joint works:

1. The proposal of using SHAREMIND-style secure computation for frequent
itemset mining, association rule mining and collaborative filtering comes
from a technical report jointly authored with Richard Sassoon [28].

2. The method for collecting secret-shared data in web applications has been
jointly developed with Riivo Talviste. A detailed description of the tech-
nique is given in [122].

3. The design, implementation, deployment and maintenance of the first real-
world SHAREMIND application is joint work with Riivo Talviste. The tech-
nical description of the application appears in [123]. Another study of the
application together with end-user feedback appears in [30].

16

CHAPTER 2

SECURE COMPUTATION IN PRACTICE

2.1 Overview of practical secure computation systems

In this work, we focus on general-purpose secure computation frameworks that
can easily be tailored for new algorithms and applications. There are task-specific
protocols and implementations, but our goal is to show that general-purpose sys-
tems can be made efficient enough for practical use. We also focus on systems
designed for data analysis rather than ones specifically designed for a single task
like voting or auctions.

The theory of secure computation is significantly older than practice. The con-
cept of secure function evaluation was introduced by Yao in 1982 [129]. The first
practical implementation work on garbled circuits was done over twenty years
later when Fairplay was introduced in 2004 [95]. Similarly, multiparty solutions
based on secret sharing were proposed in 1987 [40, 64, 17], but practically feasi-
ble implementations were not demonstrated before 2006 in Denmark [32]. Since
then, several secure computation frameworks have been developed. They differ in
their goals, security guarantees, efficiency and programming paradigms. Table 2.1
gives a general overview of the published secure computation frameworks. The
information has been collected both from public sources and personal communi-
cation with the researchers who created the systems. This overview will not focus
on security issues, but instead on deployment models and efficiency.

2.2 Introduction to circuits

Circuits are used as a model of computation in digital electronics and computa-
tional complexity theory. A circuit is a graph where edges are called wires and
vertices are called gates. Wires carry data values. Gates perform operations on
the values coming from input wires and put the results on the output wires. While

17

5

Framework Project started Techniques References
Fairplay 2003, Israel Yao circuits [95, 57]
SCET 2004, Denmark secret sharing [32]
SHAREMIND 2006, Estonia secret sharing [20, 25, 114]
FairplayMP 2006, Israel Yao circuits + secret sharing [15, 58]
SMCR 2006, Denmark secret sharing [31]
VIFF Passive 2007, Denmark secret sharing [61, 127]
VIFF Active 2008, Denmark secret sharing [46, 127]
VIFF Paillier 2008, Denmark homomorphic encryption [61, 127]
VIFF Orlandi 2008, Denmark secret sharing, additively

homomorphic encryption
and additively homomor-
phic commitments

[49, 127]

SEPIA 2008, Switzer-
land

secret sharing [35, 112]

TASTY 2009, Germany Yao circuits and additively
homomorphic encryption

[66, 124]

VMCrypt 2010, USA Yao circuits [94]

Table 2.1: General-purpose secure multiparty computation frameworks.

18

in Boolean circuits wires carry bit values, this is not an inherent limitation as we
can also construct arithmetic circuits with wires that carry integer data.

Formally, we define a circuit as an directed acyclic graph (G, W) where G

is the set of gates and W is the set of wires. A gate g 2 G has input wires and
output wires. While binary gates with two input wires and one output wire are
most popular, gates with an arbitrary number of inputs may be useful in certain
applications. A wire (g

i

, g

j

) 2 W represents a connection between an output
gate g

i

2 G and an input gate g

j

2 G. Wires that do not originate from a gate
within the circuit, provide external input for the whole circuit and output wires
that do not lead to a gate within the circuit hold the computational result after the
evaluation of the circuit. We currently omit the details on composing of circuits
by connecting output wires to the input wires of other circuits. Figure 2.1 gives
an example of a simple circuit that computes the greater-than-or-equal function
on two one-bit inputs u and v with the result on wire w.

AND

XOR

OR

u

v

w
NOT

NOT

Figure 2.1: A circuit evaluating greater-than-or-equal-to on one-bit inputs.

A circuit is executed as follows. The input values are written on the input
wires and gates are executed one-by-one or in parallel. A gate can be executed,
if all inputs for a gate are available. During execution, the inputs of a gate are
gathered, the function of the gate is evaluated on the inputs and the outputs are
written on the respective wires. When all gates are executed, the result can be
read from the wires.

2.3 Two-party computation using garbled Boolean
circuits

Circuits are useful for secure function evaluation, as their strict mathematical
structure provides a clever way to hide the values transferred on the wires dur-
ing evaluation. This approach was first proposed by Yao in 1982 [129]. The
original solution used an interactive protocol for evaluating each gate, but also
provided hints on a non-interactive version. Later, the interaction requirement
was lowered with the circuit garbling approach that requires interactions during
the preparation of the garbled circuit, but not during the actual execution. Yao’s

19

techniques have been extensively studied and used in theoretical work and appli-
cations alike [64, 108, 76, 82, 14].

The goal of circuit garbling is to build a circuit that computes a function f

and does not leak the values on the wires in the process. The core idea behind the
garbling process is to transform a circuit by replacing the values on the wires with
random bit strings and use a pseudorandom function in a gate to derive the output
bit string from the two input bit strings. For efficiency, several implementations
have used hash functions (Fairplay [95], FairplayMP [15], VMCrypt [94]), but a
symmetric encryption scheme can be used as well. While the evaluation of circuits
garbled using hash functions is very efficient, it is hard to give a formal proof of
security for such constructions. Usually, an implementation uses a fixed hash
function such as SHA-1 that cannot be modeled using a pseudorandom function
family. However, the latter is required for a formal proof.

We will now present a modern view on secure function evaluation via circuit
garbling. First, we will discuss solutions that provide security against a passive
adversary. Assume, that parties P1 and P2 have agreed to evaluate a function f

and have agreed to the structure of the respective Boolean circuit. The process of
evaluating this circuit with two parties is shown in Figure 2.2. First, P1 constructs
the circuit, encodes its inputs and passes it to P2. P2 then uses oblivious transfer to
learn the garbled versions of its inputs from P1. After that, P2 evaluates the circuit
and learn the resulting value that it may pass to P1. This model is implemented
by Fairplay and VMCrypt, among other systems.

Protocols based on Boolean circuits can also be extended to more than two
parties [12, 98, 47]. One implementation of such protocols is the FairplayMP
system [15]. Parties are divided into input parties (IP), computing parties (CP)
and result parties (RP). Input parties provide their masked input bits to the result
parties and share the mask bits using threshold secret sharing between the com-
puting parties. The computing parties garble the circuit in a secure and distributed
manner, using the secret-shared inputs and pass it to the result parties. The result
parties get the circuit from computing parties and masked inputs from the input
parties and evaluate the circuits. An illustration of the FairplayMP model is shown
on Figure 2.3.

Evaluating garbled circuits may require a lot of memory, especially if the
whole circuit is constructed in advance and stored in computer memory during
evaluation. VMCrypt takes steps to streamline the performance of circuit evalua-
tion and reduce the memory footprint [94]. Boolean circuits can be large and their
construction and garbling is time-consuming. VMCrypt works in the classical
Yao circuit evaluation model, but takes a streaming approach to circuit generation.
When a part of a circuit is ready, it is passed to the evaluator and the necessary
oblivious transfers are performed. To simplify, VMCrypt streams the circuit gate

20

Send result
to .

Learn input keys
from using OT.

P1 P2

Construct the
garbled circuit.

Encode own
inputs in the

circuit.

Send circuit
to .P2

P1

Receive circuit.

Participate in the
oblivious transfer.

Evaluate circuit.

P1
Receive result.

Figure 2.2: Yao style circuit evaluation with two parties.

by gate. This way, the evaluator does not have to wait for the whole circuit to
be garbled to start the computation process. The technique has been developed
further to evaluate larger circuits [69].

It is also possible to achieve security against malicious adversaries. Such
adversaries may, for example, build the wrong kind of circuit or wire the circuit
so that it leaks the inputs of the other party. There are various ways of forcing the
circuit builder to prove the correct structure of the circuit. The solutions differ in
the construction of the proof. For example, one can prove the correct construction
of the whole circuit [72], single gates [102] or just generate many circuits and
randomly check some of them [90] using the cut-and-choose technique.

2.4 From Boolean circuits to arithmetic circuits

The use of Boolean circuits is practical, as similar methods are used in hardware
design. This allows hardware circuit designs to be reused in secure computation.
However, the circuit garbling technique adds a computational overhead to each
gate. If a single bit is encoded with a pseudorandom function such as a hash
function or a symmetric cipher, the runtime representation of the bit is typically
at least 80–128 bits long.

21

6

Learn input keys
from using OT.

Send circuit
to the .

CP1 CPnIP

IP

RP

RP

Construct shared
garbled circuit.

Encode masked
shared inputs in

the circuit.

Receive circuit.

Participate in the
oblivious transfer.

Evaluate circuit
and learn result.

Share and mask
inputs and send

them to each .

...

CPi

Figure 2.3: Yao style circuit evaluation with multiple parties.

In most garbled circuit systems, a binary gate with a single output wire con-
tains a truth table with four garbled values. This means, that a gate requires 320–
512 bits to encode a binary Boolean function and this does not include the memory
cost of storing the structure of the circuit. Recent implementations can process
circuits with hundreds of millions of gates [69, 82], but the compilers for such
circuits still require significant computing power for large circuits.

Some secure computation techniques enable the secure evaluation of arith-
metic circuits where one gate processes values larger than a single bit. Figure 2.4
shows an arithmetic circuit that receives integer inputs x, y and a bit value b. The
value b is used to choose which of the input integers is output on wire z. Such
a circuit is highly useful in secure computation, since it provides a replacement
for branching operations. Instead of publishing a secret branching decision we
can evaluate both branches and obliviously select the correct value to be the final
result. Another significant property of this design is that it decreases the secure
computation overhead per processed bit.

The example contains gates for addition, subtraction and multiplication. Each
gate can process ring or field elements. The obvious benefit of such an approach
is the reduction of circuit size and depth. However, we require an efficient con-
struction for secure arithmetic operations, because implementing arithmetic gates
using Boolean circuits does not give us the efficiency gain that we are looking for.
Fortunately, there are several cryptographic protocols that fit our need. We will

22

1 -
×

+
×

z

x

b

y

Figure 2.4: The arithmetic oblivious selection circuit.

now describe two such techniques—homomorphic encryption and secret sharing.

2.5 Two-party computation using homomorphic
encryption

Homomorphic encryption is a suitable tool for creating secure computation sys-
tems in the client-server model. This is thanks to the homomorphic property that
allows the encrypted values to be meaningfully modified by manipulating the ci-
phertext in certain ways. However, if we want to build a secure computation sys-
tem using homomorphic encryption, we require two additional properties from the
encryption scheme—semantic (IND-CPA) security and circuit hiding. Semantic
security is an obvious confidentiality requirement. Circuit hiding means that if
a ciphertext has been computed by combining two other ciphertexts, the cipher-
text leaks no non-trivial information about the plaintexts of combined ciphertexts
when decrypted or processed by a computationally unbounded adversary. This is
usually achieved by using a special rerandomization procedure.

Notice that malleability is a direct side-effect of the homomorphic property
and therefore, a homomorphic encryption scheme cannot be IND-CCA secure.

Consider a client C and a server S. First, C generates a keypair for the chosen
homomorphic encryption scheme and uses it to encrypt its input data. The public
key is made available to S. Now, C can send its values to S, who uses the homo-
morphic property of the encryption scheme to run secure operations and evaluate
a secure function f on the data. Once the computation is complete, the encrypted
result is returned to C who decrypts it using the private key from the generated
keypair.

As practical homomorphic encryption schemes like Paillier [103], Damgård-
Jurik [48], Damgård-Geisler-Krøigaard [44, 45] and lifted ElGamal are only ad-
ditively homomorphic, the server can perform only additions and multiplication
with public constants autonomously. For more complex operations like multipli-
cation, the server needs to engage in a specific protocol with the client. For an

23

example, see [120, 80]. Note that this approach is not limited to a client-server
architecture and can be extended to a larger number of parties.

Furthermore, protocols in this model typically achieve security against a pas-
sive server S. However, homomorphic encryption is a useful primitive in the con-
struction of protocols that offer some level of protection against a malicious ad-
versary in both two-party [7, 85] and multiparty settings [50].

Homomorphic encryption also has an overhead in its data representation. For
example, to achieve practical security with current state of computing hardware,
the message space of the Paillier homomorphic encryption scheme must be based
on RSA moduli of at least 2048 bits in size. Hence, if we want encode a single
value in a single ciphertext, the overhead is even larger than for garbled circuits.

The TASTY [66] and the PaillierRuntime of VIFF [61] are two implementa-
tions of secure computation frameworks that use additively homomorphic encryp-
tion. The TASTY framework deserves attention for combining additively homo-
morphic encryption with garbled circuits to balance the benefits of both two-party
approaches.

There also exist homomorphic encryption schemes that can perform both ad-
ditions and multiplications locally. These schemes are called fully homomor-

phic. The first practical and provably secure fully homomorphic encryption (FHE)
scheme was proposed by Gentry in 2009 [62]. A proof-of-concept implementation
was presented in [63]. However, no practical secure computation system has been
constructed yet due to the high resource requirements of the current schemes. To
illustrate the overhead of an FHE scheme, consider Gentry’s scheme that is based
on intractable problems in integer lattices. The encryption scheme uses integers
with over 800 000 bits to achieve a scheme-specific medium level of security. The
overhead can be reduced through better encoding mechanisms, but these encoding
mechanisms need to be designed to preserve the homomorphic property. For an
example of such an encoding scheme that is designed for use with FHE, see [118].

Figure 2.5 illustrates how homomorphic encryption can be used to build a
client-server secure computation system. The additively and fully homomorphic
cases are presented separately for comparison.

2.6 Secure multiparty computation

The solutions discussed up to now have protected each value by using techniques
such as encryption. Until now, we have focused on two-party solutions that trans-
form each input value to a single value (with FairplayMP being the exception). We
will now consider secure computation techniques based on secret sharing [113].
Secret sharing is used to divide a secret value into several pieces called shares.
Each share looks random to the holder and a predetermined number of shares is

24

Send result to . C

C S

Encrypt inputs
and send to . Perform local

additions and
client-assisted
multiplications.Help server with

multiplications.

Receive and
decrypt result.

S

(a) Additively homomorphic encryption

Send result to . C

C S

Encrypt inputs
and send to . Perform local

additions
and local

multiplications.

Receive and
decrypt result.

S

(b) Fully homomorphic encryption

Figure 2.5: Secure two-party computation using homomorphic encryption.

required to reconstruct the original value.
More formally, let s be a secret value in the message space M and S be the

space of secret shares. A k-out-of-n secret sharing scheme is a tuple (Share, Rec)

defined as follows:

1. Share(s) = (s1, . . . , sn) is the randomized sharing function that computes
the shares of a secret,

2. Rec(s

i1 , si2 , . . . sik) is the reconstruction function that reconstructs the se-
cret from at least k shares, and

3. having access to any k � 1 shares from (s1, . . . , sn) gives no information
about the value of s, i.e., the probability distribution of k � 1 shares is
independent of s.

In this thesis, we use [[x]] as a shorthand for Share(x).
Two constructions for secure computation based on secret sharing were pub-

lished in 1988 [17, 39]. Secure multiparty computation has been continuously
improved since then. Implementations differ in security models, number of par-
ties and the used secret sharing schemes and protocols.

We will now describe how secure computation circuits are expressed in se-
cret shared form. As secret sharing distributes every value into several pieces,
the computation gates must be able to process data in this form. Figure 2.6 il-
lustrates the concept by presenting the oblivious selection circuit from Figure 2.4
in secret-shared form. On the figure, each wire is separated into three lines, each
representing one share of the value being processed. The three wires represent

25

7

1 -

×

+

×
[[x]]

[[b]]

[[y]]

[[z]]

Figure 2.6: The arithmetic oblivious selection circuit with secret sharing and secure mul-
tiparty computation among three parties.

Reconstruct
result from

shares.

CP1 CPnIP RP

Perform secure
operations using
SMC protocols.

Send shares of
the result to .

Share inputs and
send them to

each .

...

CPi

RP

Figure 2.7: General secure multiparty computation using secret sharing.

the three shares of a value. We have chosen three for illustration only, as secure
multiparty computation is not limited to three parties.

It follows, that each binary gate needs to be able to process six shares and
output three shares representing the output value. The gate itself represents a
secure multiparty computation protocol that can compute a secret-shared output
from two secret-shared inputs. Intuitively, the protocol must not reconstruct the
shares of the inputs as this would compromise the secret values. Instead, it uses
distributed computation protocols to compute the result.

We will now describe how secure computation systems based on secret shar-
ing can be deployed. We will use the same party classification for a secret sharing
system that was used in the client-server model of the protocols in [47] and in the
FairplayMP system [15]. IP stands for an input party, CP stands for a computing
party and RP stands for a result party. Figure 2.7 shows the secure computation
process with secret sharing.

Input parties use secret sharing on the input data and distribute the shares
among the computing parties. Computing parties engage in secure multiparty

26

computation protocols to evaluate the distributed gates in the function f . Once f

is computed, the computing parties send shares of the result to the result parties.
In practice, input parties and result parties can be the same entities.

This kind of model is implemented in several frameworks. Examples include
SHAREMIND, implementations from the SCET [32] and SIMAP projects [31],
PassiveRuntime in VIFF [46, 61] and the SEPIA system [35]. SHAREMIND,
SEPIA and the VIFF PassiveRuntime are the most similar frameworks, provid-
ing similar security guarantees. The VIFF ActiveRuntime and VIFF OrlandiRun-
time can withstand more complex forms of corruption. Security models for secure
multiparty computation are discussed further in Section 3.3.4.

Remarkably, the VIFF OrlandiRuntime combines secret sharing, additively
homomorphic encryption and additively homomorphic commitments to achieve
a secure computation method that can remain secure even when the majority of
the computing nodes are dishonest. This is different from the other mentioned
implementations that only provide security given an honest majority.

2.7 Resource cost estimates

Every secure computation system has its own bottlenecks and this makes good
comparative benchmarking a challenging task. In this work, we present an anal-
ysis of the practical complexities of the described secure computation paradigms.
We have taken an efficient design for each paradigm and analyzed its practical
complexities and overheads.

We chose two data types for the analysis—the bit and the 32-bit integer. For
both data types, we considered the size of the secure representation, the communi-
cation and computational cost of the secure addition and multiplication operations.
These choices were made because they allow generic computations. More fine-
tuned protocols may exist for specific tasks, but our goal in this work is to create
generic, programmable secure computations. We are analyzing the performance
of a single operation, thus ignoring protocol-specific parallelization opportunities.

For secure multiparty computation (SMC), we look at the SHAREMIND pro-
tocols given in [27]. The protocols are based on additive secret sharing with three
parties, so each secret value is shared into three pieces and requires three times as
much storage. As the chosen secret sharing scheme is additively homomorphic,
addition requires no communication. The cost of the multiplication operation was
measured from the SHAREMIND multiplication protocol.

For garbled circuits (GC), we assume an abstract construction with a number
of standard features. The implementation follows the standard two-party construc-
tion and uses a 128-bit pseudo-random function (PRF) such as the SHA-1 hash
function or the AES block cipher. The oblivious transfer primitive is not speci-

27

fied, but its use is counted in the cost analysis. The constructions for addition and
multiplication circuits for 32-bit integers are reasonably optimized. The addition
circuit uses 128 XOR and 32 AND gates and the multiplication circuit consists of
1984 XOR gates and 1024 AND gates. We assume, that the XOR gates can be
evaluated with no communication [81]. The computation complexity is presented
in the amount of randomness needed to generate the keys, the number of PRF
calls and number of oblivious transfer calls. The communication complexity is
given in bits to transfer the circuit and in the instances of the oblivious transfer
(OT) protocol.

For additively homomorphic encryption (HE), we consider the Paillier scheme
with plaintexts in the 2-kilobit range and ciphertexts twice as large. We assume,
that packing is used in the multiplication protocol to reduce the number of en-
cryption operations and communication. We have deconstructed the encryption
and decryption operations into ring operations to improve comparability.

For fully homomorphic encryption (FHE), we generalize over several schemes
providing local additions and multiplications. We assume that homomorphic op-
erations are local over a field where the integer representation of each element
is more than a million bits large. This achieves the “small” security level of the
implementation described in [63]. The current fully homomorphic encryption
schemes require a bootstrapping operation after a certain number of operations
to control the noise in the ciphertext. This operation is very expensive and is the
main limiting factor of the FHE technique. We do not measure it, as different
schemes use different methods to perform this task.

The performance results for processing single bits are given in Table 2.2 and
Table 2.3. Results for 32-bit integers are given in Table 2.4 and Table 2.5.

Storage size XOR communication cost AND communication cost
SMC 3 bits none 15 bits
GC 128 bits 640 bits + OT for 1 bit 640 bits + OT for 1 bit
HE ~4 Kbits none ~8 Kbits

FHE > 1 Mbit none none

Table 2.2: Storage and communication cost of securely processing 1-bit Booleans.

28

XOR computation cost AND computation cost

SMC 1 Z2 operation 3 bits of randomness
+ 13 Z2 operations

GC 512 bits of randomness 512 bits of randomness
+ 10 PRF calls + OT for 1 bit + 10 PRF calls + OT for 1 bit

HE 1 Z2n operation (n > 4000) ~12 Kbits of randomness
+ 10 Z2n operations (n > 4000)

FHE 1 Z2n operation (n > 10

6) 1 Z2n operation (n > 10

6)
+ control noise as needed + control noise as needed

Table 2.3: Computational complexity of securely processing 1-bit Booleans.

Storage size ADD communication cost MUL communication cost
SMC 96 bits none 480 bits
GC 4 Kbits 28 Kbits + OT for 32 bits 500 Kbits + OT for 32 bits
HE ~4 Kbits none ~8 Kbits

FHE > 1 Mbit none none

Table 2.4: Storage and communication cost of securely processing 32-bit integers.

ADD computation cost MUL computation cost

SMC 1 Z232 operation 96 bits of randomness
+ 13 Z232 operations

GC 16 Kbits of randomness 250 Kbits of randomness
+ 384 PRF calls + OT for 32 bits + 9312 PRF calls + OT for 32 bits

HE 1 Z2n operation (n > 4000) ~12 Kbits of randomness
+ 10 Z2n operations (n > 4000)

FHE 1 Z2n operation (n > 10

6) 1 Z2n operation (n > 10

6)
+ control noise as needed + control noise as needed

Table 2.5: Computational complexity of securely processing 32-bit integers.

29

8

CHAPTER 3

THE DESIGN OF SHAREMIND

3.1 Design goals and intended purpose

SHAREMIND is designed to be deployed as a distributed secure computation ser-
vice that can be used for outsourcing data storage and computations. The dis-
tributed design is a requirement for using the secret sharing technique to guarantee
the confidentiality of data during storage. Figure 3.1 illustrates the general usage
model of SHAREMIND.

Data provider
Data user

?
Sharemind

secure database
and application

server

Confidential
data

Queries

Results

Figure 3.1: The deployment model of a SHAREMIND system.

In the deployment model, data providers control the confidential data that data

users want to analyze. As the data are confidential, data providers cannot simply
give it to the data users. In practice, there are various possibilities. For example, if
the data providers are individuals, they may hesitate before providing behavioral
information for a scientific study. Similarly, companies are reluctant to disclose
metrics about their performance, as these can give advantages to a competitor.
In a more mixed case, a company cannot share information about its customers
because of data protection restrictions.

On the other hand, the data users have an interest in aggregating data to learn

30

the statistical properties of the attributes or discover patterns. The secure com-
putation technology may let data users analyze information that they previously
had no access to. For example, data providers will be more inclined to provide
confidential data if they have provable guarantees for their security during storage
and computations. This encourages data users to commit resources to deploying
secure computation tools such as SHAREMIND.

From a technical standpoint, SHAREMIND is a general secure computation
system designed with the following major goals in mind:

1. SHAREMIND will be used in data mining to arrange or outsource the pro-
cessing of confidential data;

2. SHAREMIND must be sufficiently efficient to be used in practice;

3. SHAREMIND must be usable by non-cryptographers.

These goals have been the motivators behind several features of SHAREMIND
that we discuss in this thesis. Also, given that the efficiency of the implementa-
tion is a key goal, we prefer techniques that are efficient on current computing
hardware.

3.2 Different flavors of privacy

3.2.1 Record-level privacy

We will now look at a number of threats to privacy in typical data analysis sce-
narios. We consider record-level, source-level, output-level and cryptographic
privacy. Most of these goals are are independent, i.e., we can achieve one without
satisfying the others.

First, we look at record-level privacy. Each record in a database of individuals
corresponds to a certain person who wants to prevent anyone from discovering
specific values about him or her. For example, no researcher should be able to
tell with certainty, whether an individual is a drug addict or not by looking at the
respective database record. Record-level privacy is most important in statistical
surveys and scenarios where databases are published, e.g. for research purposes.

A classical solution for preserving record-level privacy is the randomized re-

sponse technique used in social studies and data mining [128, 42, 1, 5, 3]. The
technique is useful in the application model where individuals submit personal
data to a distrusted data collector. In such a survey, the individual will flip a coin
before giving an answer to a sensitive question. If the coin comes up heads, the
answer is expected to be truthful. Otherwise, a default answer to the question is
given.

31

In the alternative microdata publishing model, a trusted data collector dis-
closes a part of its database without revealing sensitive information about indi-
viduals. Similarly, this problem has been thoroughly studied in security and data
mining communities, see [60] for an overview.

Common methods for ensuring record-level privacy involve randomization in
some way. However, the randomization of data values has several weaknesses.
First, it requires a trade-off between privacy and accuracy. If we increase noise in
the data, we get better privacy, but the quality of global estimates will decrease.
Second, the added noise can be cancelled only for some aggregation functions
and the randomization method needs to be tailored for that function. Third, pri-
vacy is preserved on average and it can be breached by using related background
information. These weaknesses and several attacks have been discussed in the
literature [121, 93, 75, 99].

3.2.2 Source-level privacy

The idea behind of source-level privacy is very similar to record-level privacy.
The main difference is in the number of records. In a typical scenario, a data
owner wants to limit the amount of information that leaks to others during data
processing. Source-level privacy is mostly relevant in settings where the data are
split between several organizations who want to collectively analyze them.

Privacy-preserving data aggregation over horizontally and vertically parti-
tioned data are the two most common scenarios studied in this context, see [89,
126, 74]. Notably, only a few published solutions are cryptographically secure.
Others can leak significantly more information that the desired output.

The main reason behind solutions without cryptographic security is the per-
ceived inefficiency of cryptographic solutions. Theoretically valid proposals have
been overly inefficient for practice and even the computation of simple data min-
ing primitives like scalar products has been a resource-demanding task [120]. The
inefficiency of most solutions can be attributed to reliance on slower asymmetric
cryptographic primitives like homomorphic encryption.

However, recent developments in secure computation have made the technol-
ogy much faster and it is now possible to design solutions that rely on crypto-
graphic primitives and provide source-level privacy. SHAREMIND is well-suited
for this scenario as the distributed nature of the system is an ideal match for a
setting with several data owners.

3.2.3 Output-level privacy

While the previous two types of privacy were concerned about what can be learned
by looking at the source data, output-level privacy looks directly at the result of

32

the data analysis procedure. More specifically, we want to know how much the
outputs of a data mining procedure leak information about its inputs.

Output-level privacy has been studied mostly in the context of query auditing

where a trusted database owner can refuse to answer queries in order to protect
individuals. Starting from the original problem statement [52], many hardness
and impossibility results for naïve solutions have been derived, see [79, 77].

The most rigorous results about output-level privacy can be given in the frame-
work of differential privacy [54]. Differential privacy studies how much a change
in an input data record affects the output of a data analysis task. Intuitively, an
algorithm achieves output-level privacy, if it can compute the correct aggregation
of a set of records so that a single change to the records does not affect the output
in a way that would leak the inputs. However, the construction of such algorithms
is hard and typical solutions fall back to adding noise to the input and output data.
This again reduces the accuracy of the analysis. Furthermore, differential privacy
does not easily address the issue of privacy leaks as a result of a large number of
repeated queries.

It is important to see that a breach in output-level privacy may constitute
breaches to record-level privacy and source-level privacy. This is because break-
ing output-level privacy means that we learned something about the private inputs
that we should not have learned.

3.2.4 Cryptographic privacy

There is a fourth kind of privacy that is orthogonal to the three previous ones.
Cryptographic privacy guarantees that only the final result of a data analysis task
is published. All inputs and intermediate values are protected using encryption,
secret sharing or other similar methods. This protection is maintained throughout
the secure computation process.

If a data analysis task can be completed with both cryptographic privacy and
output-level privacy, then we cannot learn anything substantial about the private
inputs and have successfully achieved also record- and source-level privacy.

3.3 The model of a SHAREMIND application

3.3.1 Overview of parties

We will follow a similar notation for parties that was used to describe the parties in
FairplayMP. A secure computation system consists of any number of input parties
IP1, IP2, . . . , IP

m

, computing parties CP1, CP2, . . . , CP
n

and result parties
RP1, RP2, . . . , RP

r

. In a deployed application, the input parties map to the
data providers. Similarly, the result parties map to data users like data analysts.

33

9

Computing parties perform secure computations using the SHAREMIND miner
server software.

There may also be cases when a single organization fills the roles of several
parties. For example, an organization may be both providing data and receiving
the results of queries.

3.3.2 Encoding private data

SHAREMIND applications represent data as unsigned integers. We have chosen
standard types from programming languages such as 8-bit, 16-bit, 32-bit and 64-
bit unsigned integers, because these types are efficiently implemented in modern
computing hardware. We also support the boolean type for logical operations.
The default data type in the SHAREMIND implementation is the 32-bit integer.
Therefore, in our protocols we will use this data type as an example.

SHAREMIND computing parties use secret sharing to securely store confiden-
tial data. The mathematical representation of the chosen integer data types is a
ring, e.g., Z232 for the set of 32-bit unsigned integers in the range 0, 1 . . . , 2

32 � 1.
The classic Shamir secret sharing scheme [113] is most suitable for protecting el-
ements of fields. Also, the secure multiparty computation protocols relying on
the properties of Shamir’s secret sharing are not secure on rings like Z232 . We,
therefore, use the additive secret sharing scheme instead.

We write x M to show that the element x has been uniformly chosen from
the set M . To share a value s 2 Z232 among n parties we compute the shares s1,
s2, . . . , s

n

as follows:

s1 Z232

s2 Z232

. . . (1)
s

n�1 Z232

s

n

= s� s1 � s2 � · · ·� s

n�1 mod 2

32
.

In SHAREMIND, each party will receive one share of every secret value. The
original secret can be reconstructed by collecting all the shares of a value and
adding them up using the addition operation in the ring. The correctness and effi-
ciency of this secret sharing scheme are trivial, but we will argue about its security,
because it helps us later in showing the security of storage and computations.

Theorem 1. For each secret value s 2 Z232 , any subset of n � 1 shares of s

is uniformly distributed and for any two secret values u, v 2 Z232 , their secret

34

shared forms are indistinguishable for any coalition of parties holding up to n�1

shares.

Proof. According to the secret sharing algorithm (1), the shares s1, s2, . . . , s

n�1

are uniformly chosen from Z232 . We will now show that s2, s3, . . . , s

n

are also
uniformly distributed. The same argument can be extended for any other n � 1

different shares. We know that s2, s3, . . . , s

n�1 are uniformly distributed and
independent.

Let s

0
= s2 + s3+, . . . , +s

n�1 for a fixed s2, s3, . . . , s

n�1. Now, according
to algorithm (1),

s

n

= s� s1 � (s2 + · · · + s

n�1)

= (s� s

0
)� s1 .

As s1 is still uniformly distributed when s2, . . . , s

n�1 are fixed, we get that s

n

is uniformly distributed and independent from s2, . . . , s

n�1.

The uniformity of a single share is a useful property for showing that the
shares controlled by a single party reveal no information about the information
processed. We will use this property later to argue about the security of a secure
database.

3.3.3 The overall threat model

In the most common case, the behavior for all parties in our secure computa-
tion system will be implemented in software and will run on standard computing
hardware. Messages will be transmitted on public computer networks. Also, in
the real world there is no global clock in the system so both communication and
processing are asynchronous.

Our main security goal is that the values provided by the input parties remain
secret from all other parties. As the data of the input parties will be stored and
processed by the computing parties, we need to ensure that they cannot learn
anything from the information available to them.

Furthermore, the result parties must not learn anything except for the final
results of the secure computation performed by the computing parties. Note, that
depending on the used algorithms and provided data, the desired output may leak
the input of one or more input parties. This threat is not handled by the threat
model in this section. Possible solutions are discussed in Section 5.4.

The environment surrounding the parties is hostile and the adversary has many
ways for breaking the security. To illustrate the situation, consider an input party
who has been asked to provide private data for computations. From the perspec-
tive of this party, the situation looks really bad.

35

1. The adversary could be reading and modifying the messages exchanged
between parties.

2. The adversary could be scheduling communication between the parties, de-
laying messages in the communication channel.

3. The adversary could be controlling all the other input parties.

4. The adversary could be controlling all the computing parties.

5. The adversary could be controlling all the result parties.

It is evident, that it will be impossible to do anything in this environment of
paranoia, so we have to deploy security mechanisms that lower the probability
of the listed threats. We will now discuss both cryptographic and administrative
methods that reduce the attacking capabilities of the adversary and help us achieve
our set security goal.

3.3.4 Reducing the power of the adversary

In our threat model we take the pessimistic view and assume that all adverse
behavior is directed by a global adversary that can use any means available to
break the security of the system. In a distributed setting, the adversary may corrupt
any component or party in the system.

The most common corruption models describe active and passive corruption.
In the active case, the adversary behaves maliciously and can make the party do
anything. This includes making any or no computations, sending incorrect values,
too much values or no values at all.

In the passive (honest-but-curious) case, we assume that the corrupted party
follows the protocol but also reports everything that it sees to the adversary, who
tries to compute the inputs and outputs of honest parties based on all the available
information.

As an omnipotent adversary can defeat any security measure, we have to com-
bine several methods and build a holistic defense model for a secure computation
system. We will use two methods to reduce the power of the adversary. First, we
will use established cryptographic techniques to secure the communication chan-
nels. Second, we will identify the threats that we cannot or will not solve using
cryptographic means and we will either use administrative and legal methods to
defeat them or accept the related risks.

Security of the communication channels. We start by securing the communica-
tion infrastructure. The use of standard secure channels such as TLS [51] over an
Internet protocol like TCP ensures privacy, authenticity, integrity and the correct

36

order of messages. TLS and TCP require an underlying communication channel
with at least some reliability to function properly. However, it is trivial to see that
if all messages are dropped by the adversary, then any kind of communication
between parties is not possible. In practice, we focus on a scenario where reliable
communication links can be deployed and provide fallbacks for the case when
they fail temporarily. Therefore, we can assume that it is possible to form secure,
point-to-point communication channels between the parties using cryptographic
communication protocols.

The current implementation version of SHAREMIND at the time of writing
this thesis is SHAREMIND 2. Its network layer is based on UDP networking,
so we have to account for a malicious network scheduler that can drop mes-
sages or change their order. This corresponds to the asynchronous network model
described in several works on secure computation [16, 36, 68]. However, the
SHAREMIND 2 network layer uses algorithms to guarantee reliability and message
ordering. In a nutshell, messages are retransmitted until they arrive and buffered
until they can be delivered in the correct order. If multiple retransmissions fail,
the connection is considered to be lost. This means that the actual communication
model of SHAREMIND 2 is less asynchronous than the one usually found in the
literature.

It is evident, that lost connections will lead to troubles terminating the proto-
col. Even though the passive adversary model adopted by SHAREMIND does not
accommodate for lost connections, we want to provide a solution for real-world
applications. In practice, this means that SHAREMIND applications can use restart

points between individual protocols to reconnect and continue computations.

General techniques against corruption. One should never underestimate the
usefulness of organizational and legal measures. Even though secure multiparty
computation reduces the need for non-disclosure agreements and penalties in con-
tracts, we must combine cryptographic methods with proper usage procedures to
ensure that cryptographic privacy is actually achieved in practice.

For example, organizations deploying secure multiparty computation must en-
sure that data security controls are in place to prevent the theft of the secret shares
available to a single computing party. If such thefts occur at several computing
parties, it may be possible to recover the original secrets by combining the shares.
Therefore, standard data security controls are a natural complement to secure mul-
tiparty computation.

Technologies like secure hardware and secure virtualization are outside the
scope of this thesis. Their use may reduce the risk of both insider and outsider
attacks on secure computation.

Corruption of input parties. If the adversary controls any input parties, it can

37

10

convince them not to enter data or to enter invalid values. In the first case, the
privacy of the input party who entered data in good faith, can be compromised,
if secure computation outputs a trivial aggregation of the inputs. For example, if
just one party enters data, aggregations such as sum or mean will leak the inputs.
This constitutes a breach of output-level privacy and all means of countering such
a breach also apply to the described case (see Section 3.2).

In the second case, incorrect data provided by other input parties can affect
the result of data aggregation. Because the data are private, the computing parties
cannot just look at individual values and discard them from the computations. All
corrections must be made obliviously, without seeing the data. This requires an
oblivious input validation method such as outlier detection. Furthermore, by clev-
erly selecting the inputs of the dishonest parties, the adversary may be able to learn
the outputs of the honest ones. For example, entering zeroes can be equivalent to
entering no value at all, if the aggregation function contains a sum.

In both cases, the adversary may need to corrupt several parties and possibly
do this over a period of time. This means that the adversary can adaptively corrupt
the input parties. However, for our secure goal to have a meaning, we assume, that
at least one honest input party remains.

In our model, we consider corrupted input parties a risk that can be mitigated
with the clever design of secure computation algorithms. We must reduce the
dependence of outputs on exceptional values in the inputs and we have to do it by
using oblivious filtering and similar techniques.

For example, we can implement algorithms for detecting exceptional values.
The algorithm can output a secret-shared mask that can later be used to exclude
exceptional values from processing. Examples on how this can be achieved in a
privacy-preserving manner are given in Section 3.4.3. Note that making the output
less dependent on the input is also a feature of differential privacy.

It must be noted that both described cases also apply to non-secure compu-
tations and general-purpose administrative techniques can be adapted to secure
computations as well.

Corruption of computing parties. The greatest risk to privacy comes from the
corruption of computing parties, as they store all the confidential data collected
from the input parties, albeit in secret-shared form. The properties of the additive
secret sharing scheme guarantee that all shares of a secret value are needed for
reconstruction. This gives us the first obvious (but necessary) assumption—we
cannot let the adversary corrupt all the computing parties.

However, this assumption is not constructive enough and, therefore, we look
at two kinds of adversarial models. The threshold model sets a limit on how many
parties can be corrupted by adversary. The classical results of [17, 39] state that
unconditional security against a passive adversary can be achieved with an honest

38

majority—less than n

2 parties of n can be corrupted. To achieve security against
an active adversary, the number of corrupted computing parties must be smaller
than n

3 .
The more general adversary structure model describes sets of corrupted parties

that the protocol can still tolerate without losing security [67]. The most common
adversary structures are Q2 and Q3. In the Q2 structure, no two sets of corrupted
parties can form the full set of parties. This corresponds to the passively corrupted
minority case in the threshold model. Similarly, in Q3, no three sets of corrupted
parties can form the full set of parties and this has been shown to correspond to
the threshold case less than n

3 parties can be actively corrupted.
As the additive secret sharing scheme is an n-out-of-n scheme, we cannot

prevent actively corrupted parties from modifying the shares during secure com-
putation. Solutions to that include the use of verifiable secret sharing schemes [41,
109] or using a shared MAC to check the shares [18].

It is also possible to achieve security against an active adversary with a dis-
honest majority, but such systems cannot guarantee the successful termination of
the protocol. Furthermore, such constructions need to rely on slower asymmetric
cryptographic primitives. Experimental results have shown that going from the
passive model to the active model at least doubles the complete running time of a
secure computation protocol, that may include a precomputation phase [56].

Precomputation allows a secure computation protocol to perform the majority
of the expensive computations in an offline phase. Typically, the offline phase
does not depend on the computational task at hand. However, the requirement for
precomputing may limit the usability of the protocols in certain scenarios where
quick reaction times are needed immediately after starting the secure computation
system. Some of the secure computation protocols that are secure against active
adversaries and use an offline phase are described in [49, 50].

Note that there are also other security models that provide different security
guarantees. Security against active adversaries is a very strong property and comes
with a relatively large overhead. However, in some application scenarios, honest
parties do not need to detect malicious behavior, if it does not affect their outputs.

In the covert model, the privacy of the input party cannot be guaranteed if the
adversary cheats. However, a cheating adversary can be detected with a significant
probability and, therefore, a rational adversary will not cheat, especially, if the
penalty for getting caught is higher than the expected gain [8].

Security models can also control, how much the adversary can learn about the
inputs of the honest players. For example, in the k-leakage model, the adversary
can learn up to k bits of information about the inputs of the honest players [97].
The somewhat stronger consistent model ensures that the honest parties can detect
malicious behavior that modifies their outputs and actively corrupted parties learn

39

nothing but their own outputs [86].
We assume static corruption—that is, formally, the adversary can pick the

parties to corrupt before the application is started and cannot corrupt any new
parties during the execution.

As SHAREMIND tolerates only passive corruption in at most one computing
party, we need to handle the residual risk of a computing party not following the
protocol. Given that our protocols do not make use of commitments or proofs of
inputs, it is easy to see how an actively corrupted party can make the result of the
computations incorrect by sending arbitrary messages. Similarly, it is easy to stop
computations from completing by not participating in the protocols.

A computing party may also try to modify the messages in the secure compu-
tation protocol to break the privacy of the input parties. However, the computing
party needs a feedback channel to see how its changes affected the final output.
Unless the computing party colludes with the other computing parties and man-
ages to collect all the shares of a computed value, the only way to get such feed-
back is to analyze the published outputs of the computed function when they are
published by the other computing parties.

Such an attack is more successful, if the dependency between the input of the
function and the output of the function is stronger. Essentially, the adversary can
try to modify the function being computed by modifying its share in the computa-
tion. Therefore, SHAREMIND achieves better privacy guarantees, if the computed
function performs aggregations of several input values and filters out exceptional
values from its inputs. The properties of such functions are discussed further in
Section 5.4. Not all useful functions have such properties, so an application using
passively secure protocols should also consider this risk.

However, it is not trivial to break the privacy of the input parties, even if a com-
puting party changes messages in the protocols. The protocols of SHAREMIND are
designed in such a way that if a single party does not follow the protocol, it cannot
extract the contents of the shared database without at least one more computing
party disclosing the shares of the affected values.

Even by changing the messages in the protocol, a corrupted party will need ac-
cess to the published results of the computation to successfully extract the leaked
bits. If the application does not provide the computing party with this output,
it needs to corrupt another computing party at least passively to learn the shares
needed to leak any bits. Therefore, without collusions, SHAREMIND 2 can also
maintain privacy even when one computing party does not follow the protocol.
Assuming that the protocols are information-theoretically secure, the number of
bits leaked about the private inputs in a collusion is limited by the size of the pub-
lished output. If the protocols are computationally secure, the leaked bits may
help us compute many or even all of the bits of the private input.

40

Of course, if no computations take place, all computing parties need to be
corrupted for data to leak, as all three shares are needed for reconstructing the
secret values.

Corruption of result parties. The result parties are the ones who send queries
to the SHAREMIND system. The main motivation for corrupting a result party is
to siphon as much information about the stored secure data and use it to break
output-level privacy. Therefore, we assume that the adversary is interested in
corrupting the result parties to make malicious queries. We consider that the ad-
versary corrupts result parties adaptively and there is no threshold on how many
result parties are corrupted.

The only way the result parties affect the system is through queries and their
parameters. Therefore, we need to make sure that SHAREMIND applications are
designed so that the queries leak the minimal amount of information to the result
party. We provide examples on how to achieve this for some practical applications
in Chapter 6.

The model for secure computation protocols. To conclude, we have described
potential attacks against secure computation in the cryptographic model. In our
chosen model, the adversary can passively corrupt computing parties and control
message scheduling in the network connections. In our applications, we have to
assume that the input parties and result parties are actively corrupted and provide
malicious inputs and malicious queries.

In the next section, we will describe the context in which our protocols are
proven secure. Our goal is to achieve a set of protocols that allow efficient, pro-
grammable execution of secure computation operations.

3.3.5 The optimal number of computing parties

As the goal of SHAREMIND is to achieve maximum efficiency, we choose to use
three computing parties. This is the lowest number for which we can form an
honest majority of computing parties that processes secret-shared data. While
secret-shared data can be processed with just two parties, these protocols require
computationally more expensive cryptographic primitives than what we plan to
use.

At the same time, adding more parties will increase the communication com-
plexity of the secure computation protocols and reduce the performance. There-
fore, three is the optimal number of parties for countering passively corrupted
computing parties.

41

11

3.3.6 The case for passive security in SHAREMIND

The SHAREMIND secure computation framework presented in this thesis is based
on protocols that are secure against a passive adversary. This means that if a
computing party actively tampers with the software implementation, it may be
able to break the security guarantees that SHAREMIND offers. Such attacks can be
detected or even countered by protocols that are secure against an active adversary.
However, such protection requires additional overhead and makes the protocols
less efficient.

Taking all this into account, the version of SHAREMIND described in this the-
sis is most suitable for use in scenarios where multiple parties want to jointly
process data, but are prevented from doing so by data protection rules. The par-
ties can set up SHAREMIND and share data without any of them seeing each others
inputs.

It must also be noted that SHAREMIND is not only defined by its protocols.
It is a full framework for developing secure multiparty computation applications.
The server infrastructure, programming language and application model are all
suitable for other kinds of protocols. Therefore, SHAREMIND can be updated to
use an actively secure suite of protocols and provide the benefits that they bring.

3.3.7 Constructing simulators for secure computation protocols

We will now present the security proof framework for SHAREMIND protocols.
This framework has evolved during the development of the system. The first
version was published in [25] together with the first set of secure computation
protocols. New protocols and an updated model is presented in [27]. This thesis
presents these models in more detail.

The security proofs of SHAREMIND protocols are built on the ideal versus real
world paradigm. Assume that we want to evaluate the function

(y1, y2, y3) = f(x1, x2, x3)

so that each computing party CP
i

provides the input x

i

and learns the result y

i

and nothing else. In the real world, parties CP1, CP2, CP3 exchange messages to
evaluate the function f given the secure multiparty computation protocols. How-
ever, we have to account for one corrupted party. Consider an example where CP3

is passively corrupted. The adversary A is now controlling CP3 and has access to
all its input and output messages and the local state. However, given the passive
adversary assumption, it cannot change the local state or outgoing messages. The
real world setting is illustrated in Figure 3.2.

