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INTRODUCTION

The water column as well as the littoral zone of a lake is inhabited by 
numerous and various types of small unicellular and multicellular het-
erotrophic organisms called zooplankton. The role of these in the ecosystem 
is to process energy and organic matter in food webs. Depending on the 
composition of the community, their feeding has a marked impact on 
other plankton communities. Thus, zooplankton can affect the entire 
ecosystem through trophic relationships. 

Since many shallow lakes experienced eutrophication during the 20th 
century, studies of the functioning of the ecosystem as well as food webs 
in shallow lakes have received increasing attention during recent decades. 
Investigations have revealed that shallow lakes alternate between macro-
phyte- and plankton-dominated states with different groups of primary 
producers. The great variability of ecological conditions in shallow lakes 
also results in more complex food webs. Several aspects of the role of 
zooplankton in the functioning of food webs in shallow eutrophic lakes, 
especially those involving microorganisms, are still poorly understood.

The present thesis is based on studies of zooplankton feeding in shallow 
eutrophic lakes in Estonia, with particular attention to a large, naturally 
highly eutrophic lake, Võrtsjärv. The impact of grazing by both proto- 
and meta-zooplankton was studied and compared to their impacts in two 
other small shallow eutrophic lakes in different alternative states.
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1. REVIEW OF THE LITERATURE

 The role of zooplankton in pelagic food webs1.1.	

In freshwater systems the zooplankton consists primarily of protozoans 
(flagellates and ciliates), with rotifers, copepods and cladocerans among 
the metazooplankton. They inhabit the water column and exploit food 
sources from the surrounding environment, so they contribute to matter 
and energy flow in pelagic ecosystems. 

The traditional view of aquatic ecosystems considers the grazing of meta-
zooplankton on phytoplankton to be the most important carbon pathway 
from primary production to zooplanktivorous fish (the classic “grazer 
food chain”) (Steele, 1974). Nowadays the concept of a “grazing food 
chain” is supplemented by the concepts of a “microbial loop”, starting 
with bacteria consuming dissolved organic matter, and a “microbial food 
web”, in which small ciliates together with heterotrophic nanoflagellates 
play a key role in transferring carbon from bacteria and pico- and nano-
planktonic autotrophs to higher trophic levels (ciliates, rotifers and larger 
zooplankton) (Azam et al., 1983; Sherr & Sherr, 1988). With increasing 
knowledge of the basic structure and function of the pelagic ecosystem, 
it has become evident that the continuum of various organisms living in 
the water column acts as a complex system, and the classic “grazer food 
chain” and “microbial food web” pathways interact through several direct 
(predator-prey relationships) and indirect (regeneration and consumption 
of nutrients) connections to become integrated components of a single 
planktonic food web (Riemann & Christoffersen, 1993) (Figure 1). The 
role of heterotrophs in the microbial food web is to mediate the transfer 
of dissolved and particulate organic matter to higher trophic levels; this 
matter might otherwise be lost to the food web (Sherr & Sherr, 1988). 
Because more trophic levels are involved in such energy transfer, and be-
cause of losses due to respiration at each step, the “microbial food web” 
is regarded as a less efficient energy pathway than the classic “grazer food 
chain” (Pomeroy & Wiebe, 1988). However, there are “shortcuts” that 
make it possible to reduce carbon losses. In some eutrophic lakes, dense 
populations of cladocerans (e.g. Daphnia) (Pace et al., 1990; Christoffersen 
et al., 1993) and even rotifers (Hwang & Heath, 1999) have been found 
to consume a substantial portion of bacterial production, thus bypassing 
the microbial food web and transferring the bacterial carbon directly to 
higher consumers. 

Figure 1. Structure of the planktonic food web in lakes. Algal produc-
tion is transferred along the classic “grazer food chain” via omnivorous 
and carnivorous zooplankton to top predators. Microorganisms form the 
“microbial food web”, which in part overlaps with the “grazer food chain”. 
Feeding interactions and bacterial substrate uptake are indicated by solid 
lines and arrow heads. The pool of dissolved organic matter is replenished 
by various release processes (excretion, exudation, cell lysis, “sloppy” feed-
ing) and used as substrate by bacteria (modified from Weisse, 2005).
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revealed several modes of food collection and selectivity for cladocerans 
(DeMott & Kerfoot, 1982; Vanderploeg, 1990; Kerfoot & Kirk, 1991), 
copepods (Williamson, 1980; Vanderploeg & Paffenhöffer, 1985; DeMott; 
1986), rotifers and protozoans (Starkweather, 1980; Fenchel, 1987; Wetzel, 
2001). As ciliates prefer a similar size-feeding spectrum of about 3-20 
µm, they are the protozoans that compete with metazoan zooplankton 
for the same food size basis (Weisse & Frahm, 2002). Although it has 
often been demonstrated that particle size is the most important factor 
in food selection (DeMott, 1989), other properties of a food particle such 
as shape, taste, texture and biochemical composition are also involved 
in the selection process, making food choice more complex (Knisely & 
Geller, 1986; DeMott & Moxter, 1991; Kerfoot & Kirk, 1991; Mohr & 
Adrian, 2002). 

Owing to their divergent feeding abilities and food selection, differently-
dominated zooplankton communities can differ markedly in grazing 
rates and impact on plankton communities (Pace et al., 1990; Cyr & 
Pace, 1992; Jürgens & Jeppesen, 2000). Strong group-specific impacts 
on planktonic protozoa and bacteria have been reported for daphnids, 
copepods and rotifers (e.g. Arndt, 1993; Jürgens, 1994; Zöllner et al., 
2003). In the trophic cascade, high metazoan grazing pressure may result 
in significantly altered plankton communities. Most significant changes 
have been associated with the presence/absence of Daphnia species. Large 
Daphnia can graze down phytoplankton biomass and affect the species 
composition (Vanni & Temte, 1990; Vakkilainen et al., 2004), and have a 
strong influence on the structure of microbial food webs both by suppress-
ing the biomass of heterotrophic flagellates and ciliates and by grazing on 
bacteria (Christoffersen et al., 1993; Jürgens, 1994; Jürgens & Jeppesen, 
2000). On the other hand, low metazooplankton grazing, which is usu-
ally associated with zooplankton communities dominated by small-size 
cladocerans, cyclopoid copepods and rotifers, can lead to uncontrolled 
ciliate growth and consequently to low biomass of small nanoplankton, 
but also to an increase in the biomass of large phytoplankton (Berquist 
et al., 1985; Jürgens & Jeppesen, 2000; Ventelä et al., 2002; Stephen et 
al., 2004).

Seasonal shifts in species composition of freshwater zooplankton are also 
reflected in structural and functional changes in the food web. 

Schematic representations of food webs are mostly simplified, showing 
aggregation of species into major functional groups or guilds and interac-
tions between them. Within each group, however, organism sizes range 
widely (Figure 1). An important characteristic of the food web is that 
the functioning processes in it (e.g. size-selective predation, feeding and 
nutrient excretion rates) are to a large extent based on size-dependent 
relationships (Bergquist et al., 1985; Hansen et al., 1994; Hansen et al., 
1997; Jeppesen et al., 2000).

1.2. Effect of zooplankton feeding on food web structure

Plankton communities are structured by the simultaneous effects of se-
lective feeding and competition for resources. Several issues concerning 
food, such as threshold food concentrations (Duncan, 1989; Kirk, 2002), 
feeding overlap and competition between consumers (Weisse and Frahm, 
2002), and nutritional quality (Ahlgren et al., 1990; Mohr & Adrian, 
2002), are noted as important factors in regulating seasonal species and 
community successions of zooplankton. Predation is considered to be the 
major cause of mortality, affecting the biomass, structure and average size 
of the zooplankton community (Gliwicz & Pijanovska, 1989; Jürgens & 
Jeppesen, 2000). A general feature of more eutrophic systems is that top-
down regulation is a stronger shaping factor for the plankton community 
than food resources (bottom-up regulation) (Jürgens et al., 1999; Jeppesen 
et al., 2000). In turn, through feeding, zooplankton alter the plankton 
communities along trophic relationships. Cascading trophic interactions 
are known to play an important role in transferring the effects of fish 
predation via zooplankton to lower trophic levels (Carpenter & Kitchell, 
1993; Christoffersen et al., 1993). 

As a whole, the zooplankton community is adapted to utilize a wide 
range of food organisms. Because they live in a medium of suspended 
particles, among which small unicellular algae, bacteria and detritus are 
the most abundant food resources, suspension feeding is the most com-
mon mode of food collection among zooplankton; it is used by most 
cladocerans, calanoid copepods, and by rotifers and ciliates. A raptorial 
type of feeding is generally used for capturing larger and less abundant 
food objects such as other animals (ciliates and small metazoans) or larger 
algal cells (Gliwicz, 2005). However, within groups in the zooplankton 
community, feeding is more variable. Detailed laboratory studies have 
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1.3. Impact of zooplankton grazing in shallow eutrophic lakes

Studies of shallow lake ecosystems have received increasing attention since 
the late 1980s. Since then, basic theories of the functioning of shallow 
lakes have emerged (Moss et al., 1997; Sheffer, 1998; Jeppesen et al., 1998). 
According to the state-of-art theory, shallow lakes have two alternative 
states, a vegetation-dominated clear-water state and a turbid plankton-
dominated state (Sheffer, 1998). Switching between these states is abrupt; 
the ecosystem’s response to increasing eutrophication is not linear but fol-
lows a sigmoidal hysteresis curve. Both states are stabilized by a number 
of feedback mechanisms, among which macrophytes are most important 
for stabilizing the clear water state by maintaining water transparency by 
direct and indirect effects on phytoplankton growth. The turbid water 
state is further stabilized by planktivorous fish, which suppress the larger 
filter feeders and permit extensive phytoplankton growth (Moss et al., 
1997; Sheffer, 1998, Jeppesen et al., 1998). The effects are thus transmitted 
throughout the ecosystem. The originally identified shifts between a clear 
and turbid state remains one of the most contrasting examples. In the 
light of recent studies (Sheffer & van Nes, 2007), temperate shallow lakes 
may be dominated alternatively by charophytes, submerged angiosperms, 
green algae or cyanobacteria as the ecosystem responds to environmental 
changes. The large variability of ecological conditions also results in more 
complex food webs in shallow lakes.

Most studies of shallow lake food web functioning have dealt with the 
issue of phytoplankton-zooplankton interactions. Through refugees and 
suitable algal food, macrophyte-rich lakes support the development of 
communities of large zooplankton (often dominated by Daphnia) that 
are effective in phytoplankton grazing (Schriver et al., 1995). Therefore, 
in many plant-dominated shallow eutrophic lakes, zooplankton grazing 
has a major effect on the phytoplankton biomass and plays a major role 
in maintaining clear water conditions (Jeppesen et al., 1999). However, 
there are examples of lakes in which even a relatively low zooplankton 
grazing pressure (10-20% of the phytoplankton biomass per day) could 
contribute to low phytoplankton density (Blindow et al., 2000). In these 
cases, grazing would not be the main limiting factor for phytoplankton, 
but would play a role in combination with other limiting factors. 

In plankton-dominated lakes, various different factors may affect zoo-
plankton grazing. The high abundances of cyanobacteria, which often 

dominate in algal communities at higher nutrient levels (Jeppesen et al., 
2000), can prevent an effective control of the phytoplankton by zoop-
lankton grazing. Cyanobacteria are known to be of poor food quality 
for zooplankton in respect to their low nutritional value (Ahlgren et 
al., 1990), potential toxity (DeMott & Moxter, 1991) and filamentous 
structure resulting in interference with feeding process (DeMott et al., 
2001). A similar disturbing effect on zooplankton food gathering has been 
observed for resuspended sediments in shallow lakes (Kirk, 1991; Levine 
et al., 2005). As substantial part of phytoplankton appears not to be avail-
able as suitable food for zooplankton in shallow eutrophic lakes (Nõges 
et al., 1998a), the alternative food sources such as bacteria and detrital 
particles, which often occur in higher concentrations than living algal 
cells (Mann, 1988), would be an important food supplement to metazoan 
grazers, especially at times with limited supply of edible phytoplankton 
(Christoffersen et al., 1990; Kerfoot & Kirk, 1991). Both bottom-up and 
top-down effects force the zooplankton community towards the dominance 
of small-bodied zooplankters (Schriver et al., 1995; Jeppesen et al., 2000; 
DeMott et al., 2001), small cladocerans (e.g. Bosmina spp. and Chydorus 
spahaericus), rotifers (e.g. Keratella cochlearis and Anuraeopsis fissa) and 
cyclopoid copepods (Ooms-Wilms et al., 1995; Haberman, 1998), sup-
porting also the development of large populations of protozoans (Mayer 
et al., 1997; Jürgens et al., 1999). 

Although small zooplankters have occasionally been reported to reduce 
total algal biomass in shallow lakes (Jeppesen et al., 1990), small-bodied 
zooplankton cannot generally control the biomass of a blue-green-dom-
inated phytoplankton community (Christoffersen et al., 1990; Jeppesen 
et al., 1996; Ventelä et al., 2002). Most primary production in shallow 
eutrophic lakes is subject to bacterial decomposition (Nõges et al., 1998a) 
and will be channelled via the microbial food web. Heterotrophic micro-
organisms may constitute a substantial amount of zooplankton biomass 
in eutrophic lakes (Zingel, 1999), and in some cases protists, especially 
heterotrophic nanoflagellates, have been shown to consume most of the 
bacterioplankton as well as autotrophic picoplankton production (Šimek 
et al., 1997). Therefore, the microbial food web may be very important 
in the functioning of turbid and shallow eutrophic lakes (Zingel et al., 
2007). However, simultaneous observation of the succession of bacterial 
and phytoplankton consumption by metazoans and protozoans has rarely 
been attempted and only in few occasions in eutrophic lakes (Work & 
Havens, 2003). As in eutrophic systems, the role of the microbial food 



14 15

web seems to be strongly connected to the structure of the zooplankton 
community (Riemann & Christoffersen, 1993; Zöllner et al., 2003); its 
impact on autotrophic and heterotrophic food sources and the carbon 
flow to higher trophic levels is quite poorly predictable.  

Despite the increasing number of papers on the functioning of food webs 
in shallow lake ecosystems, there are still open questions about the role 
of zooplankton in food webs, primarily in the microbial food webs of 
shallow lakes in different ecological states. Also, only a few studies have 
considered different zooplankton groups, including those from microbial 
communities, as grazers, and have addressed their consumer-effect on 
standing stocks and the production of main food sources. For under-
standing of the structure and functioning of the pelagic ecosystems, it is 
therefore important to consider all the major components of the plank-
tonic food web.