In the ideal world (see Figure 3.3), there is a trusted third party F that collects
the inputs from the computing parties, evaluates the function f , and returns the
results. As CP3 is corrupted, we handle it differently from the honest parties.

42

CP1

CP2

A

CP3
protocol

messages

Figure 3.2: SHAREMIND protocols in the real world setting.

CP1

CP2

F S
x1

x2

x3

y3
y2

y1

A CP3

simulated

messages

adversary’s

messages

Figure 3.3: SHAREMIND protocols in an ideal world setting.

Our goal is to show that for any real-world attack there exists an attack in the
ideal world so that both attacks use roughly the same amount of resources and
have roughly the same probability of success. In more detail, an attack should
corrupt the same parties, use the same background information and have similar
computational and storage complexities. The standard approach to show the exis-
tence of an attack in the ideal world is to construct a simulator S that can simulate
every protocol run of the real world in the ideal world.

In a typical setting, the simulator in the ideal world interacts with the trusted
third party on one side and the adversary A on the other side. Its goal is to simulate
protocol messages to A so that A cannot distinguish the ideal world from the
real world. If we can design such a simulator, we have shown the simulatability

of the secure multiparty computation protocol, as everything that the adversary
can see, has been derived from either its own input or the output and nothing is
learned about the inputs or outputs of other computing parties. For security, we
also require that the output of all honest parties is correct and the joint output
distribution of all parties coincides in the real world and in the ideal world.

43

In our setting, the outputs of all computing parties are in the forms of shares.
Therefore, no computing party gets the reconstructed output from a protocol. This
allows us to simulate protocol messages for the adversary without interacting with
a trusted third party. The resulting security property is weaker and simplifies the
security analysis of protocols in our model.

We consider a simulation perfect when the distributions of the adversary’s
view in the real world and in the ideal world coincide. The simulator is non-

rewinding, when it goes through the protocol in a straight line without rewinding
the adversary algorithm to an earlier state.

We will now give a more thorough explanation of how simulatability is used
in the SHAREMIND model. Every computing party CP

i

has an input �

i

. The
input consists of the party’s input value x

i

and any background information that
the party has available. We assume, that CP3 has been corrupted by the adversary
A so the input �3 is also given to the adversary. We write SA to show that the
simulator S has black-box access to the adversary A in the ideal model. We
write ACP1,CP2 to show the execution of the adversary in the real world and in
communication with parties CP1 and CP2.

Definition 1. A secure computation protocol is perfectly simulatable if there ex-
ists an efficient universal non-rewinding simulator S so that for all adversaries A

and for all inputs �1, �2, �3, the output distribution of the simulator SA and of the
adversary running in the real world setting ACP1,CP2 coincide.

Notice that this is not the standard definition of simulatability used in cryp-
tographic proofs. Our version of simulatability is a restricted notion that is more
related to the definition of privacy for secure multiparty computation protocols
that are secure against a passive adversary.

For completeness, this definition blueprint must be extended by specifying the
model for communication, by defining what is the class of efficient computations
and so on. Note that the definition is given in the standalone setting where no other
computations are performed before, after or during the execution of a protocol.

However, both sequential and parallel composition are important for imple-
menting programmability and vector operations in SHAREMIND. Therefore, we
must preserve security under composition. For that, we extend the universal com-
posability framework by Canetti [38] to our notion of simulatability.

Our definition of simulatability does not directly imply security. Simulata-
bility ensures that the adversary gets the expected output, but the honest parties
might get different outputs in the real world and in the ideal world. If these out-
puts are used in followup computations, information may leak to the adversary.
Considering this, we will define the security of a secure computation protocol in
Section 3.3.8.

44

The simulatability proofs for SHAREMIND typically follow a similar blueprint.
We look at the incoming messages of each computing party and show that these
messages are independent from the input shares held by the other computing par-
ties. The latter guarantees that no computing party learns the inputs of others. If
the secure computation protocol is symmetrical, we can also simplify the proof
by only looking at the incoming messages of one of the computing parties.

This independence is useful for constructing the simulator. The protocols
of SHAREMIND often use uniformly chosen values to mask protocol messages
and make them look random. This way, the simulator can generate uniformly
distributed messages for the adversary without it being able to distinguish the
messages provided by the simulator from protocol messages in the real world
setting.

Consider V

i

as the view of a computing party CP
i

. Let V

i

(�1, �2, �3) be a
program that takes the inputs of the parties and outputs a tuple (a1, a2, . . . , a

k

)

containing the values that this party sees during the execution of a protocol. This
includes the inputs, randomness and received values of CP

i

.
We write hV

i

i to denote the distribution of the values (a1, a2, . . . , a
k

) output
by V

i

. Let V

i,0 denote the view corresponding to the original secure computation
protocol. Then we can transform this view to form a sequence of modified views
such that

hV
i,0i ⌘ hVi,1i ⌘ . . . ⌘ hV

i,n

i

so that the output of the view V

i,n

does not contain any references to the inputs
of the other computing parties. Here, hV

i,j

i ⌘ hV
i,j+1i means that the output

distributions of hV
i,j

i and hV
i,j+1i coincide. Note that such a V

i,n

performs almost
all the duties of a proper simulator, as it takes the inputs of the parties and produces
the randomness and messages of the protocol that coincide with the real world
view. To build the simulator, we need to use CP

i

together with V

i,n

to successfully
simulate the internal state of CP

i

. For this last part we also require that V

i,n

is an
efficient algorithm. That is, every V

i,j

in the sequence must have roughly the same
complexity that the initial game V

i,0 has1.
We now show a theorem that we will later use for constructing the sequence

of views and building the simulator.

Theorem 2. Let G be a finite additive group. Let (a1, . . . , aj ± r, . . . , a

k

) be the

output of V

i

so that a

j

2 G and r G and r is independent from all values a

l

.

Then

hV
i

i ⌘ hV
i

[a

j

± r/r]i ,
1This is usually formalized by requiring that in asymptotic model, the overhead of Vi,j compared

to Vi,j�1 is polynomial in the security parameter of the protocol.

45

12

where V

i

[a

j

±r/r] is a program that runs V

i

and replaces all occurrences of a

j

±r

with r.

Proof. Let (a1, . . . , aj ± r, . . . , a

k

) be the output of V

i

for a fixed randomness ex-
cept for the value r. Then, r is uniformly distributed in G and, therefore, indepen-
dent from all a

l

and so r ± a

j

is also uniformly distributed, as any f

r

(x) := r ± x

is a bijective mapping for G. We have shown both distributions to be uniform and
proved the claim of the theorem.

3.3.8 From simulatability to security and composability

For simulatability, we needed to convince the adversary that it is in the real world
even when it is really in the ideal world. Simulatability is a weak property, as
it does not take into account the outputs of honest computing parties. To achieve
security, all honest parties in the real world must get the same output as they would
get in the ideal world. For this, we must allow the simulator to also interact with
the trusted third party F .

Definition 2. A secure computation protocol is perfectly secure if there exists an
efficient universal non-rewinding simulator S so that for all adversaries A and for
all inputs �1, �2, �3, the joint output distribution of all computing parties and the
adversary coincide in the real world and in the ideal world. That is, the outputs
of CP1, CP2, CP3 and SA,F in the ideal world coincide with the outputs of CP1,
CP2, CP3 and ACP1,CP2 in the real world.

Similarly to Definition 1, this definition can be adapted for sequential, parallel
or concurrent composability by adding the relevant context. We stress that the
non-rewinding property is necessary for achieving universal composability. In the
following proofs and proof sketches, we will assume that we are working in the
synchronous model, where computation is split into well defined rounds.

We will now discuss the resharing protocol that helps us achieve both security
and universal composability in SHAREMIND protocols. The resharing protocol in
Algorithm 1 is used by the computing parties to create a version of a secret-shared
value with the same public value but different shares. We also remind the reader
that the protocols are defined over integer rings of the form Z2n .

New uniformly distributed values are injected into the shares to make the out-
put shares of w independent from the shares of the input u. We will now show
that the resharing protocol in Algorithm 1 is perfectly secure.

Theorem 3. Algorithm 1 is perfectly secure in the standalone model with one

passively corrupted computing party.

46

Algorithm 1: Resharing protocol [[w]] Reshare([[u]]).
Data: Shared value [[u]].
Result: Shared value [[w]] such that w = u, all shares w

i

are uniformly
distributed and u

i

and w

j

are independent for i, j = 1, 2, 3.
1 CP1 generates an uniformly distributed r12 Z2n .
2 CP2 generates an uniformly distributed r23 Z2n .
3 CP3 generates an uniformly distributed r31 Z2n .
4 All values ⇤

ij

are sent from CP
i

to CP
j

.
5 CP1 computes w1 u1 + r12 � r31.
6 CP2 computes w2 u2 + r23 � r12.
7 CP3 computes w3 u3 + r31 � r23.
8 Return [[w]].

Proof. To show correctness of the reconstruction of outputs, we show that w = u

as follows:

w = w1 + w2 + w3

= u1 + r12 � r31 + u2 + r23 � r12 + u3 + r31 � r23

= u1 + u2 + u3 = u .

Similarly to the proof of Theorem 2, it is easy to see that any two shares in the
triple w1, w2, w3 are uniformly and independently distributed. All values w

i

are
uniformly distributed as they are of the form u

j

+ r � s for randomly generated
elements r, s. As any two values w

i

are computed from independent uniformly
distributed values then any two of values w

i

, w

j

where i 6= j are independent.

CP1

CP2

A CP3
resharing

protocol

r12

r23

r31
r12

r12

r31

r31

r23

r23

u1

u2

u3

w3

w2

w1

Figure 3.4: Network messages and local values in the resharing protocol.

As the protocol is symmetric, we can choose CP3 to be the corrupted party.
First, we illustrate the exchange of messages in the real world. Figure 3.4 shows

47

what messages are exchanged and what values are available to the computing
parties. The corrupted party CP3 sends out r31 and expects r23 in return so that it
can compute w3 as its share of the reshared value u.

CP1

CP2

F S
u1

u2

u3

w

�
3

w

�
2

w

�
1

A CP3

simulated

message

u3
r

�
31

adversary’s

inputs

r

�
23 = u3 � r

�
31 � w

�
3

Figure 3.5: Simulator for the resharing protocol.

Figure 3.5 shows the protocol in the ideal world. The trusted party F computes
the output shares w

�
1, w

�
2 and w

�
3 as follows:

u u1 + u2 + u3

w

�
1 Z232

w

�
2 Z232

w

�
3 u� w

�
1 � w

�
2.

Each share w

�
i

is sent to CP
i

, except for w

�
3 that is given to the simulator S .

The simulator S simulates the value r

�
23 by computing

r

�
23 = u3 + r

�
31 � w

�
3.

The simulator can compute r

�
23 even before it receives r

�
31 from the adversary,

because it is providing the adversary with all the randomness and, therefore, it can
precompute the value of r

�
31.

This way, when A computes its output, it gets the expected value, because

w

�
3 u3 + r

�
31 � r

�
23

= u3 + r

�
31 � u3 � r

�
31 + w

�
3

= w

�
3.

We need to show that the distribution of the shares is the same in both the
ideal and the real world. In the ideal world, w

�
1 and w

�
2 are uniformly generated

and independent. We already showed that w1 and w2 are also uniformly generated
and independent in the real world.

48

To complete the proof, we have to show that the joint distribution of the out-
puts of honest computing parties and the messages received by the adversary in
the real coincide with the matching outputs and messages in the ideal world. This
is sufficient, as the randomness and messages received by the adversary uniquely
determine its output. According to Algorithm 1, both r31 and r

�
31 are uniformly

generated. As the following equation holds in both the ideal and real settings,

r23 = u3 + r31 � w3 ,

all received messages are identical.

We do not give a full universal composability proof here as the corresponding
proof would be highly technical and the result can be concluded by combining the
characterization of universal composability in the standalone setting. For details,
see the discussion in Section 4.3.1 of [37] and Chapter 7 in [84]. In brief, our
simulator construction satisfies the universal composability requirements as it is
non-rewinding and has black-box access to the adversary.

We will now show how to compose other protocols with the resharing protocol
to make any perfectly simulatable protocol secure and universally composable.

We start by providing proof sketches for composing simulatable protocols in
the SHAREMIND model. The first step towards universal composability is to show
that perfect simulatability is preserved when we compose protocols sequentially
or concurrently under certain restrictions. In such a composition, a top-level pro-
tocol consists of several sub-protocols, each of which is an instance of a perfectly
simulatable protocol. Several sub-protocols can be instantiated from the same
kind of protocol. For example, the top-level protocol can many instances of the
multiplication protocol as sub-protocols.

The main restriction is on how we can use the output shares of a sub-protocol
of the top-level protocol. Specifically, we can do one of three things:

1. Forget the output shares.

2. Use them as inputs to another perfectly simulatable subprotocol.

3. Use them as an output of the main protocol.

The need for such a restriction is easily shown with an example. Figure 3.6
shows two protocols with the respective ideal functionalities F1 and F2. The
figure also contains possible implementations for both protocols. Note that in the
implementation of the first protocol, CP1 also sends r� a to CP2. Both protocols
are trivially perfectly simulatable for both computing parties, as all messages can
be emulated with random values.

49

13

Input: a

r R

Input: a

CP1 CP2F1r

a

Ideal functionality F1:

F2

Ideal functionality F2:

CP2CP1

Implementing F2 using F1: Composed protocol:

Ideal world Real world

a

r

Possible implementation of F1:

CP1
r � a

r R CP2

CP2CP1
r

CP1 CP2

CP1
r � a

r R CP2

Possible implementation of F2:

r

r

F1
r

a

Input: a

r

Figure 3.6: A perfectly simulatable protocol and its non-simulatable composition.

Now, consider a third protocol that implements F2 using the ideal functional-
ity of F1. The ideal implementation of this third protocol is perfectly simulatable.
However, if we substitute the ideal implementation of F1 for the perfectly sim-
ulatable implementation of F1, the resulting composed protocol is not perfectly
simulatable any more. The composed protocol implementation sends both r and
r � a to CP2 and we cannot simulate these messages to CP2 together.

The problem is that we are using the implementation of F1 in an environment
where the output of F1 is sent to CP2 via CP1. This allows the adversary to learn
both the outputs even though we have sub-protocol simulatability proofs for the
outputs that CP2 receives in the sub-protocols. The fact that CP1 sending r � a

to CP2 invalidates the simulatability and we should therefore restrict how sub-
protocol outputs are used.

Theorem 4. A protocol consisting of several sub-protocols is perfectly simulat-

able, if the following conditions hold:

1. All the sub-protocols are perfectly simulatable.

2. The output of each sub-protocol is either the input of another sub-protocol

or the output of the main protocol.

3. The data dependency graph of sub-protocols is a directed acyclic graph.

Proof sketch. According to our assumptions, all simulators S
i

of sub-protocols
are non-rewinding. Therefore, we can combine them to form a single compound

50

simulator S⇤ that runs the simulators S
i

sequentially or concurrently to provide
the adversarial computing party with all the required messages. In the case of de-
pendencies between sub-simulators, outputs from one sub-simulator can be used
as inputs for the next sub-simulator. We also compose all the trusted third parties
into a single functionality by composing their code. Figure 3.7 illustrates how the
new simulator is constructed.

CP1

CP2

A

CP3

CP1

CP2

CP1

CP2

Fn Sn

S2

S1

S�F�
F1

F2

Figure 3.7: Composing several simulators into a single simulator. The line between S1

and S2 illustrates the case where the input of sub-protocol 2 is dependent on the output of
sub-protocol 1.

As every simulator provides a perfect simulation, the final view of the adver-
sarial computing party is also perfectly simulated. Assume that some messages
in the protocol are computed from the output shares of a sub-protocol. If any of
these messages are then sent to other computing parties, we cannot properly sim-
ulate them for the receiving party. This is because the adversary acquires some
information about the shares of the honest parties and this invalidates the security
guarantees that are given by the simulatability definition.

We require that the sub-protocols do not have cyclic dependencies between
them as this would make the top-level protocol impossible to execute. This is

51

because at least one input for one of the sub-protocols would not be available
when the protocol is executed.

In the next step we show how to make a perfectly simulatable protocol secure
by finishing it with a resharing step such as the one in Algorithm 1.

Theorem 5. A perfectly simulatable secure computation protocol that is followed

by a perfectly secure output resharing is perfectly secure in the standalone model.

Proof sketch. In this proof sketch we show how to prove the claim for a single
output share. The approach is similar for protocols with multiple output shares.
Let x

i

be the input share for party CP
i

. Let S
comp

be the simulator for the perfectly
simulatable computation protocol and S

reshare

be the simulator for the perfectly
simulatable resharing protocol. Let z

i

be the output share of S
comp

for CP
i

.
Let F

comp

be the trusted third party for the computation protocol and F

reshare

be the trusted third party for the resharing protocol. Note, that S
comp

and F

comp

can be compositions of other simulators and trusted third parties, respectively. Let
F be the composition of F

comp

and F

reshare

and similarly, let S be the composi-
tion of S

comp

and S
reshare

. This structure is illustrated in Figure 3.8.

S
Scomp

Sreshare
y3

y1 y2

CP1

x1

ACP3

r23

CP2

x2

CP1 CP2

Fcomp

Freshare

F

x3 x3

r31

z

�
1 z

�
2 z

�
3

...
z

�
3

x3

CP3

y3

Figure 3.8: The simulator for a universally composable secure computation protocol

The simulator S learns x3 from CP3 and passes it to the adversary A. The
simulator uses S

comp

to generate all messages of the secure computation protocol
including the output share z

�
3 that is passed to the resharing simulator S

reshare

.

52

Let us observe the state of all parties after the completion of the secure compu-
tation protocol and the corresponding simulator. In the real world, the computing
parties have their output shares z1, z2 and z3 from the secure computation pro-
tocol. The adversary has its internal state �. In the ideal world, the trusted third
party has not finished and the honest parties have not received their output shares.
However, S has computed the output share z

�
3 for CP3 and the adversary has its

internal state �

�. As the secure computation is perfectly simulatable, the distribu-
tion of (z3, �) coincides with the distribution of (z

�
3 , �

�
).

To complete the proof, we show how perfectly secure resharing ensure that the
joint output distribution of all parties coincides in the real and ideal world. This
directly follows from the proof of Theorem 3, as the input values of the resharing
protocol and F

reshare

represent the same value z = z1 + z2 + z3 in both the real
and ideal world and the honest parties discard the values z1 and z2. Recall, that
this is achieved by computing the message r23 from r31 and the simulated output
share z

�
3 .

It may seem that resharing at the end of every protocol is wasteful. Especially,
if the protocol is used as a sub-protocol and the intermediate results will never be
published outside the computing parties. In some cases, we may inline resharing
into the computation protocol to lower the round count of the composed protocol.

However, such inlining requires that we run the first round of the resharing
protocol in parallel with the secure computation protocol and not after it as re-
quired by Theorem 5. This requires a slightly different construction for the simu-
lator. The main challenge of such a simulator is that the first round of the resharing
protocol has to be simulated without access to the output shares of the secure com-
putation protocol. We sketch the construction of such a simulator in Theorem 6.

Theorem 6. A perfectly simulatable secure computation protocol that runs a per-

fectly secure and universally composable output resharing protocol in parallel

and outputs the reshared output, is perfectly secure and universally composable.

Proof sketch. We follow the construction of Theorem 5 with one important differ-
ence. We want to run the resharing simulator in parallel with the secure compu-
tation protocol, but the inputs of the first are technically dependent on the outputs
of the second.

The simulator resolves this issue by internally running the simulator construc-
tion from Theorem 5 to learn the output share z

�
3 of the computing protocol. It

then uses z

�
3 and the output y3 from the trusted third party F to start the concurrent

simulation of the secure computation protocol and the secure resharing protocol
with the adversary. The simulator can do this, as CP3 is passively corrupted and
S can clone and run the code of S

comp

with the same randomness to get the same
output. Note that this does not mean that we are rewinding S

comp

.

53

14

Algorithm 2: A protocol illustrating asynchronous communication
Data: CP1 has an input a, CP2 has an input b.
Result: CP3 learns c so that c == b.

1 Round 1:
2 r Z232

3 CP1 computes a

0 a + r

4 CP1 sends a

0 to CP2

5 CP1 sends a

0 to CP3

6 Round 2:
7 CP2 computes b

0 b + a

0

8 CP2 sends b

0 to CP3

9 Round 3:
10 CP3 computes c b

0 � a

0

The argument for the joint output distribution of all parties is exactly the same
as in Theorem 5.

The proof can also be done by relying only on the definition of universal
composability, provided that we have proved the security of the resharing protocol
in contexts where the first round of resharing can be run before the resharing
protocol gets its inputs.

The last remaining task is to resolve the issue of malicious network schedul-
ing. As explained in Section 3.3.4, we expect that our communication channel
implementation guarantees the reliability and ordering of messages on a single
channel. Still, the lack of a central clock leaves us with the chance that a party
receives values from another party earlier than anticipated.

Consider the protocol in Algorithm 2. In the implementation of a distributed
system, it may happen that the latency on the channel from CP1 to CP3 is much
higher than the latency between CP1 and CP2 or CP2 and CP3. We cannot, there-
fore, rule out that CP3 receives b

0 before it receives a

0 and our simulator must be
capable of simulating either option to the adversary.

Fortunately, there is a simple result that helps us build protocols that are secure
even in the presence of a malicious scheduler.

Theorem 7. If the values of protocol messages that are sent out by a party do not

depend on the order in which this party receives protocol messages, then a proto-

col executing on a network with malicious scheduling is as secure as a protocol

executing in a synchronous network.

Proof. An adversarial scheduler can change the order in which messages arrive
at a party. However, if corruption is passive and static, then this does not change

54

the view of the adversary as values received by the adversarial parties remain the
same.

To complete the proof, we need to show, how to construct a simulator that
can simulate the messages to the adversary in any order chosen by the malicious
scheduler. We start with the simulator S that can simulate the messages in a
synchronized model. In this setting, the adversary observes the simulated values
at the end. According to the assumption, the outgoing messages of our protocol do
not depend on the order of incoming messages. Therefore, we can simply reuse
S to simulate and release the messages in the order specified by the malicious
scheduling given by the adversary.

We have now shown how to prove the security of secure multiparty computa-
tion protocols in the SHAREMIND model. For examples on protocols that can be
proven secure using this approach, see Section 3.5. For proofs of the SHAREMIND
protocols, we refer the reader to the papers included in this thesis [25, 27].

3.3.9 Guidelines for designing secure protocols for SHAREMIND

The described proof model establishes some requirements that must be followed
to simplify the security proofs of SHAREMIND protocols. The general blueprint
remains the same—to show security, we need to show that the protocol is correct
and perfectly simulatable in the synchronous communication model. After that,
we add a resharing step and gain security and universal composability.

Given the discussion on asynchronous communication, it is also necessary to
construct the protocols in such a way that outgoing messages do not depend on the
order of arriving messages. This way the simulator can simulate these messages
in all situations.

There are several strategies for choosing when to reshare results. First, one
can reshare after every atomic operation. Then it will always be safe to publish
results, but this makes every computational operation a bit less efficient. The
second option is to skip resharing during computation and do it only when shares
are going to be published. This can improve performance, but makes the system’s
designer responsible for resharing the values in all possible cases where shares
might be published. In the current SHAREMIND implementations, all computation
protocols that exchange messages perform resharing at the end of the protocol.

Until now, we have focused on achieving information-theoretic security for
the secure computation protocols in SHAREMIND. However, the real-world im-
plementation of SHAREMIND uses computational primitives such as a pseudo-
random number generator and an encrypted secure channel. It is possible to im-
plement the SHAREMIND protocols using non-computational replacements, such

55

as random number generators that use environmental noise and secure channels
secured using physical means or even one-time pad.

Computationally secure primitives can also be used as an optimization tech-
nique. For example, consider the work in [87].

3.4 Secure storage in SHAREMIND

3.4.1 Design goals for secure storage

It is not reasonable to assume that all data providers are online at the same time to
give SHAREMIND the input data necessary for performing computations. Indeed,
data may need to be collected over a period of time, and if for large databases the
collection process can take a significant amount of time. Therefore, we need to
provide SHAREMIND with a means for securely storing data.

We propose the use of a database within the secure computation system. Since
a secure computer is capable of representing data securely during computations,
we will use the same capability for persistent storage. The SHAREMIND system
uses a shared database where each computing party stores a single share of each
value in the database. The most important use-cases for this database are:

1. secure storage of collected data;

2. retrieval of stored data for use in secure computations;

3. secure storage of data output by secure computations and;

4. removal of data when it is no longer needed.

3.4.2 The structure of secret-shared databases

Most data processing applications work on structured data—tuples, matrices and
key-value pairs. For example, relational database systems contain tables consist-
ing of tuples of equal length. Non-relational databases use a variety of different
structures with key-value storage being the most popular. We discuss how to adapt
these database paradigms to secret-shared storage.

The construction of secret-shared relational database is straightforward. A
typical relational database table contains tuples where each value corresponds to
an attribute. To convert such a table into a secret-shared form, we use secret
sharing on each value stored in the table and store the resulting shares in new
tables that replicate the structure of the original. If a database contains many
tables, the procedure is repeated for each table. In an application, all input parties

56

enter their data into such databases by using secret sharing for all input values and
sending one share to each database.

We use an example to illustrate this construction. SHAREMIND uses three
computing parties and therefore all data are shared into three shares. Each com-
puting party stores a copy of the database, but instead of storing the original value,
it stores a share of that value. Such a database is illustrated in Figure 3.9. The fig-
ure shows how each value x

i

in the original tuples is shared into three shares—x

i1,
x

i2 and x

i3 and the shares are stored in the servers’ databases.

a1
a2

g1
g2

Age Gender

d1
d2

t1
t2

Date Total

Customer
Transaction

Retailer database

a11
a21

g11
g21

Age Gender

d11
d21

t11
t21

Date Total

Customer
Transaction

Miner 1 database

a12
a22

g12
g22

Age Gender

d12
d22

t12
t22

Date Total

Customer
Transaction

Miner 2 database

a13
a23

g13
g23

Age Gender

d13
d23

t13
t23

Date Total

Customer
Transaction

Miner 3 database

Secret sharing

Figure 3.9: Using secret sharing on a relational database.

The main advantage of a secret-shared database is its high level of confiden-
tiality. It is nearly impossible for an individual computing party storing the data
to learn anything about the values provided by the input parties. This is possible
because of the security of the secret sharing scheme.

There are other options for securely storing data, such as encryption. How-
ever, processing encrypted data requires the use of homomorphic encryption sche-
mes that are less efficient than systems based on secret sharing.

Privacy-preserving storage has also been studied using statistical methods.
For example, data perturbation methods are a standard solution for protecting
anonymized data against reidentification. The k-anonymization technique was
proposed for privacy-preserving microdata releases [110]. The idea is to partition

57

15

the tuples of a published database into equivalence classes so that the (quasi)-
identifiers in each class are indistinguishable from each other and each class
contains at least k tuples. The approach has been improved by introducing `-
diversity [92] and t-closeness [88].

However, all these approaches require that database values are generalized and
this makes randomization less accurate. Furthermore, data perturbation is not a
good guarantee against reidentification, as has been demonstrated by several high-
profile attacks [10, 99]. Secret sharing takes a fundamentally different approach
to protecting data and does not require value to be modified while still allowing
the data to be efficiently processed.

We can also transform non-relational key-value stores into secret-shared form.
For that, we will use secret sharing on all the values in the input database and store
them in a replicated structure on the three SHAREMIND miners.

We will now provide an easy-to-use formal model of the database for use in
our protocol descriptions. We consider a simple case where the database of a
SHAREMIND application is represented as an n ⇥ m matrix D = (d

ij

), where
i 2 {1, . . . , n}, j 2 {1, . . . , m} and d

ij

2 Z232 . We also use individual rows in
this matrix as tuples in the form T = (t

i

), for i 2 {1, . . . , n}.

3.4.3 Manipulating secret-shared databases

A secret shared database is somewhat different from standard databases when it
comes to queries. As the raw values are not accessible, we cannot use standard
techniques for filtering out individual records from the database.

While we can use secure comparison operations to obliviously evaluate fil-
tering conditions on secret-shared data, we cannot use this information to reduce
the amount of data to process. Identifying filtered database records in the physical
memory requires that we publish their location and this is an obvious privacy leak.
Instead, we need a way for applying filters on the data without leaking informa-
tion about which records matched the filtering condition. We will now describe
some basic approaches to processing data in a secret-shared database.

Structural addressing. We can use the name or index of a database column to
load all the values of that column. For example, if we want to compute the average
age from a table of person records, each computing party extracts the respective
column of shares from D and uses a summation protocol and a division to compute
the average.

Similarly, we can load individual rows of the table by their index. This is
useful when we need to process each record individually. Also, by combining the
column and row addressing, we can address individual values by their location in
the table.

58

Hybrid databases. In practice, we do not have to make all the columns in a
table contain shares. Instead, we can use hybrid tables where public values and
shared values coexist. Public values are replicated across all three computing
parties and stored along the shared values. Sufficient metadata must be available
for separating columns with shared values from those with public values.

In such a database, we can use public columns as keys to the records. Consider
a data collection application, that generates a unique identifier for each entered
record and returns it to the provider of the data. For added security, this identi-
fier could be digitally signed. This data provider now has the ability to update
the data record using this identifier. By providing a new secret shared record and
requesting a computing party to identify and replace the old record using the pub-
lic identifier, the original private input is not leaked to the computing party. It is
basically replacing some random-looking values with others, based on a random
identifier with no inherent meaning.

If secret-shared data is linked to any public identifier, the computing party
may be able to identify the related real-world individual. However, it still cannot
understand the values that the individual has provided.

Oblivious data access. It is also possible to keep the data access patterns secret
by using techniques similar to oblivious RAM [65] and PIR-writing [33]. We
will now describe specific constructions for oblivious database queries on secret-
shared data. The blueprint gives a general construction for performing filtered
queries on secret-shared data. It does not depend on the particular set of arithmetic
and comparison primtives used. The basic protocols used in SHAREMIND are
given in Section 3.5.

Given a condition expression like “person is male”, it is possible to secure
compare all values of the gender column to the constant representing the male
gender and get a secret-shared boolean result. Each such result is stored as a
zero or one in a mask vector that can be used in further processing to include
or exclude certain values from processing. For example, if we want to find the
average income of male individuals in a database, we take the following steps.

1. Get the number of records in the database table as n.

2. Load the gender attribute from the database table by extracting the respec-
tive column from D into a vector ~g = (g1, . . . , gn).

3. Assuming, that the male gender is encoded using the value one, compute
the mask vector ~m using secure computation:

m

i

=

⇢
1, if g

i

= 1

0, otherwise.

59

4. Load the income attribute from the database by extracting the respective
column from D into a vector ~

d.

5. Filter out the males by multiplying the vectors ~m and ~

d elementwise using
secure computation and storing the result in the vector ~

f . Note that the
incomes of non-male individuals will be replaced with zeroes. The result
will be

~

f

i

=

⇢
d

i

, if m

i

= 1

0, otherwise.

6. Compute the average by evaluating

avg =

f1 + f2 + · · · + f

n

m1 + m2 + · · · + m

n

using secure computation.

7. Publish the computed average avg.

Alternatively, we can publish the sums computed in step 6 and perform the
division using public computations. While this allows us to skip a costly pri-
vate division operation, it leaks the number of male individuals represented in the
database.

Oblivious queries are rather simple to construct and use for data retrieval.
They can also be used for updating data. Consider an example where we want to
increase the wage of everyone who has worked in the company for at least five
years by ten percent. We take the following steps.

1. Get the number of records in the database table as n.

2. Load the work experience attribute from the database table by extracting
the respective column from D into a vector ~w = (w1, . . . , wn

).

3. We find the mask vector ~m using secure computation:

m

i

=

⇢
1, if w

i

> 5

0, otherwise.

4. Load the wages attribute from the database by extracting the respective col-
umn from D into a vector ~

d.

60

5. At each location where the mask contained a 1, the wage will be increased
by 10%. The value remains the same in other locations.

d

0
i

= d

i

+ 0.1d

i

m

i

6. Store the new wages vector in D.

The proposed solution can be more efficient than oblivious RAM, because we
do not need to shuffle the vectors or the database. For more details on oblivious
database queries in the SHAREMIND model see [87].

3.4.4 A protocol for data collection

Input parties form a secure channel to each computing party and use additive
secret sharing over the selected ring of integers to distribute their input values into
shares. One share is sent to each computing party over a secure channel. Note
that this requires the input parties to have access to a good source of randomness.

It may occur, that the input party does not have access to a good randomness
generation mechanism at the protocol implementation level. For instance, this is
the case if the data collection protocol is implemented in a current web browser
using JavaScript. The web browser can acquire randomness to form secure chan-
nels with a web server, but does not make this service available to the JavaScript
virtual machine.

In such cases, we can still assume that the input party can access a pseudo-
random generator PRG : {0, 1}k ! {0, 1}n. Then, it can use the protocol in
Algorithm 3 to generate the randomness needed for securely performing secret
sharing on the private inputs. This protocol lets the computing parties generate
secure random values and send it to the input party. The input party uses the XOR
operation to combine the bit strings and uses the result as a seed to PRG. This
way, none of the computing parties knows the randomness, as long as they do not
all collude.

Algorithm 4 shows how to securely collect data represented as 32-bit unsigned
integer values. The protocol assumes that a relational database with tables in the
form of matrices is used. It is trivial to extend this protocol to perform more
complex data management operations, like storing full records, adding new rows
or columns to the table, or even use a different database paradigm.

Given that SHAREMIND is designed using the same principles as a database
and application server, it can also have multiple users and multiple databases.
In most scenarios, we want to restrict users to accessing only the databases and
algorithms that they are allowed to query.

61

16

Algorithm 3: Protocol for providing secure random values to a input party.
Data: IP has the size of required random bits n.
Result: IP has an n-bit random bitstring s.

1 CP
i

:
2 r

i

 {0, 1}k
3 Send r

i

to IP.
4 IP:
5 r = r1 � r2 � r3

6 s = PRG(r)

Algorithm 4: Protocol for securely collecting a 32-bit unsigned integer.
Data: IP holds a private value s 2 Z232 , a database table name table and

indices x, y.
Result: A shared value [[s]] is stored by parties CP1, CP2 and CP3 in

database table table in column x and row y.
1 IP:
2 s1 Z232

3 s2 Z232

4 s3 s� s1 � s2 mod 2

32

5 Send (table, x, y, s1) to CP1

6 Send (table, x, y, s2) to CP2

7 Send (table, x, y, s3) to CP3

8 CP
i

:
9 Each CP

i

looks up its local database matrix D for table table.
D

x,y

 s

i

Applications based on SHAREMIND can use access control [2] to enforce any
access policies. Each computing party can authenticate the input party and deter-
mine its access rights to the particular table before storing the values.

We note that a real-world deployment of a secret-shared database shares is-
sues with any distributed database. For example, we need to consider the situation
where multiple input parties send secret-shared data simultaneously. During com-
munication, the order of the shares may be switched by the network and they will
arrive at the computing parties in a different order. This will corrupt the values
in the database as wrong sets of shares will be used in processing. Therefore, if
several input parties want to add a row or a column to the secure database, then
these transactions must be executed in the same order by all computing parties to
ensure that the databases remain consistent among them.

One such example is illustrated in Figure 3.10. In this figure, IP1 is sharing

62

CP1 CP2 CP3

IP1 IP2

D D D

s1

s1

s2

s2

s3

t3

t3

s3

t2

t1

t1

t2

Figure 3.10: Example of a possible database inconsistency.

a value s and IP2 is sharing a value t. The value is appended as a new record
in the databases. However, since the share of IP2 reaches CP2 before the share
from IP1 arrives, it is stored in its place. Now, if we reconstruct the records of the
database, both will give us corrupted random values.

The solution is for the computing parties to maintain distributed queues of
transactions and jointly decide on the order in which they are executed. Each
input party will be assigned a session identifier that will be used to fix the order
of transactions. We can use standard consensus protocols, e.g., one of the Paxos
protocols [83], to achieve this goal.

Even if we can ensure the consistency of the secret-shared database, the vari-
ation in the order of database records means that the protocol in Algorithm 4
violates the precondition of Theorem 7 (security of SHAREMIND protocols in an
asynchronous network) by having messages arrive in any order. The main security
risk is that the order, in which input parties send their messages, may change the
output of the computed function. The most obvious example of such a function is
the computation of the mean of the first ten collected values.

We describe three possible ways for reducing the risk. First, this risk does not
endanger algorithms that do not depend on the order of records in the database.
For example, if we aggregate every value in a database column and publish the
sum, it will be the same regardless of the order of the records. The second option
is to use public identifiers in the data collection protocol and during data lookup.
Examples include addressing a record in the database by its row and column and
addressing it by a publicly accessible key column, creating a key-value database.
If all lookups in such a key-value database are performed using the key column,
then the order in which the values arrived will make no difference.

Finally, if our algorithm is dependent on the order of messages in the database
and it does not make sense to use a key-value database, we can randomly reorder

63

the values in the database to remove the dependency between record order and the
output of the computation. Note that this reordering does not have to be oblivious.
It is enough if the ordering remains uniform even if the adversary can choose any
initial ordering.

There is also an alternative way for collecting data into a secret-shared database.
Instead of forming direct connections with the computing parties, the input par-
ties encrypt each share with the public key of the target computing party and send
the encrypted shares to a proxy server that transfers the shares to the computing
parties at a later time. Such a solution can be used when the input parties do not
have the capability of forming direct secure channels with the computing parties.
A similar solution was used in practice in the Danish sugar beet auction [31].

Furthermore, if it is possible to set up a public key infrastructure that includes
all the input parties, the data collection protocol can also include the signing of
the shares by the input parties. This allows the miners to use the digital signatures
for authenticating the input parties during the processing of input shares. This is
critical when we want to use the alternative data collection method employing a
proxy server, because the SHAREMIND secure computation servers need a way
for checking the source of the input shares that the proxy server is passing on.

Collecting secure data in a database simplifies the deployment of SHAREMIND
as different input parties can upload their data independently from each other and
over a longer time period. Once data collection is complete, we can start running
secure computation algorithms.

3.5 Protocols for secure computation

3.5.1 The general secure computation process

Once the data are collected, a result party may send a query to the computing
parties over secure channels. The query contains the following components:

1. the name of the algorithm to run,

2. public query parameters, and

3. private query parameters.

The computing parties determine the protocols to run based on the name of
the algorithm. Public query parameters contain information that does not have to
be secret (e.g., the name of the database table) and are sent without secret sharing.
Private query parameters are secret shared. This allows the result party to hide
query parameters from the computing parties.

Algorithm 5 gives the general protocol for running queries on the computing
parties. The query is sent to each computing party who looks up the algorithms

64

Algorithm 5: General protocol for running queries on computing parties.
Data: RP holds a query q. Computing parties have the algorithms and data

to process q.
Result: RP receives the result r of query q run on the data held by the

computing parties.
1 RP:
2 Secret-share all private parameters and send the query q to each CP

i

.
3 CP

i

:
4 Find and prepare the algorithm needed to run q.
5 Store the parameters given in q. Load the databases needed to run q.
6 For each operation in the algorithm:
7 Prepare inputs for the computation protocol.
8 Run the protocol.
9 Store outputs of the protocol.

10 Prepare the result share r

i

.
11 Send r

i

to RP

12 RP:
13 Compute r r1 + r2 + r3.

and data for completing the computations. Because of universal composability,
the computing parties can schedule computing protocols in any order. Some form
of runtime storage can be used for storing intermediate result shares. The final
result shares are sent to the result party, who reconstructs the result.

The use of secure computation protocols allows the computing parties to eval-
uate the required function on the shares of the input data without reconstructing
the original values. However, the computing parties also need to process public
values such as public parameters and control flow constants. For this, each com-
puting party replicates the necessary public operations. Public operations do not
touch the shares of secret data so they compose trivially with secure operations.
For more details, see Chapter 5.

3.5.2 Protocols for addition and multiplication

The most important protocols in a secure computation system are the basic arith-
metic protocols for addition and multiplication. This is so, because often, other
protocols can be composed from addition and multiplication. In this section, we
introduce the protocols that SHAREMIND uses for these operations.

Addition on SHAREMIND is trivial thanks to the additively homomorphic
property of the additive secret sharing scheme. To learn the sum of two shared
values, we just need to add the shares at each computing party. The complete

65

17

Algorithm 6: SHAREMIND protocol for secure addition
Data: Parties CP1, CP2, CP3 hold shared values [[u]] and [[v]].
Result: Parties CP1, CP2, CP3 hold a shared value [[w]] so that w = u + v.

1 Each CP
i

computes w

i

 u

i

+ v

i

protocol is given in Algorithm 6. Addition is a local protocol that does not need
communication with other parties.

As additive secret sharing is not multiplicatively homomorphic, we need a
more complex approach for multiplying secret shared values. The product of two
secret-shared values, [[u]] and [[v]] can be expressed as follows:

uv = (u1 + u2 + u3)(v1 + v2 + v3)

= u1v1 + u1v2 + u1v3+

u2v1 + u2v2 + u2v3+

u3v1 + u3v2 + u3v3.

Each computing party CP
i

can autonomously compute the value u

i

v

i

from
this sum. However, the computing parties need to exchange information about the
shares to be able to complete sum. At the same time, the parties must keep the
shares confidential to protect the original secrets. Our protocol resolves the issue
by creating a temporary resharing of the input secrets so that some new shares
can then be exchanged between the computing parties. Basically, we temporarily
transform the single-share encoding that SHAREMIND typically uses into repli-
cated secret sharing, where each party holds two shares of a value. For this, we
use the resharing protocol given in Algorithm 1 in Section 3.3.8. The protocol
ends with another resharing step that ensures composability. The complete proto-
col is given in Algorithm 7.

The security of the addition protocol is trivial to show, as no messages are
exchanged. The security proof for the multiplication protocols is given in [27].

3.5.3 Protocols for comparison

The most important computation operations beside basic arithmetic are the oper-
ators for equality and greater-than (or less-than) comparison. Both are required
for filtering and making other decisions based on data. Greater-than comparison
is also an important primitive for implementing privacy-preserving sorting.

While addition and multiplication are basic algebraic operations, comparison
operators work on the bit level of values. In equality, we want to know if all
the bits of two values are equal. In greater-than comparison, we want to know in

66

Algorithm 7: SHAREMIND protocol for secure multiplication
Data: Parties CP1, CP2, CP3 hold shared values [[u]] and [[v]].
Result: Parties CP1, CP2, CP3 hold a shared value [[w]] so that w = uv.

1 [[u

0
]] Reshare([[u]])

2 [[v

0
]] Reshare([[v]])

3 CP1 sends u

0
1 and v

0
1 to CP2.

4 CP2 sends u

0
2 and v

0
2 to CP3.

5 CP3 sends u

0
3 and v

0
3 to CP1.

6 CP1 computes w

0
1 u

0
1v

0
1 + u

0
1v

0
3 + u

0
3v

0
1.

7 CP2 computes w

0
2 u

0
2v

0
2 + u

0
2v

0
1 + u

0
1v

0
2.

8 CP3 computes w

0
3 u

0
3v

0
3 + u

0
3v

0
2 + u

0
2v

0
3.

9 [[w]] Reshare([[w

0
]]).

Algorithm 8: SHAREMIND protocol for secure equality comparison
Data: Parties CP1, CP2, CP3 hold shared values [[u]] and [[v]].
Result: Parties CP1, CP2, CP3 hold a shared value [[w]] so that w = 1 if

and only if u = v. Otherwise, w = 0.
1 CP1 generates random r2 Z2n and computes r3 (u1 � v1)� r2.
2 CP1 sends r

i

to CP
i

(i = 2, 3).
3 CP

i

computes e

i

= (u

i

� v

i

) + r

i

(i = 2, 3).
4 CP1 sets ~p1 2

n � 1 = 111 . . . 1.
5 CP2 sets ~p2 e2.
6 CP3 sets ~p3 (0� e3).
7 [[w

0
]] BitConj([[~p]]).

8 [[w]] Reshare([[w

0
]]).

which value the bit representation difference occurs first. These observations have
inspired the design of the following protocols.

The equality of two values can be determined by computing the difference
of the two values and making sure that all bits in this difference are zeroes. Our
protocol achieves this privately by computing the conjunction of all bits in the
difference. The protocol is given in Algorithm 8. The protocol contains an opti-
mization that temporarily reshares the input between two miners among the three.
The details on this approach and the bit conjunction sub-protocol BitConj() are
omitted here, see [27] for the details and the security proofs.

The greater-than comparison protocols in SHAREMIND are all based on the
observation that we learn the relation between two values by extracting the highest
bit from their difference. Note that this approach is restricted to cases where we

67

Algorithm 9: SHAREMIND protocol for secure greater-than comparison
Data: Parties CP1, CP2, CP3 hold shared values [[u]] and [[v]].
Result: Parties CP1, CP2, CP3 hold a shared value [[w]] so that w = 1 if

and only if u > v (according to the restrictions defined above).
Otherwise, w = 0.

1 CP
i

computes d

i

 u

i

� v

i

.
2 [[w

0
]] ShiftRight([[

~

d]], 31).
3 [[w]] Reshare([[w

0
]]).

interpret the highest bit of a value as the sign bit. This way, comparison on the 32-
bit unsigned integers of SHAREMIND is effectively a 31-bit unsigned comparison
or 32-bit signed comparison.

SHAREMIND extracts the highest bit by using a right shift protocol. The high-
est bit of the difference is shifted right so that it becomes the lowest bit of the
value. This value can then be flipped to turn a greater-than protocol into a less-
than-or-equal protocol. It can also be multiplied with the input values to build
a simple minimum or maximum value computation protocol. The outline of the
comparison protocol is shown in Algorithm 9. The bit shift right protocol is de-
tailed in [27]. The given protocol works for 32-bit inputs. For other input sizes,
the shift size parameter will need to be changed accordingly.

3.5.4 The secure computation capabilities of SHAREMIND

The current protocol suite of SHAREMIND covers basic arithmetic on integers.
All operations are designed to be performed pointwise on vectors of inputs. Both
unary and binary operations are supported. Table 3.1 gives an overview of the
protocols that have been implemented on SHAREMIND and refers to the papers
that describe them in more detail. Each protocol can take inputs in private vector
form and produces a private scalar or vector value.

The boolean data type can be supported using shares in Z2. Logic operations
on booleans can be composed from the addition and multiplication operations on
1-bit integers. These operations correspond to the exclusive or and disjunction op-
erators on boolean values. All the protocols are implemented in the SHAREMIND
version 2. The performance of SHAREMIND protocols is analyzed in Chapter 4.

3.6 Notes on the design of SHAREMIND protocols

Work on the SHAREMIND system started in 2006. The first preliminary version—
the SHAREMIND version 1—became operational in 2007. The implementation

68

Operands Operation Reference

private ~u 2 Z2n

Addition [25]

private ~v 2 Z2n

Multiplication [27]
Equality [27]
Greater-than [27]
Division [27]
Remainder computation [27]

private ~u 2 Z2n
Multiplication [27]

public ~v 2 Z2n
Division [27]
Remainder computation [27]

private ~u 2 Z2n Shifting bits left v places [27]
public ~v 2 Z2n Shifting bits right v places [27]
private ~u 2 Z2 Conversion of shares from Z2 to Z232 [27]
private ~u 2 Z2n Random element shuffling [87]

Table 3.1: The most efficient known secure protocols in the SHAREMIND model.

contained protocols for secure addition, multiplication, comparison and bit ex-
traction. The addition protocol was derived naturally from the additively homo-
morphic property of the secret sharing scheme. Multiplication was achieved by
extending an atomic protocol proposed by Du and Atallah [53] which is based
on the standard multiplication triple solution [11]. The other protocols were im-
plemented as compositions of the addition and multiplication protocols. All the
protocols were shown to be universally composable in the passive security model.
An optimized version of this work was benchmarked and the SHAREMIND system
was introduced to the wider scientific community at the ESORICS 2008 confer-
ence [25].

In the following years, protocol development continued and, based on a new
approach to multiplication, a new protocol set was designed. The existing arith-
metic operation protocols were rewritten from scratch and new ones were pro-
posed for bit shifting, division and remainder calculation. The original protocol
suite was extensible to a number of computing parties different than three, given
that a multiplication operation exists. The new protocol suite was significantly
more efficient, but this was achieved by limiting the protocols to three computing
parties. SHAREMIND version 2 was completed in 2010. For more details on the
protocol suite in SHAREMIND 2, see [27].

More high-level protocols for database operations like oblivious selection, fil-
tering, shuffling and sorting were built on the secure arithmetic protocols and they
were published in [73, 87].

69

18

Work on the SHAREMIND protocol suite is an ongoing effort. Our goal is to
add support for more operations on integers and also start supporting other data
types such as fractional numbers. Furthermore, we plan to extend the SHAREMIND
secure computation paradigm to different numbers of computing parties. This
work will be done for future versions of SHAREMIND.

3.7 The software implementation of SHAREMIND

SHAREMIND is implemented in the form of two software components. The first
component is the SHAREMIND server (also called miner server). It performs the
duties of a computing party by establishing secure channels to other servers, ex-
ecuting secure computation protocols and providing services to the input parties
and result parties.

The interfaces for the input and result parties are implemented as controller

applications using the controller library. The controller library provides an inter-
face for sending data and issuing requests to the SHAREMIND miner server. The
controller library performs automatic secret sharing and hides the cryptographic
details of secure computation from the developer and the user. Similarly, the re-
sults are reconstructed from shares and comprehensible values are returned to the
user. SHAREMIND is modular regarding the size of the shares. It can work equally
well with shares of any size that the protocol suite supports.

SHAREMIND is implemented in C++ for efficiency reasons. SHAREMIND 2
uses the RakNet library [104] for networking because of its low overhead. Boost
libraries [34] are used for cross-platform threading and configuration processing.

Various database libraries are used to implement the database interfaces. The
default database in SHAREMIND 2 is based on SQLite [119]. SHAREMIND sup-
ports the Tokyo Cabinet database [125] and any ODBC-compatible database us-
ing the ODBC connector libraries. Finally, the built-in profiling and performance
analytics tools use the libcsv library [43].

We discuss the tools and applications associated with the SHAREMIND system
in the following chapters.

70

CHAPTER 4

PRACTICAL PERFORMANCE OF
SHAREMIND

4.1 The complexity and performance of SHAREMIND

SHAREMIND supports a range of secure computation operations. All the proto-
cols described in Section 3.5 listed in Table 3.1 in Section 3.5.4 are implemented
using a number of core protocols. Table 4.1 lists their round and communication
complexities.

The communication and round complexities of secure computation protocols
depend on the bit length of the data element n and its logarithm ` = log2 n. Integer
division depends also on precision parameters n

0 and m computed using the error
calculation of Goldschmidt division [27]. For 32-bit unsigned integers, n = 32,
` = 5, n

0
= 37 and m = 254. Secure addition is a local operation and therefore

takes no rounds and requires no communication.
The performance of SHAREMIND has been measured and analyzed in sev-

eral works. The performance of the original protocols was given in [25]. The
benchmarks in this paper were conducted on a distributed systems research clus-
ter where each machine contained a dual-core CPU, 2 GB of RAM and exchanged
information over a gigabit network.

SHAREMIND 2 uses protocols described in [27]. The paper also contains a
more detailed performance analysis. The original protocols from [25] were com-
pared to the new ones. Both protocol suites were benchmarked on a dedicated
experimental cluster consisting of three servers where each machine had 24 CPU
cores and 48 GB of RAM. Also, each machine had a direct gigabit Ethernet in-
terface to other nodes and a 100 Mbit interface to the public internet. This setup
was used to show that the new protocols are significantly more efficient and robust
than the earlier ones.

It is easy to see that this setup is ideal for SHAREMIND and a separate analysis

71

SHAREMIND 2 [27] SHAREMIND 1 [25]
Protocol name Rounds Data bits Rounds Data bits

Addition 0 0 0 0

Multiplication 1 15n 3 24n

Cast Z2 to Z232 2 5n + 4 4 39n

Equality ` + 2 22n + 6 ` + 9 87n

2 � 18n +

2`(n� 1)

2

Bit shift right ` + 3 12(` + 4)n + 16 — —
Bit extraction ` + 3 5n

2
+ 12(` + 1)n ` + 8 63n

2
+ 6n +

2`(n� 1)

2

Division with
public divisor

` + 4 (108 + 30`)n + 18 — —

Division with
private divisor 4` + 9

2mn + 6m` +

39`n + 35`n

0
+

126n + 32n

0
+ 24

— —

Table 4.1: Complexities of core SHAREMIND protocols [25, 27].

must be conducted in a setting with more common network configurations. A
more detailed analysis of that setting is described in Section 4.3.4.

We benchmarked protocols in SISD (single operation, single data) and SIMD
(single operation, multiple data) modes. For the SIMD case, we present the best
speed that was achieved. All speeds are presented in operations per second. Ta-
ble 4.2 contains the performance results.

4.2 Benchmarking methodology

4.2.1 The built-in protocol profiler

The SHAREMIND implementation contains several built-in features for measuring
the performance of protocols. The protocol profiler traces the execution of each
secure computation protocol and SHAREMIND assembly script and measures the
time spent on executing an assembly program, that consists of:

1. time spent on executing a secure computation protocol, consisting of

(a) time spent on generating randomness,
(b) time spent on database operations,
(c) time spent on sending messages,
(d) time spent on receiving messages,

72

SHAREMIND 2 [27] SHAREMIND 1 [25]
SISD SIMD SIMD

Private u

Addition 10

5 ops 5.9 · 10

7 ops 5.9 · 10

7 ops

private v

Multiplication 39 ops 5.6 · 10

5 ops 2.9 · 10

5 ops
Equality 10 ops 2.0 · 10

5 ops 4.5 · 10

2 ops
Comparison 8 ops 6.4 · 10

4 ops 2.2 · 10

2 ops
Division 2 ops 1.7 · 10

3 ops —
Private u Multiplication 10

5 ops 1.8 · 10

8 ops 1.8 · 10

8 ops
public v Division 8 ops 1.9 · 10

3 ops —
Private u Cast Z2 to Z232 65 ops 1.2 · 10

6 ops 5.6 · 10

4 ops
Private u Bit extraction 9 ops 1.9 · 10

4 ops 7 · 10

2 ops

Table 4.2: Speed of SHAREMIND in secure operations per second (ops) [27, 25].

(e) time spent on waiting for messages to arrive,

2. time spent on code interpretation.

If the profiler is enabled on a SHAREMIND server, it caches the measured tim-
ings in memory and stores them in a file in a background process. The profiler
collects measurements according to the hierarchy presented in the list—each mea-
sured execution section is assigned a parent section. Once the measured task is
complete, we can store the section durations and their hierarchy in a file and use
a separate tool to output the timing breakdown of a script or a protocol.

We chose a hierarchical profiling method to be able to analyze the perfor-
mance of a script with different granularity levels. For example, if we want to
know the bottlenecks of an algorithm, we can analyze the timings on the level of
individual operations and discard the runtime breakdown of protocol execution.
However, if we are optimizing a protocol and want to know the time spent on net-
work delays, we can discard the higher level and focus on a single protocol and
its breakdown.

Each section can also be tagged with metadata, like the size of inputs to the
secure computation protocol or the size of the vector to send on a network. This
information is preserved in the post-processing phase and allows us to analyze
large benchmarks with ease.

4.2.2 Benchmarking tools

There are specific tools for benchmarking protocols and assembly programs. The
OperationBenchmark tool is used to coordinate performance tests for secure
computation protocols. The user provides the tool with the name of the secure

73

19

operation to test and the number of iterations for testing each input size. It is also
possible to specify the range of input sizes to use and the order of experiments by
input size—ascending, descending or random.

The range specification controls which input sizes are tested. For example,
the user can request that the secure multiplication operation is benchmarked with
input sizes ranging from 100 000 to 1 000 000 with 100 000-element increments.

Given this information, the OperationBenchmark tool will generate the
list of experiments to perform. This list contains one experiment for each iteration
for each input vector size. These experiments can then be performed in ascending
order from the smaller vector sizes to the larger ones or in reverse.

Optionally, the order can be randomized to reduce any effects that may result
from a sorted ordering, such as the ones resulting from the flow control algorithms
of the underlying networking layer. Furthermore, there is an additional option to
“warm up” the machine by performing a number of large secure multiplications.
This ensures that the flow control algorithm has converged on an estimate for the
maximum speed and network throughput has stabilized. In our experiments, we
always apply a warmup period and randomize the order of the experiments.

Experiments are coordinated by a result party that requests that the com-
puting parties generate random inputs and then perform the experiment. The
OperationBenchmark tool also measures the execution time on the client
side. However, this timing also includes the round trip time between the result
party and the computing parties that is not present in the results of profiling. In
our benchmarking, we use the profiling results, because in algorithms, operations
are run one after the other with no interactions with the result party.

There is a separate tool called ScriptBenchmark that is used to measure
the execution of an assembly program. The tool sends the program name to the
computing nodes that execute the program and profile it. ScriptBenchmark
also measures execution time on the client side.

Client-side measurements are more justified in this case, as queries in most
real applications consist of requests exactly like this. Therefore, the measurements
of ScriptBenchmark are a good indication of query response times in real
applications. Profiling results can also be used during development to understand
the breakdown of the execution time between individual secure operations.

4.3 Performance analysis

4.3.1 SHAREMIND protocol execution pipeline

Before we analyze how different resources affect the performance of secure pro-
tocols on SHAREMIND, we describe how protocols perform computations and
exchange messages. We focus on how a protocol running on one SHAREMIND

74

miner server sends a message to a protocol running on another miner server. Once
the protocol instance in one miner server sends a message, it needs to be passed
through the SHAREMIND network layer, encrypted and sent over the public net-
work, then decrypted and passed to the protocol instance in the destination miner
server.

SHAREMIND is capable of SIMD operations that are performed by a single
protocol. Whenever such a protocol would process a value, it processes a vector
instead. This means that SHAREMIND can pack the messages of several secure
computation protocols into a single network message and reduce the networking
overhead We will give more details on the effectiveness of this optimization in
Section 4.3.3.

On the other hand, if an application uses a vector that is very large, it need-
lessly increases the memory usage and also the risk of failure in the networking
layer. Therefore, we introduce a configurable batching parameter b. All protocols
are implemented so that input data will be processed in batches with a maximum
size b. For example, in a pointwise multiplication with 100 million values, if the
batching parameter b = 100000, SHAREMIND will slice 100000-element pieces
from the inputs and will run the protocol in 1000 batches.

As SHAREMIND supports multiple parallel users, it also has to manage par-
allel protocol instances and share the network layer among the users’ sessions.
The protocols of each user session run in a separate thread. If they want to send
or receive messages, they inform the main thread of the miner server. The miner
thread talks to the networking thread every few milliseconds to send messages and
pick up everything that has arrived.

When messages are passed to the network thread, it encrypts them and buffers
a copy for retransmissions. The messages are then sent out as UDP datagrams.
Similarly, when messages arrive from the network, they are decrypted, acknowl-
edgments are sent and they are buffered until the miner server thread requests
them.

Most of the operations in sending are asynchronous (sending is non-blocking).
On the other hand, receiving is a blocking operation so the protocol thread simply
waits until the responses arrive. In the future, we will consider making message
receiving more asynchronous as well, as it may improve efficiency. However, this
will require a review of the protocols to make sure that the values exchanged on
the network are not affected by the scheduling of network packets.

This design may not provide the lowest latency, but it can robustly handle large
vectors. The networking pipeline has been optimized for performing large SIMD
operations, as SHAREMIND is more efficient with them. Figure 4.1 illustrates the
whole pipeline between miner servers A and B.

75

loop [for each batch]

Protocol
<<thread>>

MinerServer
<<thread>>

Network
<<thread>>

sendVector (v, B)

prepare (v)

Miner A

sendVector (v, B)
encrypt (v)
MAC (v)
buffer (v)
send (v)

network

loop [for each batch]

Protocol
<<thread>>

MinerServer
<<thread>>

Network
<<thread>>

receiveVector (v, B)

process (v)

Miner B

decrypt (v)
verify (v)
sendAck (v)

receive (v)

receiveVector (v, B)

network

receiveVector (v, B)

Figure 4.1: Message exchange during SHAREMIND protocol execution

4.3.2 The importance of processor speed

SHAREMIND is based on very simple ring arithmetics and, therefore, does not
require heavy-duty cryptographic primitives to operate. However, there are two
important cryptographic primitives that use up processing power in SHAREMIND.
The first is the suite of encryption schemes that enable the secure channels in the
system. The second is the pseudorandom generator that enables secret sharing
and provides randomness for all protocols.

Modern secure channel implementations are considered efficient enough for
use in mainstream applications. Secure channels functionality in SHAREMIND 2
is provided by the RakNet library. RakNet creates a secure channel with authenti-
cated encryption using 256-bit elliptic curve key agreement, a key derivation func-

76

tion based on Skein [117], the ChaCha stream cipher [19] and a MAC based on
HMAC-MD5. ChaCha is not a standard stream cipher, but known attacks against
it are not yet in a practically feasible range [9]. Similarly, while the MD5 hash
function is no longer considered collision resistant and thus not secure in the con-
text of digital signing, HMAC-MD5 is not dependent on its collision resistance
properties [13].

The performance cost of secure channels in the SHAREMIND system has not
been studied in detail. The current assumption is that as RakNet is mostly used
in real-time computer games, its secure channels must be efficient enough for
performance-critical applications. We also plan to experiment with more standard
implementations of secure channels such as TLS in future SHAREMIND versions.
TLS was considered inefficient at the time when SHAREMIND was started. How-
ever, recent developments such as the hardware-implemented AES-NI instruction
set have made TLS significantly faster and it should be evaluated for inclusion in
future versions of SHAREMIND.

SHAREMIND protocols require significant amounts of randomness. In fact,
the amount of randomness consumed by a protocol is roughly the same as its
communication cost. Therefore, we need a source of randomness with a high
output rate. For practical reasons, we currently use pseudorandom generators in
the implementation.

A preliminary analysis of the effects that the type of the source of randomness
has on secure computation speed has been conducted in [29]. We experimented
with several pseudorandom generators and then profiled SHAREMIND with two of
them. The first is an ANSI X9.17 Appendix C compliant randomness generator
based on the AES block cipher and the second is the SNOW 2 stream cipher [55].

Our profiling showed, that with the AES-based generator, SHAREMIND spends
a significant amount of time generating randomness for the protocols. By substi-
tuting the generator for one based on SNOW 2, the randomness generation part in
the execution profiles was reduced from a few seconds to a few milliseconds. For
this reason, SHAREMIND 2 uses the SNOW 2 stream cipher as its source of ran-
domness. However, the pseudorandom generator is modular and can be replaced
with other implementations. Most importantly, the hardware-accelerated AES-NI
instruction set could be used to build an efficient randomness generator that is
faster than the current software implementation based on SNOW 2.

4.3.3 The importance of parallelization

Assuming that we have a fast random number generator and efficient secure chan-
nels, the next major bottleneck in SHAREMIND is network throughput. The more
complex the secure operation, the more rounds and communication it uses. In
each protocol round, several messages are exchanged among the SHAREMIND

77

20

Number of parallel operations

Ru
nn

in
g−

tim
e

in
 m

ill
ise

co
nd

s

101

102

103

104

105

106

●
●

● ●●●●●●
● ● ● ●●●●●

●● ● ● ●●●●●●
● ● ● ●

●●●●●
●

●
●

●
●●

●●
●●

●

●
●●

●
●●

●●

●
●

●
●
●
●●

●●

●

●
●
●●

●●
●●

100 101 102 103 104 105 106 107 108

Mult
● Old protocol

New protocol

Figure 4.2: Running time of secure multiplication depending on the input vector size [27].

computing nodes. As sending each message has a similar overhead, it makes
sense to try to use each message to process several values in parallel.

SHAREMIND implements parallelization by allowing an operation to take any
number of inputs (or input pairs, in the case of a binary operation). The proto-
cols perform all operations in parallel and package the values of several secure
operations into a single network message. We also remind the reader that such
parallel composition is secure thanks to the universal composability property of
SHAREMIND protocols.

Figure 4.2 is based on actual experiments and shows that the running time of
secure multiplication does not grow significantly with the size of inputs, until a
saturation point is reached. At that point, the running time starts to grow linearly
with the size of inputs. On the figure, this is represented with two linear fits.

Figure 4.3 presents the same data from another angle. It plots the amortized
cost of a single operation depending on the size of the inputs. The lines show
the same significant speedup up to the saturation point. Table 4.3 shows similar
speedup factors for various SHAREMIND 2 protocols. For each protocol we show
the most efficient input size and the speedup achieved by performing operations
with that input size.

Given the promise of large performance gains, it makes sense to set the batch
size parameter for a protocol to be not much higher than its saturation point. This
ensures that we are using the best parallelization, but also that we are not wasting
memory on huge vectors. However, the batch size must not be too small, as slicing
the input vectors for each batch will then reduce the efficiency of the protocol.

It follows, that the main optimization goal of a data processing algorithm run-

78

Number of parallel operations

Ti
m

e
pe

r o
pe

ra
tio

n
in

 m
ill

ise
co

nd
s

10−3

10−2

10−1

100

101

●

● ●
●
●
●●

●●●

●

●
●
●●

●●

●●

●

●
●
●
●●

●
●●

●
●

●●●
●●●●

● ● ●●●●●
●● ● ● ●●●●●●● ● ● ●●●●●●●

●
● ●●●●●●●

100 101 102 103 104 105 106 107 108

Mult
● Old protocol

New protocol

Figure 4.3: Price of a single multiplication depending on the size of the input vector [27].

Protocol Lowest efficient input size Speedup factor
Multiplication 15000 14000

Cast Z2 to Z232 24000 19000

Equality 27000 20000

Bit shift right 12000 7700

Bit extraction 2600 2200

Division with public divisor 3500 2800

Division with private divisor 800 730

Table 4.3: SHAREMIND performance improvements from parallelization [27].

ning on SHAREMIND should be to process many values at once. It is safe to par-
allelize as much as possible, because SHAREMIND can automatically execute the
protocol with the most efficient calibrated batch size. On the other hand, making
a non-parallel algorithm use more parallel operations is a known hard problem.

Making an algorithm use parallel operations increases its memory footprint
and also requires additional computational resources. Also, not all algorithms can
be easily made parallel as some of them have strong sequential data dependencies.
However, it pays off to try, as the possible speedup of more than 10 000 times
should be a sufficient motivator for designing one’s algorithms around massive
parallelization. Also, practical tests have shown, that the overhead of building
the input vectors for parallel processing is significantly smaller than the achieved
reduction in running time.

In our analysis present in [27], we show that all the secure computation proto-

79

cols in SHAREMIND that use communication behave similarly. The main change
is in the position of the saturation point among the different input sizes. For more
complex protocols, the saturation point is lower, as the larger communication re-
quirement fills the network capacity more quickly.

The benchmarks also illustrate another important fact—SHAREMIND is robust
enough to handle very large input vectors. Figures 4.2 and 4.3 show multiplication
operations processing up to 100 million input pairs at a time. In some data mining
prototypes, SHAREMIND has successfully processed input vectors ranging to half
a billion values. This is possible thanks to the batching mechanism described in
Section 4.3.1.

4.3.4 The importance of network bandwidth and latency

Up to now, we have described the performance of SHAREMIND in near-ideal set-
tings where the network links are very fast. In real-life deployments, we cannot
always assume that this is possible. Therefore, we need to understand the effects
of lower bandwidth and higher latency on secure computation performance.

We carried out performance experiments in various network settings and ana-
lyzed the results as joint work with Reimo Rebane [106]. We configured the ex-
perimental SHAREMIND cluster with special software that allowed us to emulate
network links with lower bandwidth and higher latency. We performed experi-
ments with a variety of network settings and built a linear regression model that
linked the performance of secure operations with the network settings.

The analysis of the model indicated that an increase in network latency does
not decrease the efficiency of secure operations on vectors. This is likely because
SHAREMIND protocols use a single message for many parallel operations and the
transfer of larger messages takes some time in any case. Furthermore, the secure
computation performance is strongly dependent on the communication complex-
ity of the protocol. As bandwidth decreased, so did the performance. Similar
patterns were noticed for all protocols.

Another goal of the work in [106] was to experiment with SHAREMIND on
the public cloud. This was driven by the practical consideration that it must be
feasible to deploy SHAREMIND on the cloud as this will help with the adoption of
the new technology. Each SHAREMIND installation requires three servers hosted
by three independent hosts and controlled by separate entities. However, not all
organizations have the capability of hosting a SHAREMIND server. Cloud ser-
vice providers can rent the infrastructure required for deploying SHAREMIND to
organizations with no such capability.

Rebane experimented with SHAREMIND using several cloud service providers.
We chose two different settings for the experiments—the worst case scenario,
where SHAREMIND servers are deployed as distantly from each other as possible,

80

and a more realistic scenario where the computing nodes are in the same part of
the world—Europe. To determine, how far these settings are from the ideal lab
setting, Rebane also compared the performance on the cloud to the performance
in the lab.

In the European deployment, SHAREMIND was installed on servers provided
by three different cloud providers located in the United Kingdom and Ireland.
In the global deployment, one server was set up in the United States, one in the
United Kingdom and one in Japan.

Deployment
Operation Lab European cloud Global cloud

Multiplication 690000 ops 48300 ops 27850 ops
Share conversion 1360000 ops 120000 ops 58500 ops

Equality 254000 ops 21500 ops 12800 ops
Bit shift right 95000 ops 3000 ops 2600 ops
Bit extraction 28000 ops 1000 ops 600 ops

Table 4.4: SHAREMIND performance on the cloud in secure operations per second [106].

Table 4.4 gives a comparison of performance for five operations in the three
settings. The data shows a slowdown factor of 10–30 times in the performance
of secure operations. Even with decreased performance, SHAREMIND remains
practical as it can still perform tens of thousands of secure operations each second.

Deployment
Operation Lab European cloud Global cloud

Multiplication 27.79 Mbit/s 1.02 Mbit/s 0.57 Mbit/s
Share conversion 13.65 Mbit/s 1.17 Mbit/s 0.73 Mbit/s

Equality 18.84 Mbit/s 1.54 Mbit/s 0.42 Mbit/s
Bit shift right 39.96 Mbit/s 2.03 Mbit/s 0.84 Mbit/s
Bit extraction 24.85 Mbit/s 1.28 Mbit/s 0.78 Mbit/s

Table 4.5: Average network throughput comparison in the lab and on the cloud [106].

Table 4.5 shows the average bandwidth during the performance measure-
ments. It clearly shows similar ratios between performances and bandwidths.
However, the maximal measured bandwidth between individual SHAREMIND ser-
vers in the cloud (and also, in the lab) was significantly higher. For example, the
lab deployment had direct gigabit network links between the servers, of which
only up to 40 Mbit/s were reported as used during the experiments.

81

21

The results reported in [106] show that SHAREMIND was not using all the
available bandwidth in the experiments. This suggests that there may be room for
optimization in the SHAREMIND protocol execution pipeline. Further profiling
is needed to determine, which computational step (secure transport, randomness
generation or other) is limiting bandwidth usage.

Furthermore, the effect of communication complexity in the overall perfor-
mance must be taken into account during the design of new protocols. We hypoth-
esize that the best secure computation protocols are balanced—their rounds have
a similar communication complexity so that the batching system works equally
well on all the rounds of the protocol. Otherwise, if a protocol has rounds with
significantly unbalanced communication, it is hard to choose a batch size that
guarantees an even flow of data in all the rounds.

4.4 Optimization goals for future protocols

SHAREMIND protocol designers are faced with many choices as they create new
protocols for the system. For example, should the number of rounds be the main
optimization goal or should we limit communication instead? We propose general
guidelines based on an analysis of a simplified model for SHAREMIND protocols.

Consider the protocol execution pipeline illustrated in Figure 4.1. Message
transmission in this model has an inherent amount of latency. It is caused by the
combination of local processing and network transfers. There are many factors
that contribute to this latency, ranging from thread scheduling and other processes
on the operating system to the physical parameters of the network connection. For
these reasons, message transmission latency is stochastic and it cannot be avoided
completely.

However, we can assume that the time of transferring a message over the
network is mostly in the size of the data. Copying messages between threads,
encrypting and authenticating them are all linear activities. The physical latency
of the network is dependent on the quality of the network connection and not on
the size of the data. The physical latency between two non-mobile nodes is typi-
cally constant over time, unless the network infrastructure between these nodes is
overloaded or improved.

From this, we can derive a simplified statistical model for message delivery
time. Let n be the message size in bits, b the bandwidth of the network in bits
per millisecond and ` the roundtrip time on the network in milliseconds. We can
express the transmission time t as

t =

n

b + "

b

+ ` + "

`

, (4.1)

where "

b

and "

`

are random error terms for bandwidth and error, respectively.

82

Most secure computation protocols in SHAREMIND exchange messages in
several rounds. In principle, one can create a model of the protocol running time
by extending Equation (4.1) with details about the messages exchanged in each
round. The resulting model of the protocol execution time can be used for deter-
mining how the number of rounds or the communication complexity affects the
total running time. However, this approach is not practical without special tools
to assist the developer in the analysis.

We can still derive useful rules from the simplified model (4.1). If the time
cost of network latency is larger than the cost of transmitting the data bits so that

n

b + "

b

⌧ ` + "

`

,

then the protocol running time grows linearly in the number of rounds. In this
case, we should prefer protocols with a lower number of rounds. This situation is
more probable, if we are running the protocol with just a few inputs, as otherwise
the message size grows and the impact from the bandwidth becomes more signifi-
cant. Therefore, if we know that a protocol will mostly be used with small inputs,
we should aim for reducing the number of rounds in the protocol.

If the amount of transmitted data is sufficiently large then latency becomes
less important as the time taken to transmit bits grows to be greater than the accu-
mulated latency. Parallel operations on vectors can easily make the data size grow
and reduce the importance of round complexity in protocol design.

It follows that developers who optimize secure computation protocols for
SHAREMIND or a similar system must find a balance between bandwidth and la-
tency. If the protocol must work on small inputs, one should aim for fewer rounds.
If the protocol is intended to be run with multiple inputs, the designer should take
steps to reduce the communication complexity of messages.

With SHAREMIND, one also has to understand that as the messages grow,
SHAREMIND starts to automatically split messages to keep the input sizes of pro-
tocols near the saturation point. However, each piece of the message requires its
own round trip time and this adds to the number of rounds. The perfect balance
between the number of rounds and communication complexity is not yet known,
but first steps towards finding this balance have already been taken [106].

83

CHAPTER 5

PROGRAMMING SECURE
COMPUTATIONS

5.1 Motivation and design goals

In Chapter 3 we showed how to perform secure computations on SHAREMIND
and presented general protocols for collecting data and processing them using se-
cure computation. In Section 3.5, we presented a protocol for processing queries
received from result parties. In practice, we need a way for specifying the algo-
rithms that control the secure computation protocols in these queries. Our solution
is to use domain-specific programming languages to specify the secure operations
that SHAREMIND must perform to complete the query.

We set several goals for the whole programming experience.

1. The programming language must support operations on both public and
private data.

2. The programming language must clearly separate public and private data
and control when private data becomes public.

3. The programming language must be independent of any particular secure
computation paradigm.

4. The programming language must provide tools that simplify the implemen-
tation of algorithms that process large databases.

5. It must be possible to run the programs written in the language on the
SHAREMIND computing parties.

The choice of these particular goals were driven by several considerations.

84

First, the decision to include public operations in the programming model
comes directly from the efficiency goal of SHAREMIND. It is not feasible to hide
the whole state space of the secure computation. Each branching statement in-
creases the number of parallel states we need to secure and maintain, because
otherwise the security can be compromised using side channel attacks like tim-
ings. The situation is worse for loops, because each loop condition is basically a
branching decisions and hiding the size of the loop either becomes very expensive
or leaks bits about the loop condition. Also, most circuit evaluators unroll loops,
thus needing to know the size (or, at least the maximum size) of the loop.

Instead, we focus on hiding the values in private data and supporting pro-
gramming patterns that hide the control flow and defeat side-channel attacks. By
restricting flow control to decisions based on public values we gain a lot of effi-
ciency. For example, loop conditions can be evaluated using only public values,
condition statements can be made only on public values. The naïve way for han-
dling branching in secure circuits is to evaluate both branches and obliviously
choose the results. It is easy to see how this can quickly grow the computation
complexity of the program.

We can use significantly less secure computation resources by allowing the
programmer to combine both public and private decisions in a program. For ex-
ample, loop conditions can be evaluated publicly during runtime without requiring
secure operations.

The second goal of SHAREMIND programming language design partially fol-
lows from the first. In order to prevent programming errors where private values
are used instead of public ones, the programming language must keep a strict
separation between the types. In our design we decided to allow the implicit con-
version of public values to private values but allow only explicit conversions of
private values to public values. The type system of the programming language
takes care of the separation and enforces all possible assignments in the compiler.

Although the SHAREMIND design fulfills the goals we set for the secure com-
putation engine, we acknowledge that cryptographic research moves on and more
protocols can emerge, providing a comparable degree of efficiency and ease of
use. Therefore, to keep the language independent from the underlying crypto-
graphic protocols, we refrained from including protocol-specific constructs like
parties in the programming language. The cryptographic parts of SHAREMIND
are hidden in the type system and compiler. This allows us to adapt the language
to other secure computation paradigms such as homomorphic encryption.

Fourth, we believe that secure aggregation and data mining will be a signifi-
cant use case for SHAREMIND and, therefore, we intend to provide tools for the
creation of such applications. This includes adding vector and matrix types to the
language and supporting pointwise operations on these types. Furthermore, we

85

22

chose to design an imperative language to simplify the porting of data processing
algorithms in the literature.

Finally, it is our goal to provide a runtime for the language. To achieve this
without becoming protocol-specific, we created a low-level assembly language
that is specific to the SHAREMIND system and supports all the operations sup-
ported by SHAREMIND. We then proceeded to design a high-level language called
SECREC (pronounced as secrecy) that meets all the goals we have set and created
a compiler to translate SECREC programs into SHAREMIND assembly language.
As a final link, we added an assembly interpreter to the SHAREMIND machine,
allowing SECREC language programs to be executed so that the separation of
private and public data is enforced by the SHAREMIND runtime.

5.2 The SHAREMIND secure virtual machine and
assembly language

The SHAREMIND assembly language is an interpreted language. The interpreter
is implemented within SHAREMIND where it interfaces directly with two vir-
tual machines—the privacy-preserving virtual machine that runs secure multiparty
computation protocols and the public virtual machine that performs public opera-
tions.

The abstract machine of SHAREMIND 2 is a hybrid of a stack machine and a
register machine. A private stack is used for passing operations to private opera-
tors. This allows the programmer to easily set up input vectors for larger SIMD
operations. For intermediate results, however, there are public and private reg-
isters (including vector registers). The runtime state of the virtual machine is
formed by the contents of the stack, the registers and also the private database.

As the main data type of the SHAREMIND 2 implementation is the 32-bit
unsigned integer, it is also the type of the private stack. Public and private registers
can contain scalar or vector values of the same type. Public registers can also store
string data to help with the processing database metadata and handle logging.

To run a secure operation, the programmer pushes the inputs on the stack from
either the database or the registers. The programmer can then invoke the secure
computation operation that will take its inputs from the private stack and, after
completion, will put the results back on the stack. Private operations can take
parameter vectors of any size from the stack.

To speed up the implementation process, public expressions have been di-
rectly integrated into the assembly language. Public arithmetic works directly on
registers.

SHAREMIND also has operations for loading data from the database and sav-
ing them to the database. For efficiency, the operations can push database columns

86

directly on the stack for immediate processing. This allows the programmer to op-
timize the code and skip the copying of large vectors through registers.

Even though the assembly interpreter keeps a strict separation between the
public data and the private data, it does not have many built-in restrictions on
making private data public. There are some operations (e.g., moving data from
a private register to a public register, popping values from the private stack to a
public register) that trigger the collection of shares and the reconstruction of se-
crets. As the assembly language represents the “hardware” layer in SHAREMIND,
it must provide such operations. We give a more detailed description of the pro-
gramming model of the SHAREMIND virtual machine in [24].

In the majority of cases, secure functionality is developed in the high-level
SECREC programming language and therefore, it is useful to implement the rele-
vant restrictions in that language. The translation from SECREC to assembly lan-
guage must preserve the same security guarantees. It is possible to show formally,
that the translation from a high-level language to a low-level language preserves
the claims about the information flow. These claims include the movement of data
between public and private types.

However, even with such claims, the compiler may contain errors that cause
the generation of incorrect assembly code. One solution is to create a compiler that
generates a proof of the data flow claims and embeds this proof in the assembly
code. The interpreter of such proof-carrying assembly code will then be able to
check the information flow claims during execution. Even then, it is important to
control the quality of the compiler through testing and analysis of the resulting
code, as developer errors may still create security risks. At the time of writing
this thesis SHAREMIND does not use proof-carrying assembly code and adding
support for this remains a future goal.

The assembly language interpreter of SHAREMIND 2 has been built and in-
tegrated into SHAREMIND as joint work with Roman Jagomägis [70]. The inter-
preter is fully functional and is powering the SECREC programming language.

5.3 SECREC—a high-level imperative language for
implementing secure functionality

5.3.1 Secure data types

SHAREMIND assembly provided the hardware abstraction for secure computa-
tion protocols. We used this abstraction to design and implement the SECREC
(secrecy) programming language that hides the details of the secure computation
protocols. SECREC is a C-like language that separates public and private data
on the type system level. Variables that are typed as private are processed using

87

/ / D e c l a r a t i o n s f o r p u b l i c v a l u e s .
public bool publicValue ;
public uint32 [1 0] publicVector ;
public uint32 [3] [3] publicMatrix ;
public string tableName ;

/ / P r i v a t e s c a l a r va lue , v e c t o r and m a t r i x d e c l a r a t i o n s .
private uint32 secretValue ;
private bool [5] secretVector ;
private uint32 [1 0] [1 0] secretMatrix ;

Figure 5.1: Variable declarations in SECREC

secure computation whereas public values are stored and processed as usual.
Each type in SECREC consists of a data type and a security type. As the

SHAREMIND 2 platform works with 32-bit unsigned integers, the uint32 data
type in SECREC is a 32-bit unsigned value. There is also a bool type that is em-
ulated on 32-bit shares. The string and void data types are only available for
public types. The latter is used only for methods with no return value. Figure 5.1
shows how to declare variables in SECREC.

5.3.2 Secure operations and parallelism

As parallel operations are efficient on SHAREMIND, SECREC supports pointwise
operations on vectors and matrices. There are also operations for aggregating
whole vectors of values (e.g., summing them). Table 5.1 shows the available
binary and unary operators for processing private data in SECREC. All the listed
operators also work on scalar values and public variables. Additionally, SECREC
can expand a scalar value to the same shape as a vector or matrix to simplify such
operations for the programmer. See Figure 5.2 for examples.

Other functions are available through the standard library of the language. The
reference is given in the documentation of the software development kit [115].

In Chapter 4, we showed that the use of parallelization can significantly sim-
plify and optimize code. As processing a single value may take the same amount
of time as processing a thousand values, SECREC programs should be designed so
that they use pointwise operations and built-in aggregations as much as possible.

Figures 5.3 and 5.4 show two functions that perform a similar task. Both
functions count the number of occurrences of a private value in a private vector (an
interesting subtask in, e.g., histogram computation). The countFast function
performs fewer operations, but these have a higher degree of parallelism.

88

Operands Operation

private uint32[] a

c = a + b;

private uint32[] b

c = a - b;

private uint32[] c

c = a * b;
c = a / b;
c = a % b;
c = -a;

private uint32[] a c = a < b; c = a > b;
private uint32[] b c = a <= b; c = a >= b;
private bool[] c c = a == b; c = a != b;
private bool[] a c = a || b;
private bool[] b c = a && b;
private bool[] c c = !a;

Table 5.1: Secure binary and unary operations in the SECREC language.

/ / D e c l a r e d a t a .
private uint32 threshold ;
private uint32 [1 0] data ;
private bool [1 0] result ;
/ / Expand t h r e s h o l d i n t o a v e c t o r .
private uint32 [1 0] thresholdVector = threshold ;
/ / E v a l u a t e g r e a t e r�t h a n p o i n t w i s e t o g e t a b o o l e a n
/ / v e c t o r where a ` ` t r u e ' ' means t h a t t h e v a l u e a t t h i s
/ / p o s i t i o n was g r e a t e r o r e q u a l i n t h e f i r s t p a r a m e t e r .
result = (data >= thresholdVector) ;
/ / Now c o u n t t h e number o f t r u e v a l u e s .
private uint32 count = vecSum (result) ;

Figure 5.2: Pointwise and aggregation operations in SECREC

In Section 4.3.3, we showed that a single operation on a thousand values
can take nearly the same amount of time than a single operation on one value.
Therefore, the algorithm in Figure 5.4 has a significantly smaller running time on
SHAREMIND than the algorithm in Figure 5.3.

In these examples, all intermediate values are declared to show the security
types of each value and convince the reader that the secure inputs are not made
public in the algorithm.

89

23

private uint32 count (private uint32 [] data ,
private uint32 value) {

/ / Get t h e s i z e o f t h e d a t a .
public uint32 size ; size = vecLength (data) ;
/ / Loop ove r v a l u e s and pe r fo rm p r i v a t e c o m p a r i s o n s .
public uint32 i = 0 ;
for (i = 0 ; i < size ; i = i + 1) {

/ / Per fo rm s e c u r e compar i son .
private bool match ; match = (data [i] == value) ;
/ / Cas t t o i n t e g e r (t r u e = 1 , f a l s e = 0) and add .
public uint32 matchInt = boolToInt (match) ;
matchcounter += match ;

}
/ / Re t u r n r e s u l t a s a p r i v a t e v a l u e .
return matchcounter ;

}

Figure 5.3: A non-parallel counting function in SECREC

private uint32 countFast (private uint32 [] data ,
private uint32 value) {

/ / Get t h e s i z e o f t h e d a t a .
public uint32 size ; size = vecLength (data) ;
/ / Expand t h e i n p u t t o a v e c t o r .
public uint32 [size] valueVector = value ;
/ / Pe r fo rm p a r a l l e l compar i son .
private bool [size] matches ;
matches = (data == valueVector) ;
/ / Ca s t and sum up t h e r e s u l t s .
private uint32 matchcounter ;
matchcounter = vecSum (matches) ;
/ / Re t u r n r e s u l t a s a p r i v a t e v a l u e .
return matchcounter ;

}

Figure 5.4: A parallelized counting function in SECREC

5.3.3 Making private data public

The only way to make a private value public in SECREC is to pass it to the
declassify operator. No other operator or function can take a value typed

90

private as an input and output the same value to a value with a public type.
Also, no function of the standard library uses the declassification operator inter-
nally. This restriction makes all share reconstructions explicit and simplifies the
security analysis.

If the SHAREMIND assembly program in its execution reaches a call to the
declassify operator, the computing nodes will send their shares of the declas-
sified value to all other computing nodes and receive shares sent by others. This
way, each computing node can reconstruct the value in a public register, replicated
over the computing nodes. No computing node can send others a declassification
call, each node must engage in the declassification synchronously for it to suc-
ceed.

When the execution of a secure algorithm is completed, the result can be pub-
lished to the result party who requested the computation. This can be done using
the publish function. The main function in SECREC acts as an entry point
that processes the input parameters from the result party and sends the output. For
example, consider the code in Figure 5.5.

/ / Count o c c u r r e n c e s o f a v a l u e i n a d a t a b a s e column
public void main (public string db , public string table ,

public string column , private uint32 value) {
/ / Load t h e d a t a b a s e by name .
dbLoad (db) ;
/ / Get t h e d a t a from t h e d a t a b a s e column .
private uint32 [0] data = dbGetColumn (column , table) ;
/ / C a l l t h e more e f f i c i e n t c o u n t i n g f u n c t i o n .
private uint32 result = countFast (data , value) ;
/ / D e c l a s s i f y and p u b l i s h t h e r e s u l t .
public uint32 publicresult = declassify (result) ;
publish ("countresult" , publicresult) ;

}

Figure 5.5: Declassification and result publishing in a SECREC main function.

This code also demonstrates the use of database functions in the SECREC
standard library. The result party publicly provides the database, table and column
names and also gives a private query parameter. Data from the specified column
is loaded and passed to a counting function together with the private parameter.
The private result is returned and then published to the result party. The main
function does not have a return type, as the publish function provides greater
flexibility and makes returning several values easier.

The compiler for the SECREC language was designed and implemented as

91

joint work with Roman Jagomägis [71]. The compiler processes source code files
with the .sc extension and outputs SHAREMIND assembly files with the .sa
extension. The resulting assembly can be executed on the SHAREMIND machine.

5.4 Developing secure SECREC programs

SECREC algorithms must be constructed in such a way that the amount of declas-
sified data is kept to a minimum. In the example discussed in Section 5.3.2, the
following information is public:

• the location of the data in the SHAREMIND database,

• the amount of values loaded for processing, and

• the number of times the private parameter occurred in the private database
column.

The following information remains private:

• the values in the database,

• the inputs and results of comparisons and

• information about which vector elements are added to the total sum of oc-
currences.

SHAREMIND and SECREC provide cryptographic privacy, but special care
has to be taken to achieve other types of privacy. Secure multiparty computation
guarantees that nothing except for the intended outputs of the algorithm is leaked.
However, if the outputs are computed from the inputs, they always leak something
about them. For example, if the number of occurrences is equal to the number of
elements, then we know the contents of the whole database column. This is an
example of an attack against output-level privacy (see Section 3.2 for details).

SHAREMIND achieves record-level privacy and source-level privacy in the
storage phase, thanks to the use of secret sharing. Both kinds of privacy are
harder to maintain during computations, as it will require that we do not change
the program flow according to declassified variables among other things. How-
ever, declassifying intermediate values can significantly improve our performance
and, therefore, a balance is needed. The issues affect source-level privacy.

The only known provable method for defeating attacks against output-level
privacy is to design algorithms so they satisfy the property of differential privacy.
However, this comes with the risk of lowered accuracy. Therefore, for practical
applications, we use use clever algorithmic techniques for reducing the amount of

92

information that leaks from the output. This means accepting certain risks, but as
long as these are acknowledged and quantified, the privacy leaks are controlled.

In practice, the algorithm developer is responsible for deciding when to de-
classify values. Until we build tools that can automatically point out privacy leaks
in SECREC programs, the developers themselves have to consider the privacy im-
plications of declassification. The privacy proof of an algorithm can be trivial, if
only the final results are declassified. However, if intermediate results are used,
the developer must consider the implications of such disclosures to computing
parties.

We can analyze and quantify the privacy leaks of SECREC algorithm through
an analysis of declassifications. Figure 5.6 illustrates the flow of private informa-
tion in a SECREC program. A SECREC program can have two kinds of secure
inputs in addition to the public parameters and hardcoded constants—the private
parameters to the main function and data in the private database. These inputs are
processed by the computing parties using secure multiparty computation. The pro-
gram may declassify values that become visible to the computing parties. Some
public values can be published to the result parties.

private
database

RP

IP�
CP�

private
parameters

SecreC
program

state
(private

variables)

declassified
variables

published
variables RP

CP�

Figure 5.6: The flow of private data in SECREC programs.

Ideally, only the final results of the computation are published and the shares
are sent straight to the result party so that the other computing parties do not learn
them. However, as discussed earlier, we want to allow a program to declassify
intermediate values that might affect the flow of the program. Therefore, we need
to consider the information that these values disclose.

One way of proving that declassifications of intermediate data are not a pri-
vacy leak is to use a technique similar to the simulatability proofs that we use
to prove the security of SHAREMIND protocols. To prove that declassifying the
intermediate values in a SECREC program does not leak additional data, we show
that the results of all these declassifications can be directly inferred from the final
output.

If the final output is published and the miners can learn it, it is not a risk to pub-
lish some pieces leading to it earlier in the program to improve efficiency. This

93

24

technique has been used in proving the security of privacy-preserving frequent
itemset mining algorithms in [22]. The model is applicable if the computing par-
ties learn the output of the algorithm through declassification or collusion with the
result party. However, if the final output is not available to the computing parties,
such intermediate declassifications may leak too much information.

The other, more mechanical method is to consider the flow of individual pri-
vate values through the execution of the program. Whenever a value is declas-
sified, we look at how it has been processed up to that point. We prohibit the
declassification of values that come directly from either of the two private input
channels (parameters or the database) without any processing. We consider a de-
classification “safe”, if the variable being declassified contains an aggregation of
several private or public values. We stress that this kind of analysis provides a
heuristic for detecting leaks, but does not give absolute guarantees.

The first software implementation of such an analysis was developed as joint
work with Jaak Ristioja. The resulting static analysis framework for the SECREC
programming language is described in [107]. We formalized the semantics of the
SECREC language and created a prototype analysis tool that can detect several
kinds of privacy leaks in SECREC programs. However, there are also several
cases, where leaks are not detected and improving the analysis methods is a goal
for future work.