2. AIMS OF THE STUDY

The principal aim of the present study was to evaluate the impact of 
zooplankton grazing on bacteria and phytoplankton in shallow eutrophic 
lakes. The main questions addressed were:

What is the community impact and seasonal pattern of zooplank-1.	
ton grazing in shallow eutrophic lakes with variable ecological 
states? (I, II)

How do different zooplankton groups (heterotrophic nanoflagel-2.	
lates, ciliates, rotifers, cladocerans, zooplankton size-groups) act 
as grazers on pico- and nanoparticles in shallow eutrophic lakes? 
(II, III, IV)

Which zooplankton taxa are the main grazers on bacteria and 3.	
phytoplankton in shallow eutrophic lakes? (III)
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3. MATERIALS AND METHODS

3.1. Study area

Studies II, III and IV were carried out in Võrtsjärv, a large (270 km2) and 
shallow (mean depth 2.8 m, maximum depth 6 m) eutrophic lake situated 
in Central Estonia. The average total phosphorus concentration (TP) is 
0.054 mg L-1 and the total nitrogen concentration (TN) is 1.6 mg L-1. 
The shallowness of the lake and the wave-induced resuspension of bottom 
sediments contribute to the formation of high seston concentrations and 
high turbidity during summer (Haberman et al., 1998). The large and 
open northern and central part of the lake acts as a typical plankton-
dominated lake. The southern part of the lake is narrow, very shallow 
(<1.5 m) and filled with submerged macrophytes. Nutrient concentrations 
increase slightly in the north-south direction because the largest inflow 
from the Väike Emajõgi River in the south (Tuvikene et al., 2004).

Paper II focuses on the plankton-dominated part of Võrtsjärv. In paper 
IV the plankton-dominated and the southern macrophyte-dominated 
compartments of Võrtsjärv are studied separately. In paper III Võrtsjärv 
is compared to a smaller lake, Kaiavere, which is a shallow plankton-
dominated lake in East Estonia with an area of 2.51 km2, a mean depth of 
2.8 m and a maximum depth of 4.5 m (Mäemets, 1968, 1977). Kaiavere is 
an eutrophic lake, with average TP and TN of 0.042 mg L-1 and 1.52 mg 
L-1, respectively (Nõges et al., 2003). Paper I focuses on the small (0.399 
km2) and shallow (mean depth 2.2 m, maximum depth 4.2 m) eutophic 
Lake Prossa in the trumline area in East Estonia (Mäemets, 1977). The 
average TP is 0.022 mg L-1 and the TN is 1.0 mg L-1. The entire bottom 
of Prossa is covered by macrovegetation, overwhelmingly dominated by 
charophytes (Nõges et al., 2003).

3.2. Sampling

Integrated samples for proto- and metazooplankton were obtained by 
mixing the water collected via a 2 L Ruttner sampler at 1 m intervals 
through the entire water column. For metazooplankton samples, 10 L 
of integrated water was filtered through a 48 µm plankton net and con-
centrated to 100 mL. In the studies described in paper II, a Juday net 
(mesh size 85 µm) was used for metazooplankton sampling. The lake 

water used for zooplankton grazing experiments was obtained from the 
integrated water samples. 

In Võrtsjärv, either one stationary sampling station (II, III) near to the 
deepest part of the lake, or two stations (IV) - the stationary sampling 
station and a station in the southern part - were sampled biweekly. In 
Kaiavere (III), one sampling station was studied monthly. In Prossa, the 
samples were collected weekly (April to June) or monthly (July to October) 
(I). Depth-integrated water samples were taken from five sampling points 
on the transect from the lake centre to the shore, and mixed together.

3.3. Sample fixation and microscopy

Metazooplankton samples for analyses of composition, abundance and 
biomass were fixed with acidified Lugol solution (0.5% final concentra-
tion). Triplicate subsamples (2.5 or 5 mL) were counted under a binocular 
microscope in a Bogorov chamber at 32× and 56× magnification. For 
calculations of biomass, average body lengths of at least 20 individuals of 
each taxon were measured. The individual weights of rotifers were estimated 
from average lengths according to Ruttner-Kolisko (1977). The lengths of 
crustaceans were converted to wet weights according to Studenikina & 
Cherepakhina (1969) for nauplii, and to Balushkina & Winberg (1979) for 
other groups (I, II, III). The dry weight biomass of metazooplankton (IV) 
was estimated by length/weight relationships according to Dumont et al. 
(1975) and Bottrell et al. (1976). The carbon biomass of metazooplankton 
was calculated assuming that wet weight constitutes 10% of dry weight 
and the latter contains 40% carbon (Zingel et al., 2007).

Ciliate samples were fixed with acidified Lugol solution (0.5% final con-
centration). Ciliate biomass and community composition were determined 
using the Utermöhl (1958) technique (I, II, IV). Volumes (50 mL) were 
allowed to settle for at least 24 h in plankton chambers. Ciliates were 
enumerated and identified with an inverted microscope at 400–1000× 
magnification. The entire content of each Utermöhl chamber was sur-
veyed. 

The abundance of heterotrophic nanoflagellates (HNF) and small ciliates 
(<50 µm) (IV) was determined on the same filters. Preserved samples 
(buffered formalin, 1% final concentration) were stained for 1–2 min with 
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DAPI at a final concentration of 2 µg mL-1 and gently filtered through 
0.8 µm pore-size black isopore filters (Poretics Inc.). Protists were ex-
amined with an Olympus BX60 fluorescence microscope under 1000× 
magnification (for details see IV). Where possible, the dominant taxa 
among the fluorescently stained ciliates were identified on the basis of the 
compositions of parallel Lugol-fixed samples. Ciliate and HNF biomasses 
were calculated from the average biovolume (i.e. wet weight) of particular 
groups of organisms using conversion factors from biovolume to carbon 
biomass. These were 220 fg C µm-3 for HNF (Borsheim & Bratbak, 1987), 
and 190 fg C µm-3 for ciliates (Putt & Stoecker, 1989). 

3.4. Grazing experiments

Zooplankton communities and size fractions grazing on phytoplankton 
were studied using a radiotracer technique (I, II). A monoculture (50 
mL) of Scenedesmus brasiliensis Bohlin (cell size 2.5-4 µm) was labeled 
with NaH14CO3 for 36 hours at 120 W m-2. A small volume (10 mL) of 
washed (filtered lake water, Whatman GF/C) and concentrated radioac-
tively-labeled algal cells was added to 3 or 4 L of integrated lake water 
and incubated in the lake for 7 minutes. In the experimental vessels, 
the concentration of labeled S. brasiliensis monoculture did not exceed 
5-10% of the total suspended solid content of the lake water. After in-
cubation, the water was filtered through the plankton net to collect the 
zooplankton. To obtain two size fractions of zooplankton (II), 48-100 
µm and >100 µm, the incubated water was filtered through mesh size 100 
µm and the filtrate through mesh size 48 µm. The filtered zooplankton 
was anesthetized with carbonated water and stored on ice. To measure 
the radioactivity of food, 30 mL of filtrate was retained on the GF/C 
filters. In the laboratory, zooplankton was washed from the net to the 
GF/C filters. The radioactivity of the filters containing zooplankton and 
food particles was measured using a RackBeta 1211 liquid scintillation 
counter (LKB Wallac) with the scintillation cocktail OptiPhase HiSafe 
3 (Perkin Elmer). One measurement series consisted of three replicates. 
For calculations see I and II. 

Proto- and metazooplankton grazing on various sizes of food particles was 
determined from the rate of uptake of fluorescently-labeled microparticles 
(III, IV). Fluorescent microspheres of four sizes were used in feeding ex-
periments: diameters 0.5 µm (Fluoresbrite®; Polysciences Inc.) for bacteria 

and autotrophic picoplankton (APP), and 3, 6 and 24 µm (Duke Scientific 
Corporation) for unicellular phytoplankton and other unicellular organ-
isms of corresponding size. An amount of tracer not exceeding 10% of the 
density of the corresponding size groups of natural pico-and nanoplankton 
in the lake water was added to integrated lake water. For metazoans, a 3 
L incubation vessel was used. Incubations lasted for 7 min (the grazing 
rate was linear, the vials were shaken gently twice during incubation), 
after which the water was filtered through a 48 µm mesh size plankton 
net, anesthetized with carbonated water (submerging the net together 
with animals in carbonated water for 10 s), and fixed in formaldehyde 
[final concentration 4% (vol/vol)]. For microsphere counting, individual 
metazooplankters were collected from the samples on a polycarbonate 
filter of 10 µm pore size (Poretics). The number of microspheres in ani-
mal guts was counted at 1000× magnification using an epifluorescence 
microscope (Zeiss Axiovert S100). In experiments with protozoans (IV), 
the incubation was carried out in 20 mL vials. Incubations lasted for 7 
min, after which the samples were fixed with buffered formalin (1% final 
concentration). The preserved samples were stained for 1–2 min with DAPI 
at a final concentration of 2 µg mL-1 and gently filtered through 0.8 µm 
pore-size black isopore (Poretics Inc.) filters. Protists and the contents of 
their food vacuoles were examined with a Olympus BX60 fluorescence 
microscope under 1000× magnification using blue light (470/505 nm, 
OG 515). For details of calculations see IV.
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4. RESULTS AND DISCUSSION

4.1. Food base and grazer composition in studied lakes

In this study, three lakes differing in ecological status were investigated 
with the main focus on a large, naturally highly eutrophic lake, Võrtsjärv. 
The habitats of macrophyte- and plankton-dominated lakes provided dif-
ferent feeding conditions for zooplankton.

Võrtsjärv is a highly turbid lake (average seston concentration 16.5 mg 
L-1) mainly because of wind-induced resuspension of the partly miner-
alized sediment particles. During the vegetation period, Secchi depth 
does not usually exceed 1 m in the plankton-dominated part (Nõges et 
al., 1999). The algal communities in the plankton-dominated lakes of 
Kaiavere and the central part of Võrtsjärv mostly comprised an associa-
tion of filamentous algae, with cyanobacteria (Planktolyngbya limnetica, 
Limnothrix planktonica and Aphanizomenon spp.) and diatoms (mostly 
Aulacoseira spp.) forming the highest total biomass in central part of 
Võrtsjärv (average 20.8 gWW m-3) (III). The southern part of Võrtsjärv, 
although covered with macrophytes, harbors also an abundant phyto-
plankton community in summer (IV). In the macrophyte-dominated 
Prossa, only a scanty phytoplankton (average biomass 2.3 gWW m-3) was 
formed, mainly comprising chrysophytes and cryptophytes; forms that are 
presumably ingestible for grazers (algae <30 µm) constituted most of the 
total phytoplankton biomass (average 54%) (I). The plankton-dominated 
lakes also provided more bacteria and autotrophic picoplankton than the 
macrophyte-dominated lakes (I, III, IV). 

The metazooplankton prevailing in these lakes are typical of eutrophic 
lakes (Ooms-Wilms et al., 1995; Jeppesen et al., 1996; Vijverberg & 
Boersma, 1997) with abundant populations of rotifers (most commonly 
Keratella spp. and Polyarthra spp.) and small cladocerans such as Chydorus 
sphaericus (in plankton-dominated lakes) and Bosmina longirostris (in the 
macrophyte-dominated Prossa), and with low numbers of Daphnia. The 
copepod community consisted mostly of cyclopoids, except in Prossa 
where calanoids (Eudiaptomus sp.) dominated. The highest metazooplank-
ton abundance occurred in Kaiavere (average 2626 ind. L-1) (III), while 
the highest biomass was measured in the Prossa (average 2.5 gWW m-3) 
(I). Among zooplankton, the ciliate community was most successful in 
establishing the highest numbers and biomass in Võrtsjärv, contributing 

on average more than 50% of the total zooplankton biomass (Figure 1). 
The spring peak was made up of large herbivorous oligotrichs (mostly 
Rimostrombidium sp., Pelagostrombidium sp. and Codonella cratera ) and 
the summer maximum was dominated by small bacterivorous scuticocili-
ates (Uronema sp.) and oligotrich species (Cyclidium sp., Rimostrombidium 
sp.) (II, IV). 

Figure 1. Biomasses of metazooplankton (MZP) and ciliates (CIL) in 
the lakes studied: plankton-dominated Kaiavere (P-Kaia), macrophyte-
dominated Prossa (M-Prossa), the plankton-dominated part of Võrtsjärv 
(P-Võrts) and the macrophyte-dominated part of Võrtsjärv (M-Võrts). 
 

4.2. Impact of zooplankton grazing on phytoplankton
 

The filtration rate of the zooplankton community (>100 µm) was similar 
in macrophyte-dominated Prossa and in the plankton-dominated part 
of Võrtsjärv (averages 0.20 and 0.21 d-1, respectively; I, II), but because 
the proportion of ingestible size algae was significantly higher and the 
total phytoplankton lower in Prossa, the grazing loss of phytoplankton 
was considerably greater in the macrophyte-dominated lake than the 
plankton-dominated lake (averages 9% and 2.4% of total phytoplankton 
biomass, respectively). In both lakes the highest rates of phytoplankton 
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removal were observed in spring (27.6% d-1 in Prossa at the beginning 
of May and 16.4 d-1 in Võrtsjärv in April), during a period of low total 
phytoplankton biomass and a high proportion of ingestible phytoplankton. 
Thereafter, the patterns of seasonal development of the phytoplankton 
were different. 

In the macrophyte-dominated Prossa, the high zooplankton grazing rates 
induced the collapse of the spring phytoplankton community in late 
May, followed by an increase in water transparency (I). The Secchi depth 
increased to 2.6 m by mid-June, indicating the achievement of the ‘clear 
water phase’. The amount of ‘edible’ phytoplankton started to decrease 
before the pools of inorganic nitrogen and phosphorus became depleted 
while the total amount of phytoplankton continued to increase. This shows 
that the reduction of at least the small phytoplankton fractions could not 
be caused by nutrient limitation, but could be ascribed to zooplankton 
grazing. In this lake, zooplankton was responsible for the formation of 
the ‘clear water phase’. At the time of phytoplankton collapse, the zoo-
plankton community consisted mainly of rotifers (Keratella cochlearis). 
Their importance in the spring phytoplankton decline has been reported 
in several studies (Mayer et al., 1997; Kim et al., 2000). In summer, the 
zooplankton grazing rates remained generally low (below 5%) and from 
mid-June onward, phytoplankton was controlled by other factors such 
as the lack of inorganic nitrogen and phosphorus, which remained very 
low throughout summer. The entire bottom of Prossa is covered with 
dense Chara beds that most probably kept the mineral nutrients low and 
did not allow phytoplankton to develop. The ability of macrovegetation, 
primarily Chara, to stabilize the ‘clear water state’ by intensive nutrient 
consumption and the potential allelopathic effect against phytoplankton 
is well known (Hosper & Meijer, 1993; Meijer, 2000).