5.5 Additional developer tools

5.5.1 The developer version of the SHAREMIND server

In production deployments, SHAREMIND is deployed on three separate servers
connected over the network to satisfy the independence requirement of the secu-
rity model. However, during the development of the system, the setup of three
servers can be an unnecessary burden. We resolved this issue by creating a devel-
oper version of the SHAREMIND server, called the DEVMINER. Figure 5.7 shows
the DEVMINER application immediately after starting up.

The DEVMINER is an application that runs three SHAREMIND computing
parties on a single machine. The communication between these nodes is not per-
formed over the network, but through in-memory channels. The DEVMINER still
uses the network to service the requests of input parties and result parties. Fig-
ure 5.8 illustrates the difference between the production and developer deploy-
ments of SHAREMIND.

The DEVMINER application is built from the same components that are used
in the standard SHAREMIND server application. The main differences are in some
hardcoded configuration values, and a different communication model. Addition-
ally, DEVMINER accepts developer commands such as instructions to debug a

94

Figure 5.7: The DEVMINER application after startup.

SHAREMIND assembly program by single-stepping or retrieving the contents of
private values. Production deployments of SHAREMIND do not service such re-
quests. DEVMINER is available as a part of the SHAREMIND SDK [115].

We stress that the DEVMINER system does not give the same security guar-
antees as a normal SHAREMIND installation, because all three computing party
processes in DEVMINER are under the control of a single entity. However, a
solution such as DEVMINER could be made secure if all three computing party
processes are run in virtual machines that are separated from each other by a se-
cure hypervisor process. Furthermore, SHAREMIND could be deployed in three
separate servers in the same physical location, provided that physical access to the
servers is restricted to three different owners.

5.5.2 The SECRECIDE integrated development environment

Modern software is often developed using integrated development environments
(IDEs). These environments assist the developer by providing tools and documen-
tation for project management, compilation and debugging.

SHAREMIND provides a fundamentally different programming paradigm when

95

CP1 CP2

CP3

IP RP&

Server 1

Input and result parties

Server 2

Server 3

(a) SHAREMIND in a production en-
vironment.

CP1 CP2

CP3

IP RP&

Server

Input and result parties

(b) SHAREMIND in a deve-
loper environment.

Figure 5.8: Different deployment options of SHAREMIND.

compared to systems running on standard computing hardware. The main differ-
ence is in the use of secret sharing for storing the data. This makes the devel-
opment and debugging of SHAREMIND applications more complex, as inspecting
the data at a single party yields only a single share and gives no useful information
to the developer. These inconveniences inspired the creation of a tool that helps
develop and debug SECREC code. The first version of the SECRECIDE tool was
developed as joint work with Reimo Rebane and the general design is documented
in [105].

SECRECIDE stands for the SECREC Integrated Development Environment.
It supports the developer in several ways.

• SECRECIDE assists the developer in editing SECREC and SHAREMIND
assembly source code by providing syntax highlighting and indenting.

• SECRECIDE simplifies compiling SECREC code into SHAREMIND assem-
bly.

• SECRECIDE can connect to SHAREMIND miner servers to upload com-
piled code and execute it.

• SECRECIDE can be used for debugging SHAREMIND assembly on a run-
ning DEVMINER. This includes setting breakpoints, single-stepping and
continuing code execution, inspecting public and private values in the pri-
vate stack and both public and private registers.

• SECRECIDE contains reference documentation for both the SHAREMIND
assembly and SECREC languages.

96

Figure 5.9: The SECRECIDE application with an open code file.

Figure 5.9 shows the SECRECIDE tool with an opened code file that has just
been compiled.

5.6 A comparison of SECREC to other secure
computation programming languages

We conclude the description of SECREC with a quick comparison to other lan-
guages designed for implementing secure multiparty computation protocols or
applications. Table 5.2 gives a comparison of secure programming languages
with a secure multiparty computation backend.

The table contains several aspects of the languages. First, we list the interme-
diate representation and runtime of each language. Then we describe the secure
computation model represented by the language by giving the number of sup-
ported parties and describing, if the language requires the programmer to write
code that is specific to a certain party. We show, which languages contain explicit
syntax for exchanging messages between parties.

The overview continues with the secure and public computation features of the
language and the runtime. We list the data types and operations and pay special

97

25

attention to how private values are made public. The table then describes the data
structures and flow control mechanisms that the language provides. Finally, we
list the papers from which the information in the table was gathered.

Based on the comparison, we can evaluate the suitability of each language
for a particular task. We consider two main use cases—the development of new
secure computation protocols and the development of secure data analysis appli-
cations. For protocol development, we require a language that can specify the
functionality for each party and provides message exchange facilities. The best
candidates for protocol development are L1 and TASTYL, as they have the listed
capabilities and they also support several secure data representations such as gar-
bled circuits and homomorphic encryption. While SMCL also has party-specific
code, it does not support different secure data representations.

The best languages for data processing applications are SMCL and SECREC.
The main difference between the two languages is the application development
paradigm. Whereas SMCL has special objects representing different clients and
their inputs and outputs, SECREC code is independent of the deployment of the
underlying cryptographic protocols. Furthermore, the SECREC standard library
contains functions for vector and matrix manipulation and secure database access
that simplify the development of applications. Both languages have been used for
developing real-world applications [100, 30].

The SFDL language is also suitable for applications and it is excellent for
specifying purely secure functionalities. This is well illustrated by the fact that
the SFDL language is used as an input language by several secure computation
implementations, e.g., Fairplay, FairplayMP and TASTY. Its main downside is the
inconvenience of working with public data. SFDL programs do not contain public
variables and this makes the development of real-life applications significantly
more complex.

We have discussed the strengths of each language and conclude that they share
many similarities, but their intended purpose makes them different. For example,
SECREC is probably the easiest language to develop algorithms in, as it does not
require the developer to think about parties or networking. However, this makes
SECREC less optimal for applications where the roles of parties are strictly fixed.

98

La
ng

ua
ge

SF
D

L
(1

an
d

2)
SM

C
L

TA
ST

Y
L

L1
SE

C
R

E
C

C
om

pi
le

st
o

SH
D

L
Ja

va
D

SL
—

Ja
va

D
SL

as
se

m
bl

y
R

un
tim

e
Fa

irp
la

y,
Fa

ir-
pl

ay
M

P,
TA

ST
Y

SM
C

R
TA

ST
Y

Ja
va

V
M

SH
A

R
E

M
IN

D
2

N
um

be
ro

fp
ar

tie
s

2
or

m
or

e
3

or
m

or
e

2
2

or
m

or
e

N
ot

fix
ed

C
od

e
st

yl
e

Pa
rty

-s
pe

ci
fic

Pa
rty

-s
pe

ci
fic

Pa
rty

-s
pe

ci
fic

Pa
rty

-s
pe

ci
fic

U
ni

ve
rs

al
N

et
w

or
ki

ng
Im

pl
ic

it
Ex

pl
ic

it
Ex

pl
ic

it
Ex

pl
ic

it
Im

pl
ic

it
Se

cu
re

in
te

ge
rs

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Se
cu

re
+

,⇥
Ye

s
Ye

s
Ye

s
Ye

s
Ye

s
Se

cu
re

=
=

,<
,>

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Se
cu

re
/
,m

o
d

N
o

N
o

N
o

Ye
s

Ye
s

Se
cu

re
bo

ol
ea

ns
Ye

s
Ye

s
Ye

s
Ye

s
Ye

s
Se

cu
re

lo
gi

c
Ye

s
Ye

s
Ye

s
Ye

s
Ye

s
D

ec
la

ss
ifi

ca
tio

n
Im

pl
ic

it
Ex

pl
ic

it
Im

pl
ic

it
Im

pl
ic

it
Ex

pl
ic

it
Pu

bl
ic

ty
pe

s
an

d
op

er
at

io
ns

N
on

e
B

oo
le

an
,i

nt
eg

er
B

oo
le

an
,i

nt
eg

er
B

oo
le

an
,

in
te

ge
r,

st
rin

g
B

oo
le

an
,

in
te

ge
r,

st
rin

g
A

rr
ay

s,
m

at
ri

ce
s

O
nl

y
ar

ra
ys

O
nl

y
ar

ra
ys

B
ot

h
O

nl
y

ar
ra

ys
B

ot
h

SI
M

D
op

er
at

io
ns

N
o

N
o

Ye
s

Ye
s

Ye
s

O
bl

iv
io

us
ar

ra
ys

Ye
s

N
o

N
o

N
o

Sp
ec

ia
lf

un
ct

io
n

Pr
iv

at
e

br
an

ch
in

g
Li

m
ite

d
Li

m
ite

d
N

on
e

N
on

e
N

on
e

Lo
op

s
C

on
st

an
ts

iz
e

Pu
bl

ic
si

ze
C

on
st

an
ts

iz
e

Pu
bl

ic
si

ze
Pu

bl
ic

si
ze

R
ef

er
en

ce
s

[9
5,

15
]

[1
01

,1
00

]
[6

6]
[7

8,
11

1]
[7

1,
10

7]
,

th
is

th
es

is

Ta
bl

e
5.

2:
A

se
le

ct
io

n
of

se
cu

re
co

m
pu

ta
tio

n
pr

og
ra

m
m

in
g

la
ng

ua
ge

s
w

ith
se

cu
re

m
ul

tip
ar

ty
co

m
pu

ta
tio

n
ru

nt
im

es
.

99

CHAPTER 6

SHAREMIND IN PRACTICE

6.1 The process of developing a SHAREMIND

application

6.1.1 Designing the application

We will now propose a process for developing secure applications based on the
SHAREMIND system. This guidance has been developed through the study of sev-
eral implemented and deployed prototypes. The process will be detailed further
when SHAREMIND technology is developed into an industry-accepted toolkit.

The development of a secure computation system with SHAREMIND starts
with determining the problem and its stakeholders. The important questions are:

1. Who has the data?

2. Who wants to process the data?

3. Are there any other organizations who benefit from processing the data?

4. Are there any other organizations whose goal it is to protect the data?

We must consider these answers as we determine the input parties, computing
parties and result parties. The people that can provide the necessary data will act
as input parties. The organizations who want to process data become the result
parties. The three computing parties are chosen from among all the identified
stakeholders in accordance to the following requirements.

First, the organizations must have an interest in preserving the privacy of
the data providers. Second, these organizations must be as independent from
each other as possible. Finally, each organization must be capable of hosting a
SHAREMIND server or, alternatively, must arrange the hosting, e.g., on a cloud.

100

These requirements are in place to prevent the unauthorized exchange of secret
shared data as that would compromise the privacy guarantees. For details, refer to
the the passive adversary assumptions as discussed in Section 3.3.3.

The next step is to design the secure application as a collection of data models
and algorithms for processing the data. As the result party knows what kind of
data are needed to perform the analyses, it proposes the initial data model. The
designed data model must include information on which attributes are stored as
public values and what will be stored in secret shared form. The resulting data
model will later be used to set up the SHAREMIND database.

While the result party is the initiator behind application design, the process
should be witnessed by both the computing parties and the result parties. This
way, the computing parties will get an understanding of the kind of data they will
jointly be processing. Furthermore, it may be beneficial to involve a representative
of the input parties as one of the computing parties. This way, the input parties
have a stronger involvement in the whole process.

After agreeing on the data model, the result party presents the list of analyses
to be performed on the data. Each analysis in the application should be described
so that it is clear, what data are used and what will be declassified as a result of
the computation. This transparent communication allows all involved parties to
understand the extent of information use.

6.1.2 Implementing the application

Once the application description has been agreed on, the three main components
of a SHAREMIND application are implemented.

First, the data entry application implements the behavior of the input parties.
The data entry application is implemented using the controller library specific to
the platform that will be used for data entry. For example, if the data are en-
tered using a desktop application or imported from an existing database or file, a
desktop version of the controller library should be used. A web-based data appli-
cation can be implemented with a specific library that allows secret sharing to be
performed in the web browser.

The developer will design a suitable user interface for collecting the secret
data and implement it using the SHAREMIND controller library. The controller
library will take care of secret sharing and uploading the collected data to the
SHAREMIND database.

The data analysis application represents the behavior of the computing parties.
It consists of secure data processing algorithms implemented in the SECREC lan-
guage. The developer can use the SECRECIDE environment and the DEVMINER
during development to simplify debugging and testing. All the analysis algorithms
must be implemented so that the declassifications are in accordance with the ap-

101

26

plication description. Should it happen that an algorithm cannot be implemented
without additional declassifications (or the implementation would be inefficient),
the application description must be updated. Moreover, all parties must be in-
formed of the new declassifications.

The data analysis application implements the behavior of the result parties.
This application will also be implemented using the controller library. To send
queries to SHAREMIND, the application will give the controller library the name
of the algorithm to run, together with all the required parameters. The controller
library will relay the information to SHAREMIND servers that will, in turn, start
the algorithm with the given parameters.

Once the computation is complete, all the published values will be sent to
the controller library application from where the query originated. The library
will return the results to the analysis application. The application may then use
any suitable presentation method to show the data. Alternatively, the analysis
application can also store the results locally for later lookup.

6.1.3 Deploying the application

When the necessary components of the SHAREMIND application have been cre-
ated, they can be deployed for use. The data entry applications must be delivered
to the data provider in a trustworthy manner.

For desktop applications, this means ensuring the correctness and authenticity
of the code by techniques such as code signing. For web applications it is also
important to inform the users of the correct URL for the data entry application.
Note that these precautions are not unique to secret sharing technology, but they
provide additional guarantees. There is always the alternative of setting up trusted
data entry terminals, but then we would have to convince the users that there are
no additional tracking systems such as keyboard loggers on

The SHAREMIND server software must be deployed by each host individu-
ally to ensure that no party has access to more than one SHAREMIND server. The
servers will then be configured with each others addresses and encryption keys.
This information must be exchanged in the most direct manner possible to en-
sure that the configuration is correct and the keys for setting up secure channels
between the servers are not compromised.

When SHAREMIND has been successfully set up, it is time to deploy the
SECREC code. The code must be delivered to each SHAREMIND server host who
can also exchange hashes of the code to make sure that they have the same version
of it. For better security, the code could be digitally signed and each SHAREMIND
server host could validate the signature.

It makes sense to deliver SECREC code instead of compiled code as it is easier
to read and validate. As an optional step, the host can perform a final verification

102

to check that the code conforms to the agreed application description. The code is
then compiled to SHAREMIND assembly and deployed at the server. This step ef-
fectively confirms the server’s readiness to execute the given analysis algorithms.

We note here a possible research direction for improving the security of de-
ploying SECREC code for SHAREMIND. It is possible that the compiler makes
mistakes in the translation and generates assembly code that does not preserve the
secure data flow of the SECREC program. We could enhance the SECREC lan-
guage and compiler to employ proof-carrying code techniques so that the security
properties of a SECREC program could easily be validated on the lower-level as-
sembly code.

Finally, the setup of the data analysis application is similar to the setup of the
data entry application. Whereas the data entry application was delivered to the
input parties, the data analysis application is set up for the result parties who can
use it for sending queries to the running SHAREMIND application.

6.2 Privacy-preserving application prototypes

6.2.1 Online surveys

We demonstrate a prototype application for SHAREMIND that helps a user perform
surveys that ask for numeric values or selections from pre-determined options.
These multiple choice questions are usually connected to a numeric scale or an
encoded classifier. For now, we do not consider questionnaires with text fields.

It is possible to conduct the survey in the form of an interview, where a spe-
cialist asks the question from an individual and enters the results into a special
data collection application. However, it is often cheaper for the survey organizer
to make the form available on the internet and request that members of the target
group fill it out themselves.

Deploying SHAREMIND data entry applications as web pages raises several
technical challenges. For best privacy, we must ensure that the data leaves the
input party in secret shared form and reaches the computing parties without inter-
mediaries, secret sharing must be performed in the web browser. Hence, the web
application forms secure connections to several servers and has access to a good
source of randomness.

These issues were investigated as joint work with Riivo Talviste [122]. We
implemented a web-based secret shared data collection mechanism that performs
secret sharing in the web browser using a simple SHAREMIND controller library
written in JavaScript. As most standard client-side web technologies do not pro-
vide developer access to a secure randomness source, we also described a general
solution for obtaining secure randomness in a web browser that has no built-in
access to good entropy.

103

We also describe graphical user interface elements that help the user distin-
guish secret-shared data collection from standard web forms. The proposed so-
lution displays visual identifiers of the computing parties together with the web
form to show that these are the parties that are responsible for preserving privacy.

A demonstration of the secure survey technology was developed by Esto-
nian companies Cybernetica, Quretec and Software Technology and Applications
Competence Centre (STACC). This application consisted of a data entry form that
sent data to SHAREMIND servers and a report generator that regularly compiled a
web page that represented the collected data as histograms.

Figure 6.1 illustrates this design. The figure shows an example deployment
where all three computing nodes are deployed by the same host. As this is not the
case in practical applications, an example of a similar application with different
hosts will be presented in Section 6.3.

Figure 6.1: An example of a secure survey questionnaire using SHAREMIND.

To generate the report, a result party application requests the computing par-
ties to execute a SHAREMIND assembly program that computes several histograms.
The published data from these histograms is passed to a report generation tool that
presents them in the form of bar charts, as shown in Figure 6.2. The demonstration
has been published on the web [116].

104

Figure 6.2: An example of a secure survey report.

6.2.2 Frequent itemset mining

Data mining is a technique for analyzing large databases in order to extract new
information. We consider it to be a primary application of the SHAREMIND sys-
tem and, therefore, we have also adapted data mining algorithms for SHAREMIND.
Even though SHAREMIND and SECREC allow standard data mining algorithms to
be naïvely converted into a secure form, we can often get better performance and
security by redesigning algorithms specifically for SHAREMIND.

There are two main reasons for why optimizing algorithms for SHAREMIND
brings significant benefits. First, the hybrid programming model of SECREC re-
quires that private data are identified and separated. Furthermore, only the mini-
mal amount of information should be declassified. For some algorithms, no inter-
mediate declassifications are required, whereas others may need them to be more
efficient.

Second, the properties of SHAREMIND motivate us to use parallelization as
much as possible. While some data mining algorithms (e.g., ones based on breadth-
first search) are easy to parallelize, others require more work. Our research group
has found, that parallelization and minimal declassification are easy to achieve
through the use of oblivious choice primitives [87].

105

27

The first non-trivial data mining problem we solved was that of frequent item-
set mining [22, 71]. Frequent itemset mining is an underlying technique for col-
laborative filtering and market basket analysis. Privacy-preserving collaborative
filtering can be used for a variety of tasks, including product suggestions in e-
commerce and item suggestions in museums [28].

We chose to adapt and implement two well-known frequent itemset mining
algorithms—Apriori [4, 96] and Eclat [130]. Apriori uses a breadth-first searching
approach and Eclat uses depth-first search. The two algorithms were implemented
in SECREC and also in the form of SHAREMIND protocols. The latter was done
to measure the overhead of SHAREMIND assembly interpretation. The details of
the implementation and the security analysis is given in [22].

Preliminary results showed that the highly parallelized secure Apriori imple-
mentation is significantly faster than the secure Eclat implementation. However,
Apriori also used significantly more memory. Based on these results, we imple-
mented a version of Apriori with controlled levels of parallelization and a version
of Eclat with some levels of parallelization.

As expected, the hybrid Apriori used less memory and it also performed only
slightly slower than the fully parallel version. Similarly, we observed that the hy-

brid Eclat algorithm performed better without requiring significantly more mem-
ory. A comparison of the performance of the algorithms is given in Figure 6.3.
The experiments were run on the mushroom database from UC Irvine Machine
Learning repository [59]. Note that in the experiments we only set limits on the
threshold and not the contents of the itemset so that all the itemsets meeting the
threshold criteria were found.

Absolute support

Ru
nn

in
g

tim
e

in
 se

co
nd

s

101

101.5

102

102.5

103

103.5

●

●

●

●

●

●

1000 1500 2000 2500 3000
Absolute support

A
llo

ca
te

d
m

em
or

y
in

 G
ig

ab
yt

es

1

2

3

4

5

6
●

●

●
● ● ●

1000 1500 2000 2500 3000

C++ implementations
● Apriori

Eclat
HybApriori
HybEclat

Figure 6.3: Comparison of secure frequent itemset mining performance [22].

To measure the overhead of SHAREMIND assembly execution we compared
the running time of the SECREC implementation to the C++ protocol implemen-
tation. We also decided to compare SHAREMIND to other secure computing
systems. Based on published benchmarks, we found that SEPIA [112] is the

106

best match for SHAREMIND in terms of secure computation performance. We
implemented the fastest Apriori algorithm also on SEPIA and benchmarked it
on the same hardware and network configuration that was used for measuring
SHAREMIND. The results are given in Figure 6.4.

Absolute support

Ru
nn

in
g

tim
e

in
 se

co
nd

s

101

101.5

102

102.5

103

103.5

104

104.5

●

●

●

●

●

●

1000 1500 2000 2500 3000
Absolute support

A
llo

ca
te

d
m

em
or

y
in

 G
ig

ab
yt

es

5

10

15

20

●

●

● ● ● ●

1000 1500 2000 2500 3000

Apriori comparison
● Sharemind (C++)

Sharemind (SecreC)
SEPIA (Java)

Figure 6.4: Comparison of the performance of different Apriori implementations [22].

According to the results the C++ protocol implementation is the fastest among
the compared versions. The SECREC version is faster than the SEPIA implemen-
tation for some vector sizes, but becomes slower for larger vectors. The memory
usage of both SHAREMIND implementations were similar, with SEPIA using sig-
nificantly larger amounts of memory.

Profiling suggests that the slowdown of the SECREC implementation of the
Apriori algorithm is caused by the inefficient handling of large vectors in the
SHAREMIND assembly interpreter. The stack-based design of SHAREMIND oper-
ations is very easy to model and generate code for. However, copying large data
vectors to and from the stack has a significant performance cost. Also, we found
the virtual machine of SHAREMIND is not optimized for public operations and an
algorithm with many public operations has a significant interpretation overhead.

Based on these result, we plan to improve the interpreter to reduce the over-
head. We intend to resolve the data copying issue by moving towards a design
where data vectors are passed around using handles in order to reduce copying
them. Instead of pushing input data on the stack for secure processing, we will
push handles to these vectors so that the protocol can work on the memory ar-
eas directly. We expect that this design change will further reduce the runtime
memory requirements of the SHAREMIND system.

Furthermore, we will optimize the virtual machine that interprets SHAREMIND
assembly to reduce the overhead of executing a single public operation. Both of
these changes will be significant in ensuring that secure algorithms implemented
in the SECREC programming language will not be significantly slower than their
C++ counterparts.

107

6.2.3 Privacy-preserving k-means clustering

Our secure frequent itemset mining algorithm used secure operations for addition,
multiplication and greater-than comparison. However, several algorithms require
the division operation for normalization and similar tasks. SHAREMIND is cur-
rently one of the few systems with an implemented secure division operation. We
decided to test this operation in practice and implemented the k-means clustering
algorithm [91].

Clustering analysis is used to group similar objects or observations accord-
ing to an attribute space. The k-means algorithm is considered geometrical or
centroid-based clustering, as it determines groups by defining a representative ob-
jects for each group and then finding the closest items around that object.

We implemented k-means clustering on the SHAREMIND system as an exam-
ple of applying the new protocols proposed in [27]. Our implementation of secure
k-means clustering hides the coordinates of each data point, but does not hide the
size of the cluster or the set of points in a cluster. In each iteration, we declassify
the index of the closest centroid for each data point and if this index has changed,
we move the data point to the new cluster. In cases where we also need to hide,
which shares belong to which clusters, we can add random shuffling and oblivious
lookups, but that may slow down the algorithm several times.

We tested the implementation on the example databases from the UC Irvine
Machine Learning repository [59]. The experiments were conducted on the same
experimental setting that was used for performance benchmarks and frequent
itemset mining measurements. Table 6.1 gives an overview of the running times of
the algorithms and the number of secure computation operations that were needed
to complete the analysis. In each case, execution continued until the clusters con-
verged.

During development, we found that for some databases, the accuracy of clus-
ters was not good enough because integer division was inaccurate in computing
the distances. We resolved the issue by emulating fixed point number using in-
teger arithmetics. We multiplying the coordinates of the data points by 10000

to make them large enough so that the integer division results become accurate
enough. This allowed us to get the same degree of accuracy that was achieved
with a non-private implementation of the k-means algorithm.

We can conclude from these results that even though the secure clustering
operations require hundreds of millions of secure operations, the running times
remain in the practical range and take under an hour.

108

Database k Time Iter. Multiply Compare Divide
iris

3 1 s 4 9600 5400 44
150⇥ 4

synthetic

3 3 s 5 7.2 · 10

5
2.7 · 10

4 900

600⇥ 60

5 6 s 8 1.7 · 10

6
1.2 · 10

5 2400
8 8 s 7 2.3 · 10

6
2.7 · 10

5 3360

plants

3 4 min 58 s 12 1.2 · 10

8
3.8 · 10

6 2520

34781 ⇥ 70 5 22 min 42 s 28 4.1 · 10

8
2.4 · 10

7 9800
10 36 min 35 s 17 4.6 · 10

8
5.9 · 10

7 11900

Table 6.1: k-means clustering performance and operation counts on SHAREMIND.

6.3 The ITL financial benchmarking application

SHAREMIND has been used in a real-world setting. The Estonian Association of
Information Technology and Telecommunications (ITL) is a trade organization of
Estonian companies who are active in the field of information and communica-
tion technology. In 2010, we developed and deployed a secure economic bench-
marking application that ITL uses to measure the health of the information and
communication technology sector in the country [30, 123].

According to the problem statement, members of the ITL enter a selection of
economic metrics twice a year. This information is analyzed to produce trends and
aggregated metrics that can be visualized and presented to the member companies.

We learned of the problem statement of ITL in the summer of 2010. We
drafted a solution proposal that followed the three-part application blueprint pre-
sented in Section 6.1.2. The proposal was accepted and we started to construct
the application. According to the design, data would be entered using a collec-
tion form in the members area of the ITL web page. The same web page would
also host the analytics and reporting application. A SHAREMIND installation was
planned to host the collected data.

The data collection form was implemented using an improved version of the
secure survey technology described in Section 6.2.1. The details of the construc-
tion is described in [123]. The role of the input parties is fulfilled by all eligible
members of ITL.

Three organizations were chosen among the ITL members to hold the roles of
computing parties and host the SHAREMIND nodes. In the context of SHAREMIND
these nodes act as computing parties. Since all three companies were capable of
hosting a SHAREMIND server, no outside hosting was needed.

In the solution, the result party is the ITL board who sends queries to the
SHAREMIND installation and then presents the results to the member companies.

109

28

Figure 6.5: A screenshot of the ITL data entry form.

The application was deployed in late 2010 and the first data collection and
analysis took place in early 2011. For the second data collection period in the third
quarter of 2011, we added a small survey to the system to ask for user feedback
and attitude towards the system. The results and analysis are presented in the
paper [30]. Figure 6.5 shows a screenshot of the deployment.

The ITL application is unique for several reasons. First, it is the first real-
world application where secure multiparty computations are performed over the
public internet. Second, it is the most complex reported application in practice, as
it uses a large set of different primitives and algorithms (see Table 6.2 for details).
Third, it is built using a general purpose secure multiparty computation system,
instead of a specific protocol. This shows that general purpose secure computation
systems can be usable in practice.

110

Analysis operation Required secure computation capabilities
Sorting financial indicator
columns

The oblivious vector sorting network uses

• secure multiplication,

• secure addition and

• secure comparison.

Privacy-preserving
database filtering

Oblivious choice requires

• casting secure booleans to secure integers and

• secure multiplication.

Calculating the added
value per employee

Oblivious ratio calculation requires a secure division
operation.

Computing time series of
financial indicators

The oblivious matrix sorting network is an extension
of the oblivious vector sorting network and requires
the same operations.

Table 6.2: The privacy-preserving algorithms used in the ITL application [30].

111

CONCLUSION

Secure processing of confidential data is a problem with many solutions. Some
companies prefer organizational measures such as non-disclosure agreements and
penalties, others apply standard data protection mechanisms. Unfortunately, ig-
norance is still a common approach to confidentiality, as some organizations dis-
regard the risks associated with inadequate data protection.

The goal of this thesis is to improve the state of the art of practical secure
computation by introducing a practical secure multiparty computation framework
called SHAREMIND. SHAREMIND uses cryptographic techniques such as secret
sharing and secure multiparty computation to ensure that confidential data is pro-
cessed as securely as possible. In this thesis, we present the necessary tools for
building secure computation protocols, using them in applications and deploying
such applications in a real-world setting.

The main result of the thesis is a highly efficient and universally composable
protocol suite for secure computation on integers. We show how SHAREMIND
can securely perform basic arithmetic operations such as addition, multiplication,
comparison and division. The basic operations can be composed sequentially to
form programs and in parallel to achieve operations on vectors. Vector operations
are important in SHAREMIND because they significantly reduce the amortized
cost of secure computation. SHAREMIND encourages the developer to make use
of parallelization by simplifying operations on vectors and matrices.

The efficient processing of vector data makes SHAREMIND a good platform
for privacy-preserving data mining. We have implemented several data analy-
sis application prototypes on SHAREMIND that can compute simple aggregations
like sums and histograms. We have also developed secure algorithms for more
complex tasks like frequent itemset mining and clustering.

All the secure computation capabilities of SHAREMIND are usable by non-
cryptographers thanks to the specially designed programming language SECREC.
SECREC allows data analysis algorithms to be implemented with a clear sepa-
ration of public and private data. All operations on data that have been marked
private are performed using secure computation. SECREC has been designed to
be familiar to software developers and works well with the specially tailored in-

112

tegrated development environment called SECRECIDE. SHAREMIND also pro-
vides a special controller library for creating user interfaces for its applications.
The controller library provides a simple interface to the secure computation ca-
pabilities of SHAREMIND, further reducing the complexity of applying the new
technology in practice.

We believe that our work has brought secure computation technology closer to
real-world applicability. The performance of SHAREMIND is good enough for se-
cure processing of databases with millions of rows. Furthermore, our experiments
show that SHAREMIND is robust enough to be deployed in real-world data centers
internationally. Even more importantly, SHAREMIND has been successfully used
in a real application for privacy-preserving financial benchmarking. This appli-
cation is built on a SHAREMIND installation shared by three separate companies
which makes it the first ever secure multiparty computation application to run on
the public internet.

Data processing applications that use SHAREMIND are significantly more se-
cure than ones that do not use secure multiparty computation. The risk of insider
attacks is greatly reduced as individual computing parties cannot deduce informa-
tion from the shares of the data available to them. The risk of data leaks through
negligence or malicious behavior is reduced for the same reason. We believe that
policy enforcement technologies like SHAREMIND will play a significant role in
securing information systems and protecting confidential data.

113

29

Bibliography

[1] Adam, N.R., Worthmann, J.C.: Security-control methods for statistical
databases: a comparative study. ACM Computing Surveys 21(4), 515–556
(1989)

[2] Afyouni, S.: Database Security and Auditing: Protecting Data Integrity and
Accessibility. Course Technology Press, Boston, MA, United States (2005)

[3] Agrawal, D., Aggarwal, C.C.: On the design and quantification of privacy
preserving data mining algorithms. In: Buneman, P. (ed.) Proceedings of
the Twentieth ACM SIGACT-SIGMOD-SIGART Symposium on Princi-
ples of Database Systems. PODS’01. ACM (2001)

[4] Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in
large databases. In: Bocca, J.B., Jarke, M., Zaniolo, C. (eds.) Proceedings
of 20th International Conference on Very Large Data Bases. VLDB’01. pp.
487–499. Morgan Kaufmann (1994)

[5] Agrawal, R., Srikant, R.: Privacy-preserving data mining. In: Chen, W.,
Naughton, J.F., Bernstein, P.A. (eds.) Proceedings of the 2000 ACM SIG-
MOD International Conference on Management of Data. pp. 439–450.
ACM (2000)

[6] Ahmed, A.S., Bogdanov, D.: A Model for Automatically Evaluating Trust
in X.509 Certificates. Tech. Rep. T-4-11, Cybernetica AS, Tartu, http:
//research.cyber.ee/. (2010)

[7] Aiello, W., Ishai, Y., Reingold, O.: Priced oblivious transfer: How to sell
digital goods. In: Pfitzmann, B. (ed.) Proceedings of the 20

t

h International
Conference on the Theory and Application of Cryptographic Techniques,
EUROCRYPT ’01. Lecture Notes in Computer Science, vol. 2045, pp.
119–135. Springer (2001)

[8] Aumann, Y., Lindell, Y.: Security against covert adversaries: Efficient

114

http://research.cyber.ee/
http://research.cyber.ee/

protocols for realistic adversaries. Journal of Cryptology 23(2), 281–343
(2010)

[9] Aumasson, J.P., Fischer, S., Khazaei, S., Meier, W., Rechberger, C.: New
Features of Latin Dances: Analysis of Salsa, ChaCha, and Rumba. In:
Nyberg, K. (ed.) 15th International Workshop on Fast Software Encryp-
tion. FSE’08. Lecture Notes in Computer Science, vol. 5086, pp. 470–488.
Springer (2008)

[10] Barbaro, M., Jr., T.Z.: A face is exposed for AOL searcher no. 4417749.
The New York Times (August 9th, 2006)

[11] Beaver, D.: Efficient multiparty protocols using circuit randomization. In:
Feigenbaum, J. (ed.) Proceedings of the 11th Annual International Cryptol-
ogy Conference. CRYPTO ’91. Lecture Notes in Computer Science, vol.
576, pp. 420–432. Springer (1991)

[12] Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure proto-
cols (extended abstract). In: Ortiz, H. (ed.) Proceedings of the 22nd Annual
ACM Symposium on Theory of Computing. STOC’90. pp. 503–513. ACM
(1990)

[13] Bellare, M.: New proofs for NMAC and HMAC: security without collision-
resistance. In: Dwork, C. (ed.) Proceedings of the 26th Annual Interna-
tional Cryptology Conference. CRYPTO’06. Lecture Notes in Computer
Science, vol. 4117, pp. 602–619. Springer (2006)

[14] Bellare, M., Hoang, V.T., Rogaway, P.: Garbling schemes. Cryptol-
ogy ePrint Archive, Report 2012/265 (2012), http://eprint.iacr.
org/

[15] Ben-David, A., Nisan, N., Pinkas, B.: FairplayMP: a system for secure
multi-party computation. In: Ning, P., Syverson, P.F., Jha, S. (eds.) ACM
Conference on Computer and Communications Security. CCS’08. pp. 257–
266. ACM (2008)

[16] Ben-Or, M., Canetti, R., Goldreich, O.: Asynchronous secure computa-
tion. In: Kosaraju, S.R., Johnson, D.S., Aggarwal, A. (eds.) Proceedings
of the Twenty-Fifth Annual ACM Symposium on Theory of Computing.
STOC’93. pp. 52–61. ACM (1993)

[17] Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness Theorems
for Non-Cryptographic Fault-Tolerant Distributed Computation (Extended
Abstract). In: Simon, J. (ed.) Proceedings of the 20th Annual ACM Sym-
posium on Theory of Computing. STOC’88. pp. 1–10 (1988)

115

http://eprint.iacr.org/
http://eprint.iacr.org/

[18] Bendlin, R., Damgård, I., Orlandi, C., Zakarias, S.: Semi-homomorphic en-
cryption and multiparty computation. In: Paterson, K.G. (ed.) Proceedings
of the 30th Annual International Conference on the Theory and Applica-
tions of Cryptographic Techniques, EUROCRYPT ’11. Lecture Notes in
Computer Science, vol. 6632, pp. 169–188. Springer (2011)

[19] Bernstein, D.: ChaCha, a variant of Salsa20. http://cr.yp.to/
chacha.html. Last accessed August 14

th, 2012. (2008)

[20] Bogdanov, D.: How to securely perform computations on secret-shared
data. Master’s thesis, University of Tartu (2007)

[21] Bogdanov, D., Crispino, M.V., Čyras, V., Lapin, K., Panebarco, M., Zu-
liani, F.: Virtual World Platform VirtualLife: P2P, Security, Rule of Law
and Learning Support. In: Proceedings of 2009 NEM Summit "Towards
Future Media Internet". Distributed as an eBook. NEM Initiative (2009)

[22] Bogdanov, D., Jagomägis, R., Laur, S.: A universal toolkit for cryptograph-
ically secure privacy-preserving data mining. In: Chau, M., Wang, G.A.,
Yue, W.T., Chen, H. (eds.) Proceedings of the Pacific Asia Workshop on
Intelligence and Security Informatics, PAISI ’12. Lecture Notes in Com-
puter Science, vol. 7299, pp. 112–126. Springer (2012)

[23] Bogdanov, D., Kamm, L.: Constructing privacy-preserving information
systems using secure multiparty computation. Tech. Rep. T-4-13, Cyber-
netica AS, Tartu, http://research.cyber.ee/. (2011)

[24] Bogdanov, D., Laur, S.: The design of a privacy-preserving distributed vir-
tual machine. In: Kaklamanis, C. (ed.) Collection of AEOLUS theoreti-
cal findings. Deliverable 1.0.6, pp. 269–280. Published online at http:
//aeolus.ceid.upatras.gr/deliverables (2010)

[25] Bogdanov, D., Laur, S., Willemson, J.: Sharemind: A framework for fast
privacy-preserving computations. In: Jajodia, S., Lopez, J. (eds.) Proceed-
ings of the 13th European Symposium on Research in Computer Security,
ESORICS ’08. Lecture Notes in Computer Science, vol. 5283, pp. 192–
206. Springer (2008)

[26] Bogdanov, D., Livenson, I.: VirtualLife: Secure Identity Management in
Peer-to-Peer Systems. In: Daras, P., Ibarra, O.M., Akan, O., Bellavista,
P., Cao, J., Dressler, F., Ferrari, D., Gerla, M., Kobayashi, H., Palazzo,
S., Sahni, S., Shen, X.S., Stan, M., Xiaohua, J., Zomaya, A., Coulson,
G. (eds.) Proceedings of the 1st International ICST Conference on User

116

http://cr.yp.to/chacha.html
http://cr.yp.to/chacha.html
http://research.cyber.ee/
http://aeolus.ceid.upatras.gr/deliverables
http://aeolus.ceid.upatras.gr/deliverables

Centric Media, UCM ’10. Lecture Notes of the Institute for Computer Sci-
ences, Social Informatics and Telecommunications Engineering, vol. 40,
pp. 181–188. Springer (2010)

[27] Bogdanov, D., Niitsoo, M., Toft, T., Willemson, J.: High-performance se-
cure multi-party computation for data mining applications. International
Journal of Information Security 11(6), 403–418 (2012)

[28] Bogdanov, D., Sassoon, R.: Privacy-preserving collaborative filtering
with sharemind. Tech. Rep. T-4-2, Cybernetica AS, Tartu, http://
research.cyber.ee/. (2008)

[29] Bogdanov, D., Talviste, R.: A Comparison of Software Pseudorandom
Number Generators. In: Cap, C. (ed.) Proceedings of Third Baltic Confer-
ence on Advanced Topics in Telecommunication - BaSoTi 2009. pp. 61–71.
Universität Rostock, Wissenschaftsverbund IuK (2009)

[30] Bogdanov, D., Talviste, R., Willemson, J.: Deploying secure multi-party
computation for financial data analysis - (short paper). In: Keromytis, A.D.
(ed.) Proceedings of the 16th International Conference on Financial Cryp-
tography and Data Security, FC ’12. Lecture Notes in Computer Science,
vol. 7397, pp. 57–64. Springer (2012)

[31] Bogetoft, P., Christensen, D.L., Damgård, I., Geisler, M., Jakobsen,
T.P., Krøigaard, M., Nielsen, J.D., Nielsen, J.B., Nielsen, K., Pagter, J.,
Schwartzbach, M.I., Toft, T.: Secure Multiparty Computation Goes Live.
In: Dingledine, R., Golle, P. (eds.) 13th International Conference of Finan-
cial Cryptography and Data Security. FC’09. Lecture Notes in Computer
Science, vol. 5628, pp. 325–343. Springer (2009)

[32] Bogetoft, P., Damgård, I., Jakobsen, T.P., Nielsen, K., Pagter, J., Toft, T.:
A practical implementation of secure auctions based on multiparty integer
computation. In: Crescenzo, G.D., Rubin, A.D. (eds.) 10th International
Conference on Financial Cryptography and Data Security. FC’06. Lecture
Notes in Computer Science, vol. 4107, pp. 142–147. Springer (2006)

[33] Boneh, D., Kushilevitz, E., Ostrovsky, R., III, W.E.S.: Public Key Encryp-
tion That Allows PIR Queries. In: Menezes, A. (ed.) 27

th Annual Inter-
national Cryptology Conference, CRYPTO’07. Lecture Notes in Computer
Science, vol. 4622, pp. 50–67. Springer (2007)

[34] Boost C++ libraries. http://www.boost.org/. Last accessed June
1

st, 2012.

117

30

http://research.cyber.ee/
http://research.cyber.ee/
http://www.boost.org/

[35] Burkhart, M., Strasser, M., Many, D., Dimitropoulos, X.A.: SEPIA:
Privacy-Preserving Aggregation of Multi-Domain Network Events and
Statistics. In: 19th USENIX Security Symposium. USENIX’10. pp. 223–
240. USENIX Association (2010)

[36] Canetti, R.: Studies in Secure Multiparty Computation and Applications.
Ph.D. thesis, Weizmann Institute of Science (1995)

[37] Canetti, R.: Universally Composable Security: A New Paradigm for Cryp-
tographic Protocols. Cryptology ePrint Archive, Report 2000/067 (2000),
http://eprint.iacr.org/. Last revision from 2005.

[38] Canetti, R.: Universally composable security: A new paradigm for cryp-
tographic protocols. In: Proceedings of the 42nd Annual Symposium on
Foundations of Computer Science. FOCS’01. pp. 136–145. IEEE Com-
puter Society (2001)

[39] Chaum, D., Crépeau, C., Damgård, I.: Multiparty unconditionally secure
protocols (extended abstract). In: Simon, J. (ed.) Proceedings of the 20th
Annual ACM Symposium on Theory of Computing. STOC’88. pp. 11–19
(1988)

[40] Chaum, D., Damgård, I., van de Graaf, J.: Multiparty computations ensur-
ing privacy of each party’s input and correctness of the result. In: Pomer-
ance, C. (ed.) Proceedings of the 7th Annual International Cryptology Con-
ference. CRYPTO ’87. Lecture Notes in Computer Science, vol. 293, pp.
87–119. Springer (1987)

[41] Chor, B., Goldwasser, S., Micali, S., Awerbuch, B.: Verifiable secret shar-
ing and achieving simultaneity in the presence of faults (extended ab-
stract). In: 26th Annual Symposium on Foundations of Computer Science.
FOCS’85. pp. 383–395. IEEE Computer Society (1985)

[42] Conway, R., Strip, D.: Selective partial access to a database. In: Proceed-
ings of the 1976 Annual Conference of the ACM, ACM ’76. pp. 85–89.
ACM (1976)

[43] libcsv—a small, simple and fast CSV library. http://sourceforge.
net/projects/libcsv/. Last accessed June 1

st, 2012.

[44] Damgård, I., Geisler, M., Krøigaard, M.: Homomorphic encryption and
secure comparison. International Journal of Applied Cryptography 1(1),
22–31 (2008)

118

http://eprint.iacr.org/
http://sourceforge.net/projects/libcsv/
http://sourceforge.net/projects/libcsv/

[45] Damgård, I., Geisler, M., Krøigaard, M.: A correction to “Efficient and
secure comparison for on-line auctions”. International Journal of Applied
Cryptography 1(4), 323–324 (2009)

[46] Damgård, I., Geisler, M., Krøigaard, M., Nielsen, J.B.: Asynchronous mul-
tiparty computation: Theory and implementation. In: Jarecki, S., Tsudik,
G. (eds.) 12th International Conference on Practice and Theory in Pub-
lic Key Cryptography, PKC’09. Lecture Notes in Computer Science, vol.
5443, pp. 160–179. Springer (2009)

[47] Damgård, I., Ishai, Y.: Constant-Round Multiparty Computation Using a
Black-Box Pseudorandom Generator. In: Shoup, V. (ed.) Proceedings of
the 25th Annual International Cryptology Conference. CRYPTO’05. Lec-
ture Notes in Computer Science, vol. 3621, pp. 378–394. Springer (2005)

[48] Damgård, I., Jurik, M.: A Generalisation, a Simplification and Some Appli-
cations of Paillier’s Probabilistic Public-Key System. In: Kim, K. (ed.) 4th
International Workshop on Practice and Theory in Public Key Cryptogra-
phy, PKC’01. Lecture Notes in Computer Science, vol. 1992, pp. 119–136.
Springer (2001)

[49] Damgård, I., Orlandi, C.: Multiparty Computation for Dishonest Major-
ity: From Passive to Active Security at Low Cost. In: Rabin, T. (ed.) Pro-
ceedings of the 30th Annual Cryptology Conference. CRYPTO’10. Lecture
Notes in Computer Science, vol. 6223, pp. 558–576. Springer (2010)

[50] Damgård, I., Pastro, V., Smart, N.P., Zakarias, S.: Multiparty compu-
tation from somewhat homomorphic encryption. In: Safavi-Naini, R.,
Canetti, R. (eds.) Proceedings of the 32nd Annual Cryptology Conference.
CRYPTO’12. Lecture Notes in Computer Science, vol. 7417, pp. 643–662.
Springer (2012)

[51] Dierks, T., Rescorla, E.: RFC 5246 - The Transport Layer Security (TLS)
Protocol Version 1.2. Tech. rep., IETF (Aug 2008), http://tools.
ietf.org/html/rfc5246

[52] Dobkin, D., Jones, A.K., Lipton, R.J.: Secure databases: protection against
user influence. ACM Trans. Database Syst. 4, 97–106 (1979), http://
doi.acm.org/10.1145/320064.320068

[53] Du, W., Atallah, M.J.: Protocols for Secure Remote Database Access with
Approximate Matching. In: Ghosh, A.K. (ed.) E-Commerce Security and
Privacy, Advances in Information Security, vol. 2, pp. 87–111. Springer
(2001)

119

http://tools.ietf.org/html/rfc5246
http://tools.ietf.org/html/rfc5246
http://doi.acm.org/10.1145/320064.320068
http://doi.acm.org/10.1145/320064.320068

[54] Dwork, C.: Differential privacy: A survey of results. In: Agrawal, M., Du,
D.Z., Duan, Z., Li, A. (eds.) Proceedings on the 5th International Confer-
ence of Theory and Applications of Models of Computation. TAMC’08.
Lecture Notes in Computer Science, vol. 4978, pp. 1–19. Springer (2008)

[55] Ekdahl, P., Johansson, T.: A New Version of the Stream Cipher SNOW. In:
Nyberg, K., Heys, H.M. (eds.) Proceedings of the 9th Annual International
Workshop on Selected Areas in Cryptography. SAC’02. Lecture Notes in
Computer Science, vol. 2595, pp. 47–61. Springer (2002)

[56] EU FP7 Project CACE: D4.6—MPC Virtual Machine Implementation.
http://www.cace-project.eu/ (2010)

[57] Fairplay. http://www.cs.huji.ac.il/project/Fairplay/
fairplay.html. Last accessed June 1

st, 2012.