The zooplankton grazing pattern in the plankton-dominated part of 
Võrtsjärv was followed seasonally over two years (1998 and 2000) (II). 
Relatively high grazing on ‘edible’ phytoplankton was observed in most 
of the study periods (average 44% d-1), and in some periods zooplankton 
grazing exceeded the primary production rate (137% d-1), but owing to the 
high total phytoplankton biomass, the overall grazing loss remained low 
and no significant consumption effect on the total phytoplankton biomass 
was observed (Figure 2). Average daily consumption by the zooplankton 
community (>48 μm) was only 4% of the total phytoplankton biomass. 
The low grazing values measured are consistent with the results of previous 

zooplankton feeding studies in Võrtsjärv (Nõges, 1998). Considering the 
algal and grazer composition in Võrtsjärv, i.e. mainly filamentous forms of 
cyanobacteria and diatoms, and a low proportion of ingestible size forms 
(on average 10% of the total phytoplankton biomass), and the abundant 
populations of ciliates and small rotifers (Keratella spp., Polyarthra spp., 
Anuraeopsis fissa), small-bodied cladocerans (C. sphaericus) and cyclopoid 
copepods (Mesocyclops spp.), a high grazing pressure on phytoplankton 
would not be expected. 

Figure 2. Relative rates of zooplankton grazing of total phytoplankton 
biomass (RGRb) and ‘edible’ phytoplankton biomass (RGRpe), and rela-
tive rate of grazing of primary production (RGRpp), in Võrtsjärv in 1998 
and 2000 (II).  

In both the macrophyte- and plankton-dominated lakes, statistical analy-
ses revealed that the nanoplankton size-fraction (5-15 µm) was the most 
important algal food size for main grazers (B. longirostris and Eudiaptomus 
sp. in Prossa, and ciliates, Polyarthra spp., C. sphaericus and Daphnia 
cucullata, in Võrtsjärv) (I, II). In Võrtsjärv in 1998, that size fraction of 
the phytoplankton comprised relatively more grazable and higher-quality 
food objects for zooplankton such as flagellates (Bogdan & Gilbert, 1982; 
Knisely & Geller, 1986), in contrast to 2000, when Scenedesmus sp. and 
Dinobryon sp. were mostly represented. Higher food quality might have 
supported the higher biomass of small-sized grazers such as ciliates and 
rotifers in that lake in 1998 (II).
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4.3. Comparison of different zooplankton groups and species as 
grazers on bacteria and phytoplankton

4.3.1 Zooplankton size-groups (II)

In view of the existence of detailed long-term information about zooplank-
ton species composition, abundance and biomass dynamics (Haberman, 
1998; Nõges et al., 1998b; Zingel, 1999), the question was posed whether 
variable and abundant small zooplankton or larger crustaceans have a 
greater impact on phytoplankton grazing in Võrtsjärv. Comparing feeding 
among the zooplankton size-groups, our study revealed that 48-100 µm 
organisms comprising ciliates and rotifers are the primary consumers of 
algae in the plankton-dominated part of Võrtsjärv. Their feeding accounted 
for between 46 and 85% (average 68%) of the rates of filtering and grazing 
by the total zooplankton. A prevalence of ciliates and rotifers among the 
phytoplankton consumers was observed over most of the study period 
during the two-year investigation (1998 and 2000). Studies on grazing 
by zooplankton size-groups including protozoa are scarce. Few studies 
have reported a dominance of rotifers over crustaceans in phytoplankton 
grazing (Quiblier-Lloberas et al., 1996; Kim et al., 2000).

4.3.2. Metazooplankton grazers (III)

Studies of cladoceran and rotifer grazing in Võrtsjärv and Kaiavere revealed 
that the lakes differed in the leading group of bacterivores: rotifers (mainly 
Filinia longiseta and Keratella spp.) in Kaiavere and cladocerans (mainly C. 
sphaericus) in Võrtsjärv (average 64% and 74% of the daily total zooplankton 
grazing on bacterial size class, respectively) (Figure 3). The leading role of 
rotifers in bacterial consumption observed in Kaiavere could be attributed 
to the higher density of bacterivorus rotifers and the presence of efficient 
bacterivores such as F. longiseta, Pompolyx complanata and Conochilus uni-
cornis, which were not found or only rarely observed in Võrtsjärv. Their 
efficiency, due to higher species-specific filtering rates, is also mentioned in 
other studies (Ooms-Wilms et al., 1995; Hwang & Heath, 1999). 

In terms of phytoplankton grazing, cladocerans were generally the main 
consumers of the edible phytoplankton size class, contributing on average 
72% and 94% of the total ingestion in Kaiavere and Võrtsjärv, respec-
tively (Figure 5). D. cucullata was the dominant algal grazer in Kaiavere. 

In Võrtsjärv, phytoplankton was mostly consumed by the cladocerans 
C. sphaericus and D. cucullata (Figure 4). The dominant cladoceran, C. 
sphaericus, alone accounted for an average of 52% of the total rotifer and 
cladoceran grazing on phytoplankton in Võrtsjärv. 

Figure 3. Contributions of major grazers (%) to metazooplankton bac-
terivory (IRBAC) in Võrtsjärv (A) and Kaiavere (B) (III). 

Figure 4. Contributions of major grazers (%) to metazooplankton phy-
toplankton grazing (IREPHY) in Võrtsjärv (A) and Kaiavere (B) (III). 

In Kaiavere, the rates of ingestion of bacteria and phytoplankton (average 
1140 cells mL h-1 and 15112 cells L h-1, respectively) were several times 
higher than in Võrtsjärv (average 174 cells mL h-1 and 1611 cells L h-1, 
respectively). The greater number of grazers (mainly rotifers and Daphnia) 
and the presence of efficient bacterivores among the metazooplankton in 
Kaiavere most probably contributed to this difference.
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However, the consumption of fluorescent microparticles showed that the 
impact of grazing on production and standing stocks of bacteria and ingest-
ible phytoplankton (<30 µm) was low. Metazooplankton was estimated 
to graze only 0.5% and 0.1% of the standing stock of bacteria daily on 
average, and 2.6% and 1.0% of standing stock of ingestible phytoplank-
ton, in Kaiavere and Võrtsjärv, respectively. The average consumption of 
primary production was less than 1% and grazing on bacterial produc-
tion was around 4%. The daily removal of bacterial production observed 
in this study is comparable to the results of Jeppesen et al. (1996) in a 
hypertrophic lake (0.4-19.2% d-1) during a period of strong fish preda-
tion and with zooplankton composition similar to the lakes in this study. 
The low estimated metazooplankton grazing suggests that most of the 
consumption of bacterial and phytoplankton production in these lakes 
is probably channeled through the microbial food web.

4.3.3. Protozooplankton and metazooplankton grazers (IV)

Comparison of grazing by protozooplankton (ciliates and heterotrophic 
nanoflagellates) and metazooplankton (cladocerans and rotifers) showed 
that small ciliates (<30 µm) were the dominant consumers of bacteria 
and small phytoplankton in Võrtsjärv. Ciliates were the most important 
grazers throughout the productive season in both the plankton-dominated 
and macrophyte-dominated compartments of the lake. The total rates of 
grazing of bacteria by ciliates were accordingly 8-270× and 100-1000× 
higher than the total rates of grazing by HNF and metazooplankton. In the 
plankton and macrophyte compartments, ciliates accordingly consumed 
5-250× and 8-7000× more nanoplankton than the metazooplankton 
community (Figure 5 and 6).

Figure 5. Total grazing of bacteria by ciliates (CIL), heterotrophic nanofla-
gellates (HNF) and metazooplankton (MZP) in the plankton-dominated 
(P-CIL, P-HNF, P-MZP) and macrophyte-dominated (M-CIL, M-HNF, 
M-MZP) compartments in Võrtsjärv.

Figure 6. Total grazing of algae by ciliates (CIL) and metazooplankton 
(MZP) in the plankton-dominated (P-CIL, P-MZP) and macrophyte-
dominated (M-CIL, M-MZP) compartments in Võrtsjärv.

In the phytoplankton-dominated compartment of Võrtsjärv the average 
daily removal of bacterial standing stock was 9.3% by ciliates, 0.5% by 
HNF, 0.01% by rotifers and 0.07% by cladocerans. Ciliates were able to 
graze more than 100% of the bacterial biomass production. Although they 
grazed only on the smaller fraction of autotrophic nanoplankton (2-5 µm), 
their average daily consumption constituted 20.7% of the standing stock 
of the respective size class of algal cells, while metazooplankton consumed 
on average only 1% of the ingestible phytoplankton (<30 µm).

77

342
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Calculation of the carbon flow in Võrtsjärv showed that the flux was more 
balanced in the phytoplankton-dominated part. In both compartments 
of the lake, most of the autochthonously produced organic carbon was 
not taken up directly by herbivores but was channeled to heterotrophic 
bacteria. Carbon flux via bacterivory was substantial in the phytoplankton-
dominated part of lake and bacterial production was balanced by grazing, 
whereas in the macrophyte-dominated compartment the total bacterial 
grazing by all zooplankton groups constituted only 10% of bacterial pro-
duction.

The dominance of ciliate grazing in bacterial and nanoplankton consump-
tion observed in Võrtsjärv has seldom been reported elsewhere (Tadonleke 
et al., 2005) and only in systems different from the highly turbid and 
shallow eutrophic Võrtsjärv. Typically, HNF are considered the major 
bacteriovores in most lakes because of their efficiency and because they 
are more abundant than small ciliates (Rothhaupt & Güde, 1996; Gasol, 
1995). In Võrtsjärv, the ciliate community has high abundances (during 
the study period 28 - 158 cells mL-1) and clearly dominates numerically 
over HNF (<90 cells mL-1). The biomass of ciliated protozoans in this 
lake is comparable to the metazoan zooplankton and usually forms more 
than 50% of the whole zooplankton biomass (Zingel, 1999). In eutrophic 
systems, ciliates are believed to be controlled top–down by metazooplank-
ton rather than by food availability (Jürgens et al., 1999). Considering 
the low abundance of metazooplankton and their low rates of grazing on 
nano-sized particles, it seems that ciliates dominate in Võrtsjärv because 
of the lack of top–down regulation by predators. Owing to the strong 
grazing pressure by ciliates, HNF are established in a low numbers and 
have no significant effect on bacteria.

5. CONCLUSIONS

In shallow eutrophic macrophyte-dominated lakes, zooplankton graz-1.	
ing can significantly affect the seasonal dynamics of phytoplankton, 
initiating the ‘clear water phase’ (e.g. in Prossa). In plankton-domi-
nated shallow eutrophic lakes, zooplankton is able to consume only 
a minor part of the phytoplankton (e.g. less than 5% of the total 
phytoplankton biomass in Võrtsjärv) because of the prevalence of 
‘inedible’ algae. The impact of grazing is most significant in the 
nanoplankton fraction, among which the size range 5-15 µm seems 
to be the prevailing algal food for the main grazers (I, II).

In shallow eutrophic lakes, zooplankton grazing generally has a high 2.	
impact on phytoplankton in spring when the phytoplankton biomass 
is low but contains relatively more ‘edible’ algal cells. During that 
period, small phytoplankton is readily used by the first peak of her-
bivorous grazers such as ciliates and rotifers (I, II). 

In shallow eutrophic lakes, dominant small zooplankton assemblages 3.	
such as ciliates and rotifers can dominate phytoplankton grazing 
throughout the vegetation period and can be responsible for more 
than 60% of total phytoplankton biomass consumption (II).

In shallow eutrophic lakes, the abundant rotifer community com-4.	
prising species with high specific filtration rates (e.g. Filinia long-
iseta, Pompolyx complanata, Conochilus unicornis) can be the most 
efficient group of grazers on bacteria among the metazooplankton. 
At the species level, the small cladoceran Chydorus sphaericus, which 
frequently dominates in shallow eutrophic lakes, may be the major 
metazooplankter grazer on phytoplankton and bacteria (III). 

In shallow eutrophic lakes, ciliates could form an important component 5.	
of the food web because they are the predominant grazers on small 
phytoplankton and bacteria, and consume a substantial proportion of 
bacterial production; the impact of grazing by heterotrophic nanoflagel-
lates and metazooplankton might remain negligible (IV). 

Low metazooplankton grazing, and the high proportion of ciliates 6.	
and their consumption of bacteria, indicate the great importance of 
the microbial food web in shallow eutrophic lakes (III, IV).
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SUMMARY IN ESTONIAN

Zooplanktoni toitumise mõju madalate eutroofsete järvede  
ökosüsteemile 

Käesoleva töö eesmärgiks oli uurida zooplanktoni toitumise mõju füto- ja 
bakterplanktoni kooslustele erinevas tasakaaluseisundis olevate madalate 
eutroofsete järvede toiduahelas. Sesoonselt hinnati zooplanktoni toitumise 
mõju fütoplanktoni üldhulgale ja primaarproduktsioonile. Süvendatult uu-
riti ja võrreldi erinevate zooplanktoni suurus- ja taksonoomiliste rühmade 
(heterotroofsed viburloomad, ripsloomad, keriloomad ja  vesikirbulised) 
toitumise mõju bakterplanktonile ja väikesemõõtmelisele fütoplanktonile. 
Töö üheks eesmärgiks oli täiendada suhteliselt puudulikku informatsiooni 
peamiste füto- ja bakterplanktonit tarbivate metazooplanktoni liikide kohta 
madalates eutroofsetes parasvöötmejärvedes. Põhiline osa uurimustest 
teostati Võrtsjärvel, tulemusi võrreldi kahe teise madala järvega (Prossa 
ja Kaiavere). Töö tulemusena leiti järgmist:

1. Madalates makrofüüdienamusega järvedes võib zooplanktoni toitumine 
oluliselt mõjutada fütoplanktoni sesoonset dünaamikat ning põhjustada 
selgevee perioodi tekkimist (näiteks Prossa järves). Seevastu fütoplankto-
nienamusega madalates järvedes, kus fütoplanktoni koosluse moodustavad 
valdavalt suured zooplanktonile söödamatud vetikad, suudab zooplankton 
süüa vaid väikese osa kogu fütoplanktoni biomassist (Võrtsjärves vähem 
kui 5%). Tugevamat ärasöömismõju avaldab zooplankton nano-suurusega 
fütoplanktonile, millest suurusvahemik 5-15 µm tundub olevat tähtsaim 
vetikatoit peamistele fütoplanktonit söövatele zooplankteritele madalates 
eutroofsetes järvedes (ripsloomad, Polyarthra spp., Bosmina longirostris, 
Chydorus sphaericus ja Daphnia cucullata; I, II).