[58] FairplayMP. http://www.cs.huji.ac.il/project/
Fairplay/fairplayMP.html. Last accessed June 1

st, 2012.

[59] Frank, A., Asuncion, A.: UCI Machine Learning Repository (2010),
http://archive.ics.uci.edu/ml

[60] Fung, B.C.M., Wang, K., Chen, R., Yu, P.S.: Privacy-preserving data pub-
lishing: A survey of recent developments. ACM Computing Surveys 42,
14:1–14:53 (2010)

[61] Geisler, M.: Cryptographic Protocols: Theory and Implementation. Ph.D.
thesis, Aarhus University (February 2010)

[62] Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzen-
macher, M. (ed.) Proceedings of the 41st Annual ACM Symposium on The-
ory of Computing. STOC’09. pp. 169–178. ACM (2009)

[63] Gentry, C., Halevi, S.: Implementing Gentry’s Fully-Homomorphic En-
cryption Scheme. In: Paterson, K.G. (ed.) Proceedings of the 30th Annual
International Conference on the Theory and Applications of Cryptographic
Techniques. EUROCRYPT’11. Lecture Notes in Computer Science, vol.
6632, pp. 129–148. Springer (2011)

[64] Goldreich, O., Micali, S., Wigderson, A.: How to Play any Mental Game
or A Completeness Theorem for Protocols with Honest Majority. In: Aho,
A.V. (ed.) Proceedings of the 19th Annual ACM Symposium on Theory of
Computing. STOC’87. pp. 218–229. ACM (1987)

120

http://www.cace-project.eu/
http://www.cs.huji.ac.il/project/Fairplay/fairplay.html
http://www.cs.huji.ac.il/project/Fairplay/fairplay.html
http://www.cs.huji.ac.il/project/Fairplay/fairplayMP.html
http://www.cs.huji.ac.il/project/Fairplay/fairplayMP.html
http://archive.ics.uci.edu/ml

[65] Goldreich, O., Ostrovsky, R.: Software Protection and Simulation on
Oblivious RAMs. Journal of the ACM 43(3), 431–473 (1996)

[66] Henecka, W., Kögl, S., Sadeghi, A.R., Schneider, T., Wehrenberg, I.:
TASTY: tool for automating secure two-party computations. In: Al-Shaer,
E., Keromytis, A.D., Shmatikov, V. (eds.) Proceedings of the 17th ACM
Conference on Computer and Communications Security. CCS’10. pp. 451–
462. ACM (2010)

[67] Hirt, M., Maurer, U.M.: Complete characterization of adversaries tolerable
in secure multi-party computation (extended abstract). In: Burns, J.E., At-
tiya, H. (eds.) Proceedings of the Sixteenth Annual ACM Symposium on
Principles of Distributed Computing, PODC’97. pp. 25–34. ACM (1997)

[68] Hirt, M., Nielsen, J.B., Przydatek, B.: Cryptographic Asynchronous
Multi-party Computation with Optimal Resilience (Extended Abstract).
In: Cramer, R. (ed.) Proceedings of the 24

th Annual International Confer-
ence on the Theory and Applications of Cryptographic Techniques, EURO-
CRYPT’05. Lecture Notes in Computer Science, vol. 3494, pp. 322–340.
Springer (2005)

[69] Huang, Y., Evans, D., Katz, J., Malka, L.: Faster secure two-party compu-
tation using garbled circuits. In: Proceedings of the 20th USENIX Security
Symposium. USENIX’11. USENIX Association (2011)

[70] Jagomägis, R.: A programming language for creating privacy-preserving
applications. Bachelor’s thesis. University of Tartu (2008)

[71] Jagomägis, R.: SecreC: a Privacy-Aware Programming Language with Ap-
plications in Data Mining. Master’s thesis, Institute of Computer Science,
University of Tartu (2010)

[72] Jarecki, S., Shmatikov, V.: Efficient Two-Party Secure Computation on
Committed Inputs. In: Naor, M. (ed.) Proceedings of the 26th Annual In-
ternational Conference on the Theory and Applications of Cryptographic
Techniques. EUROCRYPT’07. pp. 97–114 (2007)

[73] Jónsson, K.V., Kreitz, G., Uddin, M.: Secure multi-party sorting and ap-
plications. Cryptology ePrint Archive, Report 2011/122 (2011), http:
//eprint.iacr.org/

[74] Kantarcioglu, M., Clifton, C.: Privacy-preserving distributed mining of
association rules on horizontally partitioned data. IEEE Transactions on
Knowledge and Data Engineering 16(9), 1026–1037 (2004)

121

31

http://eprint.iacr.org/
http://eprint.iacr.org/

[75] Kargupta, H., Datta, S., Wang, Q., Sivakumar, K.: Random-data perturba-
tion techniques and privacy-preserving data mining. Knowledge and Infor-
mation Systems 7(4), 387–414 (2005)

[76] Katz, J., Ostrovsky, R.: Round-optimal secure two-party computation. In:
Franklin, M.K. (ed.) Proceedings of the 24

th Annual International Cryp-
tology Conference. CRYPTO’04. Lecture Notes in Computer Science, vol.
3152, pp. 335–354. Springer (2004)

[77] Kenthapadi, K., Mishra, N., Nissim, K.: Simulatable auditing. In: Li, C.
(ed.) Proceedings of the 24

th ACM SIGACT-SIGMOD-SIGART Sympo-
sium on Principles of Database Systems. PODS’05. pp. 118–127. ACM
(2005)

[78] Kerschbaum, F.: Automatically optimizing secure computation. In: Chen,
Y., Danezis, G., Shmatikov, V. (eds.) Proceedings of the 18th ACM Con-
ference on Computer and Communications Security. CCS’11. pp. 703–714
(2011)

[79] Kleinberg, J.M., Papadimitriou, C.H., Raghavan, P.: Auditing boolean at-
tributes. Journal of Computer and System Sciences 66(1), 244–253 (2003)

[80] Kolesnikov, V., Sadeghi, A.R., Schneider, T.: From Dust to Dawn: Practi-
cally Efficient Two-Party Secure Function Evaluation Protocols and their
Modular Design. Cryptology ePrint Archive, Report 2010/079 (2010),
http://eprint.iacr.org/2010/079

[81] Kolesnikov, V., Schneider, T.: Improved Garbled Circuit: Free XOR Gates
and Applications. In: Proceedings of the 35th International Colloquium on
Automata, Languages and Programming, ICALP’08. pp. 486–498 (2008)

[82] Kreuter, B., Shelat, A., Shen, C.H.: Towards billion-gate secure compu-
tation with malicious adversaries. IACR Cryptology ePrint Archive 2012,
179 (2012)

[83] Lamport, L.: The part-time parliament. ACM Transactions on Computer
Systems 16(2), 133–169 (May 1998)

[84] Laur, S.: Cryptographic protocol design. Ph.D. thesis, Helsinki University
of Technology (2008)

[85] Laur, S., Lipmaa, H.: A new protocol for conditional disclosure of secrets
and its applications. In: Katz, J., Yung, M. (eds.) Proceedings of the 5

th

International Conference on Applied Cryptography and Network Security,

122

http://eprint.iacr.org/2010/079

ACNS ’07. Lecture Notes in Computer Science, vol. 4521, pp. 207–225.
Springer (2007)

[86] Laur, S., Lipmaa, H.: On the feasibility of consistent computations. In:
Nguyen, P.Q., Pointcheval, D. (eds.) 13th International Conference on
Practice and Theory in Public Key Cryptography. PKC’10. Lecture Notes
in Computer Science, vol. 6056, pp. 88–106. Springer (2010)

[87] Laur, S., Willemson, J., Zhang, B.: Round-Efficient Oblivious Database
Manipulation. In: Lai, X., Zhou, J., Li, H. (eds.) Proceedings of the 14th
International Conference on Information Security. ISC’11. Lecture Notes
in Computer Science, vol. 7001, pp. 262–277. Springer (2011)

[88] Li, N., Li, T., Venkatasubramanian, S.: Closeness: A New Privacy Measure
for Data Publishing. IEEE Transactions on Knowledge and Data Engineer-
ing 22(7), 943–956 (July 2010)

[89] Lindell, Y., Pinkas, B.: Privacy preserving data mining. Journal of Cryptol-
ogy 15(3), 177–206 (2002)

[90] Lindell, Y., Pinkas, B.: An Efficient Protocol for Secure Two-Party Com-
putation in the Presence of Malicious Adversaries. In: Naor, M. (ed.) Pro-
ceedings of the 26th Annual International Conference on the Theory and
Applications of Cryptographic Techniques. EUROCRYPT’07. pp. 52–78
(2007)

[91] Lloyd, S.: Least squares quantization in PCM. IEEE Transactions on Infor-
mation Theory 28(2), 129 – 137 (March 1982)

[92] Machanavajjhala, A., Kifer, D., Gehrke, J., Venkitasubramaniam, M.: L-
diversity: Privacy beyond k-anonymity. IEEE Transactions on Knowledge
Discovery from Data 1(1) (2007)

[93] Malin, B., Sweeney, L.: How (not) to protect genomic data privacy in
a distributed network: using trail re-identification to evaluate and design
anonymity protection systems. Journal of Biomedical Informatics 37(3),
179–192 (2004)

[94] Malka, L.: VMCrypt: modular software architecture for scalable secure
computation. In: Chen, Y., Danezis, G., Shmatikov, V. (eds.) Proceedings
of the 18th ACM Conference on Computer and Communications Security.
CCS’11. pp. 715–724 (2011)

123

[95] Malkhi, D., Nisan, N., Pinkas, B., Sella, Y.: Fairplay - Secure Two-Party
Computation System. In: Proceedings of the 13th USENIX Security Sym-
posium. USENIX’04. pp. 287–302. USENIX (2004)

[96] Mannila, H., Toivonen, H., Verkamo, A.I.: Efficient Algorithms for Dis-
covering Association Rules. In: Proceedings of the KDD Workshop ’94.
pp. 181–192 (1994)

[97] Mohassel, P., Franklin, M.K.: Efficiency tradeoffs for malicious two-party
computation. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) Pro-
ceedings of the 9th International Conference on Theory and Practice of
Public-Key Cryptography, PKC ’06. Lecture Notes in Computer Science,
vol. 3958, pp. 458–473. Springer (2006)

[98] Naor, M., Pinkas, B., Sumner, R.: Privacy preserving auctions and mech-
anism design. In: Proceedings of the 1st ACM conference on Electronic
Commerce, EC’99. pp. 129–139 (1999)

[99] Narayanan, A., Shmatikov, V.: Robust de-anonymization of large sparse
datasets. In: Proceedings of the IEEE Symposium on Security and Privacy,
S&P ’08. pp. 111–125. IEEE Computer Society (2008)

[100] Nielsen, J.D.: Languages for Secure Multiparty Computation and Towards
Strongly Typed Macros. Ph.D. thesis, Aarhus University (2009)

[101] Nielsen, J.D., Schwartzbach, M.I.: A domain-specific programming lan-
guage for secure multiparty computation. In: Hicks, M.W. (ed.) Proceed-
ings of the 2007 Workshop on Programming Languages and Analysis for
Security. PLAS’07. pp. 21–30. ACM (2007)

[102] Nielsen, J.B., Orlandi, C.: Lego for two-party secure computation. In:
Reingold, O. (ed.) TCC. Lecture Notes in Computer Science, vol. 5444,
pp. 368–386. Springer (2009)

[103] Paillier, P.: Public-key cryptosystems based on composite degree residuos-
ity classes. In: Stern, J. (ed.) Proceedings of the 17th International Confer-
ence on the Theory and Application of Cryptographic Techniques, EURO-
CRYPT’99. Lecture Notes in Computer Science, vol. 1592, pp. 223–238.
Springer (1999)

[104] RakNet—Multiplayer game network engine. http://www.
jenkinssoftware.com. Last accessed June 1

st, 2012.

[105] Rebane, R.: An integrated development environment for the SecreC pro-
gramming language. Bachelor’s thesis. University of Tartu (2010)

124

http://www.jenkinssoftware.com
http://www.jenkinssoftware.com

[106] Rebane, R.: A Feasibility Analysis of Secure Multiparty Computation De-
ployments. Master’s thesis, Institute of Computer Science, University of
Tartu (2012)

[107] Ristioja, J.: An analysis framework for an imperative privacy-preserving
programming language. Master’s thesis, Institute of Computer Science,
University of Tartu (2010)

[108] Rogaway, P.: The round complexity of secure protocols. Ph.D. thesis, MIT
(1991)

[109] Rogaway, P., Bellare, M.: Robust computational secret sharing and a uni-
fied account of classical secret-sharing goals. In: Ning, P., di Vimercati,
S.D.C., Syverson, P.F. (eds.) Proceedings of the 2007 ACM Conference
on Computer and Communications Security, CCS ’07. pp. 172–184. ACM
(2007)

[110] Samarati, P.: Protecting respondents’ identities in microdata release. IEEE
Transactions on Knowledge and Data Engineering 13(6), 1010–1027 (Nov
2001)

[111] Schröpfer, A., Kerschbaum, F., Mueller, G.: L1 - An Intermediate Lan-
guage for Mixed-Protocol Secure Computation. In: Proceedings of the 35th
Annual IEEE International Computer Software and Applications Confer-
ence. COMPSAC’11. pp. 298–307. IEEE Computer Society (2011)

[112] SEPIA—Security through Private Information Aggregation. http://
sepia.ee.ethz.ch/. Last accessed June 1

st, 2012.

[113] Shamir, A.: How to share a secret. Communications of the ACM 22, 612–
613 (November 1979)

[114] The SHAREMIND secure computation system. http://sharemind.
cyber.ee. Last accessed June 1

st, 2012.

[115] The SHAREMIND Software Development Kit. Available from http://
sharemind.cyber.ee. Last accessed January 1

st, 2013.

[116] A secure survey prototype based on SHAREMIND. https:
//sharemind.cyber.ee/survey/promo/index.html. Last
accessed January 1

st, 2013.

[117] The Skein Hash Function Family. http://www.skein-hash.info.
Last accessed August 3

rd, 2012.

125

32

http://sepia.ee.ethz.ch/
http://sepia.ee.ethz.ch/
http://sharemind.cyber.ee
http://sharemind.cyber.ee
http://sharemind.cyber.ee
http://sharemind.cyber.ee
https://sharemind.cyber.ee/survey/promo/index.html
https://sharemind.cyber.ee/survey/promo/index.html
http://www.skein-hash.info

[118] Smart, N., Vercauteren, F.: Fully Homomorphic SIMD Operations. Cryp-
tology ePrint Archive, Report 2011/133 (2011), http://eprint.
iacr.org/

[119] SQLite—a serverless relational database system. http://www.
sqlite.org/. Last accessed June 1

st, 2012.

[120] Subramaniam, H., Wright, R.N., Yang, Z.: Experimental Analysis of
Privacy-Preserving Statistics Computation. In: Jonker, W., Petkovic, M.
(eds.) Proceedings on the VLDB 2004 Workshop on Secure Data Manage-
ment. SDM’04. Lecture Notes in Computer Science, vol. 3178, pp. 55–66.
Springer (2004)

[121] Sweeney, L.: k-anonymity: a model for protecting privacy. International
Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 10(5),
557–570 (2002)

[122] Talviste, R.: Web-based data entry in privacy-preserving applications.
Bachelor’s thesis. University of Tartu (2009)

[123] Talviste, R.: Deploying secure multiparty computation for joint data
analysis—a case study. Master’s thesis, Institute of Computer Science, Uni-
versity of Tartu (2011)

[124] TASTY—Tool for Automating Secure Two-partY computations. http:
//tastyproject.net. Last accessed June 1

st, 2012.

[125] The Tokyo Cabinet database manager. http://fallabs.com/
tokyocabinet/. Last accessed June 1

st, 2012.

[126] Vaidya, J., Clifton, C.: Privacy preserving association rule mining in ver-
tically partitioned data. In: Proceedings of the 8

th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining. KDD’02.
pp. 639–644. ACM (2002)

[127] VIFF—the Virtual Ideal Functionality Framework. http://viff.dk.
Last accessed June 1

st, 2012.

[128] Warner, S.: Randomized response: A survey technique for eliminating eva-
sive answer bias. Journal of the American Statistical Association 60(309),
63–69 (1965)

[129] Yao, A.C.C.: Protocols for Secure Computations (Extended Abstract). In:
23rd Annual Symposium on Foundations of Computer Science. FOCS’82.
pp. 160–164. IEEE (1982)

126

http://eprint.iacr.org/
http://eprint.iacr.org/
http://www.sqlite.org/
http://www.sqlite.org/
http://tastyproject.net
http://tastyproject.net
http://fallabs.com/tokyocabinet/
http://fallabs.com/tokyocabinet/
http://viff.dk

[130] Zaki, M.J.: Scalable algorithms for association mining. IEEE Transactions
on Knowledge and Data Engineering 12(3), 372–390 (2000)

127

ACKNOWLEDGMENTS

Parts of my doctoral studies have been supported by the European Regional De-
velopment Fund through the Estonian Center of Excellence in Computer Sci-
ence (EXCS), the Software Technology and Applications Competence Centre
(STACC) and by the European Social Fund through the Estonian Doctoral School
in Information and Communication Technology (IKTDK) and the Doctoral Stud-
ies and Internationalisation Programme (DoRa). I would also like to acknowledge
the support from EU FP6-IST project No. 15964 "AEOLUS".

My research efforts have also received support from the Estonian Information
Technology Foundation through the Tiger University programme and the Ustus
Agur scholarship and from the the Estonian Science Foundation through grant
No. 8124.

Throughout my studies and my professional career I have had the luck of
being mentored by teachers, professors and leaders. I have been inspired and
given opportunities that have helped me become a better specialist and a better
researcher. I remain thankful for the trust that I have been granted.

I have had the luck to work together with a wonderful team of engineers and
researchers who have helped with the design and construction of protocols, tools
and applications for the SHAREMIND system. I have enjoyed the collaboration and
I would like to thank the whole SHAREMIND team, my colleagues in Cybernetica
and my co-authors for helping me build my vision.

This vision and my work on SHAREMIND were sparked from discussions with
my supervisor, Sven Laur. His practical view on computer science has been an
inspiration to my engineering spirit and I respect and appreciate his guidance
throughout my studies. He has taught me many beautiful things about mathe-
matics and computer science.

I give my deepest gratitude to all my family, whose interest in my work and
continued support has been the best motivator there can be. I am truly happy to
share this journey with my wife, Liina, who gives me an excellent reason for doing
everything I do.

128

KOKKUVÕTE
(SUMMARY IN ESTONIAN)

SHAREMIND: PROGRAMMEERITAV
TURVALINE ARVUTUSSÜSTEEM
PRAKTILISTE RAKENDUSTEGA

Andmeid isiku tervise, uskumuste ja toimetuleku kohta peetakse tundlikuks ning
seda infot tuleb hoolikalt kaitsta. Selliseid andmeid töötlevad asutused peavad ka-
sutama meetmeid, mis välistavad andmete lekke kolmandatele osapooltele. Sa-
mas on nii avaliku kui erasektori asutused huvitatud andmete jagamisest, sest see
annab neile ligipääsu suuremale infohulgale, mis aitab omakorda teha paremaid
otsuseid.

Turvaline ühisarvutus on krüptograafiline meetod, mille abil mitu osapoolt
saavad andmeid turvaliselt jagada ja töödelda. Kuigi esimesi protokolle esitleti
juba eelmise sajandi 80ndatel aastatel, jõuti esimeste praktiliste lahendusteni al-
les käesoleva sajandi alguses. Sellest ajast alates on loodud järjest keerukamaid
lahendusi ning turvalised ühisarvutused on muutumas teooriast tehnoloogiaks.

Käesolev doktoritöö esitleb autori poolt välja töötatud turvalist arvutussüstee-
mi nimega SHAREMIND. SHAREMIND on täielik lahendus turvalise ühisarvutuse
kasutamiseks andmeid töötlevates rakendustes. Autor on kavandanud ja realisee-
rinud virtuaalmasina, mis suudab krüptograafiliste protokollide abil töödelda and-
meid nii, et need ei ole arusaadavad isegi mitte neid töötlevale arvutusseadme-
le. Andmetöötlusrakenduste loomiseks on autor kavandanud ka virtuaalmasinaga
ühilduva konfidentsiaalsust tagava andmebaasi ning liidesed kasutajaliideste ja
programmeerimisvahendite loomiseks.

Töö kolm väidet on järgmised. Esiteks, me väidame, et turvalise ühisarvutu-
sega on võimalik luua universaalseid komponente, mida kasutades saab omakorda
ehitada keerukaid andmetöötlussüsteeme ilma iga kord uusi protokolle loomata.

129

33

Teiseks, me väidame, et realiseerituna on turvaline ühisarvutus piisavalt efektiiv-
ne miljonite andmekirjete töötlemiseks mõistlikus ajas. Viimaks, me väidame, et
töövahendite loomisega on turvaline ühisarvutus võimalik kättesaadavaks teha ka
neile, kellel puuduvad krüptograafilised teadmised.

Töö koosneb kuuest peatükist ja kolmest artiklist. Esimene peatükk juhatab
töö sisse, kirjeldades turvalise andmetöötluse vajalikkust ja tutvustades töö üles-
ehitust. Teine peatükk kirjeldab erinevaid krüptograafilisi meetodeid andmete tur-
valisuse tagamiseks arvutusprotsessis ning võrdleb nende efektiivsust.

Kolmas peatükk kirjeldab SHAREMINDi protokollide turvamudelit, analüüsi-
des reaalses maailmas juurutatud turvalise ühisarvutuse süsteemi varitsevaid ohte.
Seejärel esitatakse protokollide kogumik, mille abil sellises mudelis on võimalik
andmeid turvaliselt koguda ja töödelda. Peatükk tutvustab ka uudset, ühissalas-
tusel põhinevat andmebaasisüsteemi ja kirjeldab päringute tegemist sellises and-
mebaasis. Lisaks näidatakse, kuidas sellises andmebaasis salvestatud andmeid
saab töödelda turvalise ühisarvutusega.

Peatükki täiendavad kaks tööle lisatud artiklit. Esimene neist, “Sharemind:
A Framework for Fast Privacy-Preserving Computations” (“Sharemind: raamis-
tik andmete kiireks töötlemiseks privaatsust säilitaval moel”), kirjeldab turvalise
ühisarvutuse protokolle täisarvuliste andmete töötlemiseks [25]. Artiklis alusta-
takse lihtsamatest operatsioonidest nagu liitmine ja korrutamine ning kirjeldatakse
seejärel protokolle täisarvu bittide leidmiseks, suurem-kui võrdlemiseks ja võrd-
suse kontrolliks. Artikkel sisaldab ka eksperimentide käigus mõõdetud jõudlus-
näitajaid

Hilisemas artiklis, “High-performance secure multi-party computation for da-
ta mining applications” (“Suure jõudlusega turvaline ühisarvutus rakendustega
andmekaeves”), esitatakse efektiivsemad protokollid täisarvude korrutamiseks ja
võrdlemiseks [27]. Lisaks kirjeldatakse uusi turvalise ühisarvutuse protokolle bi-
tikaupa nihete tegemiseks, jagamise ja jäägi leidmiseks. Protokollide efektiivsust
näitab jõudlusvõrdlus eelmiste protokollidega. Lisaks kirjeldab artikkel eksperi-
mente, kus uue jagamistehte kasulikkuse näitamiseks mõõdetakse SHAREMINDi
jõudlust andmete klasterdamisel.

SHAREMINDi jõudlusest annab parema ülevaate neljas peatükk. Peatükis kir-
jeldatakse, kuidas erinevad aspektid nagu protsessori ja arvutivõrgu kiirus jõud-
lust mõjutavad. Jõudlustulemuste põhjal järeldatakse, et SHAREMIND on oluliselt
efektiivsem, kui selle rakendused teevad mitu sarnast tehet paralleelselt. Jõudlu-
ses saadav võit on piisavalt suur, et selle saavutamiseks algoritme ja rakendusi
kohandada.

Viies peatükk kirjeldab programmeerimiskeeli ja töövahendeid, millega saab
SHAREMINDi jaoks rakenduste loomist lihtsustada. SHAREMINDi rakendusi saab
programmeerida kahe programmeerimiskeele abil. SHAREMINDi virtuaalmasin

130

oskab interpreteerida madala taseme assemblerkeelt. Kuid kuna assemblerkeeles
programmeerimine ei ole piisavalt mugav, siis oleme loonud ka mugavama impe-
ratiivse programmeerimiskeele SECREC, mille abil saab kasutada SHAREMINDi
kõiki võimalusi ning mis ei nõua krüptograafilisi teadmisi.

Kuuendas peatükis näidatakse SHAREMINDi praktilist rakendatavust erineva-
te prototüüprakenduste näitel. Üheks olulisemaks näiteks on SHAREMINDi esime-
ne rakendus reaalses maailmas: Eestis juurutatud finantsandmete turvalise kogu-
mise ja analüüsi süsteem. See süsteem on autori teada maailma esimene turvali-
se ühisarvutuse rakendus, milles infovahetus toimub avaliku interneti abil. Selles
peatükis annab autor ka juhiseid, kuidas kavandada, realiseerida ja juurutada ra-
kendust, mis kasutab turvalist ühisarvutust.

Peatüki juurde kuulub ka doktoritöö kolmas artikkel: “A Universal Toolkit for
Cryptographically Secure Privacy-Preserving Data Mining” (“Universaalne töö-
vahend krüptograafilise turvalisusega privaatsust säilitavaks andmekaeveks”), mis
kirjeldab, kuidas SHAREMINDi abil lahendada tihtiesinevate alamhulkade otsingu
ülesannet [22]. Artiklis kirjeldatakse SHAREMINDi jaoks kohandatud versioone
populaarsetest tihtiesinevate alamhulkade leidmise algoritmidest Apriori [4, 96]
ja Eclat [130]. Artikkel kirjeldab algoritme, nende privaatsusgarantiisid ja esitab
eksperimenditulemused, mis näitavad piisavat jõudlust praktiliseks kasutuseks.

131

ORIGINAL PUBLICATIONS

Publication Pages
Dan Bogdanov, Sven Laur, Jan Willemson ”Sharemind: A
Framework for Fast Privacy-Preserving Computations”

133 – 149

Dan Bogdanov, Margus Niitsoo, Tomas Toft, Jan Willemson
”High-performance secure multi-party computation for data min-
ing applications”

149 – 166

Dan Bogdanov, Roman Jagomägis, Sven Laur ”A Universal
Toolkit for Cryptographically Secure Privacy-Preserving Data
Mining”

166 – 182

I

Copyright Springer-Verlag Berlin Heidelberg 2008.
Republished with kind permission from Springer Science and Business Media.

Bogdanov, D., Laur, S., Willemson, J.: Sharemind: A framework for fast
privacy-preserving computations. In: Jajodia, S., Lopez, J. (eds.) Proceed-
ings of the 13th European Symposium on Research in Computer Security,
ESORICS ’08. Lecture Notes in Computer Science, vol. 5283, pp. 192–206.
Springer (2008).

Sharemind: A Framework for Fast Privacy-Preserving
Computations

Dan Bogdanov1,2,?, Sven Laur1, and Jan Willemson1,2,?

1 University of Tartu, Liivi 2, 50409 Tartu, Estonia
{db,swen,jan}@ut.ee

2 Cybernetica AS, Akadeemia tee 21, 12618 Tallinn, Estonia

Abstract. Gathering and processing sensitive data is a difficult task. In fact, there
is no common recipe for building the necessary information systems. In this pa-
per, we present a provably secure and efficient general-purpose computation sys-
tem to address this problem. Our solution—SHAREMIND—is a virtual machine
for privacy-preserving data processing that relies on share computing techniques.
This is a standard way for securely evaluating functions in a multi-party computa-
tion environment. The novelty of our solution is in the choice of the secret sharing
scheme and the design of the protocol suite. We have made many practical de-
cisions to make large-scale share computing feasible in practice. The protocols
of SHAREMIND are information-theoretically secure in the honest-but-curious
model with three computing participants. Although the honest-but-curious model
does not tolerate malicious participants, it still provides significantly increased
privacy preservation when compared to standard centralised databases.

1 Introduction

Large-scale adoption of online information systems has made both the use and abuse of
personal data easier than before. This has caused an increased awareness about privacy
issues among individuals. In many countries, databases containing personal, medical or
financial information about individuals are classified as sensitive and the corresponding
laws specify who can collect and process sensitive information about a person.

On the other hand, the use of sensitive information plays an essential role in medical,
financial and social studies. Thus, one needs a methodology for conducting statistical
surveys without compromising the privacy of individuals. Privacy-preserving data min-
ing techniques try to address such problems. So far the focus has been on randomised
response techniques [1,2,13]. In a nutshell, recipients of the statistical survey apply a
fixed randomisation method on their responses. As a result, each individual reply is
erroneous, whereas the global statistical properties of the data are preserved. Unfortu-
nately, such transformations can preserve privacy only on average and randomisation
reduces the precision of the outcomes. Also, we cannot give security guarantees for in-
dividual records. In fact, the corresponding guarantees are rather weak and the use of
extra information might significantly reduce the level of privacy.

Another alternative is to consider this problem as a multi-party computation task,
where the data donors want to securely aggregate data without revealing their private
? This research has been supported by Estonian Science Foundation grant number 7081.

S. Jajodia, and J. Lopez (Eds.): ESORICS 2008, LNCS 5283, pp. 192–206, 2008.
c� Springer-Verlag Berlin Heidelberg 2008

Sharemind: A Framework for Fast Privacy-Preserving Computations 193

inputs. However, the corresponding cryptographic solutions quickly become practically
intractable when the number of participants grows beyond few hundreds. Moreover,
data donors are often unwilling to stay online during the entire computation and their
computers can be easily taken over by adversarial forces.

As a way out, we propose a hierarchical solution, where all computations are done by
dedicated miner parties who are less susceptible to external corruption. Consequently,
we can assume that only a few miner parties can be corrupted during the computation.
Thus, we can use secret sharing and share computing techniques for privacy-preserving
data aggregation. In particular, data donors can safely submit their inputs by sending
the corresponding shares to the miners. As a result, the miners can securely evaluate
any aggregate statistic without further interaction with the data donors.

Our Contribution. The presented theoretical solution does not form the core of this
paper. Share computing techniques have been known for decades and thus all impor-
tant results are well established by now, see [3,7] for further references. Hence, we
focused mainly on practical aspects and developed the SHAREMIND framework for
privacy-preserving computations. The SHAREMIND framework is designed to be an
efficient and easily programmable platform for developing and testing various privacy-
preserving algorithms. It consists of the computation runtime environment and a pro-
gramming library for creating private data processing applications. As a result, one can
develop secure multi-party protocols without the explicit knowledge of all implementa-
tion details. On the other hand, it is also possible to test and add your own protocols to
the library, since the source code of SHAREMIND is freely available [17].

We have made some non-standard choices to assure maximal efficiency. First, the
SHAREMIND framework uses additive secret sharing scheme over the ring Z232 . Be-
sides the direct computational gains, such a choice also simplifies many share comput-
ing protocols. When a secret sharing protocol is defined over a finite field Zp, then any
overflow in computations causes modular reductions that corrupt the end result. In the
SHAREMIND framework, all modular reductions occur modulo 2

32 and thus results al-
ways coincide with the standard 32-bit integer arithmetic. On the other hand, standard
share computing techniques are not applicable for the ring Z232 . In particular, we were
forced to roll out our own multiplication protocol, see Sect. 4.

Second, the current implementation of SHAREMIND supports the computationally
most efficient setting, where only one of three miner nodes can be semi-honestly cor-
rupted. As discussed in Sect. 3, the corresponding assumption can be enforced with a
reasonable practical effort. Also, it is possible to extend the framework for other set-
tings. For example, one can implement generic methodology given in [9].

To make the presentation more fluent, we describe the SHAREMIND framework step
by step through Sect. 2–5. Performance results are presented and analysed in Sect. 6.
In particular, we compare our results with other implementations of privacy-preserving
computations [6,16,18]. Finally, we conclude our presentation with some improvement
plans for future, see Sect. 7.

Some of the details of this work have been omitted because of space limitations. The
full version of this article that covers all these details can be found on the homepage of
SHAREMIND project [17] and in the IACR ePrint Archive [5].

136

194 D. Bogdanov, S. Laur, and J. Willemson

2 Cryptographic Preliminaries

Theoretical Attack Model. In this article, we state and prove all security guarantees
in the information-theoretical setting, where each pair of participants is connected with
a private communication channel that provides asynchronous communication. In other
words, a potential adversary can only delay or reorder messages without reading them.
We also assume that the communication links are authentic, i.e., the adversary cannot
send messages on behalf of non-corrupted participants. The adversary can corrupt par-
ticipants during the execution of a protocol. In the case of semi-honest corruption, the
adversary can only monitor the internal state of a corrupted participant, whereas the
adversary has full control over maliciously corrupted participants. We consider only
threshold adversaries that can adaptively corrupt up to t participants. Such an attack
model is well established, see [4,14] for further details.

Secondly, we consider only self-synchronising protocols, where the communication
can be divided into distinct rounds. A protocol is self-synchronising if the adversary
cannot force (semi-)honest participants to start a new communication round until all
other participants have completed the previous round. As a result, this setting becomes
equivalent to the standard synchronised network model with a rushing adversary.

Secure Multi-party Computation. Assume that participants P1, . . . , Pn want to com-
pute outputs yi = fi(x1, . . . , xn) where x1, . . . , xn are corresponding private inputs.
Then the security of a protocol � that implements the described functionality is defined
by comparing the protocol with the ideal implementation �

�, where all participants sub-
mit their inputs x1, . . . , xn securely to the trusted third party T that computes the neces-
sary outputs yi = fi(x1, . . . , xn) and sends y1, . . . , yn securely back to the respective
participants. A malicious participant Pi can halt the ideal protocol �

� by submitting
xi = �. Then the trusted third party T sends � as an output for all participants. Now
a protocol � is secure if for any plausible attack A against the protocol � there exists a
plausible attack A� against the protocol �

� that causes comparable damage.
For brevity, let us consider only the stand-alone setting, where only a single protocol

instance is executed and all honest participants carry out no side computations. Let
�i = (�i, xi) denote the entire input state of Pi and let �i = (�i, yi) denote the entire
output state. Similarly, let �a and �a denote the inputs and outputs of the adversary
and � = (�1, . . . , �n, �a), � = (�1, . . . , �n, �a) the corresponding input and output
vectors. Then a protocol � is perfectly secure if for any plausible �re-time real world
adversary A there exists a plausible �id-time ideal world adversary A� such that for any
input distribution � D the corresponding output distributions � and �

� in the real
and ideal world coincide and the running times �re and �id are comparable.

In the asymptotic setting, the running times are comparable if �id is polynomial in
�re. For fixed time bound �re, one must decide an acceptable time bound �id by him-
or herself. All security proofs in this article are suitable for both security models, since
they assure that �id � c · �re where c is a relatively small constant.

In our setting, a real world attack A is plausible if it corrupts up to t participants. The
corresponding ideal world attack A� is plausible if it corrupts the same set of partici-
pants as the real world attack. Further details and standard results can be found in the
manuscripts [3,7,8,11].

137

Sharemind: A Framework for Fast Privacy-Preserving Computations 195

Universal Composability. Complex protocols are often designed by combining sev-
eral low level protocols. Unfortunately, stand-alone security is not enough to prove the
security of the compound protocol and we must use more stringent security definitions.
More formally, let �h·i be a global context that uses the functionality of a protocol �.
Then we can compare real and ideal world protocols �h�i and �h��i.

Let �, �, �

� denote the input and output vectors of the compound protocols �h�i
and �h��i. Then a protocol � is perfectly universally composable if for any plausible
�re-time attack A against �h�i there exists a plausible �id-time attack A� against �h��i
such that for any input distribution � D the output distributions � and �

� coincide
and the running times �re and �id are comparable. We refer to the manuscript [8] for a
more formal and precise treatment.

Secret Sharing Schemes. Secret sharing schemes are used to securely distribute pri-
vate values to a group of participants. More precisely, let M be the set of possible
secrets and let S1, . . . , Sn be the sets of possible shares. Then shares for the partici-
pants are created with a randomised sharing algorithm Deal : M ! S1 ⇥ . . . ⇥ Sn.
Participants can use a recovery algorithm Rec : S1⇥. . .⇥Sn !M[{�} to restore the
secret form shares. For brevity, we use a shorthand [[s]] to denote the shares [s1, . . . , sn]

generated by the sharing algorithm Deal(s).
Secret sharing schemes can have different security properties depending on the exact

details of Deal and Rec algorithms. The SHAREMIND framework uses additive sharing
over Z232 , where a secret value s is split to shares s1, . . . , sn 2 Z232 such that

s1 + s2 + · · · + sn ⌘ s mod 2

32

and any n � 1 element subset {si1 , . . . , sin�1} is uniformly distributed. As a result,
participants cannot learn anything about s unless all of them join their shares.

3 Privacy-Preserving Data Aggregation

As already emphasised in the introduction, organisations who collect and process data
may abuse it or reveal the data to third parties. As a result, people are unwilling to reveal
sensitive information without strong security guarantees. Although proper legislation
and auditing reduces the corresponding risks, data donors must often unconditionally
trust institutions that gather and process data. In the following, we show how to use
cryptographic techniques to avoid such unconditional trust.

The SHAREMIND framework for privacy-preserving computations uses secret shar-
ing to split confidential information between several nodes (miners). By sending the
shares of the data to the miners, data donors effectively delegate all rights over the data
to the consortium of miners. Let t be the prescribed corruption threshold such that no
information can be learnt about the inputs if the number of collaborating corrupted par-
ties is below t. We allow some miner nodes to be corrupted, but require that the total
number of corrupted nodes is below the threshold t. The latter can be achieved with
physical and organisational security measures such as dedicated server rooms and soft-
ware auditing. This is achievable, since the framework needs only a few miner nodes.
In practice, each miner node should be hosted by a separate respected organisation.

138

196 D. Bogdanov, S. Laur, and J. Willemson

Logic

unit

Instructions

Input data Results

Logic

unit
Stack

Persistent

storage

Logic

unit
Stack

Persistent

storage

Stack

Persistent

storage

MPC

Fig. 1. In SHAREMIND, input data and instructions are sent to miner nodes that use multi-party
computation to execute the algorithm. The result is returned when the computation is complete.

The high level description of the SHAREMIND framework is depicted in Fig. 1. Es-
sentially, one can view SHAREMIND as a virtual processor that provides secure storage
for shared inputs and performs privacy-preserving operations on them. Each miner node
Pi has a local database for persistent storage and a local stack for storing intermediate
results. All values in the database and stack are shared among all miners P1, . . . , Pn by
using an additive secret sharing over Z232 . The framework provides efficient protocols
for basic mathematical operations so that one could easily implement more complex
tasks. In particular, one should be able to construct such protocols without any knowl-
edge about underlying cryptographic techniques. For that reason, all implementations of
basic operations in the SHAREMIND framework are perfectly universally composable.

The current version of SHAREMIND framework is based on three miner nodes and
tolerates semi-honest corruption of a single node, i.e., no information is leaked unless
two miner nodes collaborate. The latter is a compromise between efficiency and secu-
rity. Although a larger number of miner nodes increases the level of tolerable corruption,
it also makes assuring semi-honest behaviour much more difficult. Secondly, the com-
munication complexity of multi-party computation protocols is roughly quadratic in the
number of miners n and thus three is the optimal choice. Besides, it is difficult to find
more than a handful of independent organisations that can provide adequate protection
measures and are not motivated to collaborate with each other.

To achieve maximal efficiency, we also use non-orthodox secret sharing and share
computing protocols. Recall that most classical secret sharing schemes work over finite
fields. As a result, it is easy to implement secure addition and multiplication modulo
prime p or in the Galois field F2k . However, the integer arithmetic in modern computers
is done modulo 2

32. Consequently, the most space- and time-efficient solution is to use
additive secret sharing over Z232 . There is no need to implement modular arithmetic
and we do not have to compensate the effect of modular reductions. On the other hand,
we have to use non-standard methods for share computing, since Shamir secret sharing
scheme does not work over Z232 . We discuss these issues further in Sect. 4.

Initially, the database is empty and data donors have to submit their inputs by send-
ing the corresponding shares privately to miners who store them in the database. We
describe this issue more thoroughly in Sect. 4.2. After the input data is collected, a data
analyst can start privacy-preserving computations by sending instructions to the miners.
Each instruction is a command that either invokes a share computing protocol or just

139

Sharemind: A Framework for Fast Privacy-Preserving Computations 197

reorders shares. The latter allows a data analyst to specify complex algorithms without
thinking about implementation details. More importantly, the corresponding complex
protocol is guaranteed to preserve privacy, as long as the execution path in the program
itself does not reveal private information. This restriction must be taken into account
when choosing data analysis algorithms for implementation on SHAREMIND.

Each arithmetic instruction invokes a secure multi-party protocol that provides new
shares. These shares are then stored on the stack. For instance, a unary stack instruction
f takes the top shares [[u]] of the stack and pushes the resulting shares [[f(u)]] to the
stack top. Analogously, a fixed binary stack instruction� takes two top most shares [[u]]

and [[v]] and pushes [[u � v]] to the stack. For efficiency reasons, we have also imple-
mented vectorised operations to perform the same protocol in parallel. This significantly
reduces the number of rounds required for applying similar operations on many inputs.

The current implementation of SHAREMIND framework provides privacy preserving
addition, multiplication and greater-than-or-equal comparison of two shared values. It
can also multiply a shared value with a constant and extract its bits as shares. Share
conversion from Z2 to Z232 and bitwise addition are mostly used as components in
other protocols, but they are also available to the programmer. We emphasise here that
many algorithms for data mining and statistical analysis do not use other mathematical
operations and thus this instruction set is sufficient for many applications. Moreover,
note that bit extraction and arithmetic primitives together are sufficient to implement
any Boolean circuit with a linear overhead and thus the SHAREMIND framework is also
Turing complete. We acknowledge here that there are more efficient ways to evaluate
Boolean circuits like Yao circuit evaluation (see [15]) and we plan to include protocols
with similar properties in the future releases of SHAREMIND.

We analyse the security of all share manipulation protocols in the information-
theoretical attack model that was specified in Sect. 2. How to build such a network form
standard cryptographic primitives is detailed in Sect. 5. Also, note that the next section
provides only a general description of all protocols, detailed technical description of all
protocols can be found in the full version of this article [5].

4 Share Computing Protocols

All computational instructions in the SHAREMIND framework are either unary or binary
operations over unsigned integers represented as elements of Z232 or their vectorised
counterparts. Hence, all protocols have the following structure. Each miner Pi uses
shares ui and vi as inputs to the protocol to obtain a new share wi such that [[w]] is a
valid sharing of f(u) or u�v. In the corresponding idealised implementation, all miners
send their input shares to the trusted third party T who restores all inputs, computes
the corresponding output w and sends back newly computed shares [[w]] Deal(w).
Hence, the output shares [[w]] are independent of input shares and thus no information
is leaked about the input shares if we publish all output shares.

Although share computing protocols are often used as elementary steps in more com-
plex protocols, they themselves can be composed from even smaller atomic operations.
Many of these atomic sub-protocols produce output shares that are never published.
Hence, it makes sense to introduce another security notion that is weaker than universal

140

198 D. Bogdanov, S. Laur, and J. Willemson

1. Each party Pi sends a random mask ri Z232 to the right neighbour Pi+1.
2. Each party Pi uses the input share ui to compute the output wi ui + ri�1 � ri.

Fig. 2. Re-sharing protocol for three parties

composability. We say that a share computing protocol is perfectly simulatable if there
exists an efficient universal non-rewinding simulator S that can simulate all protocol
messages to any real world adversary A so that for all input shares the output distribu-
tions of A and ShAi coincide. Most importantly, perfect simulatability is closed under
concurrent composition. The corresponding proof is straightforward.

Lemma 1. If all sub-protocols of a protocol are perfectly simulatable, then the protocol
is perfectly simulatable.

Proof (Sketch). Since all simulators Si of sub-protocols are non-rewinding, we can
construct a single compound simulator S� that runs simulators Si in parallel to provide
the missing messages to A. As each simulator Si is perfect, the final view of A is also
perfectly simulated. ��

However, perfect simulatability alone is not sufficient for universal composability.
Namely, output shares of a perfectly simulatable protocol may depend on input shares.
As a result, published shares may reveal more information about inputs than necessary.
Therefore, we must often re-share the output shares at the end of each protocol.

The corresponding ideal functionality is modelled as follows. Initially, the miners
send their shares [[u]] to the trusted third party T who recovers the input u Rec([[u]])

and sends new shares [[w]] Deal(u) back to the miners. The simplest universally
composable re-sharing protocol is given in Fig. 2. Indeed, we can construct a non-
rewinding interface I0 between the ideal world and a real world adversary A such that
for any input distribution the output distributions � and �

� coincide. The correspond-
ing interface I0 forwards the input share ui of a corrupted miner Pi to T, provides
randomness ri Z232 to Pi, and given wi form T sends ri�1 wi � ui + ri to Pi.

The next lemma shows that perfect simulatability together with re-sharing assures
universal composability in the semi-honest model. In the malicious model, one needs
additional correctness guarantees against malicious behaviour.

Lemma 2. A perfectly simulatable share computing protocol that ends with perfectly
secure re-sharing of output shares is perfectly universally composable.

Proof. Let S be the perfect simulator for the share computing phase and I0 the interface
for the re-sharing protocol. Then we can construct a new non-rewinding interface I for
the whole protocol:

1. It first submits the inputs of the corrupted miners Pi to the trusted third party T and
gets back the output shares wi.

2. Next, it runs, possibly in parallel, the simulator S and the interface I0 with the
output shares wi to simulate the missing protocol messages.

141

Sharemind: A Framework for Fast Privacy-Preserving Computations 199

Now the output distributions � and �

� coincide, since the sub-routines S and I0 per-
fectly simulate protocol messages and I0 assures that the output shares of corrupted par-
ties are indeed wi. The latter assures that the adversarial output ��

a is correctly matched
together with the outputs of honest parties. Since the interface I is non-rewinding, the
claim holds even if the protocol is executed in a larger computational context �h·i. ��

4.1 Protocols for Atomic Operations

Due to the properties of additive sharing, we can implement share addition and multi-
plication by a public constant c with local operations only, as [u1 + v1, . . . , un + vn]

and [cu1, . . . , cun] are valid shares of u+ v and cu. However, these operations are only
perfectly simulatable, since the output shares depend on input shares.

A share multiplication protocol is another important atomic primitive. Unfortunately,
we cannot use the standard solutions based on polynomial interpolation and re-sharing.
Shamir secret sharing just fails in the ring Z232 . Hence, we must roll out our own mul-
tiplication protocol. By the definition of the additive secret sharing scheme

uv =

n�

i=1

uivi +

n�

j �=i

uivi mod 2

32 (1)

and thus we need sub-protocols for computing shares of uivj . For clarity and brevity,
we consider only a sub-protocol, where P1 has an input x1, P2 has an input x2 and
the miner P3 helps the others to obtain shares of x1x2. Du and Atallah were the first
to publish the corresponding protocol [12] although similar reduction techniques have
been used earlier. Fig. 3 depicts the corresponding protocol. Essentially, the correctness
of the protocol relies on the observation

x1x2 = �(x1 + �1)(x2 + �2) + x1(x2 + �2) + (x1 + �1)x2 + �1�2 .

The security follows from the fact that for uniformly and independently generated
�1, �2 Z232 the sums x1 + �1 and x2 + �2 have also uniform distribution.

Lemma 3. The Du-Atallah protocol depicted in Fig. 3 is perfectly simulatable.

Proof. Let us fix inputs x1 and x2. Then P1 receives two independent uniformly distrib-
uted values and P2 receives two independent uniformly distributed values. P3 receives
no values at all. Hence, it is straightforward to construct a simulator S that simulates
the view of a semi-honest participant. ��

1. P3 generates �1, �2 Z232 and sends �1 to P1 and �2 to P2.
2. P1 computes x1 + �1 and sends the result to P2.

P2 computes x2 + �2 and sends the result to P1.
3. Parties compute shares of x1x2:

(a) P1 computes its share w1 = �(x1 + �1)(x2 + �2) + x1(x2 + �2).
(b) P2 computes its share w2 = (x1 + �1)x2.
(c) P3 computes its share w3 = �1�2.

Fig. 3. Du-Atallah multiplication protocol

142

200 D. Bogdanov, S. Laur, and J. Willemson

Execute the following protocols concurrently:

1. Compute locally shares u1v1, u2v2 and u3v3.
2. Use six instances of the Du-Atallah protocol for computing shares of uivj where i �= j.
3. Re-share the final sum of all previous sub-output shares.

Fig. 4. High-level description of the share multiplication protocol

Fig. 4 depicts a share multiplication protocol that executes six instances of the Du-
Atallah protocol in parallel to compute the right side of the equation (1). Since the
protocols are executed concurrently, the resulting protocol has only three rounds.

Theorem 1. The multiplication protocol is perfectly universally composable.

Proof. Lemma 1 assures that the whole protocol is perfectly simulatable, as local com-
putations and instances of Du-Atallah protocol are perfectly simulatable. Since the out-
put shares are re-shared, Lemma 2 provides universal composability. ��

4.2 Protocol for Input Gathering

Many protocols can be directly built on the atomic operations described in the previous
sub-section. As the first example, we discuss methods for input validation. Recall that
initially the database of shared inputs is empty in the SHAREMIND framework and
the data donors have to fill it. There are two aspects to note. First, the data donors
might be malicious and try to construct fraudulent inputs to influence data aggregation
procedures. For instance, some participants of polls might be interested in artificially
increasing the support of their favourite candidate. Secondly, the data donors want to
submit their data as fast as possible without extra work. In particular, they are unwilling
to prove that their inputs are in the valid range.

There are two principal ways to address these issues. First, the miners can use multi-
party computation protocols to detect and eliminate fraudulent entries. This is compu-
tationally expensive, since the evaluation of correctness predicates is a costly operation.
Hence, it is often more advantageous to use such an input gathering procedure that guar-
antees validity by design. For instance, many data tables consist of binary inputs (yes-no
answers). Then we can gather inputs as shares over Z2 to avoid fraudulent inputs and
later use share conversion to get the corresponding shares over Z232 .

Let [u1, u2, u3] be a valid additive sharing over Z2. Then we can express the shared
value u through the following equation over integers:

f(u1, u2, u3) := u1 + u2 + u3 � 2u1u2 � 2u1u3 � 2u2u3 + 4u1u2u3 = u .

Consequently, if we treat u1, u2, u3 as inputs and compute the shares of f(u1, u2, u3)

over Z232 , then we obtain the desired sharing of u. More precisely, we can use the
Du-Atallah protocol to compute the shares [[u1u2]], [[u1u3]], [[u2u3]] over Z232 . To get
the shares [[u1u2u3]], we use the share multiplication protocol to multiply [[u1u2]] and
the shares [[u3]] created by P3. Finally, all parties use local addition and multiplication

143

Sharemind: A Framework for Fast Privacy-Preserving Computations 201

1. Generate random bit shares [[r(31)]], . . . , [[r(0)]] over Z232 .
2. Compute the corresponding shares [[r]] = 231 · [[r(31)]] + · · · + 20 · [[r(0)]].
3. Compute and publish the shares of the difference [[a]] = [[u]] � [[r]].
4. Mimic bitwise addition algorithm to compute bit shares [[u(31)]], . . . , [[u(0)]]

from the known bit representation of a and the bit shares [[r(31)]], . . . , [[r(0)]].

Fig. 5. High-level description of the bit extraction protocol

routines to obtain the shares of f(u1, u2, u3) and then re-share them to guarantee the
universal composability. The resulting protocol has only four rounds, since we can start
the first round of all multiplication protocols simultaneously.

Theorem 2. The share conversion protocol is perfectly universally composable.

Proof. The proof follows again directly from Lemmata 1 and 2, since all sub-protocols
are perfectly simulatable and the output shares are re-shared at the end. ��

Note that input gathering can even be an off-line event, if we make use of public-key
encryption. If everybody knows the public keys of the miners, they can encrypt the
shares with the corresponding keys and then store the encryptions in a public database.
Miners can later fetch and decrypt their individual shares to fill their input databases.

4.3 Protocols for Bit Extraction and Comparison

Various routines for bit manipulations form another set of important operations. In par-
ticular, note that for signed representation of Z232

= {�2

31
, . . . , 0, . . . , 2

31 � 1} the
highest bit indicates the sign and thus the evaluation of greater-than-or-equal (GTE)
predicate can be reduced to bit extraction operations. In the following, we mimic the
generic scheme proposed by Damgård et al. [10] for implementing bit-level operations.
As this construction is given in terms of atomic primitives, it can be used also for set-
tings where there are more than three miners, see Fig. 5.

For the first step in the algorithm, miners can create random shares over Z2 and
then convert them to the shares over Z232 . The second step can be computed locally.
The third step is secure, since the difference a = u � r has uniform distribution over
Z232 and thus one can always simulate the shares of a. For the final step, note that
addition and multiplication protocols are sufficient to implement all logic gates when all
inputs are guaranteed to be in the range {0, 1}. Hence, we can use the classical bitwise
addition algorithm to compute [[u

(31)
]], . . . , [[u

(0)
]]. However, the number of rounds in

the corresponding protocol is linear in the number of bits, since we cannot compute
carry bits locally. To minimise the number of rounds, we used standard look-ahead
carry construction to perform the carry computations in parallel. The latter provides
logarithmic round complexity. More precisely, the final bitwise addition protocol has 8
rounds and the corresponding bit extraction protocol has 12 rounds. Both protocols are
also universally composable, since all sub-protocols are universally composable.

Theorem 3. The bitwise addition protocol is perfectly universally composable. The bit
extraction protocol is perfectly universally composable.

144

202 D. Bogdanov, S. Laur, and J. Willemson

As a simple extension, we describe how to implement greater-than-or-equal predicate
if both arguments are guaranteed to be in Z231 ✓ Z232 . This allows us to define

GTE(x, y) =

�
1, if the highest bit of the difference x� y is 0,
0, otherwise.

It is straightforward to see that the definition is correct for unsigned and signed inter-
pretation of the arguments as long as both arguments are in the range Z231 . Since the
range Z231 is sufficient for most practical computations, we have not implemented the
extended protocol for the full range Z232 ⇥ Z232 , yet.

Theorem 4. The greater-than-or-equal protocol is perfectly universally composable.

Proof. The protocol is universally composable, since the bit extraction protocol that is
used to split x� y into bit shares is universally composable. ��

5 Practical Implementation

The main goal of the SHAREMIND project is to provide an easily programmable and
flexible platform for developing and testing various privacy preserving algorithms based
on share computing. The implementation of the SHAREMIND framework provides a lib-
rary of the most important mathematical primitives described in the previous section.
Since these protocols are universally composable, we can use them in any order, pos-
sibly in parallel, to implement more complex algorithms. To hide the execution path
of the algorithm, we can replace if-then branches with oblivious selection clauses. For
instance, we can represent if a then x y else x z as x a · y + (1� a) · z.

The software implementation of SHAREMIND is written in the C++ programming
language and is tested on Linux, Mac OS X and Windows XP. The “virtual processor”
of SHAREMIND consists of the miner application which performs the duties of a se-
cure multiparty computation party and the controller library for developing controller
applications that work with the miners. Secure channels between the miners are im-
plemented using standard symmetric encryption and authentication algorithms. As a
result, we obtain only computational security guarantees in the real world. The latter
is unavoidable if we want to achieve a cost-efficient and universal solution, as building
dedicated secure channels is currently prohibitively expensive.

One of the biggest advances of the framework is its modularity. At the highest abst-
raction level, the framework behaves as a virtual processor with a fixed set of com-
mands. However, the user can design and experiment with new cryptographic protocols.
On this level, the framework hides all technical details, such as network setup and exact
details of message delivery. Finally, the user can explicitly change networking details at
the lowest level, although we have put a lot of effort into optimising network behaviour.

To facilitate fast testing and algorithm development, we implemented the most obvi-
ous execution strategy, where the controller application executes a program by asking
the miners to sequentially execute operations described by the program. When a com-
putational operation is requested from the miner, it is scheduled for execution. When
the operation is ready to be executed, the miners run the secure multi-party computation

145

Sharemind: A Framework for Fast Privacy-Preserving Computations 203

protocols necessary for completing the operation. Like in a standard stack machine, all
operations read their input data from the stack and write output data to the stack upon
completion. The shares of the final results are sent back to the controller.

Of course, such a simplistic approach neglects many practical security concerns. In
particular, the controller has full control over the miners and thus we have a single
point of failure. Therefore, real-world applications must be accompanied with auxiliary
mechanisms to avoid such high level attacks. For instance, the miners must be config-
ured with the identities of each other and all possible controllers to avoid unauthorised
commands. This can be achieved by using public-key infrastructure. Similarly, the com-
plete code should be analysed and signed by an appropriate authority to avoid unautho-
rised data manipulation. However, the time-complexity of these operations is constant
and thus our execution strategy is still valid for performance testing.

6 Performance Results

We have measured the performance of the SHAREMIND framework on two computa-
tional tasks—scalar product and vectorised comparison. These tests are chosen to cover
the most important primitives of SHAREMIND: addition, multiplication and compar-
ison. More importantly, it also allowed us to compare SHAREMIND to other secure
multi-party computation systems [6,16,18].

The input datasets were randomly generated and the corresponding shares were
stored in local databases. For each vector size, we ran the computation many times
and measured the results for each execution. To identify performance bottlenecks, we
measured the local computation time, the time spent on sending data, and the time spent
on waiting. The time was measured at the miners to minimise the impact of overhead
from communication with the controller. The tests were performed on four computers
in a computing cluster. Each machine had a dual-core Opteron 175 processor and 2 GB
of RAM, and ran Scientific Linux CERN 4.5. The computers were connected by a local
switched network allowing communication speeds up to 1 gigabit per second.

As one would expect, the initial profiling results showed that network roundtrip time
has significant impact on the performance. Consequently, it is advantageous to execute
many operations in parallel and thus the use of vectorised operations can lead to sig-
nificant performance gains. The latter is a promising result, since many data mining
algorithms are based on highly parallelisable matrix operations.

Nevertheless, we also observed that sometimes data vectors become too large and
this starts to hinder the performance of the networking layer. To balance the effects of
vectorisation, we implemented a load balancing system. We fixed a certain threshold
vector size after which the miners start batch processing of large vectorised queries. In
each sub-round, a miner processes a fragment of its inputs and sends the results to the
other miners before continuing with the next fragment of input data.

Fig. 6 shows the impact of our optimisations on the waiting time caused by net-
work delays. In particular, note that the impact of network delays is small during scalar
product computation—the miners do not waste too many CPU cycles while waiting for
inputs. Consequently, further optimisations can only lead to marginal improvements.
The same is true for the multiplication protocol, since the performance characteristics

146

204 D. Bogdanov, S. Laur, and J. Willemson

1 2 3 4 5 6 7 8 9 10

0

50

100

150

200

250

300

350

400

450

500

550

600

Scalar product

Computational
overhead

Network delay

Sending time

Vector size (x 10000 elements)

T
im

e
(m

ill
is

e
c
o
n
d
s
)

1 2 3 4 5 6 7 8 9 10

0

25

50

75

100

125

150

175

200

225

250

275

300

Vectorised comparison

Computational

overhead

Network delay

Sending time

Vector size (x 10000 elements)

T
im

e
 (

s
e
c
o
n
d
s
)

Fig. 6. Performance of the SHAREMIND framework. Left and right pane depict average running
times for test vectors with 10, 000–100, 000 elements in 10, 000-element increments.

of the scalar product operation practically coincide with the multiplication protocol: ad-
dition as a local operation is very fast. For the parallel comparison, the effect of network
delays is more important and further scheduling optimisations may decrease the time
wasted while waiting for messages. In both benchmarks, the time required to send and
receive messages is significant and thus the efficiency of networking layer can signifi-
cantly influence performance results.

Besides measuring the average running time, we also considered variability of tim-
ings. For the comparison protocol, the running times were rather stable. The average
standard deviation was approximately 6% from the average running time. The scalar
computation execution time was significantly more fluctuating, as the average standard
deviation over all experiments was 24% of the mean. As most of the variation was in
the network delay component of the timings, the fluctuations can be attributed to low-
level tasks of the operating system. This is further confirmed by the fact that all scalar
product timings are small, so even relatively small delays made an impact on our execu-
tion time. We remind here that the benchmark characterises near-ideal behaviour of the
SHAREMIND framework, since no network congestion occurred during the experiments
and the physical distance between the computers was small. In practice, the effect of
network delays and the variability of running times can be considerably larger.

We also compared the performance of SHAREMIND with other known implementa-
tions of privacy-preserving computations. Our first candidate was the FAIRPLAY sys-
tem [16], which is a general framework for secure function evaluation with two parties
that is based on garbled circuit evaluation. According to the authors, a single compari-
son operation for 32-bit integers takes 1.25 seconds. A single SHAREMIND comparison
takes, on average, 500 milliseconds. If we take into account the improvements in hard-
ware we can say that the performance is similar when evaluating single comparisons.
The authors of FAIRPLAY noticed that parallel execution gives a speedup factor of up
2.72 times in a local network. Experiments with SHAREMIND have shown that paral-
lel execution can increase execution up to 27 times. Hence, SHAREMIND can perform

147

Sharemind: A Framework for Fast Privacy-Preserving Computations 205

parallel comparison more efficiently. The experimental scalar product implementation
in [18] also works with two parties. However, due to the use of more expensive cryp-
tographic primitives, it is slower than SHAREMIND even with precomputation. For ex-
ample, computing the scalar product of two 100000-element binary vectors takes a
minimum of 5 seconds without considering the time of precomputation.

The SCET system used in [6] is similar to SHAREMIND as it is also based on share
computing. Although SCET supports more than three computational parties, our com-
parison is based on results with three parties. The authors have presented performance
results for multiplication and comparison operations as fitted linear approximations.
The approximated time for computing products of x inputs is 3x + 41 milliseconds
and the time for evaluating comparisons is 674x + 90 milliseconds (including precom-
putation). The performance of SHAREMIND can not be easily linearly approximated,
because for input sizes up to 5000 elements parallel execution increases performance
significantly more than for inputs with more than 5000 elements. However, based on
the presented approximations and our own results we claim that SHAREMIND achieves
better performance with larger input vectors in both scalar product and vectorised com-
parison. A SHAREMIND multiplication takes, on the average, from 0.006 to 57 mil-
liseconds, depending on the size of the vector. More precisely, multiplication takes less
than 3 milliseconds for every input vector with more than 50 elements. The timings for
comparison range from 3 milliseconds to about half a second which is significantly less
than 674 milliseconds per operation.

7 Conclusion and Future Work

In this paper, we have proposed a novel approach for developing privacy-preserving ap-
plications. The SHAREMIND framework relies on secure multi-party computation, but
it also introduces several new ideas for improving the efficiency of both the applications
and their development process. The main theoretical contribution of the framework is
a suite of computation protocols working over elements in the ring of 32-bit integers
instead of standard finite fields.

We have also implemented a fully functional prototype of SHAREMIND and showed
that it offers enhanced performance when compared to other similar frameworks. Be-
sides that, SHAREMIND also has an easy to use application development interface al-
lowing the programmer to concentrate on the implementation of data mining algorithms
without worrying about the details of cryptographic protocols.

However, the current implementation has several restrictions. Most notably it can
use only three computing parties and can deal with just one semi-honest adversary.
Hence the main direction for future research is relaxing these restrictions by develop-
ing computational primitives for more than three parties. We will also need to study
the possibilities for providing security guarantees against active adversaries. Another
aspect needing further improvement is the application programmer’s interface. A com-
piler from a higher-level language to our current assembly-like instruction set is defi-
nitely needed. Implementing and benchmarking a broad range of existing data-mining
algorithms will remain the subject for further development as well.

148

206 D. Bogdanov, S. Laur, and J. Willemson

References

1. Agrawal, D., Aggarwal, C.C.: On the design and quantification of privacy preserving data
mining algorithms. In: Proc. of PODS 2001, pp. 247–255 (2001)

2. Agrawal, R., Srikant, R.: Privacy-preserving data mining. SIGMOD Rec. 29(2), 439–450
(2000)

3. Beaver, D.: Secure multiparty protocols and zero-knowledge proof systems tolerating a faulty
minority. Journal of Cryptology 4(2), 75–122 (1991)

4. Ben-Or, M., Kelmer, B., Rabin, T.: Asynchronous secure computations with optimal re-
silience (extended abstract). In: Proc. of PODC 1994, pp. 183–192 (1994)

5. Bogdanov, D., Laur, S., Willemson, J.: Sharemind: a framework for fast privacy-preserving
computations. Cryptology ePrint Archive, Report 2008/289 (2008)

6. Bogetoft, P., Damgård, I., Jakobsen, T., Nielsen, K., Pagter, J., Toft, T.: A practical imple-
mentation of secure auctions based on multiparty integer computation. In: Di Crescenzo, G.,
Rubin, A. (eds.) FC 2006. LNCS, vol. 4107, pp. 142–147. Springer, Heidelberg (2006)

7. Canetti, R.: Security and composition of multiparty cryptographic protocols. Journal of Cryp-
tology 13(1), 143–202 (2000)

8. Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols.
In: Proc. of FOCS 2001, pp. 136–145 (2001)

9. Cramer, R., Fehr, S., Ishai, Y., Kushilevitz, E.: Efficient multi-party computation over rings.
In: Proc. of EUROCRYPT 2003. LNCS, vol. 4107, pp. 596–613 (2003)

10. Damgård, I., Fitzi, M., Kiltz, E., Nielsen, J.B., Toft, T.: Unconditionally secure constant-
rounds multi-party computation for equality, comparison, bits and exponentiation. In: Halevi,
S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 285–304. Springer, Heidelberg (2006)

11. Dodis, Y., Micali, S.: Parallel reducibility for information-theoretically secure computation.
In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 74–92. Springer, Heidelberg
(2000)

12. Du, W., Atallah, M.J.: Protocols for secure remote database access with approximate match-
ing. In: ACMCCS 2000, Athens, Greece, November 1-4 (2000)

13. Evfimievski, A.V., Srikant, R., Agrawal, R., Gehrke, J.: Privacy preserving mining of associ-
ation rules. In: Proc. of KDD 2002, pp. 217–228 (2002)

14. Hirt, M., Maurer, U.M.: Player simulation and general adversary structures in perfect multi-
party computation. Journal of Cryptology 13(1), 31–60 (2000)

15. Lindell, Y., Pinkas, B.: A proof of Yao’s protocol for secure two-party computation. Cryptol-
ogy ePrint Archive, Report 2004/175 (2004)

16. Malkhi, D., Nisan, N., Pinkas, B., Sella, Y.: Fairplay - secure two-party computation system.
In: Proc. of USENIX Security Symposium, pp. 287–302 (2004)

17. The SHAREMIND project web page (2007), http://sharemind.cs.ut.ee
18. Yang, Z., Wright, R.N., Subramaniam, H.: Experimental analysis of a privacy-preserving

scalar product protocol. Comput. Syst. Sci. Eng. 21(1) (2006)

149

II

Copyright Springer 2012. Republished with kind permission

from Springer Science and Business Media.

Bogdanov, D., Niitsoo, M., Toft, T., Willemson, J.: High-performance se-
cure multi-party computation for data mining applications. International
Journal of Information Security 11(6), 403–418 (2012)

Int. J. Inf. Secur.
DOI 10.1007/s10207-012-0177-2

REGULAR CONTRIBUTION

High-performance secure multi-party computation for data
mining applications

Dan Bogdanov · Margus Niitsoo · Tomas Toft ·
Jan Willemson

© Springer-Verlag 2012

Abstract Secure multi-party computation (MPC) is a tech-
nique well suited for privacy-preserving data mining. Even
with the recent progress in two-party computation techniques
such as fully homomorphic encryption, general MPC remains
relevant as it has shown promising performance metrics in
real-world benchmarks. Sharemind is a secure multi-party
computation framework designed with real-life efficiency in
mind. It has been applied in several practical scenarios, and
from these experiments, new requirements have been iden-
tified. Firstly, large datasets require more efficient protocols
for standard operations such as multiplication and compar-
ison. Secondly, the confidential processing of financial data
requires the use of more complex primitives, including a
secure division operation. This paper describes new pro-
tocols in the Sharemind model for secure multiplication,
share conversion, equality, bit shift, bit extraction, and divi-
sion. All the protocols are implemented and benchmarked,
showing that the current approach provides remarkable speed
improvements over the previous work. This is verified using
real-world benchmarks for both operations and algorithms.

D. Bogdanov (�)· J. Willemson
Cybernetica, Ülikooli 2, 51003 Tartu, Estonia
e-mail: dan@cyber.ee

D. Bogdanov · M. Niitsoo
Institute of Computer Science, University of Tartu,
J. Liivi 2, 50409 Tartu, Estonia
e-mail: margus.niitsoo@ut.ee

T. Toft
Department of Computer Science, Aarhus University,
IT-Parken, Åbogade 34, 8200 Aarhus N, Denmark
e-mail: ttoft@cs.au.dk

J. Willemson
STACC, Ülikooli 2, 51003 Tartu, Estonia
e-mail: janwil@cyber.ee

Keywords Secure computation · Performance ·
Applications

1 Introduction

The aim of secure multi-party computation (MPC) is to
enable a number of networked parties to carry out distributed
computing tasks on private information. During the compu-
tations, no one party (and, more generally, no certain subsets
of the parties) should be able to learn any information about
any other party’s input other than what can be inferred from
the output.

The theory behind MPC is fairly well developed, but prac-
tical solutions based on it are lagging considerably behind. In
the last few years, several MPC frameworks based on various
techniques have been proposed and implemented, for exam-
ple FairPlayMP [1], VIFF [12], SEPIA [6], SecureSCM [18],
VMcrypt [15], TASTY [14] and Sharemind [2].

Existing frameworks for MPC can broadly be split into
two-party and multi-party frameworks. The former requires
computational security; hence, solutions are based on homo-
morphic, public-key encryption (HE), or garbled circuits
(GC). TASTY combines the two, utilizing whichever is
best for the immediate task at hand. Both solutions have
drawbacks. HE is computationally expensive, while the GC
approach requires that a circuit computing the function is
generated. For large-scale problems—such as data mining—
even simply generating and storing the garbled circuit may
be challenging. VMcrypt avoids this issue by generating and
evaluating the circuit on the fly.

Multi-party frameworks are generally more efficient, as
the computational primitives for information theoretic solu-
tions are simpler than those of two-party computation. For
example, addition and multiplication in a ring are more

123

D. Bogdanov et al.

efficient than public key or even symmetric key cryptography.
Of the multi-party frameworks, FairPlayMP’s circuit-based
approach suffers from the issues with large-scale applications
as discussed above. The passively secure VIFF and SEPIA
both use Shamir’s secret sharing scheme to implement MPC;
both are more general than Sharemind, as they allow an arbi-
trary number of parties. while Sharemind is limited to three.

The first published application of MPC was the Danisco
sugar beet auction held in 2008 [5]. Since then, the prac-
tical feasibility of MPC has also been shown for network
anomaly detection [6] and joint analysis of financial data [4].
However, neither of the presented applications required MPC
protocols to process large databases. Nevertheless, it is clear
that many important areas of human endeavor, such as bio-
medical research and business data aggregation, do require
such a capacity, often working with databases with thousands
or even millions of records.

This research was mainly motivated by the need to build an
MPC application suitable for the statistical analysis of finan-
cial data from competing companies, who are interested in
finding the common trends in the entire sector. Several trend
indicators require more complicated computational primi-
tives, for example, private division to find out different ratios
(like turnaround to personnel size). This is impossible on
many of the current systems (such as those described in [5,6])
that use only relatively simple primitive operations like mul-
tiplication and comparison of two numbers.

The primary target of this paper is to develop a set of
MPC protocols with high real-life performance on large data-
bases. We will present new primitives for secure multiplica-
tion, share conversion, equality, bit shift, bit extraction, and
division (both by public and private divisor).

The presented protocols have been implemented as
improvements to the Sharemind framework [2,3]. In addi-
tion to the theoretical round and communication complex-
ities, we also present benchmark results illustrating the
achieved performance improvements.

2 Preliminaries

As stated above, Sharemind [2,3] is a secure multi-party
computation system operating on additively secret-shared
values. Although general m-party protocols can be devised
for such a setting (see [2]), this paper concentrates on the
case with three computing parties identified as P1,P2 and
P3. Designing and implementing protocols with a specific
scenario in mind allows significant efficiency gains over ge-
neral protocols; such optimizations can make the difference
as to whether a problem can be solved or not.

The Sharemind framework uses additive secret sharing
over the finite ring Z2n . Secret-shared value u ∈ Z2n is rep-
resented as a triple [[u]] = (u1, u2, u3), with the element ui

held by party Pi (i = 1, 2, 3) and u1 + u2 + u3 ≡ u mod 2n .
In the current implementation, n = 32 and this value is used
for the performance benchmarks. However, it is stressed that
all the protocols presented here work for any choice of n.

Let ⊕,∨, and ∧ denote the bitwise XOR, OR, and AND
operations, respectively. Many of the protocols in this paper
make use of these operations over the shared bits. In these
cases, it is convenient to think of a value u ∈ Z2n as a
bit vector u ∈ (Z2)

n . We stress that both u and u repre-
sent the same value and the difference is only to denote
whether it is used bitwise or as an integer, so (·) is best
thought of as a typing indicator. Hence, in general, we have
u = u1 + u2 + u3 &= u1 ⊕ u2 ⊕ u3.

Bit-level protocols also make use of vectors that are
shared bitwise. We thus introduce special notation [[u]] =
(u1, u2, u3) to refer to such a bitwise sharing that u =
u1⊕u2⊕u3. This is a fairly natural extension of the notation.

To allow elementwise access to the bit vectors, we will let
u(j) stand for the j th bit of u. We will also use notation [[u]](j)

to denote the share tuple (u(j)
1 , u(j)

2 , u(j)
3), so that u(j) =

u(j)
1 ⊕ u(j)

2 ⊕ u(j)
3 .

3 Proving security of Sharemind protocols

The security proofs in this paper are presented in the univer-
sal composability framework of Canetti [7]. To be precise,
we assume that we have three distinct computational entities
P1,P2,P3 all of which have an ideally secure authenticated
channel to the two others. Security is proven in the passive
(honest-but-curious) model in which the adversary is allowed
to corrupt at most one of the three parties before the execu-
tion of the protocol. The adversary is then handed both the
inputs and all the incoming messages of the corrupted party
(“curiosity”), but he has no control over its outputs, which
are assumed to be chosen as specified in the protocols (“hon-
esty”). This model roughly corresponds to the real-world sit-
uation where we assume the protocol implementations are
fairly hard to tamper with, whereas their inputs and outputs
could be eavesdropped on—which is a sensible assumption
for most practical purposes.

In the following, we will use the following definition:

Definition 1 We say that a share computing protocol is
perfectly simulatable if there exists an efficient universal
non-rewinding simulator S that can simulate all protocol
messages to any real-world adversary A so that for all input
shares, the output distributions of A and S(A) coincide.

To prove that a protocol is universally composable, it suf-
fices to show that it is perfectly simulatable and that the out-
puts are independent of the inputs (Lemma 2 of [2]).

In order to prove perfect simulatability, we consider the
incoming views of all the computing parties and prove that

123 154

High-performance secure multi-party computation

they are independent of the input shares of the other parties,
hence proving existence of the simulator. We will use the
sequences-of-games formalism in our proofs. Denote the dis-
tribution of the incoming view G as (|G|) and let the original
incoming view of the party P be G0. Then, we are interested
in finding a sequence G0, G1, . . . , Gn such that

(|G0|) = (|G1|) = . . . = (|Gn|)
and that the view Gn does not contain any references to input
shares of the other parties.

The main tool that allows us to construct such sequences
is the following simple folk lemma.

Lemma 1 Let the incoming view G contain incoming mes-
sages a1 ± r, a2, . . . , ak where a1, r are elements of finite
additive group A and where r is a uniformly random ele-
ment of A, independent from all ai . Then,

(|G|) = (|G[a1 ± r/r]|),
where G[a1 ± r/r] denotes the game, where the occurrence
of a1 ± r has been replaced by r .

Proof If r ∈ A is uniformly distributed and independent
from all ai , then so is r ± a1 since fr (x) := r ± x is a
bijective mapping for A. "#

In the following security proofs, this lemma will be used
for various groups, including Z2, Z2n , and (Z2)

n .
The lemma is often used in combination with Lemma 1

of [2], which states that a concurrent composition of perfectly
simulatable protocols is also perfectly simulatable, which
allows us to use already defined perfectly simulatable proto-
cols as subroutines without analyzing their internal messages.

All of the protocols described in the following are fully
simulatable. To achieve full security in the universal compos-
ability framework, one extra step is needed to also guarantee
the independence of the protocol outputs from its inputs. This
resharing step was already described in [2] and is brought
here for completeness as Algorithm 1. The input shared value
[[u]] is reshared as [[w]] so that u = w, all shares wi are uni-
formly distributed and ui and w j are independent for all i, j .
This is accomplished by masking the input shares with values
that are randomly generated, but shared by only two of the
three parties. Sharing the random values between two parties
requires one round of communication, but since the values
being sent are independent of the inputs, it can generally be
done in parallel with the last round of the protocol on whose
outputs it is to be applied.

Theorem 1 Algorithm 1 is correct.

Proof It is easy to see that

w = w1 + w2 + w3

= u1 + r12 − r31 + u2 + r23 − r12 + u3 + r31 − r23

= u1 + u2 + u3 = u.

Algorithm 1: Resharing protocol [[w]] ←
Reshare([[u]]).

Data: Shared value [[u]].
Result: Shared value [[w]] such that w = u, all shares wi are

uniformly distributed and ui and w j are independent for
i, j = 1, 2, 3.

1 P1 generates random r12 ← Z2n .
2 P2 generates random r23 ← Z2n .
3 P3 generates random r31 ← Z2n .
4 All values ∗i j are sent from Pi to P j .
5 P1 computes w1 ← u1 + r12 − r31.
6 P2 computes w2 ← u2 + r23 − r12.
7 P3 computes w3 ← u3 + r31 − r23.
8 Return [[w]].

Algorithm 2: Protocol for multiplying two shared values
[[w′]]← Mult([[u]], [[v]]).

Data: Shared values [[u]] and [[v]].
Result: Shared value [[w′]] such that w′ = uv.

1 [[u′]]← Reshare([[u]])
2 [[v′]]← Reshare([[v]])
3 P1 sends u′1 and v′1 to P2.
4 P2 sends u′2 and v′2 to P3.
5 P3 sends u′3 and v′3 to P1.
6 P1 computes w1 ← u′1v

′
1 + u′1v

′
3 + u′3v

′
1.

7 P2 computes w2 ← u′2v
′
2 + u′2v

′
1 + u′1v

′
2.

8 P3 computes w3 ← u′3v
′
3 + u′3v

′
2 + u′2v

′
3.

9 Return [[w′]]← Reshare([[w]]).

Proofs of independence can be given exactly as in Lemma 1,
since all the elements wi are of the form u j + r − s for
randomly generated elements r, s. "#

We stress that for practical applications, this step needs to
be added to the end of all the protocols that are available to
the end user for use. However, for all the intermediate steps,
perfect simulatability is enough, which is why we omit the
resharing step from the descriptions of the protocols in this
paper.

4 Multiplication protocol

Instead of using the Du-Atallah multiplication protocol as
in [2] and [3], we propose a new protocol which is based
on the following observation. If we have two values u and v

shared additively as u = u1 + u2 + u3 and v = v1 + v2 +
v3, their product is uv = P3

i=1
P3

j=1 uiv j . The addends
of the form uivi can be computed locally by party Pi . In
order to find an addend of the form uiv j (i (= j), the share
ui can be sent from Pi to P j (or the share v j from P j to
Pi). Knowing the shares ui and u j , party P j is still unable
to get any information concerning u, but in order to obtain
universal composability, all the shares ui and v j still need to
be reshared.

123155

D. Bogdanov et al.

The new multiplication protocol is presented in Algo-
rithm 2.

Theorem 2 Algorithm 2 is correct and secure against a pas-
sive attacker.

Proof For correctness, we note that

w = w1 + w2 + w3 = u′1v
′
1 + u′1v

′
3 + u′3v

′
1

+u′2v
′
2 + u′2v

′
1 + u′1v

′
2 + u′3v

′
3 + u′3v

′
2 + u′2v

′
3

= (u′1 + u′2 + u′3)(v
′
1 + v′2 + v′3)

= (u1 + u2 + u3)(v1 + v2 + v3)

= uv.

To prove security, we note that Algorithm 2 is symmetric
for all the parties. Thus, it will be enough to consider just
the incoming view of P1, which consists of just two values
u′3 and v′3. Both incoming values are uniformly distributed
and independent of the private inputs other than u1, v1 due
to Lemma 1. Therefore, the protocol is secure since we can
build a perfect simulator by generating uniformly distributed
values. "#

We will use the standard arithmetic shorthand and write
[[w]]← [[u]] · [[v]] to mean [[w]]← Mult([[u]], [[v]]). We note
that this protocol works over any ring, so we can also use it
for ∧ operation for shares from Z2. In that case, we will also
use a shorthand notation to write [[u]]∧[[v]] instead of calling
the multiplication protocol. We stress, however, that while +
and ⊕ require only local addition of the shares and are thus
essentially free, both · and ∧ require communication and are
hence considerably more costly.

Even though the description of the multiplication protocol
involves two rounds of sending different values between the
computing parties, the resharing round can be carried out
as precomputation since it is independent of inputs [[u]] and
[[v]]. Hence, the real overhead of multiplication is just one
round. It is actually possible to combine the two rounds of
communication into a single round, but this provided for no
noticeable increase in performance in implementation so we
omit the details.

5 Bit-level protocols

Most of the high-level protocols presented in Sects. 6 and 7
depend on low-level bit operations. Since the Sharemind
virtual machine operates on values shared additively over
Z2n , accessing the bits of the shared value is a non-trivial
problem.

The first step for all the protocols in the current section
is to consider the shares u1, u2, u3 ∈ Z2n as the elements
u1, u2, u3 of the ring (Z2)

n and carry out all the operations
bitwise. Recall that the value [[u]] represented by the shares

Algorithm 3: [[p′]]← PrefixOR([[p]]).
Data: Bitwise shared vector [[p]].
Result: The vector [[p′]] which has the form 00 . . . 011 . . . 1,

where the initial part 00 . . . 01 coincides with the vector
originally represented by [[p]].

1 l ← |[[p]]|.
2 if l = 1 then
3 Return [[p′]]← [[p]].
4 else
5 [[p′]](l−1...)l/2*) ← PrefixOR([[p]](l−1...)l/2*)

).

6 [[p′]]()l/2*−1...0) ← PrefixOR([[p]]()l/2*−1...0)
).

7 for i ← 0 to)l/2* − 1 do .

8 [[p′]](i) ← [[p′]](i) ∨ [[p′]]()l/2*)
.

9 Return [[p′]].
10 end

u1, u2, u3 is, generally speaking, not equal to u when con-
verted back to Z2n , since it does not take into account the
carry bits that occur during addition.

The bit-level protocols used in Sharemind utilize the
basic principles of digital circuit design [16] and build on
the general bit extraction framework proposed by Damgård
et al. [8].

One elementary protocol used is [[b]] ← BitConj([[u]])
for finding the conjunction of all the bits of a bitwise shared
vector [[u]] and representing the result as a shared bit [[b]]. This
protocol can be implemented using a natural recursive split-
in-half approach and achieves round complexity logarithmic
in the input vector length.

Another protocol we need is [[s]] ← CarryBits(v, [[r]]),
where the value v ∈ Z2n is known by P2 and P3, the value
r is shared bitwise over (Z2)

n between P2,P3 (so r1 = 0),
and the output is a shared vector [[s]] representing the carries
occurring when the addition v+r is performed. The protocol
can be implemented exactly as in [3] using carry look-ahead
technique that also works in a logarithmic number of rounds.

Whenever a bit-level protocol needs to ∧ together two bit
values, the (perfectly simulatable) protocol Mult(·, ·) can be
called. The security proofs for protocols CarryBits(·, ·) and
BitConj(·) are standard applications of universal composa-
bility Lemmas 1 and 2 of [2] and we will skip them here.

As an example of a more involved bit-level protocol, we
will present and analyze the protocol for finding the most
significant nonzero bit position of a bitwise shared value [[u]].

We will proceed in two steps. First, we set all the bits
after the first 1 to be 1 as well by a recursive prefix-OR
procedure presented as Algorithm 3. In the procedure, let
|[[p]]| denote the number of bits that the vector represented by
[[p]] contains. Also, let [[p]](i ... j)

denote the shared subvector
containing the bits represented by [[p]](i), . . . , [[p]](j)

(note
that we will write more significant bits to the left, so in this
notation i ≥ j).

123 156

High-performance secure multi-party computation

Algorithm 4: Protocol for the most significant nonzero
bit position [[s]]← MSNZB([[u]]).

Data: Bitwise shared value [[u]].
Result: Shared vector [[s]] such that [[s]](j)

represents 1, where j

is the most significant position, where [[u]](j)
represents

1, and 0 otherwise. If all the bits of [[u]] represent 0, all
the shared bits of [[s]] represent 0 as well.

1 [[u′]]← PrefixOR([[u]]).
2 for i ← 0 to n − 2 do

3 [[s]](i) ← [[u′]](i) ⊕ [[u′]](i+1)
.

4 [[s]](n−1) ← [[u′]](n−1)
.

5 Return [[s]].

Note that the log2 n recursive calls of Algorithm 3 require
one round of multiplication each (to compute∨ of the shared
bits [[b1]] and [[b2]] as [[b1]]⊕ [[b2]]⊕ ([[b1]]∧ [[b2]])), hence
the overall round complexity of Algorithm 3 is log2 n.

To compute the most significant bit, it now suffices to zero
all the bits that are to the right of the first 1. This can be done
by a simple loop given on the lines 2 to 3 of the main protocol
described as Algorithm 4. As this computation is local and
requires no communication, the complexity is the same as
for Algorithm 3.

Theorem 3 Algorithm 4 is correct and secure against one
passive attacker.

Proof Correctness of the protocol follows directly from the
discussion given above.

Security of the protocol is trivial as well, since we are only
composing perfectly simulatable primitives. '(

6 Improved high-level protocols

We now describe the new and improved high-level proto-
cols for the framework: the operators for share conversion,
bit extraction, and equality. We have also developed proto-
cols for bit shift under a public shift, which are presented in
Appendix 1.

6.1 Share conversion

Bit-level operations are typically used as building blocks
within algorithms working with the full shares over Z2n .
Hence, the problem of converting the bits shared over Z2 to
shares over Z2n arises. Converting individual shares locally
does not solve the problem, since we will lose reduction mod-
ulo 2. Hence, a different approach is needed.

The routine presented as Algorithm 5 first splits the bit u
as u = m ⊕ s so that m = b ⊕ u1 for a random bit b. The
bit m can then be directly converted to Z2n by one party and

Algorithm 5: Protocol [[v]] ← ShareConv([[u]]) for
converting a share [[u]] ∈ Z2 to [[v]] ∈ Z2n .

Data: Shared value [[u]] in bit shares.
Result: Shared value [[v]] such that u = v and [[v]] is shared in

Z2n .
1 P1 generates random b← Z2 and sets m ← b ⊕ u1.
2 P1 locally converts m to Z2n , generates random

m12 ← Z2n and computes m13 = m − m12.
3 P1 generates random b12 ← Z2 and computes

b13 = b − b12 = b ⊕ b12.
4 All values ∗i j are sent from Pi to P j .
5 P2 sets s23 ← b12 ⊕ u2.
6 P3 sets s32 ← b13 ⊕ u3.
7 All values ∗i j are sent from Pi to P j .
8 P1 sets v1 ← 0
9 P2 and P3 set s ← s23 ⊕ s32

10 if s = 1 then
11 P2 sets v2 ← (1− m12).
12 P3 sets v3 ← (−m13).
13 else
14 P2 sets v2 ← m12.
15 P3 sets v3 ← m13.
16 end
17 Return [[v]].

the value of s can be used to select whether the real value of
u should be 1− m or m.

Theorem 4 Algorithm 5 is correct and secure against one
passive attacker.

Proof For correctness, we first note that

u =u1 ⊕ u2 ⊕ u3 =b ⊕ m ⊕ b12 ⊕ s23 ⊕ b13 ⊕ s32 =m⊕s.

Hence, if s = 1, we have v = v1+v2+v3 = 1−m12−m13 =
1 − m, which is equal to m ⊕ 1 when embedded to Z2n . If
s = 0, we have v = v1 + v2 + v3 = m12 + m13 = m, which
is equal to m ⊕ 0 when embedded to Z2n .

To prove security, we will consider all the three computing
parties and prove that their incoming views can be perfectly
simulated. The view of party P1 contains no incoming mes-
sages, so the corresponding simulator is trivial. The incoming
view of P2 can be perfectly simulated, since using Lemma 1
we see that its distribution

(|m12, b12, b ⊕ b12 ⊕ u3|) = (|m12, b12, b|)
is independent of private inputs other than u2.

Similarly, the incoming view of P3 can be perfectly simu-
lated, since using Lemma 1 we see that its distribution

(|b ⊕ u1 − m12, b ⊕ b12, b12 ⊕ u2|)
= (|m12, b ⊕ b12, b12 ⊕ u2|)
= (|m12, b, b12 ⊕ u2|)
= (|m12, b, b12|)

is independent of private inputs other than u3. Furthermore,
the values m12, b12, and b are uniformly distributed so we can
build a perfect simulator for P2 and P3 and show security. '(

123157

D. Bogdanov et al.

Algorithm 6: Protocol [[w]] ← BitExtr([[u]]) for bit
extraction.

Data: Additively shared value [[u]].
Result: Bitwise shared vector [[w]] representing the bits of u.

1 P1 generates random r, r2 ← Z2n , q2 ← (Z2)
n , sets q1 = 0 and

computes r3 ← u1 − r − r2, q3 ← r ⊕ q2.
2 P1 sends ri , qi to Pi (i = 2, 3).
3 Pi (i = 2, 3) computes the share vi ← ui + ri and sends it to

P6/ i .
4 P2, P3 compute v = v2 + v3.
5 [[s]]← CarryBits(v, [[q]]).
6 Define s(−1)

i = 0, (i = 1, 2, 3).
7 for j ← 0 to n − 1 do
8 In P1: w

(j)
1 ← s(j−1)

1 .

9 In P2: w
(j)
2 ← v(j) ⊕ q(j)

2 ⊕ s(j−1)
2 .

10 In P3: w
(j)
3 ← q(j)

3 ⊕ s(j−1)
3 .

11 Return [[w]].

6.2 Bit extraction

In order to perform bit-level computations, we first need to
extract the bits, which is a non-trivial task for shared values.
The basic working principle of Algorithm 6 is the same as
of the bitwise addition protocol explained in [3]. The initial
value u is represented as the sum v + r , where r is a random
value with a known shared bitwise decomposition. We can
then use the carry look-ahead algorithm to determine the
carry bits that occur in the addition v + r and use them to
compute the bits of u.

Theorem 5 Algorithm 6 is correct and secure against one
passive attacker.

Proof During the initial stage, u is represented as

u = u1 + u2 + u3 = (r + r2 + r3) + (v2 − r2) + (v3 − r3)

= v2 + v3 + r = v + r,

where r has a known shared bit decomposition r = q2 ⊕
q3. Thus, in order to find the bits of u, we can use bitwise
addition to compute the bits of v + r . To do that, one needs
to compute the carry bits, and this is done by calling the
Algorithm CarryBits(·, ·) (laid out in [3]).

As a result, the bitwise shared vector [[s]] will represent
exactly the carry bits from the corresponding positions when
computing v + r , hence it remains to add these bits to the
shared bitwise ⊕ of v and r , which is done on lines 6 to 10.
Indeed, we see that

w(j) = w
(j)
1 ⊕ w

(j)
2 ⊕ w

(j)
1

= s(j−1)
1 ⊕ v(j) ⊕ q(j)

2 ⊕ s(j−1)
2 ⊕ q(j)

3 ⊕ s(j−1)
3

= v(j) ⊕ r (j) ⊕ s(j−1).