2. Madalates eutroofsetes järvedes avaldab zooplankton tugevamat ärasöö-
mismõju fütoplanktonile enamasti kevadel kui vetikate biomass on veel 
madal ning sisaldab suhteliselt rohkem väikeseid zooplanktonile söödava 
suurusega rakke. Esimesteks fütoplanktoni sööjateks sel ajal on arvukalt 
planktonis esinevad ripsloomad ja keriloomad (I, II). 

3. Madatalate eutroofsete järvede zooplanktonis domineeriv ripsloomade ja 
keriloomade kooslus võib olla peamine fütoplanktoni sööja kogu vegetat-
siooniperioodi vältel ning nende rühmade osakaal fütoplanktoni biomassi 
vähendamisel võib moodustada üle 60% kogu zooplanktoni mõjust (II).

4. Madatalates eutroofsetes järvedes esinev arvukas keriloomade kooslus, 
mis sisaldab kõrge toitumiskiirusega liike (nagu Filinia longiseta, Pompolyx 
complanata, Conochilus unicornis) võib olla tähtsaimaks bakterite sööjaks 
metazooplanktoni rühmade hulgas. Vesikirbuliste koosluses sageli domi-
neeriv väikesekehaline C. sphaericus võib olla tähtsaimaks fütoplanktonit 
ja baktereid söövaks metazooplankteriks liigi tasandil (III).

5. Madalates eutroofsetes järvedes võivad ripsloomad olla oluliseks toi-
duahela komponendiks, olles peamised bakterite ja väikeste vetikate sööjad 
ning tarbides märgatava osa bakteriproduktsioonist, samas kui metazoop-
lanktoni osa vetikate ja bakterit söömisel võib jääda tagasihoidlikuks 
(IV). 

6. Madal metazooplanktoni toitumise mõju ning kõrge ripsloomade osa-
kaal zooplanktonis ja toiduallikate tarbimisel näitab mikroobse toiduahela 
suurt tähtsust madalate eutroofsete järvede ökosüsteemi funktsioneerimisel 
(III, IV).
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Abstract

In Chara-dominated shallow eutrophic Lake Prossa (Estonia), the collapse of spring phytoplankton community
occurred in late May after which both primary production (PP) and phytoplankton biomass (Bp) stayed at a very
low level. By mid-June the Secchi depth had increased up to 2.6 m indicating the achievement of the ‘clear water
phase’, which persisted thoughout the rest of the vegetation period. The biomass of ‘edible’ phytoplankton formed
on average 53% of the total phytoplankton biomass, and the share of herbivorous zooplankton was on average 61%
of the total zooplankton biomass. In spring zooplankton removed daily 27% of the total Bp and 29% of PP by
grazing while in summer these values rarely exceeded 5%. Zooplankton grazing was responsible for the decrease
of ‘edible’ (<31 µm) phytoplankton after its spring peak as well as for maintaining its biomass at a very low
level during the whole vegetation period. Depletion of mineral forms of nitrogen and phosphorus that occurred
most probably because of the development of charophytes by the end of May supported the collapse of the whole
phytoplankton community and kept the water clear throughout the summer and autumn.

Introduction

Zooplankton–phytoplankton interactions are a central
topic in plankton ecology. In the majority of lakes
the rapid phytoplankton growth in spring is usually
followed by a ‘clear water period‘ which is induced
mainly by zooplankton (ZP) grazing (Jeppesen et al.,
1999). However, nutrient (N, P) limitation may also
cause phytoplankton collapse (Vanni & Temte, 1990).
A ‘clear water phase’ (CWP) forms if algal standing
stock consists of small ‘edible’ cells, and the bio-
mass of filter-feeding ZP is high. CWP can persist
for a short time as up to two weeks (Lampert et al.,
1986) or for a longer period (Kasprzak et al., 1999).
In many cases, cladocerans as predominant filter feed-
ers control phytoplankton composition and biomass
in eutrophic lakes (Ghadouani et al., 1998). Well es-
tablished submerged vegetation is important for their
maintenance (Blindow et al., 2000) and can contribute
to the formation of CWP as well.

In the present paper, we studied zooplankton com-
munity grazing rate in a shallow eutrophic charophyte-
dominated lake with the aim to analyse whether zo-
oplankton grazing could initiate the formation of the
CWP and guarantee its persistence throughout the ve-
getation period. The role of zooplankton grazing vs.
nutrient depletion by charophytes is discussed and
prioritised.

Description of study site

Lake Prossa is a shallow lake in East-Estonia. Its area
is 0.399 km2, volume 723 800 m3, maximum depth
4.2 m, mean depth 2.2 m, maximum length 1470 m
and maximum width 300 m. The bottom of the lake is
covered with nearly 1.5 m thick mud layer (Mäemets,
1977). L. Prossa is an eutrophic lake, characterised
by an average 1.0 mg l−1 of total nitrogen and 0.22
mg l−1 of total phosphorus. The whole bottom area
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of the lake is covered by macrovegetation, dominated
overwhelmingly by charophytes.

Materials and methods

Water samples were collected weekly between
24.04.01 and 13.06.01 and monthly from July to Oc-
tober. All analyses were made from depth-integrated
water taken from five sampling points from the lake
centre to the shore and mixed together. Water chem-
istry was analysed according to the methods described
by Grasshoff et al. (1983). Phytoplankton and cili-
ate samples were preserved with acidified Lugol‘s
solution (0.5% final concentration), and studied using
the Utermöhl (1958) technique for species composi-
tion and biomass. Phytoplankton presumably edible
for metazooplankton was split into three size classes
(SC1, SC2 and SC3) by the maximum linear dimen-
sion: 2–5 µm, 5–15 µm and 15–31 µm, respectively.
Chlorophyll a (Chl a) was measured spectrophoto-
metrically in 96% ethanol extracts. Metazooplankton
(MZP) was collected by filtering 10 l integrated lake
water through the plankton net (48 µm), fixed with
Lugol’s solution and counted in three 2.5–5 ml sub-
samples, which formed 10–20% of the whole sample
volume. At least 20 individuals of each species were
measured in every sample for biomass calculation.
The individual weights of rotifers were estimated from
average lengths according to Ruttner-Kolisko (1977).
The lengths of crustaceans were converted to wet
weights according to Studenikina & Cherepakhina
(1969) for nauplii, and to Balushkina & Winberg
(1979) for other groups. Bacteria and picophytoplank-
ton was retained on black nucleopore filters (0.2 µm
pore size, Poretics), stained by DAPI and counted
under the epifluorescence microscope at 1000× mag-
nification (Porter & Feig, 1980). Primary production
(PP) was measured in situ at six depths during 2 h
in midday by the 14C technique (Steemann Nielsen,
1952). The trapeze integration over depth was applied
for calculating PP (mg C m−2 h−1). Daily values
(PPday; mg C m−2 day−1) were calculated as PPday =
PP /(0.230 – 890 . 10−5 · DL), where DL is the length
of the light day in hours (Nõges & Nõges, 1998).

To assess zooplankton (ZP) community grazing,
50 ml of Scenedesmus brasiliensis Bohlin mono-
culture (cell size 2.5–4 µm) were labelled with
NaH14CO3 during 36 h at 120 W m−2. Then cells were
centrifuged at 3000 rpm, washed with filtered lake
water (Whatman GF/C) and suspended in the same

solution. Final quantity of the obtained algal suspen-
sion was 30 ml. Ten ml of this suspension was added
into 4 l of integral lake water and incubated in the lake
for 7 min. In experimental vessels, the concentration
of labelled S. brasiliensis monoculture did not exceed
5–10% of the total suspended solid concentration of
lake water that varied between 1.0 and 5.5 mg DW
l−1. After incubation, water was filtered through the
plankton net (mesh size 100 µm) to collect the ZP.
Filtered ZP was anaesthetisized with carbonated wa-
ter and stored on ice. To measure the radioactivity of
food, 30 ml of filtrate was retained on the GF/C filters.
In the laboratory ZP was washed from the net to the
GF/C filters. The radioactivity of the filters with ZP
and food particles was measured with a liquid scin-
tillation counter RackBeta 1211 (LKB Wallac). ZP
community filtration rate (F, ml l−1 h−1) was calcu-
lated according to the formulae developed by Lampert
& Taylor (1985). One measurement series consisted
of three replicates. Grazing rate (G, mg l−1 h−1) was
obtained by multiplying F with the biomass of the
‘edible’ phytoplankton (Bpe, 2.0-31.0 µm). Relative
grazing rate of phytoplankton biomass (RGRb,% d−1)
was found as

RGRb=24∗G/Bp,

where Bp is total phytoplankton biomass (mgWW
l−1), and relative grazing rate of primary production
(RGRpp,% d−1) as RGRpp= 24∗G/PPday assuming
10% carbon content of phytoplankton wet biomass.

The program STATISTICA FOR WINDOWS ver-
sion 6.0 was used for statistical analysis.

Results

Seasonally two main groups, chrysophytes and crypto-
phytes, dominated in the phytoplankton (Phy) of L.
Prossa. Diatoms were abundant only in early spring.
The maximum of phytoplankton biomass (6.92 g WW
m−3) occurred on May 15th, thereafter Bp decreased
sharply and stabilized at a low level (Fig. 1A). Among
the three Phy size classes potentially edible for ZP (Fig
1A), SC1 – covered mainly green algae, SC2 – mainly
chrysophytes, cryptophytes and some green algae, and
SC3 – mainly cryptophytes, diatoms and also some
chrysophytes. On average, 54% of the phytoplank-
ton biomass belonged to the ‘edible’ size range of
2.0–31.0 µm (SC1, SC2 and SC3 together), the max-
imum proportion of this size range was 86%. Among
MZP rotifers dominated in spring and in July, while
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Figure 1. Seasonal dynamics of plankton community and related indices in L. Prossa in 2001. (A) Phytoplankton size classes – SC1 (2–5 µm),
SC2 (5–15 µm), SC3 (15–31 µm); (B) Zooplankton; (C) Primary production (PP) and relative grazing rate on phytoplankton biomass (RGRb)
and PP (RGRpp); (D) Total number of bacteria (TNB) and picophytoplankton (APP), biomass of ciliates and Bosmina longirostris; (E) Mineral
nitrogen (minN) and phosphates (PO4-P);. (F): Suspended solids (SS) and Secchi depth (SD).

cladocerans and copepods were abundant at the end of
May and in June (Fig. 1B). The herbivorous Bosmina
longirostris O.F. Müller dominated among cladocer-
ans and among copepods (Eudiaptomus sp.). After
the spring maximum (6.3 gWW m−3) on May 8th,
metazoan biomass stabilized and decreased only in
August. Herbivorous rotifers were abundant already at
the beginning of May, the increase of the biomass of
other filtering zooplankton occurred with a time lag of
some weeks after the peak of the ‘edible’ phytoplank-
ton. After the collapse of phytoplankton at the end

of May, a rapid decrease followed also among herb-
ivorous ZP. Herbivores formed on the average 61%
(maximum 86%) of the total MZP biomass. The fil-
tration rate (F) of zooplankton, larger than 100 µm
(cladocerans, copepods, large rotifers) and their relat-
ive grazing rate on algal standing stock (RGRb) and
primary production (RGRpp) increased rapidly after
the spring peak of Bpe (Fig. 1C). The highest F and
RGRb and RGRpp (14.4 ml l−1 h−1, 27.6% d−1and
29% d−1, respectively) occurred on May 2nd when
rotifers (Keratella cochlearis Gosse) were dominating.
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The maximum of the ciliate biomass occured on May
8th (0.75 mgWW l−1), thereafter it decreased to a low
level while the biomass of B. longirostris showed an
opposite pattern being high from late May until early
August (Fig. 1D). The total number of bacteria (TNB)
fluctuated throughout the vegetation period, and in-
creased sharply (from 1.6 to 5.7 ∗ 106 cells ml−1) in
autumn. Picophytoplankton (APP) remained on a low
level from April to June (average 1000 cells ml−1),
followed by a sharp increase (maximum 3.0 ∗ 104 cells
ml−1) in July (Fig. 1D). After the spring maximum
of inorganic nitrogen and phosphorus concentrations
(0.97 mgN l−1 and 0.006 mgP l−1, respectively) they
declined to a low level by mid-May (Fig. 1E). The
maximum concentration of suspended solids (5.5 mg
DW l−1) occurred on May 15th while in summer and
autumn the concentration remained low (average 1.7
mg DW l−1). The highest Secchi depths (maximum
2.9 m) were measured in summer (Fig. 1F).

Correlation and factor analyses were performed
to estimate phytoplankton–zooplankton interactions in
spring (24.04.01–13.06.01). The biomass of the clado-
ceran B. longirostris correlated negatively with the
biomasses of cryptophytes (r = −0.82; P = 0.045),
SC3 (r = −0.83; P = 0.04) and with the whole
‘edible’ phytoplankton (r = −0.85; P = 0.032). F
had a strong negative correlation with the biomass of
cryptophytes (r = −0.86; P = 0.027). A positive
correlation occurred between RGR and the biomass
of SC2 (r = 0.91; P = 0.004). The two strongest
factors determined altogether 79.3% of the variabil-
ity of the analysed spring data set. In the first factor
(F1), which accounted for 42.5% of the total variabil-
ity, the biomass of SC2 had the greatest negative factor
weight (−0.76) while the biomass of B. longirostris
and the sum of the biomasses of herbivorous cope-
pods and cladocerans had the greatest positive factor
weights (>0.7). In the second factor (F2) respons-
ible for 36.8% of the total variability, the biomass of
SC3 and the concentration of chlorophyll a (Chl a)
had greatest negative, and F had the greatest positive
(>0.7) factor weights.

Discussion

In Chara-dominated Lake Prossa the collapse of the
spring phytoplankton community occurred in late
May after which both primary production (PP) and
Bpstayed on very low level (Fig. 1A,C). By mid-
June the Secchi depth had increased up to 2.6 m

(Fig. 1F) clearly indicating the achievement of the
CWP that persisted thoughout the rest of the vegeta-
tion period. At the time of the phytoplankton collapse,
the zooplankton community consisted mainly of roti-
fers being generally known as ineffective grazers on
bigger phytoplankton forms (Gliwicz, 1969; Mayer et
al.,1997).

Our main question addressed was to find out the
role of zooplankton in the phytoplankton collapse.
According to Mayer et al. (1997), rotifers can play
an important role as herbivores in spring and early
summer when the phytoplankton community is com-
posed of small forms like chlorococcal green algae
or centric diatoms. The low biomass of SC 1 in L.
Prossa throughout the whole vegatation period (Fig.
1A) gives the basis to presume that rotifers being the
most abundant group of zooplankton controlled SC1
and kept its biomass at a low level. The role of roti-
fers should have been especially high in early May as
they dominated in this period of the highest zooplank-
ton grazing activity (Fig. 1C) after which the biomass
of all ‘edible’ phytoplankton size classes declined. A
similar phenomenon could be noticed also in late June
when the community grazing rate increased together
with the biomass of rotifers. The two first factors
revealed by the factor analysis also stressed the im-
portance of ZP grazing for phytoplankton abundance
and community composition. The increase of the bio-
mass of herbivores simultaneously with the decrease
of the amount of edible phytoplankton indicates their
direct relationship in the food chain (Lampert et al.,
1986; Jeppesen et al., 1990). The amount of ‘edible’
phytoplankton started to decrease before the pools of
inorganic N and P got depleted while the total amount
of phytoplankton continued to increase (Fig. 1A,E).
This shows that the reduction of at least the small
phytoplankton fractions could not be caused by nu-
trient limitation. However, nutrient depletion can be
considered as one possible reason for the collapse of
the total phytoplankton community at the end of May,
though, even a parasite attack on phytoplankton can
not be neglected (Reynolds, 1984).

Another question is, which factors enabled the
CWP to last until the end of the vegetation period?
In summer zooplankton biomass was about a half of
that during the spring peak, though the most effective
phytoplankton grazers like cladocerans and copepods
were more abundant (Fig. 1B). Cladocerans are par-
ticularly successful in establishing large populations
during spring and summer. This success is based
on their ability to utilize a wide spectrum of food
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particles (bacteria, picoalgae, protozoans and phyto-
plankton) and to achieve high growth rates at high
food concentrations (Christoffersen & Bosselmann,
1997). The upper size limit of phytoplankton edible
for cladocerans is considered to be 20–30 µm (Bern,
1990; Zurek & Bucka, 1994). According to that as-
sumption, nearly all three phytoplankton size classes
considered ‘edible’ in L. Prossa were consumable for
zooplankton. The dominant cladoceran in L. Prossa, B.
longirostris, has two different feeding modes, one for
small particles, and the other for large ones (DeMott,
1982, 1985). As shown by our statistical analyses,
B. longirostris seems to be able to consume all three
size classes of Phy in L. Prossa, that is probably
the reason for its success in this lake where suitable
food is scarce throughout the summer. The lacking of
statistically significant correlations of B. longirostris
with bacteria, picoalgae and protozoans indicates that
cladocerans rely mostly on nanoplankton in L. Prossa
while picoplankton is circulating mainly in the micro-
bial loop. Calanoid copepods form another important
group of phytoplankton grazers in L. Prossa. Still,
according to the factor analysis, only the summary
biomass of calanoid copepods and cladocerans was
negatively related with SC2. Basing on the literature
data (Sterner, 1989; Christoffersen & Bosselmann,
1997), calanoid copepods feed selectively on a narrow
food spectrum of small phytoplankton species and,
due to lower maintenance cost, can maintain growth at
lower temperature and lower food concentration than
cladocerans. According to Lampert & Taylor (1985),
copepods feed very selectively on Scenedesmus. In L.
Prossa Scenedesmus was unimportant throughout the
whole investigation period, and herbivorous copepods
had to compete for small phytoplankton with rotifers
and also cladocerans. At the end of May when Bpe de-
creased (Fig. 1A) and the water temperature increased,
calanoid copepods probably lost the advantage they
had at lower temperature, and cladocerans started to
dominate. Still the role of calanoid copepods in cre-
ating high grazing pressure in spring that initiated the
CWP can not be neglected.

Considering that in summer RGR remained gen-
erally below 5%, it is hard to assume that the long-
lasting CWP in L. Prossa could be caused only by
grazing. It seems that from mid-June onward, Phy
was controlled by other factors like the lack of inor-
ganic nitrogen and phosporus that remained very low
in summer (Fig. 1E). The whole bottom of L. Prossa
is covered with dense Chara beds that most probably
keep mineral nutrients low during the whole summer

and do not allow phytoplankton to develop. The ability
of macrovegetation, and first of all Chara, to stabilize
clear water states is well known (Hosper & Meijer,
1993). The expansion of the Chara meadows usually
results in a shift of the whole lake to a lasting clear-
water state (Meijer & Hosper, 1997; Ruggiero et al.,
2003). The water above the Chara meadows might
be kept clear due to the intensive nurient consumption
by macrophytes. Besides the competition for nutrients,
the influence of allelochemicals against phytoplankton
(Meijer, 2000) as well as the increased net sediment-
ation rate in the macrophyte areas (Søndergaard &
Moss, 1997; Meijer & Hosper, 1997; Pluntke &
Kozerski, 2003) can also play a role in persisting CWP
in L. Prossa. The role of charophytes in this lake is
discussed in more detail by Nõges et al. (2003).
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SHALLOW LAKES

Contribution of different zooplankton groups in grazing
on phytoplankton in shallow eutrophic Lake Võrtsjärv
(Estonia)

H. Agasild Æ P. Zingel Æ I. Tõnno Æ J. Haberman Æ
T. Nõges

� Springer Science+Business Media B.V. 2007

Abstract The grazing impact of different sized

zooplankton on ‘edible’ and total phytoplankton

biomass and primary production was measured

in L. Võrtsjärv during a seasonal study in 1998

and 2000. The organisms of 48–100 lm size

class, composed of ciliates and rotifers, contrib-

uted significantly to the total grazing of zoo-

plankton community throughout the study

period (average 68%). The average daily filter-

ing and grazing rate of the whole zooplankton

community (micro- and macro-zooplankton)

remained low, corresponding to a filtration of

44% of the water volume, 4% of the total

phytoplankton biomass and 29% of primary

production. However, a strong grazing pressure

on small-sized phytoplankton (<30 lm) was

estimated in most of the study period (average

44% d–1). Among size classes of ‘edible’ phy-

toplankton, the size range 5–15 lm was the

most important algal food for the dominant

zooplankton grazers (herbivorous ciliates,

Polyarthra spp., Chydorus sphaericus and

Daphnia cucullata) in L. Võrtsjärv.

Keywords Micro-zooplankton � Macro-

zooplankton � Filtration rate � Grazing rate �
Edible phytoplankton � Primary production

Introduction

Cladocerans are typically considered as predom-

inant phytoplankton grazers in lakes, mainly due

to their high ingestion rates and abilities to filter

particles of wide size spectrum and to consume a

great range of food types (Lampert & Sommer,

1993). In zooplankton grazing estimations, mostly

cladocerans and copepods are taken into account

while the impact of rotifers and protozoa is

usually neglected. In shallow eutrophic lakes,

however, the zooplankton is often dominated by

small-sized forms like the protozoa and the

rotifers (Mayer et al., 1997; Zingel, 1999), while

the large-sized cladocerans (i.e. Daphnia spp.)

and the copepods are suppressed by the size

selective fish predation (Jeppesen et al., 1996)

and unfavourable feeding conditions like filamen-

tous cyanobacteria and high seston concentration

(Porter & McDonough, 1984; Tóth, 1992). In such

lakes small-sized zooplankton like ciliates and

rotifers may compose a considerable part of total

zooplankton biomass (Zingel, 1999) and may
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J. Haberman � T. Nõges
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even dominate in phytoplankton grazing

(Quiblier-Lloberas et al., 1996), altering the

frequency of distribution and amount of food

available to larger zooplankton due to highly

selective feeding (Starkweather, 1980).

The aim of the present study was to evaluate

the zooplankton grazing impact on ‘edible’ and

total phytoplankton biomass and primary pro-

duction during a seasonal cycle, and to find out

the relative importance of small (ciliates and

rotifers) and large (mainly cladocerans and

copepods) zooplankton in grazing on phytoplank-

ton in L. Võrtsjärv. Nevertheless, the algal and

zooplankton communities occurring in L. Võrts-

järv are well studied (Haberman, 1998; Nõges

et al., 1998a), including grazing studies (Nõges,

1998; Agasild & Nõges, 2005), there is still debate

as to whether small-bodied or large-bodied zoo-

plankton have a greater impact on phytoplankton

grazing.

Study site

Lake Võrtsjärv is a large (270 km2) and shallow

(mean depth 2.8 m, maximum depth 6 m) eutro-

phic lake in Central Estonia (58�05¢––58�25¢ N,

and 25�55¢–26�10¢ E). The average total phospho-

rus concentration is 54 lg l–1 and total nitrogen

concentration is 1.6 mg l–1 (Haberman et al.,

1998). The shallowness of the lake and the

wave-induced resuspension of bottom sediments

contribute to the formation of high seston con-

centrations and high turbidity during summer.

Methods

Zooplankton grazing experiments, zooplankton

and phytoplankton biomass estimations, and

primary production measurements were con-

ducted in 1998 and 2000 from April to November

at bi-weekly intervals. One stationary sampling

station was sampled for the integrated lake water

obtained by mixing up the water collected by a 2-l

Ruttner sampler from the entire water column at

1 m intervals from the surface to the bottom

(maximum depth 3–4 m depending on the water

level). Subsamples for phytoplankton, ciliates,

primary production and chlorophyll a concentra-

tion analyses, and for zooplankton grazing exper-

iments were taken from this water.

Metazooplankton samples were collected with a

quantitative Juday net of 85 lm from the same

monitoring station.

Phytoplankton and ciliate samples were pre-

served with acidified Lugol‘s solution (0.5% final

concentration), and studied using Utermöhl

(1958) technique for the species composition

and biomass. For determining the ‘edible’ phyto-

plankton biomass (Bpe), the algal samples were

counted by splitting the presumably edible size

fraction for zooplankton (<30 lm) into three size

classes (SC5, SC15 and SC30) by the maximum

linear dimension: 2–5 lm, 5–15 lm and 15–

30 lm, respectively.

Chlorophyll a was measured spectrophotomet-

rically in 96% ethanol extracts. Primary produc-

tion (PP) of phytoplankton was estimated in situ

using the 14CO2 assimilation technique intro-

duced first by Steeman-Nielsen (1952) on

13 times in 1998 and seven times in 2000. Depth

integrated lake water was poured into 24 ml glass

scintillation vials, 50 ll of sterile NaH14CO3

(VKI, Denmark) solution (1.7 lCi per vial) was

added to achieve final activity 0.07 lCi ml–1. The

vials were incubated for 2 h at six depths: 0 m,

0.25 * Secchi depth (S), 0.5 * S, 1 * S, 2 * S and

3 * S in the lake. Then 6 ml of water from each

sample was poured into a clean glass scintillation

vial and acidified (pH < 2) by adding 150 ll of

0.5 N HCl. Inorganic 14C was assumed to be

removed during 24 h (Niemi et al., 1983). Next,

5 ml subsamples were poured into new plastic

vials. The radioactivity was assessed by LSC

RackBeta 1211 (Wallac, Finland) using external

standardization for DPM calculations. Scintilla-

tion cocktail OptiPhase HiSafe 3 (Perkin Elmer)

was applied. PP was calculated according to the

standard formula (Guidelines, 1984). Non-photo-

synthetic carbon fixation was measured in dark

vials and subtracted from light assimilation. The

trapeze integration over depth was applied for

calculating PP (mg C m–2 h–1). Daily values

(PPday; mg C m–2 day–1) were calculated accord-

ing Nõges & Nõges (1998) as PPday = PP/(0.230–

890 * 10–5 * DL), where DL is the length of the

light day in hours.
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Metazooplankton samples were fixed with

acidified Lugol‘s solution (0.5% final concentra-

tion), counted under a binocular microscope in a

Bogorov chamber and enumerated at ·32–56
magnification. For biomass calculations, average

body lengths of at least 20 individuals of each

taxon were measured. The individual weights of

rotifers were estimated from average lengths

according to Ruttner-Kolisko (1977). The lengths

of crustaceans were converted to wet weights

according to Studenikina & Cherepakhina

(1969) for nauplii, and to Balushkina & Winberg

(1979) for other groups. In order to estimate the

biomass of herbivorous and non-herbivorous

zooplankton, adult cyclopoid copepods (Hansen

& Santer, 1995), cladoceran Leptodora kindtii

(Focke) (Herzig, 1995), and rotifer Asplanchna

priodonta Gosse (Thouvenot et al., 1999) were

considered as predominantly non-herbivorous

organisms among metazooplankton. Ciliates

were divided into herbivores and non-herbivores

using data, which was gained by the simulta-

neous grazing experiments using fluorescently

labelled microspheres performed in L. Võrtsjärv

in 2000.

To assess zooplankton community grazing,

50 ml of Scenedesmus brasiliensis Bohlin mono-

culture (cell size 2.5–4 lm) was labelled with

NaH14CO3 during 36 h at 120 W m–2. Then the

cells were centrifuged at 3000 rpm, washed with

filtered lake water (Whatman GF/C) and sus-

pended in the same solution. The final quantity of

the obtained algal suspension was 30 ml. Ten

milliliters of this suspension was added into 3 l of

integral lake water and incubated in the lake for

7 min. In experimental vessels the concentration

of labelled S. brasiliensis monoculture did not

exceed 5–10% of the total suspended solid con-

centration of the lake water that varied between

5.5 mg DW l–1and 39.5 mg DW l–1.

After incubation, water was filtered through

the plankton net to collect the zooplankton. To

obtain two size fractions of zooplankton: micro-

zooplankton (MicroZ, 48–100 lm) and macro-

zooplankton (MacroZ, >100 lm), the incubated

water was first filtered through the mesh size of

100 lm and the filtrate through the mesh size of

48 lm. The filtered zooplankton was anesthetized

with carbonated water and stored on ice. To

measure the radioactivity of food, 30 ml of filtrate

was retained on the GF/C filters. In the labora-

tory, zooplankton was washed from the net to the

GF/C filters. The radioactivity of the filters with

zooplankton and food particles was measured by

LSC RackBeta 1211 (Wallac, Finland) using

scintillation coctail OptiPhase HiSafe 3 (Perkin

Elmer).

Zooplankton community (MicroZ + MacroZ)

filtration rate (F; ml l–1 h–1) was calculated

according to the formulae developed by Lampert

& Taylor (1985):

F ¼ R(animals)

½R(water) � R(filtrate)�/v �
60

t � V ;

where F = community filtration rate (ml l–1 h–1),

t = feeding time (min), V = volume of water in

experiment (l), R = measured radioactivity (bec-

querels), and v = volume of the water samples

(ml).

One measurement series consisted of three

replicates. Grazing rate (G; mg l–1 h–1) was

obtained by multiplying F with the biomass of

the ‘edible’ phytoplankton (Bpe, 2.0–30.0 lm).