To prove security, we will consider all three computing
parties and prove that their incoming views can be per-
fectly simulated. The incoming view of party P1 contains no

Algorithm 7: Protocol [[w]] ← Equal([[u]], [[v]]) for
evaluating the equality predicate.

Data: Shared values [[u]] and [[v]].
Result: Shared value [[w]] such that w = 1 if u = v, and 0

otherwise.
1 P1 generates random r2 ← Z2n and computes

r3 ← (u1 − v1)− r2.
2 P1 sends ri to Pi (i = 2, 3).
3 Pi computes ei = (ui − vi) + ri (i = 2, 3).
4 P1 sets p1 ← 2n − 1 = 111 . . . 1.
5 P2 sets p2 ← e2.
6 P3 sets p3 ← (0− e3).
7 Return [[w]]← BitConj([[p]]).

other incoming messages than the ones determined by Algo-
rithm CarryBits(·, ·), which can be perfectly simulated. The
incoming view of P2 looks mostly the same as that of P1,
only the initial part differs. We use Lemma 1 again to see that

(|r2, q2, u3 + r3, . . .|) = (|r2, q2, r3, . . .|),
which does not depend on any input values and can hence be
perfectly simulated.

Similarly, for party P3, we have the initial part of the
incoming view

(|u1 − r − r2, r ⊕ q2, u2 + r2, . . .|)
= (|u1 − r − r2, q2, u2 + r2, . . .|)
= (|r, q2, u2 + r2, . . .|)
= (|r, q2, r2, . . .|),

which does not depend on any input values once again. $%
We note that this protocol can also be used to improve

the efficiency of comparison protocols, which usually use bit
extraction as a subroutine [3].

6.3 Equality testing

Equality testing can be accomplished fairly easily via bit
extraction. However, since equality comparison is used quite
often in practical applications, it makes sense to provide a
separate and more efficient protocol specifically designed
for that task. Algorithm 7 first shares the difference u − v as
e2 + e3 between P2 and P3. Then, it remains to determine
whether e2 + e3 = 0, which can be done by comparing e2
and −e3 bitwise.

Theorem 6 Algorithm 7 is correct and secure against one
passive attacker.

Proof For correctness, note first that

e2 + e3 = (u2 − v2) + r2 + (u3 − v3) + r3

= (u2 − v2) + (u3 − v3) + (u1 − v1)

= u − v,

hence u = v iff e2 = 0 − e3. Algorithm 7 compares u
and v by comparing p2 = e2 and p3 = (0 − e3) bitwise;

123 158

High-performance secure multi-party computation

for that, we analyze the bitwise sum (XOR) of p1 = 2n −
1 = 111 . . . 1, p2 and p3. We see that u = v iff all the bits
represented [[p]] are 1, which is exactly the case when the
conjunction [[w]] = ∧n−1

i=0 [[p]](i) is 1. This is exactly what is
verified by calling Algorithm BitConj(·).

To prove security, we will consider all the three computing
parties and prove that their incoming views can be perfectly
simulated.

The incoming view of party P1 coincides with its view
in Algorithm BitConj(·) and can hence be simulated. The
incoming view of P2 is almost equivalent to that of P1 with
the only exception of receiving one extra independently and
uniformly chosen element r2, which is trivial to simulate.
The same holds for P3 who receives r3 = (u1 − v1) − r2,
which can be replaced by r2 by Lemma 1. #$

7 Division protocols

In this paper, we introduce two division protocols—one
where the divisor is a public constant and the other where
the divisor is a shared value. The protocols make use of two
subroutines ReshareToTwo(·) and Overflow(·) meant for
resharing a value to two parties and for computing the over-
flow bit once, the values are shared in this way, respectively.
As both protocols are fairly straightforward, the exact details
for them are given in Appendix 1.

7.1 Division by a public value

The main idea for the division protocol comes from [13] and
essentially consists of publicly finding the inverse d ′ = 1/d
of the divisor d and then multiplying the dividend a with the
previously found inverse value d ′. This trick reduces division
to multiplication by a constant, which is often used on normal
processors to speed up batch division of many numbers with a
single value. In our case, however, it allows to do the division
publicly and then only perform a secret multiplication, which
is fairly efficient.

Since we have access to only integer arithmetic, it makes
sense to denote the inverse value d ′ ≈ c2−k where we choose
k in such a way that c is an integer. It is shown in [13] that
one can choose c and k in such a way that the final outcome
w of the protocol is equal to ' u

d (. All that is left to do is to
compute the division by multiplying c and u and then shifting
the result cu right k positions.

It is shown in [13] that if we are working with integers
from Z2n , it suffices to choose k = n + 1 and the problem
can thus be reduced to just finding the highest n bits of the
2n + 1 bit multiplication result.1

1 In [13] the authors actually transform the problem so that it is enough
to use just 2n bits. However, the transformation assumes that bit shifts
are cheap, making it impractical in the current MPC setting.

Algorithm 8: Protocol [[w]] ← PubDiv([[u]], d) for
division by a public value d.

Data: Shared value [[u]] and a public divisor d .
Result: Shares [[w]] of the value w = ' u

d (.
1 [[u′]]← ReshareToTwo(u).
2 P2, P3 find c ∈ Z2n+1 such that c2−(n+1) ≈ 1

d as in [13].
3 P1 sets v1

1, v2
1 ← 0 ∈ Z22n+1 .

4 P2 sets v1
2 ← cu′2, v2

2 ← c(u′2 − 2n) ∈ Z22n+1 .
5 P3 sets v1

3, v2
3 ← cu′3 ∈ Z22n+1 .

6 [[λ]]← Overflow([[u′]]).
7 [[λ1]]← Overflow([[v1 + n]]).
8 [[λ2]]← Overflow([[v2 + n]]).
9 Every Pi sets w1

i ← v1
i , (n + 1) and w2

i ← v2
i , (n + 1).

10 Return [[w]]← (1− [[λ]])([[w1]] + [[λ1]]) + [[λ]]([[w2]] + [[λ2]]).

In our setting, multiplying two n bit values means that the
higher bits are thrown away. To avoid that, both values would
temporarily need to be converted to 2n + 1-bit values, then
multiplied and then have the result truncated back to n bit
value.

Converting a secret n bit value [[u]] into a value of m > n
bits requires that we know whether the sum u1 + u2 + u3
produces a carry into the higher order bits when viewed in
Z2m . We can use Algorithm 11 to obtain the carry bit. We
can then carry out the multiplication and use Algorithm 11
again to perform the truncation.2

However, the crucial observation is that we can parallelize
determining the carry bit and truncation—since there are just
two different choices for the carry and we can just compute
the results for both and only decide in the end which of the
two to use. This approach leads to Algorithm 8.

Theorem 7 Algorithm 8 is correct and secure against one
passive attacker.

Proof In order to compute u
d = u · 1

d , the algorithm first
chooses c such that 1

d ≈ c2−(n+1) and then computes cu.
After running Algorithm 10, we have either u = u′2 + u′3 or
u = u′2 + u′3 − 2n . Hence, the values

v1 = v1
1 + v1

2 + v1
3 = 0 + cu′2 + cu′3 = c(u′2 + u′3) and

v2 = v2
1 + v2

2 + v2
3 = 0 + c(u′2 − 2n) + cu′3

= c(u′2 + u′3 − 2n)

are the two candidates for cu. Now, it remains to divide both
of these values by 2n+1 and choose the correct one. The
division is performed by right shift on line 9 and the correct
value is chosen based on the value of the bit λ on line 10.
Note that when performing the right shift, we may still need
to add 1 to compensate for the carry we lose when truncating;
this is achieved by running Algorithm 10 first to reshare the

2 We do not need to use Algorithm 12 because we do not introduce new
digits on the left like we would in the case of a normal bit shift.

123159

D. Bogdanov et al.

values [[vi]] ! (n + 1) and then Algorithm 11 in order to
obtain known carries.

To prove security, we note that sending messages only
occurs within subprotocols proven above to be perfectly si-
mulatable, hence building the required simulator is trivial.

"#

7.2 Division by a shared value

In order to implement the protocol, we will use the Gold-
schmidt iteration method, which is an adaptation of Newton
iteration designed especially for efficient implementation in
digital computers. When dividing u by v, the algorithm keeps
track of N and D so that N

D = u
v but where D → 1 as the

number of iterations increases, which guarantees that N → u
v

as well.
To be precise, the method works by starting with N0 = c0u

and D0 = c0v where c0 is a scaling constant designed to
guarantee 0.5 ≤ D0 < 1. In each step of the iteration, a
scaling coefficient Fi = 2 − Di−1 is computed after which
the new values Di = Fi Di−1 and Ni = Fi Ni−1 can be
calculated.

The Goldschmidt iteration method has many desirable
properties. First, it was conceived with parallelism in mind,
so that the two multiplications in each iteration can be done
in parallel. Secondly, it has quadratic convergence, which
means that if 0.5 ≤ D0 < 1 then 1− 2−2i ≤ Di < 1 for all
i ≥ 0. Consequently, the relative error u/v−Ni

u/v = 1 − Di ∈
(0, 2−2i], implying that log2 n iterations suffice for n bits of
precision (see Appendix 2 for details). Thirdly, the conver-
gence is monotonic, so that N0 < N1 < . . . < Ni < . . . <
u
v . This becomes crucial when one is interested in division
that always rounds in a fixed direction (i.e., either always
upwards or downwards).

In practice, the method is most often used for floating-
point division. However, analogously to the public division,
it is pretty straightforward to convert everything to purely
integer arithmetic by simply emulating fix-point arithmetic
with corresponding integer operations followed by the appro-
priate bit shifts. The details of such an approach can be found
in [17].

However, some interesting technical problems arise when
attempting an efficient implementation of such an iteration
method within Sharemind. The key difference between
the standard model and our MPC setting is the cost of bit
operations—they are virtually costless in the standard model,
but extremely costly in Sharemind.

This causes the most problems for computing the initial
scaling constant c0, which is usually done by just finding the
most significant bit position hv of v and taking c0 = 2−hv−1.
We will follow the same approach (combining Algorithms 6
and 4), but note that doing so is very costly—finding c0

constitutes roughly one-third of the whole protocol in terms
of both round and communication complexity. Nevertheless,
there seems to be no obvious way around it as the iteration
methods converge very slowly if an initial estimate of com-
parable quality is not used and the relevant literature does
not seem to discuss any other methods of finding such an
estimate.

A second problem arises when we note that emulating
fractional multiplication requires an efficient shift right oper-
ator. However, this is again something that the current frame-
work does not provide, as Algorithm 12 is rather costly. The
same is true for modulus expansion, which is required to get
the high bits of the multiplication result.

However, these problems can be solved fairly efficiently.
Firstly, the ring is expanded to m bits just once before the
iterations, and m is simply chosen large enough, so that no
further expansions would be necessary. Since this can be done
in parallel with finding c0, doing so is essentially free in terms
of rounds. Since exact truncation is also very expensive, we
will replace it with an imprecise one where all the shares
are truncated individually without worrying about the possi-
ble carry bit. This introduces additional imprecision into the
computation, but that can be dealt with by slightly increasing
the precision of the arithmetic from 2n to 2n′ and adding an
additional iteration. The details of the corresponding error
analysis and the details of the choice of m and n′ are pre-
sented in Appendix 2. Using these two tricks brings the cost
of each iteration step down to just two parallel (large mod-
ulus) multiplications, making it relatively fast and efficient.
Additional care needs to be taken to enforce strict down-
ward rounding. As mentioned before, Goldschmidt itera-
tion ensures monotonic convergence from below. This means
that N will always be less than the real value u

v , which
also means that generally we expect *N+ = * u

v + to hold.
However, there are cases where we can get *N+ < * u

v +.
This can be easily fixed by adding a suitably small value
! to N before truncation. The details of choosing ! are
presented in Appendix 2 along with the analysis of error
terms introduced by imprecise truncation during the iteration
steps.

To make convergence faster, we will alter the first ite-
ration a bit by setting F1 = 2

√
2 − 2D0, which is standard

practice for Newton iteration, but somewhat less used in the
case of Goldschmidt algorithm. Assuming

√
2− 1 < D0 <

1, it is easy to see that 2
√

2 − 2 < D1 < 1. Note that√
2 − 1 ≈ 0.41 < 0.5, but 2

√
2 − 2 ≈ 0.83, which gives

us a better estimate compared to 1− 2−21 = 0.75 provided
by the original first iteration of Goldschmidt method. This
will guarantee sufficient extra precision to compensate for
the additional errors introduced with truncation, so no extra
iteration step is needed.

The protocol for division is formalized as Algorithm 9. In
this protocol, we will be working with values from several

123 160

High-performance secure multi-party computation

Algorithm 9: Protocol [[w]]← Div([[u]], [[v]]) for divi-
sion.

Data: Shared values [[u]] and [[v]].
Result: Shares [[w]] such that w = " u

v #.
1 [[v′]]← BitExtr([[v]]).
2 [[s]]← MSNZB([[v′]]).
3 Compute [[ci]]← ShareConvm([[s]](i)) (i = 0, . . . , n − 1).
4 Set [[bc0]]←

Pn−1
i=0 2n′−i−1[[ci]].

5 [[u′]]← ReshareToTwo([[u]]), [[λ1]]← Overflowm([[u′]]).
6 [[v′]]← ReshareToTwo([[v]]), [[λ2]]← Overflowm([[v′]]).
7 [[u′′]]← [[u′]]− 2n[[λ1]] ∈ Z2m .
8 [[v′′]]← [[v′]]− 2n[[λ2]] ∈ Z2m .
9 Compute [[cN0]]← [[u′′]] · [[bc0]] and [[cD0]]← [[v′′]] · [[bc0]].

10 Set [[bF1]]← "2n′ · 2
√

2# − 2[[cD0]].
11 Compute [[ccN1]]← [[cN0]] · [[bF1]] and [[ccD1]]← [[cD0]] · [[bF1]].
12 for k ← 1 to log2 n do

13 Each party Pi computes (cNk)i ← ((ccNk)i (n′) + 1 and

(cDk)i ← (ccDk)i (n′ (i = 1, 2, 3).
14 Set [[[Fk+1]]← 2n′ · 2− [[cDk]].
15 Compute [[[[Nk+1]]← [[cNk]] · [[[Fk+1]] and

[[[[Dk+1]]← [[cDk]] · [[[Fk+1]].
16 Compute [[R]]← [[\\Nlog2 n+1]] + ".
17 Return [[w]]← ShiftRn+n′ ([[R]], n′)mod2n .

different domains. The inputs u, v and the output w belong to
Z2n . At the first stage, the input values and the initial approx-
imation c0 will be converted to Z2m using the procedures
ShareConvm(·) and Overflowm(·). They behave exactly as
ShareConv(·) and Overflow(·) with their outputs consid-
ered to be shared over Z2m .

The intermediate values are essentially fixed point num-
bers of the form 2−n′ · bx with bx ∈ Zm′ for some m′. When
such values are multiplied, we also get numbers of the form
2−2n′ ·bbx ∈ Zm′′ . Since Sharemind can only handle integer
values, these numbers will be represented by the values bx
and bbx , respectively. In order to retain constant precision, the
numbers 2−2n′ · bbx ∈ Zm′′ need to be converted back to the
form 2−n′ ·bx . This is done by right shifting all the shares of
bbx by n′ positions and rounding, if necessary (see line 13).
As a result, the modulus will also be decreased by n′, that
is, m′ = m′′ − n′. This truncation will introduce rounding
errors; see Appendix 2 for details on how they are accounted
for.

Theorem 8 Algorithm 9 is correct and secure against one
passive attacker.

Proof Correctness directly follows from the discussion
above and error computations presented in Appendix 2. Secu-
rity of the protocol is trivial as well, since we are only using
perfectly simulatable building blocks.)*

Table 1 Complexities of protocols

Protocol Rounds Communication

Mult 1 15n

ShareConv 2 5n + 4

Equal # + 2 22n + 6

ShiftR # + 3 12(# + 4)n + 16

BitExtr # + 3 5n2 + 12(# + 1)n

PubDiv # + 4 (108 + 30#)n + 18

Div 4# + 9 2mn + 6m# + 39#n + 35#n′

+ 126n + 32n′ + 24

8 Performance analysis

8.1 Complexity of protocols

Communication and round complexities of the described pro-
tocols are presented in Table 1. Here, # = log2 n and the
details of selecting n′ and m for the general division protocol
are presented in Appendix 2.

8.2 Experimental setup

Since we had access to the source code of the Sharemind vir-
tual machine, we extended it by implementing the described
protocols as primitive operations. We conducted a series of
experiments to verify that the new protocols are an improve-
ment over the previous protocols presented in [2].

Since Sharemind is designed to be a data mining plat-
form, its instruction set follows the SIMD (single instruction,
multiple data) principle. This requires protocols to accept
vectors of integers as inputs and provide vectors as out-
puts. Previous tests conducted on the platform showed that
vector operations can be more efficient than single opera-
tions. Additionally, we wanted to verify the scalability of the
implementation by testing large input vectors. Therefore, we
benchmarked each operation with input vectors with sizes
ranging from 1 up to 108. The input vectors consisted of
random values.

The order of the experiments was randomized to reduce
the impact of outside factors such as flow control and low-
level processes of the operating system. For comparison, we
also benchmarked the protocols from [2]. Not all vector sizes
could be tested for the old protocols, as their inefficiency
overloaded the networking layer and the time-outs caused
Sharemind to cancel the protocol.

We performed the benchmarks on a high-performance
computation cluster. The servers run the Debian Linux ope-
rating system, contain 12-core Intel® Xeon® processors,
have 48 GB of memory and are connected with network

123161

D. Bogdanov et al.

interface cards allowing for speeds up to 1 Gb/s. We used
three of these servers to run the Sharemind virtual machine.

Sharemind can also run successfully, albeit with lower
performance, on weaker hardware and with smaller commu-
nication channels. We note that on each machine, Share-
mind used one core, leaving the other cores with no load.
This is because the performance of Sharemind is commu-
nication-bounded, as opposed to circuit-based solutions.
Further experiments must be conducted to measure the
effect of weaker communication channels on the computa-
tion speed.

8.3 Benchmark results

After conducting the experiments, we fitted the protocol exe-
cution times using linear regression. Two distinct lines emer-
ged. One of the regression lines was a fit for input vector size
smaller than the point ns and the other for input vector sizes
larger than ns. This point ns was identified for each protocol.
We call this point the saturation point of a protocol.

According to our tests, the saturation point depends on the
communication complexity of the protocol. For smaller input
vectors, the required network messages fit into the network
channel without fragmentation. When the network traffic
exceeds the available bandwidth, the flow control algorithms
on the Sharemind network layer start to work. However,
this reduces the efficiency of the protocol and further growth
is characterized by a different linear function.

A direct result of this is that practical applications should
try to run each protocol with vector sizes equal or larger to
the saturation point. This will guarantee that network is used
to its full capabilities, and private operations are run on their
maximum efficiency.

We note that for input sizes larger than 107, the imple-
mentation started using large amounts of memory and this
affected the running time. This can be seen best on Fig. 3
where a third line seems to emerge. However, since we pro-
pose that the implementation of algorithms run the algorithms
in batches with the size of the the saturation point ns, we do
not consider the performance of huge vectors a major issue.
It may also be reduced by further fine-tuning of the imple-
mentation.

Table 2 presents an overview of the benchmark results.
For each benchmarked protocol, the table contains the time
needed to process a single input, the estimated input size that
causes saturation in the communication channel, and finally,
the time needed to process a single value in input vectors
larger than the saturation point (which is presented in mic-
roseconds as it is generally at least a thousand times smaller
than the time needed in the case of a single value operation).
The values are taken from the linear fits and are therefore
estimates.

Table 2 Overview of experimental results

Protocol Single op. (ms) ns Saturated op. (µs) Old (µs)

ShareConv 15.3 24000 0.8 18

Mult 25.9 15000 1.8 3.5

Equal 101 27000 5.0 2225

BitExtr 113 2600 51 1426

ShiftR 122 12000 15.7 –

PubDiv 124 3500 44 –

Div 390 800 534 –

For comparison, Table 2 also contains the saturated oper-
ation cost for the previous generation of protocols (“Old”).
It is clear from the data that the speed of all complex pro-
tools has increased by several orders of magnitude. For a
visual comparison of the new and old protocols, please refer
to Appendix 3.

We conclude that the protocols presented in this paper
are significantly more efficient than the ones in Bogdanov et
al. [2]. The improvement is most visible for the bit extrac-
tion and comparison protocols, where the new protocols are
more than a hundred times faster than the previous ones. We
also note that our implementation actually achieves a speed
of 1 MIPS (million instructions per second) for the private
share conversion operations. This is a significant milestone
for secure multi-party computation, as data miners typically
work with large datasets.

Another goal of our experiments was to show that it is pos-
sible to run secure multi-party computation protocols with
large input vectors containing up to 100 million values. This
demonstrates the robustness of the implementation and there-
fore its suitability for practical applications.

8.4 Secure k-means clustering

k-means clustering is a cluster analysis algorithm for parti-
tioning a set of points into k clusters according to their dis-
tances from each other. Cluster analysis helps to identify sim-
ilar object groups and is used in a range of areas from business
intelligence to computational biology. k-means clustering is a
fitting benchmark for the protocols in this paper, as it requires
multiplications, greater-than comparison, and division.

Our implementation of k-means uses secure computation
to hide the values of the clustered data. We did not hide the
size of the clusters or the assignment of points to the clusters.
However, this is not a significant limitation, since the clus-
ter sizes would typically be published anyway. While certain
techniques could be used to hide the movement of points
between clusters, they would significantly lower the perfor-
mance of the computation. It is a generally accepted trade-
off between privacy and efficiency also taken by previous
implementations [9,19]. We modified the algorithm to use

123 162

High-performance secure multi-party computation

Table 3 Privacy-preserving k-means clustering performance

Dataset k Time Iter. Multiplications Less-thans Divisions

ir is 150× 4 3 1 s 4 12.6% (9600 ops) 42.9% (5400 ops) 38.5% (44 ops)
synthetic 600× 60 3 3 s 5 44.4% (7.2 · 105 ops) 29% (2.7 · 104 ops) 21.7% (900 ops)

5 6 s 8 41.2% (1.7 · 106 ops) 33% (1.2 · 105 ops) 16% (2,400 ops)
8 8 s 7 42.2% (2.3 · 106 ops) 44.2% (2.7 · 105 ops) 10.7% (3,360 ops)

plants 34,781× 70 3 4 min 58 s 12 75.8% (1.2 · 108 ops) 21.1% (3.8 · 106 ops) 0.6% (2,520 ops)
5 22 min 42 s 28 41.2% (4.1 · 108 ops) 33% (2.4 · 107 ops) 0.4% (9,800 ops)

10 36 min 35 s 17 51.3% (4.6 · 108 ops) 47.6% (5.9 · 107 ops) 0.2% (11,900 ops)

vector operations as much as possible to take advantage of
the increased performance.

The points are distributed into initial clusters on a round-
robin basis (the initial cluster number of point i is i mod k).
Note that different initial cluster numbers can affect the
number of iterations needed. We did not attempt to achieve
more favorable initial clusters. The algorithm runs until
stabilizing.

The benchmarking results presented in Table 3 are based
on the iris, synthetic and plants datasets from the UCI Mac-
hine Learning Repository [11]. The databases were stored
in secret-shared form after scaling fractional values to allow
integer computation; the scaling did not affect the final clus-
tering. Each row shows one experiment: the parameters, over-
all number of operations, and measured runtime. The latter
is further broken down by secure operation. Note that the
percentages do not add up to 100 % as a fraction of the time
was also used for disk operations and secret sharing.

The synthetic control chart time series data set was also
used by Doganay et al. in [9] to benchmark k-means cluster-
ing algorithms developed by themselves and by Vaidya and
Clifton [19]. Their algorithms only work on vertically parti-
tioned data, which is a considerably weaker security model
compared to the one used by Sharemind. Despite that, the
time they required to cluster the synthetic dataset was con-
siderably larger compared to our implementation. Whereas
Sharemind required 3–8 s for this task, the implementation
of the algorithms introduced in [9] needed roughly 30 s, and
the time required by the algorithm of [19] was even several
orders of magnitude larger.

9 Conclusions

In this paper, we have presented numerous advancements
for computational primitives used in the Sharemind multi-
party computation engine. Compared to the original imple-
mentation presented in Bogdanov et al. [2], the performance
of all the primitives (multiplication, share conversion, bit
extraction, equality testing, comparison) has been increased.
Additionally, new protocols for right shift by a public off-
set and division by both public and private value have been
implemented and benchmarked. All the proposed protocols

have been proven secure in the semi-honest model with
one passive adversary, and a convenient game-based frame-
work for improving the readability of the proofs has been
presented.

The original motivation for developing Sharemind has
come from the needs of mining large volumes of data. Our
benchmarks show that with the current improvements, input
vectors of up to 108 elements can be processed in reasonable
time and that speeds up to 1 MIPS can be achieved for basic
primitives on state-of-the-art hardware. Real performance of
the primitives has improved up to 100 times. Benchmarks
with the k-means clustering algorithm show that secure MPC
is ready to handle real-world data mining tasks, as algorithm
runs needing hundreds of millions of private operations can
be executed in reasonable time.

Acknowledgments Authors Dan Bogdanov, Margus Niitsoo and Jan
Willemson acknowledge support from the European Regional Develop-
ment Fund through the Estonian Center of Excellence in Computer Sci-
ence (EXCS). Authors Dan Bogdanov and Jan Willemson acknowledge
support from the European Regional Development Fund through the
Software Technology and Applications Competence Centre (STACC)
and from the Estonian Science Foundation through grant No. 8124.
Author Dan Bogdanov also acknowledges support from the European
Social Fund through the Estonian Doctoral School in Information and
Communication Technology (IKTDK) and the Doctoral Studies and
Internationalisation Programme (DoRa). Author Tomas Toft is sup-
ported by Confidential Benchmarking, financed by The Danish Agency
for Science, Technology and Innovation; and acknowledges support
from the Danish National Research Foundation and The National Sci-
ence Foundation of China (under the grant 61061130540) for the Sino-
Danish Center for the Theory of Interactive Computation, within which
part of this work was performed, as well as from the Center for Research
in the Foundations of Electronic Market (supported by the Danish
Strategic Research Council) within which part of this work was per-
formed.

Appendix 1: Bit shift protocols under a public shift

The protocols in this section allow us to perform two more
standard bit-level operations on shared values, namely left
and right shifts (" and#).3

3 Note that a bit shift can be used for efficient comparison as the highest
bit of x is just x # 31.

123163

D. Bogdanov et al.

First, note that the left shift protocol is actually trivial,
since left shift by p positions can be accomplished by multi-
plying the shared value by a public constant 2p. This, in turn,
can be done by locally multiplying all the shares by the same
constant. Since no messages are exchanged, the protocol is
trivially secure against a passive adversary.

Right shift, on the other hand, is more complicated because
of the unknown overflow carry modulo 2n . Thus, in order
to build a right shift protocol, we first need a protocol to
compute the overflow. This is considerably easier to do if the
value in question is (temporarily) secret-shared between just
two parties, because then the overflow is guaranteed to be
either 0 or 1. We thus present two routines: Algorithm 10 for
resharing a value to just two parties and Algorithm 11 for
computing the overflow bit once the values are shared in this
way.

Algorithm 10: Protocol [[u′]]← ReshareToTwo([[u]])
for resharing a value [[u]] between the parties P2 and P3.

Data: Shared value [[u]].
Result: Shared value [[u′]] so that u = u′ and u′1 = 0.

1 P1 generates random r2 ← Z2n and computes r3 ← u1 − r2.
2 P1 sets u′1 = 0 and sends ri to Pi (i = 2, 3).
3 Pi computes u′i ← ui + ri (i = 2, 3).
4 Return [[u′]].

Theorem 9 Algorithm 10 is correct and secure against one
passive attacker.

Proof Correctness of the Algorithm is straightforward:

u′ = u′1 + u′2 + u′3 = 0 + u2 + r2 + u3 + r3

= u2 + r2 + u3 + u1 − r2 = u.

For security, note that P1 has no incoming messages, whereas
the only incoming messages for P2 and P3 are r2 and u1−r2,
respectively. These messages can be easily simulated with a
random value. $%

The correctness proof for Algorithm 11 is somewhat more
complicated.

Theorem 10 Algorithm 11 is correct and secure against one
passive attacker.

Proof To prove correctness, we need to compute the overflow
bit λ. The overflow occurs exactly when u′2 + u′3 ≥ 2n , or
equivalently u′2 ≥ 2n − u′3. Note that modulo 2n the value
2n−u′3 is represented just as−u′3 (unless u′3 = 0, which has
to be treated separately). Thus,

λ = 1 ⇐⇒ u′2 ≥ (−u′3) mod 2n ∧ u′3 *= 0.

In order to perform the comparison between u′2 and −u′3,
we first run Algorithm 4 and obtain a bitwise shared vector

Algorithm 11: Protocol [[λ]] ← Overflow([[u′]]) for
obtaining the overflow bit [[λ]] for [[u′]] if share u′1 = 0.

Data: Shared value [[u′]] where u′1 = 0.
Result: Share [[λ]] so that u′ = u′2 + u′3 − λ2n .

1 P1 sets p1 = 0.
2 P2 sets p2 = u′2.
3 P3 sets p3 = −u′3.
4 [[s]]← MSNZB([[p]]).
5 Share the value −u′3 bitwise as a vector [[−u′3]].
6 [[λ0]]← 1⊕Ln−1

i=0 [[s]](i) ∧ [[−u′3]]
(i)

.
7 P3 checks whether u′3 = 0. If so, λ0

3 = 1⊕ λ0
3.

8 Return [[λ]]← ShareConv([[λ0]]).

[[s]], which contains all zeroes if u′2 = −u′3mod 2n , or has just
one bit in the highest position where they differ. Thus, the dot

product
Ln−1

i=0 [[s]](i) ∧ [[−u′3]]
(i) = 1 iff u′2 < −u′3 mod 2n

and hence λ0 = 1 iff u′2 ≥ −u′3 mod 2n , as required. The
only exception appears when u′3 = 0, in which case, no
overflow can occur, but λ0 is set to 1. This mistake is easy to
correct locally by P3 who has the original u′3 and can flip his
own share of λ0 in case u′3 happens to be 0.

The security of the protocol is still trivial as it is just a
composition of perfectly simulatable protocols. $%

We are now ready to present the right shift protocol. The
main idea behind the public right shift protocol is to convert
the input to a sum of two values (known to two of the parties)
and then shift these down. This leaves us with two problems.
First, discarding the low bits discards the carry bit for the least
significant position that is retained. Second, the top carry bit
of the addition would previously implicitly disappear as we
consider addition modulo 2n . Since the values have been
shifted down, the carry bit will be present. The bulk of the
work of the protocol consists of determining and correcting
for these two carry bits.

The protocol itself is presented as Algorithm 12.

Algorithm 12: Protocol [[w]] ← ShiftR([[u]], p) for
evaluating right shift.

Data: Shared value [[u]] and a public shift p.
Result: Shares [[w]] such that w = u , p.

1 [[u′]]← ReshareToTwo([[u]]).
2 [[s]]← [[u′ - n − p]] (locally).
3 [[λ1]]← Overflow(u′).
4 [[λ2]]← Overflow(s).
5 Pi computes vi ← u′i , p.
6 Return [[w]] = [[v]]− 2n−p[[λ1]] + [[λ2]].

Theorem 11 Algorithm 12 is correct and secure against one
passive attacker.

123 164

High-performance secure multi-party computation

Proof Correctness of the algorithm follows from the discus-
sion above. Since u′2 + u′3 = u + λ12n , we have

v = v1 + v2 + v3 mod 2n = (u′2 " p) + (u′3 " p) mod 2n

= u " p + λ12n−p − λ2 mod 2n,

hence

u " p = v − λ12n−p + λ2 mod 2n .

For security note that we are only composing perfectly
simulatable subroutines. $%

This protocol can also be used for extracting the most
significant bit for comparison purposes. As it is also slightly
more efficient than the full bit extraction, we use it as the
basis of the comparison in the current implementation for
the comparison operator.

Appendix 2: Error calculation of Goldschmidt division

We will present an analysis of the effects of rounding errors.
This is done by looking at the divergence from the “ideal”
computation where no rounding takes place and for which the
error terms can be fairly easily estimated. A similar analysis
was performed in [10]. Their analysis was more detailed,
but relied on using floating-point numbers, making it hard to
apply it here directly.

Let Ni , Di , Fi , c0 denote the actual real numbers encoun-
tered during the run of Newton Goldschmidt iterations as
described in Sect. 9. In Sharemind, we are using the approx-
imations of values x by fixed point numbersex = 2−n′ ·bx being
represented by bx ∈ Zm′ for some m′.

Recall that both the sequences (Ni) and (Di) were con-
verging from below to u

v and 1, respectively. To preserve the
convergence from below in the presence of errors, extra care
needs to be taken with rounding errors to make sure they are
also one-sided.

Let the differences between the real values Ni , Di and
their approximations be "Ni and "Di selected so that fNi =
Ni + "Ni and fDi = Di − "Di . Note that on line 13 of

Algorithm 9, the value of cNk is always rounded up and the
value of cDk is always rounded down. This guarantees that we
have "Nk,"Dk ≥ 0 for all k ≥ 1. When the shares of ccNk
and ccDk are right shifted to convert the elements back to the
precision 2−n′ (Algorithm 9, line 13), additional truncation
errors are introduced. Since there are three computing parties
and we shift by n′ positions, the errors occurring at both
upwards and downwards rounding are bounded by δ = 3 ·
2−n′ . Thus, for k ≥ 1, we obtain

]Dk+1 > fDk ·]Fk+1 − δ = fDk · (2−fDk)− δ

= (Dk −"Dk) · (2− Dk + "Dk)− δ

= Dk+1 − 2"Dk(1− Dk)− ("Dk)
2 − δ

and

]Nk+1 ≤ fNk ·]Fk+1 + δ = fNk · (2−fDk) + δ

= (Nk + "Nk) · (2− Dk + "Dk) + δ

= Nk+1 + Nk"Dk + "Nk(2− Dk + "Dk) + δ.

This implies

"Dk+1 = Dk+1 −]Dk+1 < 2"Dk(1− Dk) + ("Dk)
2 + δ

≤ 2"Dk2−2k + ("Dk)
2 + δ

and

"Nk+1 =]Nk+1 − Nk+1

≤ "Nk(2− Dk + "Dk) + Nk"Dk + δ

< "Nk(1 + 2−2k + "Dk) + u
v
"Dk + δ.

Since the first rounding error is introduced only after mul-
tiplication by F1, we have "D1,"N1 ≤ δ. Thus, we can iter-
ate these recurrent inequalities to get bounds for "Dk,"Nk
in terms of u

v and δ.
In order to guarantee that truncation of the result will lead

to a proper value, we will have to ensure that the end result
R satisfies) u

v * ≤)R* <) u
v * + 1. Let 1 − Dk < 2−p, in

which case Nk < u
v (1− 2−p) since Nk

Dk
= u

v . Recall that bc0

was chosen so that 0.5 ≤ vec0 < 1, hence ec0 < 1
v ≤ 2ec0.

Consequently, fNk ≥ Nk < u
v (1 − 2−p) > u

v − uec02−p+1.

Fig. 1 Benchmark results for
the multiplication conversion
operation

123165

D. Bogdanov et al.

Fig. 2 Benchmark results for
the share conversion operation

Fig. 3 Benchmark results for
the equality comparison
operation

Fig. 4 Benchmark results for
the greater-than comparison
operation

Fig. 5 Benchmark results for
the bit extraction operation

123 166

High-performance secure multi-party computation

Fig. 6 Benchmark results for
the division operations

Taking R = fNk + ! where ! = uec02−p+1 thus guarantees
R ≥ u

v and #R$ ≥ # u
v $.

We are left to show that R < # u
v $+1. Let !Nk < a +b u

v
as obtained after iterating the above recurring inequalities k
times. Then, R = fNk +uec02−p+1 < Nk +a+2uec0(2−p+b).
Since Nk < u

v ≤ (# u
v $ + 1) − 1

v < (# u
v $ + 1) − ec0, it

suffices to show that a+2uec0(2−p +b) < ec0, or equivalently
a
ec0

+ 2ub + u2−p+1 < 1. Since 2−n ≤ ec0 < 1 and 0 ≤ u <

2n , this can be achieved by showing 2n(a+2b+2−p+1) < 1.
For n = 32, the required inequality can be guaranteed by

taking k = 5, n′ = 37, in which case p > 40.68 (if the first
iteration is done with F1 = 2

√
2− 2D0), a, b < 0.2× 2−32.

These choices imply m = 32 + (5 + 1)× 37 = 254.

Appendix 3: Benchmark diagrams

Figures 1, 2, 3, 4, 5, and 6 compare the running times for the
protocols in this paper with the protocols in [2]. The range
between the minimal and maximal result is shown where
multiple experiments were conducted. Missing data points
indicate that the protocol was too inefficient to perform at
that input size. The axes on the diagrams are drawn on a
logarithmic scale. Since the right shift protocol is also used
to implement greater-than comparisons, we compared it with
the greater-than comparison protocol from [2]. This is an
honest comparison, since the greater-than comparison can
be implemented in computing the difference on two values
and finding the highest bit using the right shift operation.

References

1. Ben-David, A., Nisan, N., Pinkas, B.: FairplayMP: a system for
secure multi-party computation. In: CCS ’08: Proceedings of the
15th ACM conference on Computer and Communications Security,
pp. 257–266. ACM, New York, NY, USA (2008). http://doi.acm.
org/10.1145/1455770.1455804

2. Bogdanov, D., Laur, S., Willemson, J.: Sharemind: A framework
for fast privacy-preserving computations. In: ESORICS 2008: Pro-
ceedings of the 13th European Symposium on Research in Com-

puter Security, Málaga, Spain, Oct 6–8, 2008, LNCS, vol. 5283,
pp. 192–206. Springer (2008)

3. Bogdanov, D., Laur, S., Willemson, J.: Sharemind: a framework for
fast privacy-preserving computations. Cryptology ePrint Archive,
Report 2008/289 (2008). http://eprint.iacr.org/

4. Bogdanov, D., Talviste, R., Willemson, J.: Deploying secure multi-
party computation for financial data analysis. (short paper). In:
Keromytis, A. (ed.) Proceedings of the 16th International Confer-
ence on Financial Cryptography and Data Security. FC’12. Lec-
ture Notes in Computer Science, vol. 7397, pp. 57–64. Springer
Berlin/Heidelberg (2012)

5. Bogetoft, P., Christensen, D.L., Damgård, I., Geisler, M., Jakob-
sen, T.P., Krøigaard, M., Nielsen, J.D., Nielsen, J.B., Nielsen, K.,
Pagter, J., Schwartzbach, M.I., Toft, T.: Secure multiparty compu-
tation goes live. In: FC ’09: Proceedings of the 13th International
Conference on Financial Cryptography, pp. 325–343 (2009)

6. Burkhart, M., Strasser, M., Many, D., Dimitropoulos, X.: SEPIA:
Privacy-Preserving aggregation of multi-domain network events
and statistics. In: Proceedings of the USENIX Security Symposium
’10, pp. 223–239. Washington, DC, USA (2010)

7. Canetti, R.: Universally composable security: A new paradigm for
cryptographic protocols. In: FOCS ’01: 42nd Annual Symposium
on Foundations of Computer Science, pp. 136–145 (2001)

8. Damgård, I., Fitzi, M., Kiltz, E., Nielsen, J., Toft, T.: Uncondition-
ally secure constant-rounds multi-party computation for equality,
comparison, bits and exponentiation. In: Proceedings of The 3rd
Theory of Cryptography Conference, TCC 2006, LNCS, vol. 3876.
Springer (2006)

9. Doganay, M.C., Pedersen, T.B., Saygin, Y., Savaş, E., Levi, A.:
Distributed privacy preserving k-means clustering with additive
secret sharing. In: Proceedings of the 2008 International Work-
shop on Privacy and Anonymity in Information Society, PAIS ’08,
pp. 3–11 (2008)

10. Even, G., Seidel, P.M., Ferguson, W.E.: A parametric error analysis
of Goldschmidt’s division algorithm. J. Comput. Syst. Sci. 70(1),
118–139 (2005)

11. Frank, A., Asuncion, A.: UCI Machine Learning Repository
(2010). URL http://archive.ics.uci.edu/ml

12. Geisler, M.: Cryptographic Protocols: Theory and Implementation.
Ph.D. thesis, Aarhus University (2010)

13. Granlund, T., Montgomery, P.L.: Division by invariant integers
using multiplication. In: PLDI ’94: Proceedings of the SIGPLAN
’94 Conference on Programming Language Design and Implemen-
tation, pp. 61–72 (1994)

14. Henecka, W., Kögl, S., Sadeghi, A.R., Schneider, T., Wehrenberg,
I.: TASTY: tool for automating secure two-party computations. In:
CCS ’10: Proceedings of the 17th ACM conference on Computer
and Communications Security, pp. 451–462. ACM (2010)

123167

D. Bogdanov et al.

15. Malka, L.: VMCrypt: modular software architecture for scalable
secure computation. In: Chen, Y., Danezis, G., Shmatikov, V. (eds.)
Proceedings of the 18th ACM Conference on Computer and Com-
munications Security. CCS’11. pp. 715–724 (2011)

16. Parhami, B.: Computer Arithmetic: Algorithms and Hardware
Designs. Oxford University Press, Oxford (2010)

17. Rodeheffer, T.: Software integer division. Microsoft Research
Tech, Report MSR-TR-2008-141 (2008)

18. SecureSCM. Technical report D9.1: Secure Computation Models
and Frameworks. http://www.securescm.org (2008)

19. Vaidya, J., Clifton, C.: Privacy-preserving k-means clustering
over vertically partitioned data. In: Proceedings of the 9th ACM
SIGKDD International Conference on Knowledge Discovery and
Data mining, KDD ’03, pp. 206–215 (2003)

123 168

III

Copyright Springer-Verlag Berlin Heidelberg 2012.
Republished with kind permission from Springer Science and Business Media.

Bogdanov, D., Jagomägis, R., Laur, S.: A universal toolkit for cryptograph-
ically secure privacy-preserving data mining. In: Chau, M., Wang, G.A.,
Yue, W.T., Chen, H. (eds.) Proceedings of the Pacific Asia Workshop on In-
telligence and Security Informatics, PAISI ’12. Lecture Notes in Computer
Science, vol. 7299, pp. 112–126. Springer (2012).

A Universal Toolkit for Cryptographically Secure
Privacy-Preserving Data Mining

Dan Bogdanov1,2,?, Roman Jagomägis1,2, and Sven Laur2

1 AS Cybernetica, Akadeemia tee 21, 12618 Tallinn, Estonia
{dan,lighto}@cyber.ee

2 University of Tartu, Institute of Computer Science, Liivi 2, 50409 Tartu, Estonia
swen@math.ut.ee

Abstract. The issue of potential data misuse rises whenever it is collected from
several sources. In a common setting, a large database is either horizontally or
vertically partitioned between multiple entities who want to find global trends
from the data. Such tasks can be solved with secure multi-party computation
(MPC) techniques. However, practitioners tend to consider such solutions ineffi-
cient. Furthermore, there are no established tools for applying secure multi-party
computation in real-world applications. In this paper, we describe Sharemind—a
toolkit, which allows data mining specialist with no cryptographic expertise to
develop data mining algorithms with good security guarantees. We list the build-
ing blocks needed to deploy a privacy-preserving data mining application and
explain the design decisions that make Sharemind applications efficient in prac-
tice. To validate the practical feasibility of our approach, we implemented and
benchmarked four algorithms for frequent itemset mining.

1 Introduction

The ability to combine different data sources is crucial in data analysis. For instance, not
all causal dependencies are discoverable in small-scale medical studies. Therefore, the
data of individual studies is often merged to get more reliable results. In other occasions,
a combination of different studies can lead to previously undiscovered relations.

However, combining databases gives rise to serious privacy concerns. In the most
severe cases, the database owners cannot give their data to other parties for processing,
as their database contains either personally identifiable information or company trade
secrets. The latter makes it almost impossible to carry out the analysis even if all data
owners would support it. Moreover, it can even be illegal to merge the data, as data
protection laws restrict the collection and processing of personal and medical data.

In this paper, we show how to set up a privacy-preserving data mining service using
the SHAREMIND secure computation framework. Differently from many approaches,
our solution provides cryptographic security and is efficient enough to be usable in real-
life applications. In common terms, nothing is leaked during the data aggregation except
? This research has been supported by Estonian Science Foundation grant number 8124, the

European Regional Development Fund through the Estonian Center of Excellence in Computer
Science, EXCS, and the Software Technology and Applications Competence Centre, STACC
and by European Social Funds Doctoral Studies and Internationalisation Programme DoRa.

M. Chau et al. (Eds.): PAISI 2012, LNCS 7299, pp. 112–126, 2012.
c� Springer-Verlag Berlin Heidelberg 2012

Secure Privacy-Preserving Data Mining Toolkit 113

the desired outputs. Of course, there are certain underlying assumptions that must be
met. We discuss the features and applicability of our approach and compare it with
other methods in Section 2. Section 3 presents our practical contribution—four privacy-
preserving frequent itemset mining algorithms for use with SHAREMIND. Section 4
gives benchmark results from actual experiments performed on a SHAREMIND system.

2 Data Mining Using Secure Multi-Party Computation

A typical data mining study involves data donors, data collectors and data analysts. Data
donors are the owners of the data. However, they typically do not perform data mining
themselves. Instead, they send their data to data collectors who carry out the analysis or
contract analysts to do that. This is a potential cause of privacy and trust issues, since
data collectors and analysts can misuse data or forward it to other parties. Ideally, we
want to guarantee that data collectors and analysts learn nothing about the input data
so that they can rightfully refute all claims of abuse. Similarly, analysts should learn
nothing beyond the desired end results. Additionally, data donors should not have to
participate in the processing as the popular data entry platforms (web browsers, mobile
devices) lack the power to do so.

Secure multi-party computation techniques can be used to achieve these goals, pro-
vided that there are at least two non-colluding data collectors. However, there is a big
conceptual difference depending on the number of data collectors. Namely, non-trivial
privacy preserving computation must rely on slow cryptographic primitives, whenever
the data is split between two entities [8,14,15,21].

As a solution, we propose a setting where data donors use secret sharing to distribute
the data between several data collectors (miners) as depicted in Figure 1. Secret sharing
is a cryptographic technique used to distribute confidential data into shares so that the
shares leak no information about the original value [19].

Secret sharing assures that the entries stored by individual miners are completely
random bit strings. Hence, a data provider does not have to trust any of the miners.
Instead, the donor must believe that miners as a group obey certain rules, i.e., that no
two miners collude with each other during the computations. In practice, miners will be
well-guarded computers that belong to independent companies or government agencies.