Relative grazing rate of total phytoplankton

biomass (RGRb; % d–1) was found as RGRb =

24 * G/Bp, where Bp is total phytoplankton

biomass (mgWW l–1), and relative grazing

rate of ‘edible’ phytoplankton biomass (RGRpe;

% d –1) as RGRpe = 24 * G/Bpe. Relative grazing

rate of primary production (RGRpp; % d –1) was

found as RGRpp = 24 * G/PPday assuming 10%

carbon content of phytoplankton wet biomass.

Zooplankton grazing experiments were per-

formed on 15 occasions in 1998 and on 14

times in 2000. The MicroZ grazing was not

measured in the first part of the 1998 season until

July.

Statistical analyses

The program STATISTICA FOR WINDOWS

version 5.0 was used for statistical analyses.

Spearman’s correlation coefficients were used to

determine the relations of the grazers and phyto-

plankton variables.
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Results

Phytoplankton and zooplankton communities

During the study period, water temperature

varied from 2.6�C to 20�C in 1998 and from

2.5�C to 19.3�C in 2000 (Fig. 1). The highest

chlorophyll a concentrations were measured in

September in both studied years (Fig. 1).

The average total phytoplankton biomass (Bp)

was similar in both studied years (Fig. 2a), form-

ing 21.8 gWW m–3 and 21.6 gWW m–3 in 1998

and 2000, respectively. Cyanobacteria Limnothrix

redekei (Van Goor) Meffert and L. planktonica

(Wolosz.) dominated in 1998 and Planktolyngbya

limnetica (Lemm.) Kom.-Legn., L. planktonica

(Wolosz.) Meffert., and Aphanizomenon skujae

Kom.-Legn. et Cronb. dominated in 2000. Dia-

toms were the second most abundant group,

mostly Melosira sp. in 1998 and Aulacoseira sp.

in 2000.

In 1998 the ‘edible’ phytoplankton biomass

(Bpe) formed on the average 14% of Bp but its

share was considerably higher (up to 50%) in

April and May due to low Bp at the same time

(Fig. 2a). During the study period in 2000 the Bpe

formed an average two times less (7%) of Bp

compared to 1998. In 1998 the Bpe stayed

relatively low until mid-August, in 2000 the

period of minimum Bpe occurred from late

August until the end of September (Fig. 2a).

In 1998 among the size classes of Bpe, the SC5

covered mainly green algae (Scenedesmus sp.) and

crysophytes (Dinobryon sp.), SC15 comprised of

mainly crysophytes (Synura sp.), cryptophytes

(Rhodomonas sp.), diatoms (Stephanodiscus sp.,

Fragillaria sp.) and green algae (Tetraedron sp.,

Pediastrum sp.), and SC30 involved mainly dia-

toms (Stephanodiscus sp.), cyanobacteria and

cryptophytes. In 2000 SC5 covered mainly small

unidentified phytoplankton, SC15––mainly green

algae (Scenedesmus sp.), crysophytes (Dinobryon

sp.) and some cryptophytes, and SC30––mainly

diatoms (Stephanodiscus sp., Fragillaria sp.),

dinophytes (Peridinium sp.) and green algae

(Scenedesmus sp.).

In 1998 the highest rates of primary production

(PP) were measured in June and August. Five PP

measurements available in 2000 yielded a maxi-

mum rate in May (Fig. 2b).

In 1998 and 2000 the mean zooplankton

biomass was 2.7 gWW m–3 and ciliates contrib-

uted on average 58% of total zooplankton

biomass (Fig. 3a). High biomasses of metazoo-

plankton and ciliates occurred in spring from

April until the end of June, and in July–August.

The ciliates dominated in MicroZ fraction

(Fig. 3b) and cladocerans in MacroZ fraction

(Fig. 3c). Herbivores contributed on average 66%

and 68% to the MicroZ and MacroZ biomasses,

respectively. In seasonal dynamics short seasonal

delay between herbivorous micro- and macro-

zooplankton peak abundances was observed on

several occasions. In spring of 1998 higher

MicroZ biomass occurred than in spring of 2000,

while in spring of 2000 MacroZ biomass was

higher than in the spring of 1998 (Fig. 3b, c).

During the spring period, MicroZ main grazers
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were Polyarthra dolichoptera Idelson and Kera-

tella cochlearis (Gosse) among rotifers, and

Codonella cratera (Leidy), Rimostrombidium sp.,

Pelagostrombidium sp. and Tintinnidium fluviatile

(Stein) among ciliates. In the spring of 1998 small-

sized picovores (mainly scuticociliates) were also

abundant. Among MacroZ, cladocerans Bosmina

longirostris (O.F. Müller) and Chydorus sphaeri-

cus (O.F. Müller) dominated in spring period, and

rotifers also contributed significantly in May 1998

(Fig. 3c). In summer the peaks of MicroZ and

MacroZ biomasses were lower than in spring,

and the species composition was also different

(Fig. 3b, c). In this period the community of

ciliates was dominated by small-sized bacterivor-

ous species like Cyclidium sp., Uronema sp. and

Halteria sp., and Anuraeopsis fissa (Gosse),

Keratella c. tecta (Gosse) among the rotifers. In

August the larger filter-feeder cladoceran

Daphnia cucullata Sars also peaked.

Grazing influence on ‘edible’ and total

phytoplankton biomass and primary

production

Zooplankton filtering rates (F) in both studied

years were quite similar forming on average 41%

and 47% of the water volume per day in 1998 and

2000, respectively (Fig. 4a).

The highest measured total zooplankton F in

August 1998 and in September 2000 coincided

with the highest relative grazing rates of ‘edible’

phytoplankton biomass (RGRpe) (104% d–1 and

86% d–1, respectively) (Fig. 4a, b), and with the

decreased Bpe at the same time (Fig. 2a).

According to F, on average 44% of Bpe was

grazed daily by zooplankton in 1998 and 2000.

Among the size classes of Bpe, a significant

inverse relationship between SC15 and the main

grazers: herbivorous ciliates (r = –0.6, P < 0.05),

Polyarthra spp. (r = –0.5, P < 0.05), C. sphaericus
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(r = –0.6, P < 0.05) and D. cucullata (r = –0.5,

P < 0.05) was found.

In 1998 relative grazing rates of the total

phytoplankton biomass (RGRb) formed 0.85–

16.4% d–1 (average 4.7% d–1). In 2000 somewhat

lower RGRb values occurred (0.4–6.6% d–1, aver-

age 3.3% d–1). During the study period the highest

RGRb occurred on 14 April 1998 when 16% of Bp

was consumed by theMacroZ alone (Fig. 4b). The

highest RGRb by both MicroZ and MacroZ

formed 11% d–1 at the end of September 1998

and 6.6% d–1 in the middle of August in 2000.

In both studied years the relative grazing rate

of phytoplankton primary production (RGRpp)
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formed on an average 29% d–1. In 1998 the

highest RGRpp was measured at the end of

September (137% d–1) and 2000 yielded a max-

imum rate in June (39% d–1) (Fig. 4b).

During the measurement period of both Mi-

croZ and MacroZ feeding (August–November in

1998 and May–November in 2000), the grazer

fraction 48–100 lm had major importance in

zooplankton grazing. That group of organisms,

including ciliates and rotifers, accounted for

between 46% and 85% (average 68%) of the

filtering and grazing rates by the total zooplank-

ton (Fig. 4a).

Discussion

Although the phytoplankton and zooplankton

communities occurring in L. Võrtsjärv are well

studied (Haberman, 1998; Nõges et al., 1998a;

Zingel, 1999), the relative importance of small-

bodied and large-bodied zooplankton in grazing

on phytoplankton has been under speculation.

This study revealed MicroZ as the primary

consumer on phytoplankton in L. Võrtsjärv. This

fraction, formed by the ciliates and rotifers,

dominated in zooplankton filtering and grazing

activity over a major part of the seasonal cycle,

while larger zooplankton (>100 lm) composed

mainly of crustaceans formed on average one-

third of the zooplankton feeding contribution

(Fig. 4a).

Considering the zooplankton composition in L.

Võrtsjärv, the greater impact of small-sized graz-

ers in phytoplankton consumption was expected,

as more than 60% of zooplankton biomass is

formed by ciliates and rotifers (Zingel, 1999).

Among the crustaceans, mainly cyclopoid cope-

pods (mostly Mesocyclops spp.) and small-bodied

filter-feeding cladocerans like C. sphaericus and
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Bosmina spp. dominated. In many eutrophic

lakes, particularly,Daphnia spp. have been shown

to be the key species in controlling the phyto-

plankton (Sterner, 1989). In L. Võrtsjärv the

genus Daphnia is represented by only one rela-

tively small-bodied species D. cucculata, which

occurs in rather low numbers in a short period

(Haberman, 1998).

In shallow eutrophic lakes, the formation of

zooplankton composition is strongly forced from

two sides––by food quality and by size selective

feeding of fish (Porter & McDonough, 1984;

Jeppesen et al., 1996). In L. Võrtsjärv the zoo-

plankton community inhabits the environment

with high concentrations of inedible filamentous

cyanobacteria and diatoms, while the food base

for zooplankton contains large quantities of

bacteria and detritus and only low amounts of

‘edible’ phytoplankton (Nõges et al., 1998b). On

average, only 10% of Bp could presumably be

ingested by zooplankton. A strong feeding

pressure on zooplankton might be assumed, as

the lake is rich in fish––bream, perch, and roach

being the most abundant species (Nõges et al.,

1998b).

As a result of algal and grazer composition,

their grazing impact on total phytoplankton is

quite weak in L. Võrtsjärv. On average only 4%

of the Bp and 29% phytoplankton PP was

consumed daily by zooplankton (larger than

48 lm) during the study period in 1998 and

2000. Although in some periods zooplankton

filtered the whole water volume (104%) during

1 day and grazing exceeded the primary produc-

tion rate (137%), the consumption was never

enough to influence considerably the Bp. The

maximum RGRb (16% d–1) occurred in April

1998 at very low level of Bp (Figs. 2a and 4b).

Quite similar results were obtained also in

earlier studies in L. Võrtsjärv, where the con-

sumption of only cladocerans was investigated. In

1984 and 1985 average cladoceran RGRb and

RGRpp formed 2.5% d–1 and 28.5% d–1, respec-

tively, and the maximum values formed 12% d–1

and 133% d–1, respectively (Nõges, 1998).

Assuming that zooplankton was feeding only

on the ‘edible’ algae, however, heavy grazing on

small-sized phytoplankton (<30 lm) was esti-

mated in most of the study period (average

44% d–1) (Fig. 4b). The direct phytoplankton–

zooplankton relationship was observed with the

clearest evidence in August 1998 and September

2000 when the highest zooplankton filtering rates

coincided with maximum RGRpe (104% d–1 and

86% d–1, respectively) (Fig. 4), and with the

lowest Bpe at the same time (Fig. 2a). In 1998

the biomass of small algae was kept low due to

zooplankton grazing until mid August (Fig. 2a).

MicroZ grazing was not measured during that

period, but considering the high biomass of

herbivorous ciliates and their theoretic daily

grazing rate of 150% of the body mass (Arndt

et al., 1990), most of the Bpe was assumed to be

consumed by the MicroZ and macroZ in the first

half of the study period.

Probably the low Bp and high contribution of

small algae suitable for zooplankton grazing

(Fig. 2a) supported the formation of abundant

populations of grazers (Fig. 3) and therefore

stronger grazing pressure on phytoplankton in

the first half of the year 1998. During this period

different types of phytoplankton grazers peaked

in the zooplankton community. The spring pop-

ulation of ciliates (mainly Rimostrombidium sp.,

Pelagostrombidium sp. and C. cratera) and roti-

fers (mainly P. dolichoptera, Keratella spp.)

formed the first peak of grazers in the middle of

May, followed by the high biomass of cladocerans

(B. longirostris and C. sphaerius) and copepods in

early June (Fig. 3b, c).

Among the size classes of Bpe, the algal size

class SC15 biomass from spring to August was

twice lower in 1998 than in 2000 (Fig. 2a).

Supported by the statistical analysis, the 5–

15 lm sized phytoplankton is an important algal

food source for the main zooplankton grazers as

herbivorous ciliates, Polyarthra spp., and cladoc-

erans C. sphaericus and D. cucullata in L.

Võrtsjärv. Therefore, a strong food competition

between ciliates and metazooplankton might be

assumed over that size of algae. In 1998 the SC15

was largely composed of flagellates like Rhodo-

monas, which are more easily ingested by zoo-

plankton than non-flagellated algae. The

flagellates are supposed to be well grazable,

because these cells may adhere by their flagella

to the feeding appendages during the collection

process, and because they don’t often have sturdy

174 Hydrobiologia (2007) 584:167–177

123

cell walls (Knisely & Geller, 1986). In feeding

studies with different algal types or with natural

phytoplankton mixture, flagellates (like Crypto-

monas and Chlamydomonas) are often found to

be preferred algal food for zooplankton (Bogdan

& Gilbert, 1982; Knisely & Geller, 1986). Larger

sized (>5 lm) flagellated algae are an especially

important component in the diet of Polyarthra

(Bogdan & Gilbert, 1982). The high quality food

base probably supported the development of

abundant populations of small-sized grazers (her-

bivorous ciliates, Polyarthra spp.) responsible for

the low SC15 of Bpe in 1998.

In 2000 the SC15 was composed primarily of

less ‘edible’ algae (mainly Scenedesmus sp. and

Dinobryon sp.), which may also be the reason for

lower MicroZ biomass that year. Another cause

may be the abundant population of crustaceans in

2000 (Fig. 3c). An exploitative food competition

between ciliates and metazooplankton (Sanders

et al., 1989; Weisse & Frahm, 2002) may cause the

niche separation in seasonal dominance of grazer

types. Metazooplankton are also known to prey

intensively on ciliates and can affect their num-

bers (Adrian & Schneider-Olt, 1999; Jürgens

et al., 1999).

Considering zooplankton community studies,

there always remains a question about the

method of measurement as the zooplankton

community consists of variety of organisms, which

are diverse in both feeding mechanisms and in

modes of food selection (Pourriot, 1977; DeMott,

1986). In the present investigation commonly

used radioactive method was applied to deter-

mine the zooplankton filtration rate. The tracer

cells (2.5–4 lm diameter) were chosen to be of

ingestible size for both smaller and larger zoo-

plankton organisms in the studied lake. Though,

the given sized tracer particles might not be

equally preferred by all species and might be

assumed to be more ingestible for MicroZ (Han-

sen et al., 1994). However, in crustacean commu-

nity in L. Võrtsjärv, the dominating organisms are

small cladocerans like C. sphaericus and naupliar

stages of cyclopoid copepods, which are known as

efficient grazers on small-sized food objects

(Hwang & Heath, 1999; Hansen & Santer, 1995;

Agasild & Nõges, 2005). Therefore we assume,

that the tracer particle size used in the experi-

ments did not seriously alter the outcome of

MicroZ and MacroZ grazing results and general

findings of this study.

In case of large lakes like L. Võrtsjärv, the

horizontal heterogenity may influence the plank-

ton communities between different parts. The

grazing pattern studied here may be assumed to

be valid in the northern and central plankton

dominated part of the lake where the study was

performed. Due to its shallowness and large

opened area the water mass is well exposed to

the wind action keeping it in movement and

stirred. In the narrow and macrophyte covered

southern part, however, the different species

composition of plankton community (Nõges

et al., 2004) may also involve different phyto-

plankton–zooplankton interactions.

In conclusion, the small-sized zooplankton such

as ciliates and rotifers are the dominant phyto-

plankton consumers inL.Võrtsjärv.Due to specific

algal (mainly filamentous forms) and grazer

composition, the zooplankton community has

generally low grazing impact on the total phyto-

plankton biomass in this lake. However, a strong

feeding pressure is evident on the small-sized

phytoplankton. Grazing impact is most significant

on nano-plankton fraction, among which the

size range of 5–15 lm seems to be the most

important algal food for the main phytoplankton

grazers (ciliates, Polyarthra spp.,C. sphaericus and

D. cucullata) in L. Võrtsjärv. Although a lot of

attention has been paid on zooplankton grazing of

phytoplankton community, there are few studies

comparing the grazing impact of zooplankton of

different size fractions or even taking into account

protozooplankton feeding. The main results

obtained in this study showing the major impor-

tance of MicroZ in phytoplankton grazing might

be extrapolated to other eutrophic lakes, where

small-sized organisms like protozoa and rotifers

dominate in zooplankton assemblage.
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Võrtsjärv. Limnologica 28: 29–40.
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Metazooplankton grazing on bacteria and on the phytoplankton of various sizes was estimated in

shallow eutrophic lakes Kaiavere and Võrtsjärv (Estonia) by in situ feeding experiments with

fluorescent microspheres (diameters 0.5 �m for bacteria and 3, 6 and 24 �m for phytoplankton).

Zooplankton community composition, abundance and food density were important factors determining

grazing rates in these lakes. Cladocerans and rotifers filtering rates (FR) and ingestion rates (IR) on

bacteria and phytoplankton were several times higher in Lake Kaiavere where bacterivorous rotifers and

Daphnia contributed more to zooplankton assemblage. While cladocerans were generally the main

phytoplankton consumers, both lakes differed with respect to the groups of bacterivores. Based on

consumption of fluorescent microspheres, the metazooplankton grazing rates were relatively low and

had low impact on production and standing stock of bacteria and ingestible phytoplankton (<30 �m).
On average, 0.5 and 0.1% of standing stock of bacteria and 2.6 and 1.0% of standing stock of

ingestible phytoplankton was grazed daily by metazooplankton in lakes Kaiavere and Võrtsjärv,

respectively. That corresponded to daily grazing of 4.1% of the bacterial production and 0.43% of

the total primary production (PP) by metazooplankton in Lake Kaiavere compared with 4.3 and

0.06% in Lake Võrtsjärv, respectively. The results suggest that the majority of consumption of the

bacterial and phytoplankton PP is most likely channelled through the microbial loop.

INTRODUCTION

The zooplankton communities in lakes consist of variety

of organisms with different feeding ability, which exploit

a wide diversity of food available in the environment.

Analyses on large data sets have indicated that grazing

rates measured in different communities vary with zoo-

plankton biomass, food concentration and zooplankton

taxonomic composition (Cyr and Pace, 1992), as well as

with the body size of grazers (Peters and Downing, 1984;

Lampert, 1988). It is already a well-known pattern, that

communities of large-bodied zooplankton, i.e. Daphnia

can graze more intensively on phytoplankton than

communities of smaller species (e.g. rotifers and Bosmina)

(Sterner, 1989; Cyr and Pace, 1992). Good evidence for

this view are biomanipulated lakes, where the increase in

the individual crustacean size and zooplankton mass have

resulted in higher grazing activity, often exceeding phyto-

plankton growth rate (Gulati, 1990). Moreover, many

studies recently have demonstrated that zooplankton

communities with large cladocerans, particularly Daph-

niidae, can strongly influence the entire microbial com-

munity [bacteria, autotrophic picoplankton, heterotrophic

nanoflagellates (HNF), ciliates], by both direct and indir-

ect consumption (Jürgens, 1994; Jürgens and Jeppesen,

2000). Size-selective predation by fish (Jeppesen et al.,
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1996) together with resource partitioning because of diff-

erent feeding modes and selectivities of zooplankters

(Pourriot, 1977; Gilbert and Bogdan, 1984; DeMott,

1986) in environment with fluctuating resource availabil-

ity are important factors affecting the zooplankton com-

munity structure in lakes. The abundance and biomass of

planktivorous fish increase with the increasing productiv-

ity of lake ecosystem, which consequently leads to inten-

sive predation on the zooplankton community (Jeppesen

et al., 1997). In shallow eutrophic lakes, smaller bodied

individuals and species of rotifers, cladocerans and cyclo-

poid copepods often dominate in metazooplankton com-

munities (Mayer et al., 1997; Haberman, 1998). Also the

habitat of shallow eutrophic lake with large populations of

inedible filamentous phytoplankton and large populations

of bacteria favour development of protists and small

metazoa (Porter and McDonough, 1984; Gulati, 1990;

Nõges et al., 1998; Jeppesen et al., 2000).

Owing to the important ecological role of zooplankton

in energy and matter transfer in food webs, its grazing

studies are of great importance. Much attention has

been paid to the grazing of phytoplankton (Lampert

et al., 1986; Sterner, 1989; Vanni and Temte, 1990).

However, in recent times, consumption on bacterio-

plankton has been more intensively studied in freshwater

ecosystems (Sanders et al., 1989; Vaqué et al., 1992;

Hwang and Heath, 1999). Although in natural environ-

ments many of zooplankton species feed on both bac-

teria and algae (Bogdan and Gilbert, 1982; Børsheim

and Olsen, 1984; Ooms-Wilms, 1997), grazing experi-

ments have mostly been conducted on a single food

object, and relatively little information is still available

about the simultaneous grazing of zooplankton on phy-

toplankton and bacteria (Wylie and Currie, 1991; Kim

et al., 2000). This is partly because of methodological

insufficiencies. However, a variety of methods for mea-

suring zooplankton grazing have been developed. As a

direct method, several tracers have been used to assess

and quantify in situ zooplankton consumption of bacteria

and phytoplankton. Radioactively and fluorescently

labelled cells being the most commonly applied methods

(Bogdan and Gilbert, 1982; Lampert and Taylor, 1985;

Telesh et al., 1995 Ooms-Wilms et al., 1995). Another

approach of a tracer method is the use of fluorescently

labelled inert particles. It has several methodological

advantages—experiments are simple in concept,

fluorescent microspheres are highly visible inside the

consumer and they do not grow, decompose or fade.

The method with fluorescently labelled inert particles

allows a study of the more detailed aspects of zooplank-

ton feeding, including the size and taste discrimination

mechanisms (DeMott, 1986; Bern, 1990; Rothhaupt,

1990b; Kerfoot and Kirk, 1991), as well as the variation

among individuals and between species (Ooms-Wilms

et al., 1995). A combination of spheres with different

diameter in the experiment enable implications for

food-type selection, e.g. bacteria and different size of

phytoplankton (Ooms-Wilms, 1997; Kim et al., 2000).

Kerfoot and Kirk (Kerfoot and Kirk, 1991) in their

experiment covered the spheres with exudates of differ-

ent species of phytoplankton and studied the simulta-

neous selection of size and taste by various freshwater

suspension feeders. They concluded that many cladocer-

ans are functioning more as detritovores than herbi-

vores. Moreover, a new method by labelling natural

ciliate assemblage with fluorescent microspheres enables

a study of in situ predation on protozoa in short-term

incubation experiments without changing the motility

and surface properties of prey organisms (Joaquim-Justo

et al., 2004). However, possible different consumption of

natural food items like bacteria and phytoplankton and

inert particles is most often described as a shortcoming

of the fluorescent microsphere method (DeMott, 1988;

Ooms-Wilms et al., 1993, 1995). The method has com-

monly been used to determine and estimate the ingestion

of bacteria mostly by protozoans (Pace and Bailiff, 1987;

Šimek et al., 1990) and for selectivity studies on separated

species of rotifers (Rothhaupt, 1990b; Ronneberger,

1998) and crustaceans (DeMott, 1986, 1988; Bern,

1990; Kerfoot and Kirk, 1991) among the metazoan

zooplankton. However, a limited number of community

studies on zooplankton grazing activity by fluorescent

microsphere technique are available so far (Sanders

et al., 1989; Ooms-Wilms et al., 1995; Thouvenot et al.,

1999; Kim et al., 2000).

The aim of the present study was, therefore, to esti-

mate metazooplankton grazing activity on phytoplank-

ton and bacterioplankton. The main objectives of this

study were (i) to test fluorescent microspheres as tracers

for measuring zooplankton grazing in communities of

high contribution of rotifers and copepods; (ii) to esti-

mate the simultaneous grazing impact on bacterioplank-

ton and (edible) phytoplankton; (iii) to compare the

relative importance of rotifers and cladocerans as the

consumers of bacteria and various phytoplankton size

fractions and (iv) to determine the major species of

grazers on bacteria and phytoplankton in shallow

eutrophic lakes.

METHOD

Study sites

The study was carried out in two shallow eutrophic lakes

Kaiavere (58�360 N and 26�390 E) and Võrtsjärv

(58�050–58�250 N and 25�550–26�100 E) (Estonia),
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which were included into the framework of the European

Commission project ECOFRAME, which considered the

ecological status criteria and the implementation of water

framework directive in shallow lakes of Europe.

Lake Võrtsjärv is a large (270 km2) and shallow

(mean depth, 2.8 m; maximum depth, 6 m) plankton-

dominated eutrophic lake situated in central Estonia.

The average total phosphorus (dissolved + particulate)

concentration is 1.74 mM L�1; total nitrogen (dissolved +

particulate) concentration is 114.3 mM L�1. The shal-

lowness of the lake and the wave-induced resuspension

of bottom sediments contribute to the formation of high-

seston concentrations and high turbidity during summer

(Nõges et al., 1998).

Lake Kaiavere is a shallow plankton-dominated lake

in east Estonia. Its area is 2.51 km2, the mean depth is

2.8 m and the maximum depth is 4.5 m (Mäemets, 1968,

1977). Lake Kaiavere is an eutrophic lake, with the

average total phosphorus and total nitrogen concentra-

tion of 1.35 mM L�1 and 108.6 mM L�1, respectively.

Sample collection

The data for this study were gathered in the frame of the

field-work program of ECOFRAME, which allowed to

use the background data from this project. In April–

November, 2000, Lake Võrtsjärv was studied biweekly

and Lake Kaiavere monthly. The integrated lake water

was obtained by mixing up the water collected by 2-L

Ruttner sampler from the entire water column at 1-m

intervals. Subsamples for phytoplankton, metazooplankton,

total number of bacteria, bacterial and primary production

(PP), seston and chlorophyll concentration analyses and for

zooplankton grazing experiments were taken from this

water. For metazooplankton samples, 10 L of the inte-

grated water was filtrated trough 48-mm plankton net.

Phytoplankton and metazooplankton samples were fixed

with acidified Lugol’s solution. Bacterial samples were

preserved with formaldehyde (2% final concentration).

Plankton abundance, biomass
and production

The total number of bacteria was determined by

fluorescence microscope at �1000 magnification (Leica

DM RB) on DAPI stained 0.22 mm black membrane

filters (Osmonics Inc., Livermore, USA), according to

Porter and Feig (Porter and Feig, 1980). [3H]Thymidine

incorporation was applied to estimate bacterial hetero-

trophic activity and transformed to bacterial cell produc-

tion (cells mL�1 h�1) by applying the empirical conversion

factor 3.4 � 1018 (Kisand and Nõges, 1998). A LSC

RackBeta 1211 (LKB Wallac) was used for radioactive

assays. Bacterial production was measured on eight dates

in Lake Võrtsjärv and on five dates in Lake Kaiavere.

Phytoplankton species composition and biomass was

analysed using Utermöhl’s technique (Utermöhl, 1958).

Cells were enumerated with an inverted microscope

Hund Wilovert S at �400 magnification. The samples

were counted until reaching at least 400 counting units

(filaments, cells, colonies), which gives a counting error

of �10% for the total biomass. For grazing experiments,

the number of phytoplankton cells (<30 mm), presum-

ably edible for metazooplankton, were counted sepa-

rately. Size classes were split by the maximum linear

length measure 2–5 mm as the first, 5–15 mm as the

second and 15–30 mm as the third size class (SC1, SC2

and SC3, respectively).

For chlorophyll analysis, plankton was filtered onto

Whatman GF/C filters. Pigments were extracted with

96% ethanol and analysed spectrophotometrically.

The equation of Jeffrey and Humphrey (Jeffrey and

Humphrey, 1975) was applied for the calculation of

chlorophyll a (Chl a). PP was measured in situ at six depths

during 2 h in midday by 14C technique (Steeman-Nielsen,

1952). The trapeze integration over depth was applied for

calculating PP (mg C m�2 h�1). Daily values (PPday; mg C

m�2 day�1) were calculated as PPday = PP/(0.230 –

890�10�5�DL), where DL is the length of the light day in

hours (Nõges and Nõges, 1998).

The metazoan zooplankton was counted under a

binocular microscope (MBC-9) in a Bogorov chamber

and enumerated at �32–56 magnification. The indivi-

dual wet weights of rotifers were estimated from average

lengths, according to Ruttner-Kolisko (Ruttner-Kolisko,

1977). The lengths of crustaceans were converted to wet

weights, according to Studenikina and Cherepakhina

(Studenikina and Cherepakhina, 1969) for nauplii and

Balushkina and Winberg (Balushkina and Winberg,

1979) for other groups.

Concentration of seston (suspended solids) was deter-

mined on preweighed Whatman GF/C filters after dry-

ing at 105�C for 2 h (Nõges et al., 2003).