The properties of secure multi-party computation protocols are proven in certain
models. For example, in the honest-but-curious security model, it is assumed that the
miners follow the secure computation protocols. If no two miners among three collude,
then no miner can access any single input value of the processed database. Also, the
inputs and intermediate values do not leak during computation.

As a result, the individual miners can rightfully refute all abuse complaints by show-
ing that they followed the restrictions posed on group members. The cryptographic
protocols guarantee their inability to draw conclusions about the data beyond the de-
sired outcomes. Also, we do not have to make any assumptions on the honesty of data
donors. The donors do not participate in computations directly as they only send shares
of their inputs to the miners. Hence, they can influence the outcome only by altering
their inputs, which is unavoidable in any case.

172

114 D. Bogdanov, R. Jagomägis, and S. Laur

Step One: Each data donor
processes input transactions
using secret sharing and sends
one share to each miner.

Data can be entered from
desktop computers, mobile
devices, web applications or
imported from databases.

secret-shared
database

see analysis
results

secret-shared
database

secret-shared
database

secret-shared
result

Data mining using
secure multi-party computation

secret-shared
result

secret-shared
result

collect live
transactions

import
existing

databases
- or -

Step Two: The miners run the
data mining algorithms on the
secret-shared data. The miners
cannot learn anything about
the transactions from shares.

Step Three: When the miners
complete the analysis, each
publishes a share of the result
to previously agreed users who
can reconstruct the result and
report or visualize it.

Fig. 1. Architecture of the secure data mining system

2.1 The Sharemind Toolkit

The SHAREMIND platform is a practical implementation of the model described above.
Currently, the system supports three miner nodes and is proven secure in the honest-
but-curious security model [3]. Having three miners is optimal w.r.t. efficiency, as the
overall communication complexity grows quadratically with the number of miners.

For all practical purposes, one can treat SHAREMIND as a virtual machine with a
general purpose arithmetic processor and access to a secret-shared secure relational
database. These shared values are modified with share computing protocols that leak
no information about inputs and outputs. We deliberately omit all details on the secure
computation protocols, since all the SHAREMIND protocols together with formal secu-
rity analysis have been published separately [3]. In brief, all protocols can be executed
sequentially or in parallel without losing security and miners learn only which oper-
ations are performed on shared data and values that are explicitly reconstructed from
shares. The occurrences of such reconstruction can be controlled in the algorithm.

Programs for SHAREMIND can be written in three different ways. There is a high-
level language SECREC, a low-level assembly language and finally, it is possible to pro-
gram in C++ using special libraries to invoke secure computation routines. Programs
written in SECREC look like ordinary C programs with two important distinctions. First,
variables have explicit confidentiality types: public and private. All private values are
secret shared and conversion to the public type requires an explicit call of the declassify

173

Secure Privacy-Preserving Data Mining Toolkit 115

Number of parallel operations

Ti
m

e
pe

r o
pe

ra
tio

n
in

 m
ill

is
ec

on
ds

10�3

10�2

10�1

100

101

102
�

�

�

�

�
� �

������
� � ������� � � ������� �

� ������� � � �������

100 101 102 103 104 105 106 107 108

Operation
� GT

MULT

Fig. 2. The cost of secure multiplication (MULT) and secure comparison (GT) operations with
different input vector sizes

operator. Conversion from public to private is automatic. The goal of these language el-
ements is to explicitly bring out the locations in the algorithm where private values are
made public. Ideally, declassify should be used as rarely as possibly and preferably only
for final results or intermediate results with a low privacy risk. The second important
feature of SECREC is its explicit support for vector and matrix data types. Since the par-
allel execution of several share computing protocols increases efficiency, the compiler
automatically parallelizes vector and matrix operations. We do not give further details
about the SECREC language as it is not in the scope of this paper. Further details can be
found on the SHAREMIND web page [18].

The assembly language provides fine-grained control—a programmer can specify
computations down to the level of register manipulations. The C++ interface allows
to avoid code interpretation entirely and provides an implementation with maximum
efficiency. As a drawback, one must know each implementation detail, whereas pro-
gramming in SECREC requires no knowledge of the underlying structures.

The SHAREMIND toolkit also includes several developer tools, such as a designated
SECREC development environment, tools for profiling and debugging and an easy-to-
use virtual machine. Developer versions are available from the website [18].

2.2 Performance Tuning Tricks

Most share computing protocols involve online communication over the network. Due
to network delays, all such operations are guaranteed to take several milliseconds and
the performance of the system is likely to be communication-bounded. However, if we
execute several instructions in parallel, the impact of network delays remains roughly
the same and only the amount of time spent on transferring the data and performing
computations increases marginally, see Figure 2. As a result, algorithms that are practi-
cally infeasible based on the costs of individual operations can be computable in nearly
real-time if most operations are parallelized.

174

116 D. Bogdanov, R. Jagomägis, and S. Laur

Performance profiles of this shape are not specific to SHAREMIND—any other plat-
form, where individual operations require online communications, behaves similarly.
An idealized performance profile is determined by the initial cost ti, saturation point ns

and limiting cost t`. The cost of a single operation is ti, but the amortized complexity
of an operation drops as more values are processing parallel. This holds for up to ns

inputs, as beyond that, each new input value raises the total complexity by t`. If we
use initial costs in the running-time analysis, we get a conservative upper bound on the
running time. Similarly, the use of limiting costs gives us a lower bound. The saturation
point is dependent on the bandwidth of the network channel. If the channel is full, then
further vectorization does not improve performance.

2.3 Deployment Scenarios

SHAREMIND has two main deployment scenarios. For survey-type services, three re-
spectable organizations should deploy SHAREMIND servers. Each of them should be
motivated to both run the data mining task and preserve the privacy of the data owners.
Data donors and analysts can then use a designated desktop, web or mobile applications
to work with data entry and analysis applications running on the resulting platform. This
deployment is most fitting, when the data owners are individuals or companies who pro-
vide information for a larger study.

When the data owners are organizations belonging to a consortium, they can adopt
a more democratic approach to setting up the data mining system. They should choose
three amongst themselves to deploy the SHAREMIND miner software. All organizations
will now provide data into the system, including the hosts themselves. This way, their
dedication to privacy preservation is even stronger, since if they try to break the privacy
of the other parties, they can also compromise their own inputs.

2.4 Related Work

The theoretical model where dedicated miner nodes are used to collect and process
inputs form data donors was first proposed by Damgård and Ishai [9]. SHAREMIND

provides a right mix of cryptographic techniques and implementation techniques to
get maximal efficiency. Indeed, the alternative multi-party computation frameworks
VIFF [12] and SIMAP [4] are less optimized for large input sizes, see Table 1. The
SEPIA framework [7] is comparable in the speed of multiplication, but it is slower in
comparisons.

SHAREMIND has some unique features that are not found in other secure computa-
tion implementations. First, it has a database for securely storing large datasets prior
to aggregation. Second, the high-level SECREC algorithm language hides the details of
cryptographic protocols.Third, SHAREMIND has strong support for vector and matrix
operations which are executed as efficient parallel operations. All these features greatly
simplify the development of data mining algorithms.

175

Secure Privacy-Preserving Data Mining Toolkit 117

Table 1. Published running-times of systems related to SHAREMIND

Framework Multiplication Less than or equal
Running time of a single operation ti

SHAREMIND 11.4 ms 101 ms
VIFF 0.63 ms 126 ms
SIMAP 42 ms 774 ms

Limiting cost for a single operation t`

SHAREMIND 1.1 · 10�3 ms 5.3 · 10�3 ms
SEPIA 6.9 · 10�3 ms 1.6 ms
SIMAP 3 ms 674 ms

3 Frequent Itemset Mining

To show the practical applicability of the SHAREMIND framework, we implemented
four privacy-preserving algorithms for frequent itemset mining. This problem is a good
test case, as it is simple enough, but at the same time all solutions are moderately com-
putation intensive.

Frequently co-occurring events or actions often reveal information about the under-
lying causal dependencies. Hence, frequent itemset mining is often used as one of the
first steps in the analysis of transactional data. Market basket analysis is one of the most
well-known application areas for these algorithms. Although privacy issues are impor-
tant in this context, a shop can function only if all transactions are correctly recoded
into the central database and in this case the loss of record-level privacy is inevitable. In
this case, the use of privacy-preserving algorithms is justified only if we want to com-
bine data from different sources. For instance, one can combine shopping behavior with
demographic data without publishing either of the datasets.

We formalize frequent itemset mining as follows. Let A = (a1, . . . , am) be the
complete list of attributes that can appear in transactions, e.g., the items sold in the
shop. Then a transaction is a subset of A and the list of transactions T1, . . . , Tn can
be represented as an n ⇥ m zero-one matrix D where D[i, j] = 1 iff aj 2 Ti. The
support of an itemset X is the number of transactions that contain all items of X . The
cover of an itemset is the set of transaction identifiers that contain the itemset X .

Many frequent itemset mining algorithms [22,23] convert the database into a set of
covers, as support counting becomes more efficient provided that all necessary covers
fit into the main memory. Covers of itemsets can also be used in privacy-preserving
algorithms; however, their representation should not leak information about the indi-
vidual transactions. Consequently, we must represent covers with index vectors x such
that xi = 1 if X 2 Ti and xi = 0 otherwise.

Let cover(X) denote the corresponding index vector and x � y denote the pointwise
multiplication of vectors. Also, let D[⇤ , a] denote the column of D that corresponds
to the attribute a. Then the pair of recursive equations

cover({a}) = D[⇤ , a] , (1)

cover(X [Y) = cover(X) � cover(Y) . (2)

176

118 D. Bogdanov, R. Jagomägis, and S. Laur

where a 2 A can be any individual attribute and X and Y are arbitrary itemsets, is
sufficient to compute the covers of all itemsets. The natural correspondence between
support and cover of an itemset

supp(X) = |cover(X)| (3)

where |x| = x1 + · · · + xn for any index vector x allows us to express supports in
terms of addition and multiplication operations. This property significantly simplifies
the design of privacy-preserving frequent itemset mining algorithms.

The aim of frequent itemset mining is to find all itemsets X such that their support
is above a prescribed threshold t. As support is anti-monotone:

X ✓ Y) supp(X) � supp(Y) , (4)

all subsets of a frequent set must be frequent. This observation gives rise to two ba-
sic search strategies in the lattice of all itemsets. The APRIORI algorithm [1,16] uses
breadth-first search. Given a list of frequent `-element itemsets F`, the algorithm gener-
ates a list of (`+1)-element itemsets C`+1 such that all `-element subsets of a candidate
set X 2 C`+1 belong to F`. After that, supports are computed for all candidates and the
list of frequent sets F`+1 is put together. The process continues until there are no valid
candidates to test. The ECLAT algorithm [22] uses depth-first search. Given a frequent
seed pattern X and the set of frequent items F1, the algorithm forms a new candidate
set C = {X [{a} : a 2 F1} and recursively applies the same search procedure for all
frequent candidates. As a result, the candidate set remains small enough to fit all covers
into the main memory, which makes the search more efficient. There are more elab-
orate algorithms for frequent itemset mining, see the overviews [13,5] and references
provided therein.

3.1 Designing Privacy-Preserving Algorithms

All privacy-preserving algorithms presented below use private values stored as shares
and public values available for all miners. To emphasize this distinction, we surround
private variables with double brackets and write public variables as usual. For example,
[[x]] denotes that variable x is secret shared and [[z]] [[x]] · [[y]] means that the shares
of z = x · y are securely computed from the shares of x and y. The same notational
convention applies to vectors and matrices. As a result, all algorithms given below are
quite similar to the actual SECREC programs used in our experiments.

There are certain aspects to consider while designing privacy-preserving algorithms.
First, a large amount of sequential operations can considerably increase running times.
Second, the miners inevitably learn whether a branching condition holds or not. Hence,
only public values can be used for branching. If a private value must be used to make
decisions, it has to be declassified beforehand. For the same reason, array indices must
be public. While these limitations seem rather strong, they considerably simplify the
formal security analysis. Moreover, these limitations can be satisfied by representing
the entire algorithm as an arithmetical circuit.

177

Secure Privacy-Preserving Data Mining Toolkit 119

3.2 A Privacy-Preserving Apriori Algorithm

We assume that the miners have a secret shared matrix D. For a horizontally split
database, the data donors have to secret share their rows. For a vertical split, data donors
have to secret share their columns.

In all algorithms, we need to test whether a candidate set X = {x1, . . . , xk} is
frequent, i.e. we want to evaluate [[supp(X)]] � t. When the database D is secret shared,
the support of an itemset be computed from the cover as

supp(X) = |D[⇤ , x1]� · · ·�D[⇤ , xk]| .

A naive implementation of this formula produces k sequential multiplication opera-
tions, whereas a balanced evaluation strategy has only dlog2 ke sequential operations.
For example, two sequential operations are needed to compute the cover of {x1, . . . , x4}
if we concurrently execute the following multiplications:

(D[⇤ , x1]�D[⇤ , x2])� (D[⇤ , x3]�D[⇤ , x4]) .

The latter is important, as parallel operations are much faster. As a downside, the re-
quired amount of memory increases by k times.

For further gains, note that each candidate in the APRIORI algorithm is obtained by
merging two frequent itemset found on the previous level. Hence, the number of multi-
plication operations can be reduced to just one large vector operation, provided that we
store all covers of frequent itemsets. By performing frequency tests [[supp(X)]] � t for
all candidate sets in parallel, we increase the efficiency of the comparison operation.

These two optimizations form the core of Figure 3, where the elements of a vector
si are supports of a candidate set Ci and the columns of the matrices Mi correspond to
the cover vectors of frequent itemsets Fi. Our version of GENCANDIDATES outputs a
list of candidate sets Ci+1 and two index sets I1 and I2 such that

Ci+1 = {I1[j] [I2[j] : j = 1, . . . , |Ci+1|} .

Hence, the matrix assignment [[Mi+1]] [[Mi]][⇤ , I1] � [[Mi]][⇤ , I2] produces
respective cover vectors for Ci+1 and the algorithm is formally correct.

The main drawback of this algorithm is its high memory consumption. As cover
vectors for all candidate sets have to be allocated, the algorithm quickly allocates large
amounts of memory when there are many frequent itemsets.

3.3 A Privacy-Preserving Eclat Algorithm

Due to cached covers, the memory footprint of Figure 3 is several magnitudes higher
than for the vanilla APRIORI algorithm. Moreover, we cannot use cover compaction
methods, such as vertical tid-lists and diffsets [22,23], since the reduced cover size
inevitably leaks information about the supports. In principle, one could drop cover
caching, but this leads to significant performance penalties.

In these circumstances, the depth-first search strategy followed by the ECLAT algo-
rithm can be more compelling. The core step in our privacy-preserving ECLAT algo-
rithm is depicted in Figure 4. The function EclStep takes a frequent itemset X and

178

120 D. Bogdanov, R. Jagomägis, and S. Laur

procedure APRIORI([[D]], t, k)
// Compute support for all cover vectors
[[s]] ColSum([[D]])
// Declassify index vector of frequent columns
f1 declassify([[s]] � [[t]])
// Gather frequent column data
F1 {A[i] : f1[i] = 1}
[[M1]] [[D]][⇤ , F1]
// Validate candidate itemsets until size k
for i 2 {1, . . . , k � 1} do

// Generate candidates
(Ci+1, I1, I2) GENCANDIDATES(Fi)
// Compute covers for all candidate sets
[[Mi+1]] [[Mi]][⇤ , I1]� [[Mi]][⇤ , I2]
// Compute support for all covers
[[s]] ColSum([[Mi+1]])
f i+1 declassify([[s]] � [[t]])
// Remember frequent sets
Fi+1

�
Ci+1[i] : f i+1[i] = 1

[[Mi+1]] [[Mi+1]][⇤ , Fi+1]
end for
return F1 [F2 [. . . [Fk

end procedure

Fig. 3. Privacy-preserving APRIORI algorithm

tries to elongate by adding new items into it. For efficiency reasons, EclStep uses
a list of potential extension itemsets N and the matrix [[M]] of corresponding cover
vectors. We emphasize that each single matrix column corresponds to an itemset. For
example, [[M]][⇤ , X] is a column corresponding to the set X and [[M]][⇤ , N] is a
list of columns where each column corresponds to an itemset in N .

The recursion in EclStep is aborted if new itemsets are larger than k. Otherwise,
the shares of new cover vectors and supports are computed. Then, EclStep is applied
for each newly found frequent itemset and results are merged. The full ECLAT algorithm
consists of a call to the function EclStep(;, A, D, k, t).

3.4 Hybrid Traversal over the Search Space

A second look on Algorithm 3 reveals that parallel generation of all candidate covers
is a major contributor on memory consumption, since |Ci+1| � |Fi+1|. Thus, gener-
ating and testing candidates in smaller blocks will significantly decrease the memory
footprint. We implemented this optimization in the HYB-APRIORI algorithm.

The efficiency of EclStep is determined by the number of extensions N . If N is
always large, there is no performance penalties. The HYB-ECLAT algorithm traverses
the search space so that the number of candidates tested in each iteration is large enough,
but the number of covers that must be cached is still small. The algorithm keeps a
stack of frequent itemsets F� that must be cached. In each iteration, it takes ` first

179

Secure Privacy-Preserving Data Mining Toolkit 121

procedure ECLSTEP(X , N , [[M]], k, t)
// Combine frequent set with the candidate cover vectors
[[M]] [[M]][⇤ , X]� [[M]][⇤ , N]
// Compute supports
[[s]] ColSum([[M]])
f declassify([[s]] � [[t]])
// Construct new frequent item sets
F {X}, F⇤ = {X [N[i] : f[i] = 1}
// If we have reached the target set size, return
if |X | + 1 � k then

return F⇤
end if
// See how we could extend the current frequent sets
for Y 2 F⇤ do

N⇤ = {Z 2 F⇤ : Y � Z}
// Recursively extend the frequent itemset candidate
F F [EclStep(Y, N⇤, [[M]][⇤ , N⇤], k, t)

end for
return F

end procedure

Fig. 4. The core step of privacy-preserving ECLAT

elements from F� and finds the corresponding frequent extensions and adds them on
top of F�. As a result, the algorithm does parallel breadth-first search and achieves a
smaller memory footprint than HYB-APRIORI.

3.5 Security Analysis

Since the miners learn only the execution flow and the values of public and declassified
variables, it is sufficient to show that these observations do not leak more information
than originally intended. Formally, we need an efficient simulator that, given the desired
outputs, reconstructs the execution path together with all declassified values. As all
secure protocols used in SHAREMIND are universally composable [3], such a simulator
will provide us with a formal security proof.

Theorem 1. If the setup assumptions of the SHAREMIND platform are not violated,
then all four algorithms reveal nothing beyond the list of frequent itemsets.

Proof. Given a list F consisting of frequent itemsets with up to k elements, it is straight-
forward to determine the sets F1, . . . , Fk. From these sets, we can easily compute
C2, . . . , Ck and all other public variables used in the APRIORI algorithm. Note that the
sets Fi and Ci completely determine the declassification results, since f i[j] = 1 if and
only if Ci[j] 2 Fi. Consequently, the entire execution flow can be reconstructed and
it is straightforward to simulate the execution of the APRIORI algorithm. An analogous
argumentation also holds for the ECLAT, HYB-APRIORI and HYB-ECLAT algorithms,
since their execution path depends only the outputs of frequency tests.

180

122 D. Bogdanov, R. Jagomägis, and S. Laur

Absolute support

R
un

ni
ng

 ti
m

e
in

 se
co

nd
s

101

101.5

102

102.5

103

103.5

�

�

�

�

�

�

1000 1500 2000 2500 3000
Absolute support

A
llo

ca
te

d
m

em
or

y
in

 G
ig

ab
yt

es

1

2

3

4

5

6
�

�

�
� � �

1000 1500 2000 2500 3000

C++ implementations
� Apriori

Eclat
HybApriori
HybEclat

Fig. 5. Execution time and memory consumption on the MUSHROOM dataset

4 Experimental Results

We benchmarked the proposed algorithms on the SHAREMIND platform. We imple-
mented APRIORI, ECLAT and HYB-APRIORI in SECREC and also using the low-level
C++ interface. We implemented the HYB-ECLAT algorithm only in C++.

We conducted experiments on a dedicated SHAREMIND cluster, where three com-
puters hosted the miners and a fourth computer acted as a client. A data import tool
was used to import the datasets into the SHAREMIND database. Then, a client tool was
used to submit frequent itemset mining queries. Execution times were measured at the
miner nodes—the experiment started when the query was received and ended when the
results were sent to the client. We used operating system calls to determine the amount
of physical memory used by the miner application.

The conditions in the cluster are more ideal than the ones typically occurring in real
life deployments. The nodes in the cluster are connected by fast point-to-point network
connections. The machines contain 2.93 GHz six-core Intel Xeon CPUs and 48 GB of
memory. We note that only a single CPU core was in use.

4.1 Analysis of Computational Experiments

We tested our algorithms on the MUSHROOM and CHESS datasets from the UC Irvine
Machine Learning Repository [11]. MUSHROOM is a sparse (8124 transactions, 119
items, 19.3% density) and CHESS is a dense dataset (3196 transactions, 75 items, 49.3%
density). In addition, we benchmarked the RETAIL dataset [6] (88163 transactions,
16470 items, 0.06% density) to see whether SHAREMIND can handle large datasets.
We are not considering larger databases, as random sampling techniques can be used to
approximate supports with high enough precision [20]. Typically, 50 000 transactions
are enough for achieving a relative precision of 1%.

Figures 5 and 6 depict the behavior of all four algorithms on the MUSHROOM and
CHESS datasets. As expected, the ECLAT algorithm has the smallest memory footprint
but is also the slowest one. The running times of the other algorithms are comparable,
whereas the memory consumption metrics justify hybrid traversal strategies.

We chose the HYB-APRIORI algorithm for conducting benchmarks on the RETAIL

dataset due to its small memory footprint. Since RETAIL is large and sparse, we can use

181

Secure Privacy-Preserving Data Mining Toolkit 123

Absolute support

R
un

ni
ng

 ti
m

e
in

 se
co

nd
s

101

102

103

104

�

�

�

�

�

�

2000 2200 2400 2600 2800 3000
Absolute support

A
llo

ca
te

d
m

em
or

y
in

 G
ig

ab
yt

es

1

2

3

4
�

�

�

�
� �

2000 2200 2400 2600 2800 3000

C++ implementation
� Apriori

Eclat
HybApriori
HybEclat

Fig. 6. Execution time and memory consumption on the CHESS dataset

smaller thresholds than for the other datasets. Table 2 gives the results of the bench-
marks. The larger runtimes are expected, given the size of the database. However, the
results illustrates the feasibility of private frequent itemset mining on large datasets.

The number of frequent itemsets found is over 50, 000 for the MUSHROOM and
CHESS datasets. In most cases, such an amount of frequent sets reveals most of the
useful associations. Discovery of more subtle relations requires search space pruning
based on background information.

Table 2. Benchmark results for the RETAIL dataset

Support 1000 800 600 400
Running time 9 min 12 min 22 min 86 min
Memory usage 470 MB 476 MB 498 MB 615 MB

4.2 Related Work

To our knowledge, there are no directly comparable implementations of frequent item-
set mining running on secure multi-party computation systems. Therefore we decided to
implement a directly comparably algorithm on one of the competing platforms. Based
on the performance timings in Table 1 we decided to use the SEPIA system, since it also
performs well with vector inputs and is therefore a fair match for SHAREMIND.

The SEPIA framework provides the user with an application programming interface
written in the Java programming language. We used this interface to implement the
same APRIORI algorithm that was tested on SHAREMIND. Since SEPIA can also pro-
cess a vector of values together, we also made use of this feature.

We compared the ease of developing the APRIORI implementation using these tech-
niques. The results of the comparison are shown in Table 3. We did not measure the
time required for implementing the algorithm, because our developers had an unequal
experience with the platforms.

182

124 D. Bogdanov, R. Jagomägis, and S. Laur

Table 3. Ease of development with the SHAREMIND and SEPIA platforms

SHAREMIND with
SECREC

SHAREMIND with C++
API

SEPIA with Java API

Secret sharing Automatic Automatic Manual
Data storage Built-in database Built-in database Manual
Algorithm
development

SECREC programming
language with data
mining support

C++ API for operations
on confidential data

Java API for secure
computation protocols

Modifying an
application

Change SECREC code
and load it on the server

Change protocol imple-
mentation, recompile
and restart server

Change protocol imple-
mentation, recompile
and restart server

Absolute support

R
un

ni
ng

 ti
m

e
in

 se
co

nd
s

101

101.5

102

102.5

103

103.5

104

104.5

�

�

�

�

�

�

1000 1500 2000 2500 3000
Absolute support

A
llo

ca
te

d
m

em
or

y
in

 G
ig

ab
yt

es

5

10

15

20

�

�

� � � �

1000 1500 2000 2500 3000

Apriori comparison
� Sharemind (C++)

Sharemind (SecreC)

SEPIA (Java)

Fig. 7. Comparison of performance between the SHAREMIND and SEPIA frameworks

Performance was measured in exactly the same conditions. The results are given in
Figure 7. The SHAREMIND C++ implementation is the fastest of the three with SEPIA
being about two to five times slower across tested support sizes. The SECREC imple-
mentation starts up fast, but loses performance as more and more data is processed.
Profiling showed that this is caused by inefficient vector handling in the virtual ma-
chine processing SECREC. This inefficiency will be resolved so that SECREC will have
the same efficiency as the C++ API.

In the the memory consumption comparison, both SECREC and SHAREMIND/C++
are significantly more memory-efficient than SEPIA. This could be explained with a
lower level of optimizations in large vector operations. There is no measurement for
SEPIA with support 1000, because the protocol did not complete its work in several
attempts. Measurements showed that network traffic between two SEPIA nodes ceased
during processing a large vector multiplication operation.

We note that it does not make sense to compare our solution with randomized re-
sponse techniques developed for frequent itemset mining [10,17], since they are shown
to be rather imprecise for high privacy levels [2]. The algorithm by Kantarcioglu and
Clifton [15] is the only algorithm that is probably more efficient, as it uses properties of
horizontal database partition to do most computations locally. The solution can be also
adopted for SHAREMIND with the same efficiency.

183

Secure Privacy-Preserving Data Mining Toolkit 125

4.3 Feasibility in Real World Applications

In real-world applications, network latency can be significantly greater and bandwidth
significantly lower than in our experiments. The initial costs of private operations are
roughly proportional to the end-to-end latency of the communication channel and the
limiting costs are roughly proportional to bandwidth.

In our experiments, the end-to-end latency on the application level is roughly 40–50

milliseconds. In real world settings, the physical network latency component is 40–
100 milliseconds depending on network topology and geographical location. Hence,
the end-to-end latency can increase up to five times. Similarly, it is quite plausible that
the network bandwidth is up to 10 times smaller. For the most pessimistic settings,
the amount of time spent on the private operations can thus grow 10 times, which still
preserves practical feasibility.

While SHAREMIND guarantees the secrecy of data during operations, the developer
may leak confidential information by declassifying too much values. Often, the security
analysis is trivial—especially, when only the final result is declassified. In other cases,
it is sufficient to show that all declassified values can be derived from the final result.

These issues can be solved by providing a developer’s guide to help a programmer
decide on the security of a declassification. Also, static program analysis may be a
suitable tool for detecting trivial leaks in SECREC programs.

5 Conclusion

We have shown that privacy-preserving data mining using secure multiparty computa-
tion is practically feasible. Although the theoretical feasibility has been known since the
late 1980s, SHAREMIND is one of the few implementations capable of processing large
databases. We have validated our approach by implementing four privacy-preserving
frequent itemset mining algorithms. The APRIORI and ECLAT provide high speeds and
a low memory footprint, respectively. HYB-APRIORI and HYB-ECLAT provide more
fine-tuned controls for memory usage and the degree of parallelization.

We have provided benchmarks for all the algorithms and also a performance com-
parison with another secure multiparty computation system. The optimizations for large
scale databases allow SHAREMIND to outperform other systems. The ease of practical
use can be as important as performance. Arguing about the privacy of a algorithm imple-
mented with SHAREMIND requires no cryptographic proofs. Therefore, a data mining
expert does not have to be a cryptography expert to use SHAREMIND and SECREC for
creating privacy-preserving data mining applications.

References

1. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In:
Proc. of VLDB 1994, pp. 487–499. Morgan Kaufmann (1994)

2. Agrawal, S., Haritsa, J.R., Prakash, B.A.: FRAPP: a framework for high-accuracy privacy-
preserving mining. Knowledge Discovery and Data Mining 18(1), 101–139 (2009)

184

126 D. Bogdanov, R. Jagomägis, and S. Laur

3. Bogdanov, D., Laur, S., Willemson, J.: Sharemind: A Framework for Fast Privacy-Preserving
Computations. In: Jajodia, S., Lopez, J. (eds.) ESORICS 2008. LNCS, vol. 5283, pp. 192–
206. Springer, Heidelberg (2008)

4. Bogetoft, P., Damgård, I., Jakobsen, T., Nielsen, K., Pagter, J., Toft, T.: A Practical Imple-
mentation of Secure Auctions Based on Multiparty Integer Computation. In: Di Crescenzo,
G., Rubin, A. (eds.) FC 2006. LNCS, vol. 4107, pp. 142–147. Springer, Heidelberg (2006)

5. Bramer, M.: Principles of Data Mining. Springer (2007)
6. Brijs, T., Swinnen, G., Vanhoof, K., Wets, G.: Using association rules for product assortment

decisions: A case study. In: Proc. of KDD 1999, pp. 254–260. ACM (1999)
7. Burkhart, M., Strasser, M., Many, D., Dimitropoulos, X.: SEPIA: privacy-preserving aggre-

gation of multi-domain network events and statistics. In: Proc. of USENIX Security 2010, p.
15. USENIX Association (2010)

8. Chor, B., Kushilevitz, E.: A zero-one law for boolean privacy. In: Proc. of STOC 1989, pp.
62–72. ACM Press (1989)

9. Damgård, I., Ishai, Y.: Constant-Round Multiparty Computation Using a Black-Box Pseu-
dorandom Generator. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 378–394.
Springer, Heidelberg (2005)

10. Evfimievski, A.V., Srikant, R., Agrawal, R., Gehrke, J.: Privacy preserving mining of associ-
ation rules. In: Proc. of KDD 2002, pp. 217–228 (2002)

11. Frank, A., Asuncion, A.: UCI machine learning repository (2010)
12. Geisler, M.: Cryptographic Protocols: Theory and Implementation. PhD thesis, Aarhus Uni-

versity (2010)
13. Goethals, B.: Frequent set mining. In: The Data Mining and Knowledge Discovery Hand-

book, ch. 17, pp. 377–397. Springer (2005)
14. Goethals, B., Laur, S., Lipmaa, H., Mielikäinen, T.: On Private Scalar Product Computa-

tion for Privacy-Preserving Data Mining. In: Park, C., Chee, S. (eds.) ICISC 2004. LNCS,
vol. 3506, pp. 104–120. Springer, Heidelberg (2005)

15. Kantarcioglu, M., Clifton, C.: Privacy-preserving distributed mining of association rules on
horizontally partitioned data. IEEE Transactions on Knowledge and Data Engineering 16(9),
1026–1037 (2004)

16. Mannila, H., Toivonen, H., Verkamo, A.I.: Efficient algorithms for discovering association
rules. In: KDD Workshop, pp. 181–192 (1994)

17. Rizvi, S., Haritsa, J.R.: Maintaining data privacy in association rule mining. In: Proc. of
VLDB 2002, pp. 682–693 (2002)

18. The Sharemind framework, http://sharemind.cyber.ee/
19. Shamir, A.: How to share a secret. Communications of the ACM 22(11), 612–613 (1979)
20. Toivonen, H.: Sampling large databases for association rules. In: Proc. of VLDB 1996, pp.

134–145. Morgan Kaufmann (1996)
21. Yang, Z., Wright, R.N., Subramaniam, H.: Experimental analysis of a privacy-preserving

scalar product protocol. Computer Systems: Science & Engineering 21(1) (2006)
22. Zaki, M.J.: Scalable algorithms for association mining. IEEE Trans. Knowl. Data Eng. 12(3),

372–390 (2000)
23. Zaki, M.J., Gouda, K.: Fast vertical mining using diffsets. In: Proc. of KDD 2003, pp. 326–

335 (2003)

185

CURRICULUM VITAE

Personal data
Name Dan Bogdanov

Birth February 28th, 1983

Citizenship Estonian

Marital Status Married

Languages Estonian, English, German, Russian, French

Contact +372 52 75 525
dan@cyber.ee

Education
2007– University of Tartu, Ph.D. candidate in Computer Science

2005–2007 University of Tartu, M.Sc. in Computer Science

2001–2005 University of Tartu, B.Sc. in Computer Science

1998–2001 Pärnu Sütevaka School of Humanities, secondary education

1993–1998 Pärnu Sütevaka School of Humanities, primary education

1989–1993 Pärnu 1st Secondary School, primary education

Employment
2007– Cybernetica AS, researcher

2006–2007 OÜ Quretec, systems analyst

186

2005–2006 AS EGeen, systems analyst

2003–2005 OÜ Web Expert, software developer

2000–2001 OÜ Maripuu Meedia, software developer

ELULOOKIRJELDUS

Isikuandmed
Nimi Dan Bogdanov

Sünniaeg ja -koht 28. veebruar 1983

Kodakondsus eestlane

Perekonnaseis abielus

Keelteoskus eesti, inglise, saksa, vene, prantsuse

Kontaktandmed +372 52 75 525
dan@cyber.ee

Haridustee
2007– Tartu Ülikool, informaatika doktorant

2005–2007 Tartu Ülikool, MSc informaatikas

2001–2005 Tartu Ülikool, BSc informaatikas

1998–2001 Pärnu Sütevaka Humanitaargümnaasium, keskharidus

1993–1998 Pärnu Sütevaka Humanitaargümnaasium, põhiharidus

1989–1993 Pärnu 1. keskkool, algharidus

Teenistuskäik
2007– Cybernetica AS, teadur

2006–2007 OÜ Quretec, analüütik

187

2005–2006 AS EGeen, analüütik

2003–2005 OÜ Web Expert, tarkvaraarendaja

2000–2001 OÜ Maripuu Meedia, tarkvaraarendaja

 1. Mati Heinloo. The design of nonhomogeneous spherical vessels, cylindrical

tubes and circular discs. Tartu, 1991, 23 p.
 2. Boris Komrakov. Primitive actions and the Sophus Lie problem. Tartu,

1991, 14 p.
 3. Jaak Heinloo. Phenomenological (continuum) theory of turbulence. Tartu,

1992, 47 p.
 4. Ants Tauts. Infinite formulae in intuitionistic logic of higher order. Tartu,

1992, 15 p.
 5. Tarmo Soomere. Kinetic theory of Rossby waves. Tartu, 1992, 32 p.
 6. Jüri Majak. Optimization of plastic axisymmetric plates and shells in the

case of Von Mises yield condition. Tartu, 1992, 32 p.
 7. Ants Aasma. Matrix transformations of summability and absolute summa-

bility fields of matrix methods. Tartu, 1993, 32 p.
 8. Helle Hein. Optimization of plastic axisymmetric plates and shells with

piece-wise constant thickness. Tartu, 1993, 28 p.
 9. Toomas Kiho. Study of optimality of iterated Lavrentiev method and

its generalizations. Tartu, 1994, 23 p.
10. Arne Kokk. Joint spectral theory and extension of non-trivial multiplica-

tive linear functionals. Tartu, 1995, 165 p.
11. Toomas Lepikult. Automated calculation of dynamically loaded rigid-

plastic structures. Tartu, 1995, 93 p, (in Russian).
12. Sander Hannus. Parametrical optimization of the plastic cylindrical shells

by taking into account geometrical and physical nonlinearities. Tartu, 1995,
74 p, (in Russian).

13. Sergei Tupailo. Hilbert’s epsilon-symbol in predicative subsystems of
analysis. Tartu, 1996, 134 p.

14. Enno Saks. Analysis and optimization of elastic-plastic shafts in torsion.
Tartu, 1996, 96 p.

15. Valdis Laan. Pullbacks and flatness properties of acts. Tartu, 1999, 90 p.
16. Märt Põldvere. Subspaces of Banach spaces having Phelps’ uniqueness

property. Tartu, 1999, 74 p.
17. Jelena Ausekle. Compactness of operators in Lorentz and Orlicz sequence

spaces. Tartu, 1999, 72 p.
18. Krista Fischer. Structural mean models for analyzing the effect of

compliance in clinical trials. Tartu, 1999, 124 p.

DISSERTATIONES MATHEMATICAE
UNIVERSITATIS TARTUENSIS

188

19. Helger Lipmaa. Secure and efficient time-stamping systems. Tartu, 1999,
56 p.

20. Jüri Lember. Consistency of empirical k-centres. Tartu, 1999, 148 p.
21. Ella Puman. Optimization of plastic conical shells. Tartu, 2000, 102 p.
22. Kaili Müürisep. Eesti keele arvutigrammatika: süntaks. Tartu, 2000, 107 lk.
23. Varmo Vene. Categorical programming with inductive and coinductive

types. Tartu, 2000, 116 p.
24. Olga Sokratova. ȍ-rings, their flat and projective acts with some appli-

cations. Tartu, 2000, 120 p.
25. Maria Zeltser. Investigation of double sequence spaces by soft and hard

analitical methods. Tartu, 2001, 154 p.
26. Ernst Tungel. Optimization of plastic spherical shells. Tartu, 2001, 90 p.
27. Tiina Puolakainen. Eesti keele arvutigrammatika: morfoloogiline ühesta-

mine. Tartu, 2001, 138 p.
28. Rainis Haller. M(r,s)-inequalities. Tartu, 2002, 78 p.
29. Jan Villemson. Size-efficient interval time stamps. Tartu, 2002, 82 p.
30. Eno Tõnisson. Solving of expession manipulation exercises in computer

algebra systems. Tartu, 2002, 92 p.
31. Mart Abel. Structure of Gelfand-Mazur algebras. Tartu, 2003. 94 p.
32. Vladimir Kuchmei. Affine completeness of some ockham algebras. Tartu,

2003. 100 p.
33. Olga Dunajeva. Asymptotic matrix methods in statistical inference

problems. Tartu 2003. 78 p.
34. Mare Tarang. Stability of the spline collocation method for volterra

integro-differential equations. Tartu 2004. 90 p.
35. Tatjana Nahtman. Permutation invariance and reparameterizations in

linear models. Tartu 2004. 91 p.
36. Märt Möls. Linear mixed models with equivalent predictors. Tartu 2004.

70 p.
37. Kristiina Hakk. Approximation methods for weakly singular integral

equations with discontinuous coefficients. Tartu 2004, 137 p.
38. Meelis Käärik. Fitting sets to probability distributions. Tartu 2005, 90 p.
39. Inga Parts. Piecewise polynomial collocation methods for solving weakly

singular integro-differential equations. Tartu 2005, 140 p.
40. Natalia Saealle. Convergence and summability with speed of functional

series. Tartu 2005, 91 p.
41. Tanel Kaart. The reliability of linear mixed models in genetic studies.

Tartu 2006, 124 p.
42. Kadre Torn. Shear and bending response of inelastic structures to dynamic

load. Tartu 2006, 142 p.

189
48

43. Kristel Mikkor. Uniform factorisation for compact subsets of Banach
spaces of operators. Tartu 2006, 72 p.

44. Darja Saveljeva. Quadratic and cubic spline collocation for Volterra
integral equations. Tartu 2006, 117 p.

45. Kristo Heero. Path planning and learning strategies for mobile robots in
dynamic partially unknown environments. Tartu 2006, 123 p.

46. Annely Mürk. Optimization of inelastic plates with cracks. Tartu 2006.
137 p.

47. Annemai Raidjõe. Sequence spaces defined by modulus functions and
superposition operators. Tartu 2006, 97 p.

48. Olga Panova. Real Gelfand-Mazur algebras. Tartu 2006, 82 p.
49. Härmel Nestra. Iteratively defined transfinite trace semantics and program

slicing with respect to them. Tartu 2006, 116 p.
50. Margus Pihlak. Approximation of multivariate distribution functions.

Tartu 2007, 82 p.
51. Ene Käärik. Handling dropouts in repeated measurements using copulas.

Tartu 2007, 99 p.
52. Artur Sepp. Affine models in mathematical finance: an analytical approach.

Tartu 2007, 147 p.
53. Marina Issakova. Solving of linear equations, linear inequalities and

systems of linear equations in interactive learning environment. Tartu 2007,
170 p.

54. Kaja Sõstra. Restriction estimator for domains. Tartu 2007, 104 p.
55. Kaarel Kaljurand. Attempto controlled English as a Semantic Web language.

Tartu 2007, 162 p.
56. Mart Anton. Mechanical modeling of IPMC actuators at large deforma-

tions. Tartu 2008, 123 p.
57. Evely Leetma. Solution of smoothing problems with obstacles. Tartu 2009,

81 p.
58. Ants Kaasik. Estimating ruin probabilities in the Cramér-Lundberg model

with heavy-tailed claims. Tartu 2009, 139 p.
59. Reimo Palm. Numerical Comparison of Regularization Algorithms for

Solving Ill-Posed Problems. Tartu 2010, 105 p.
60. Indrek Zolk. The commuting bounded approximation property of Banach

spaces. Tartu 2010, 107 p.
61. Jüri Reimand. Functional analysis of gene lists, networks and regulatory

systems. Tartu 2010, 153 p.
62. Ahti Peder. Superpositional Graphs and Finding the Description of Struc-

ture by Counting Method. Tartu 2010, 87 p.
63. Marek Kolk. Piecewise Polynomial Collocation for Volterra Integral

Equations with Singularities. Tartu 2010, 134 p.

190

64. Vesal Vojdani. Static Data Race Analysis of Heap-Manipulating C Programs.
Tartu 2010, 137 p.

65. Larissa Roots. Free vibrations of stepped cylindrical shells containing
cracks. Tartu 2010, 94 p.

66. Mark Fišel. Optimizing Statistical Machine Translation via Input Modifi-
cation. Tartu 2011, 104 p.

67. Margus Niitsoo. Black-box Oracle Separation Techniques with Appli-
cations in Time-stamping. Tartu 2011, 174 p.

68. Olga Liivapuu. Graded q-differential algebras and algebraic models in
noncommutative geometry. Tartu 2011, 112 p.

69. Aleksei Lissitsin. Convex approximation properties of Banach spaces.
Tartu 2011, 107 p.

70. Lauri Tart. Morita equivalence of partially ordered semigroups. Tartu
2011, 101 p.

71. Siim Karus. Maintainability of XML Transformations. Tartu 2011, 142 p.
72. Margus Treumuth. A Framework for Asynchronous Dialogue Systems:

Concepts, Issues and Design Aspects. Tartu 2011, 95 p.
73. Dmitri Lepp. Solving simplification problems in the domain of exponents,

monomials and polynomials in interactive learning environment T-algebra.
Tartu 2011, 202 p.

74. Meelis Kull. Statistical enrichment analysis in algorithms for studying gene
regulation. Tartu 2011, 151 p.

75. Nadežda Bazunova. Differential calculus d3
 = 0 on binary and ternary

associative algebras. Tartu 2011, 99 p.
76. Natalja Lepik. Estimation of domains under restrictions built upon gene-

ralized regression and synthetic estimators. Tartu 2011, 133 p.
77. Bingsheng Zhang. Efficient cryptographic protocols for secure and private

remote databases. Tartu 2011, 206 p.
78. Reina Uba. Merging business process models. Tartu 2011, 166 p.
79. Uuno Puus. Structural performance as a success factor in software develop-

ment projects – Estonian experience. Tartu 2012, 106 p.
80. Marje Johanson. M(r, s)-ideals of compact operators. Tartu 2012, 103 p.
81. Georg Singer. Web search engines and complex information needs. Tartu

2012, 218 p.
82. Vitali Retšnoi. Vector fields and Lie group representations. Tartu 2012,

108 p.

	List of publications
	Abstract
	Introduction
	Why do we need secrets?
	Background and claims of this work
	Thesis outline and contributions of the author

	Secure computation in practice
	Overview of practical secure computation systems
	Introduction to circuits
	Two-party computation using garbled Boolean circuits
	From Boolean circuits to arithmetic circuits
	Two-party computation using homomorphic encryption
	Secure multiparty computation
	Resource cost estimates

	The design of Sharemind
	Design goals and intended purpose
	Different flavors of privacy
	Record-level privacy
	Source-level privacy
	Output-level privacy
	Cryptographic privacy

	The model of a Sharemind application
	Overview of parties
	Encoding private data
	The overall threat model
	Reducing the power of the adversary
	The optimal number of computing parties
	The case for passive security in Sharemind
	Constructing simulators for secure computation protocols
	From simulatability to security and composability
	Guidelines for designing secure protocols for Sharemind

	Secure storage in Sharemind
	Design goals for secure storage
	The structure of secret-shared databases
	Manipulating secret-shared databases
	A protocol for data collection

	Protocols for secure computation
	The general secure computation process
	Protocols for addition and multiplication
	Protocols for comparison
	The secure computation capabilities of Sharemind

	Notes on the design of Sharemind protocols
	The software implementation of Sharemind

	Practical performance of Sharemind
	The complexity and performance of Sharemind
	Benchmarking methodology
	The built-in protocol profiler
	Benchmarking tools

	Performance analysis
	Sharemind protocol execution pipeline
	The importance of processor speed
	The importance of parallelization
	The importance of network bandwidth and latency

	Optimization goals for future protocols

	Programming secure computations
	Motivation and design goals
	The Sharemind secure virtual machine and assembly language
	SecreC—a high-level imperative language for implementing secure functionality
	Secure data types
	Secure operations and parallelism
	Making private data public

	Developing secure SecreC programs
	Additional developer tools
	The developer version of the Sharemind server
	The SecreCIDE integrated development environment

	A comparison of SecreC to other secure computation programming languages

	Sharemind in practice
	The process of developing a Sharemind application
	Designing the application
	Implementing the application
	Deploying the application

	Privacy-preserving application prototypes
	Online surveys
	Frequent itemset mining
	Privacy-preserving k-means clustering

	The ITL financial benchmarking application

	Conclusion
	Bibliography
	Acknowledgments
	Kokkuvõte (Summary in Estonian)
	Original Publications
	Sharemind: A Framework for Fast Privacy-Preserving Computations
	High-performance secure multi-party computation for data mining applications
	A universal toolkit for cryptographically secure privacy-preserving data mining

	Curriculum Vitae
	Elulookirjeldus
	Dissertationes mathematicae universitatis Tartuensis