Measurements of zooplankton grazing rates

Zooplankton grazing was measured by in situ feeding

experiments with fluorescent microspheres of diameters

0.5 mm (Fluoresbrite, Polysciences Inc.) for bacteria and

3, 6 and 24 mm (Duke Scientific Corporation) for phy-

toplankton. The density of phytoplankton size groups

was counted before each grazing experiment, and the

used tracer amount corresponded to 10% of the density

of the respective phytoplankton size group. For determi-

nation of grazing on bacteria, the amount of tracer

corresponded to 10% of mean annual bacterial abun-

dance during the ice-free period (April to October) of

years 1982 and 1996 in Lake Kaiavere, 1998 and 1999

in Lake Võrtsjärv. Microspheres of different size were
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added to integrated lake water in a 3-L glass vessel at the

same time and mixed with a plankton sample by shaking

the incubation vessel. Incubations lasted for 7 min, after

which the water was filtered through plankton net of 48-mm
mesh size, anaesthetized with carbonated water and

fixed in 4% formaldehyde. For microsphere counting,

individual zooplankters were collected from the samples

and filtered onto polycarbonate membranes of 10-mm
pore size (Poretics). The numbers of microspheres in

their guts were counted at �1000 magnification using

an epifluorescence microscope (Zeiss Axiovert S 100).

The filtration and ingestion rates (FR, mL individual�1 h�1

and IR, bacteria individual�1 h�1, respectively) on

different size microspheres for each taxon, and the

metazooplankton FRs and the IRs (CFR, mL L�1

day�1; CIR, cells L�1 h�1) were calculated as follows:

FR ¼ Mt

M � T
; IR ¼ FR � P ;

CFR ¼ FR � N ; CIR ¼ IR � N

where Mt is the number of microspheres ingested per

one individual during the incubation time (microspheres

individual�1); M is the concentration of microspheres in

incubation vessel (mL�1); T is the incubation time (h);

P is the concentration of food particles (bacteria,

phytoplankton) in incubation vessel (cells mL�1) and N

is the abundance of the zooplankton taxon (L�1). The

CFR and CIR were determined as the sum of species-

specific FR and species-specific IR for all representing

taxa observed. The number of individuals, which had

empty guts were included into the calculations.

Statistical analysis

The program Statistica for Windows version 5.0 was

used for statistical analyses. Student t test was used to

compare the average values of measured indices in dif-

ferent lakes. Regression analysis and Spearman’s corre-

lation coefficients were used to determine the relations of

the grazing intensity and other variables.

RESULTS

Physical environment and plankton
communities

During the study period, water temperature varied from

8.5 to 19.6�C in Lake Kaiavere and from 6.7 to 19.3�C
in Lake Võrtsjärv. The average Secchi depth in Lake

Võrtsjärv was significantly more shallow, and the con-

centration of suspended matter and phytoplankton

higher than in Lake Kaiavere (Table I). The lowest

transparency occurred in June, August and September

and the highest seston concentration in June and

September–November (Fig. 1).

In Lake Võrtsjärv, cyanobacteria [Planktolyngbya limne-

tica (Lemm.) Kom.-Legn., Limnothrix planktonica (Wolosz.)

Meffert. and Aphanizomenon skujae Kom.-Legn. et Cronb.]

dominated in phytoplankton followed by diatoms

(mostly Aulacoseira sp.), which formed peaks in late May

and in the middle of September. In Lake Kaiavere,

diatoms (mostly Aulacoseira sp.) dominated in spring and

summer and cyanobacteria (mostly Aphanizomenon sp.) in

summer and autumn; maximum phytoplankton biomass

occurred in September (Fig. 2). The zooplankton com-

munities in lakes Kaiavere and Võrtsjärv were exposed

to different densities of food. In Lake Kaiavere, the

abundance of edible phytoplankton (<30 mm) was on

average two times higher than in Lake Võrtsjärv

(Table I), corresponding to 27.5 and 8.5, respectively,

of total phytoplankton biomass. The highest density of

edible phytoplankton in both lakes was measured in May

and August (Fig. 2). Among the size classes, the 2–5 mm
was the most abundant.

The rate of algal PP and the abundance of hetero-

trophic bacteria in Lake Kaiavere were slightly higher,

while the Chl a concentration and the bacterial produc-

tion were slightly lower than in Lake Võrtsjärv (Table I).

However, those differences were not statistically sign-

ificant. The highest Chl a concentration in Lake Võrtsjärv

was measured in September–October and in Lake

Kaiavere in July (Fig. 1); maximum PP values occurred

in May and in June, respectively. Bacterial standing stock

and productivity were the highest in June (Fig. 2).

Metazooplankton abundance and biomass in Lake

Kaiavere were substantially higher than those in Lake

Võrtsjärv (Table I). Zooplankton numbers in Lake

Kaiavere were highest in May and in Lake Võrtsjärv in

July. Relatively high biomasses were measured in Lake

Võrtsjärv in May–June and August, and in Lake Kaiavere

in May and August (Fig. 3). Among metazooplankton,

cladocerans and copepods had no significant difference in

abundance and biomass between lakes, while the amount

of rotifers, among them bacterivorous, was higher in Lake

Kaiavere. Rotifers were the dominating group in both

lakes, contributing on average 91 and 56% of total meta-

zooplankton density and biomass in Lake Kaiavere and 75

and 15.6% in Lake Võrtsjärv, respectively. The corre-

sponding values for cladocerans were 3 and 15% in Lake

Kaiavere and 10 and 46% in Lake Võrtsjärv. Species

compositions of the zooplankton community were similar

in both lakes. In spring (May and June), Keratella cochlearis

(Gosse), Keratella cochlearis tecta (Gosse) (in Lake Kaiavere)

and Polyarthra spp. dominated in number. In summer, K. c.
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tecta, Polyarthra spp. and Trichocerca spp. were abundant in

both lakes, in Lake Võrtsjärv also Anuraeopsis fissa (Gosse)

and in Lake Kaiavere Filinia longiseta (Ehrb.). The domi-

nant cladocerans were Chydorus sphaericus (O.F. Müller),

Daphnia cucullata Sars and bosminids. Bosmina longirostris

(O.F. Müller) was numerous in Lake Võrtsjärv, while

Bosmian coregoni (Baird) contributed more in Lake Kaiavere

where also D. cucullata was significantly (t test, P < 0.01)

more abundant (mean 16 individual L�1) than in Lake

Võrtsjärv (mean 4 individual L�1). The highest abundance

of cladocerans was observed in June (Fig. 3). Copepods

consisted mainly of juvenile stages (nauplii and copepo-

dites) of cyclopoid copepods Mesocyclops leuckarti Claus and

Thermocyclops oithonoides Sars. The calanoid Eudiaptomus sp.

was found in rather low numbers in Lake Kaiavere.

Zooplankton grazing on different-size
microspheres

Many species of rotifers took up 0.5 and 3 mm micro-

spheres, and all species of cladocerans took up 0.5, 3 and

6 mm tracer particles in grazing experiments. Among

cladocerans, 90% of the tested individuals grazed micro-

spheres. The microspheres of 24-mm size were grazed

very rarely, found only once in the gut of D. cucullata and

Asplanchna priodonta Gosse. Cyclopoid copepods and nau-

plii never had fluorescent particles in their guts. Only on

a few occasions were some tracers ingested by calanoid

copepods. Several abundant species of rotifers, like Poly-

arthra spp. and Trichocerca spp. did not ingest micro-

spheres. Copepods and the rotifers, which did not

consume microspheres formed altogether a considerable

part of the total metazooplankton biomass, on an aver-

age 53 and 82% in lakes Võrtsjärv and Kaiavere, respec-

tively (Fig. 4). Among the group of rotifers, the taxa not

consuming microspheres formed on an average 88% of

biomass and 57%of abundance inLakeVõrtsjärv and 90%

of biomass and 45% of abundance in Lake Kaiavere.

In Lake Kaiavere, the big predator rotifer A. priodonta

contributed one half of the biomass of rotifers not con-

suming microspheres. In June and July, the rotifer

species, which did not consume microspheres formed

only a minor part of rotifers abundance, 6–13% (Fig. 4).

Table I: Secchi depth, seston and chlorophyll a (Chl a) concentration, variables of phytoplankton,
bacterioplankton and zooplankton

Variables Lake Kaiavere Lake Võrtsjärv P

Minimum Maximum Mean � SE Minimum Maximum Mean � SE

Secchi depth, m 0.85 2.80 1.29 � 0.69 0.5 1.2 0.82 � 0.16 **

Seston, mg L�1 4.83 17.7 10.8 � 4.91 6.0 24.0 16.5 � 4.45 *

Chl a, mg L�1 26.5 57.8 41 � 9.78 25.0 71.1 44.6 � 13.6 NS

BPHY, gWW m�3 1.86 13.1 6.85 � 3.58 9.06 35.9 20.8 � 6.1 ***

AEPHY, 10
6 cells mL�1 5.67 81.6 30.7 � 25.0 5.19 22.9 11.9 � 4.69 *

ASC1, 10
3 cells mL�1 1.10 76.3 20.5 � 26.9 1.53 18.9 8.10 � 5.11 NS

ASC2, 10
3 cells mL�1 3.67 18.8 9.27 � 5.53 1.05 12.1 3.44 � 2.55 ***

ASC3, 10
3 cells mL�1 0 2.01 1.00 � 0.84 0.07 1.45 0.42 � 0.33 NS

ABAC, 10
6 cells mL�1 1.17 6.38 3.95 � 2.04 0.54 7.68 3.45 � 2.42 NS

PP, mg C m�3 day�1 133 1041 461 � 314 243 494 354 � 95.0 NS

BP, 106 cells mL�1 2.39 94.2 33.7 � 37.7 0.03 165 47.4 � 60.1 NS

BMZ, gWW m�3 0.24 3.23 1.66 � 1.06 0.18 1.58 0.66 � 0.43 *

AMZ, 10
5 individual m�3 3.04 72.2 26.3 � 25.3 0.56 22.0 6.88 � 5.48 *

BRO, gWW m�3 0.07 2.16 1.00 � 0.80 0.02 0.16 0.08 � 0.05 ***

ARO, individual L
�1 245 6597 2431 � 2351 33 1967 538 � 494 **

BCL, gWW m�3 0.01 0.6 0.23 � 0.20 0.03 1.13 0.32 � 0.35 NS

ACL, individual L
�1 1 115 43 � 39 6 178 46 � 55 NS

BCO, gWW m�3 0.15 1.32 0.43 � 0.42 0.02 0.63 0.26 � 0.19 NS

ACO, individual L
�1 10 609 152 � 208 3 225 104 � 83 NS

Biomass of phytoplankton (BPHY), abundances of standing stock of ‘edible’ phytoplankton (<30 mm) (AEPHY) and its size classes (ASC1, 2–5 mm; ASC2,

5–15 mm; ASC3, 15–30 mm) and the abundance of bacteria (ABAC). Productions of bacteria (BP ) and phytoplankton (PP ). Biomasses and abundances of

total metazooplankton (BMZ; AMZ), rotifers (BRO; ARO), cladocerans (BCL; ACL) and copepods (BCO; ACO). Significance level (P ) of the t test of the

comparison between lakes. NS, not significant.

*P < 0.05, **P < 0.01, ***P < 0.001.
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exert a much stronger negative effect on phytoplankton

biomass in spring when phytoplankton species suscepti-

ble to zooplankton grazing tend to be more abundant,

while relatively resistant species are more common in

summer (Vanni and Temte, 1990). Also in this study, the

high density of edible phytoplankton might support the

grazer’s development in May followed by high-grazing

rates in May and June. From spring onwards, relatively

lower FRs were observed. Although relatively high zoo-

plankton FR occurred in early summer (Fig. 5) in the

both studied lakes, the grazing rates were never high

enough to influence considerably the phytoplankton

and bacterioplankton densities (Table IV). The highest

removal rates on phytoplankton corresponded to the

grazing of 6.2 and 3.7% of the standing stock of inges-

tible phytoplankton (<30 mm) in lakes Kaiavere and

Võrtsjärv, respectively. The highest daily grazing rates

on total PP occurred in Lake Võrtsjärv in June and in

Lake Kaiavere in September and resulted in consump-

tion of only 0.23 and 0.81% of PP, respectively. The

daily maximum bacterial consumption corresponded to

1.61 and 0.26% of the standing stock of bacteria in lakes

Kaiavere and Võrtsjärv, respectively. In Lake Kaiavere,

the maximum consumption on bacterial production of

9.5% occurred in August. In Lake Võrtsjärv, the max-

imum grazing of 21% on bacterial production was

recorded in April at very low bacterial production level

while in summer the highest removal rate of bacterial

production occurred in July (Fig. 6). The daily removal

of the production of bacteria in lakes Kaiavere and

Võrtsjärv is close to those obtained by Jeppesen et al.

(Jeppesen et al., 1996) in eutrophic Lake Søbygaard during

the years (1984–1985) of higher fish predation pressure on

zooplankton (Table V). The real grazing on bacteria
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Fig. 2. Phytoplankton biomass (BPHY), the abundance of bacteria (ABAC) and ‘edible’ phytoplankton (AEPHY) in lakes Võrtsjärv and Kaiavere.
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The average metazooplankton (cladocerans + rotifers)

FR (mL L�1 day�1) and the IR (particles L�1 h�1) in Lake

Kaiavere was several times higher than in Lake Võrtsjärv

(Table II). In both lakes, the FRs on size groups of 3 and

6 mm were generally substantially higher than the FR on

the smallest (0.5 mm) particles, only in few dates (in Lake

Kaiavere in May and in Lake Võrtsjärv in July and

September) the situation was somehow reversed. Rela-

tively high grazing rates occurred in Lake Võrtsjärv in

May–June, August and October and in Lake Kaiavere in

May–September (Fig. 5). In both lakes, the higher FR and

IR coincided with higher numbers of grazers. In Lake

Võrtsjärv, the metazooplankton FR and the IR on 0.5-mm
particles was higher in warmer water (r = 0.621, P <

0.05 and r = 0.769, P < 0.001, respectively, n = 15). The

population average species-specific FRs (PSFR, involving

all observed individuals, including those with empty

guts) on 3 and 6 mm microspheres was somewhat higher

in Lake Võrtsjärv than in Lake Kaiavere (Table III).

Also, the PSFR on 0.5-mm microspheres were slightly

higher in Lake Võrtsjärv. Cladocerans D. cucullata,

C. sphaericus and B. longirostris were the species with the

highest SFR (involving the individuals that ingested

microspheres) on the tested tracer sizes. Among rotifers

Pompolyx complanata Gosse, F. longiseta and Conochilus

unicornis Rousselet were the species with the highest

SFR on bacteria-sized microspheres.

DISCUSSION

Metazooplankton grazing impact on
different food sources

In our study, the seasonal variation of cladoceran and

the rotifers grazing rate followed the changes in the

density of the main grazers. Generally, zooplankton

Lake Võrtsjärv Lake Kaiavere
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should certainly be higher because metazooplankton are

not the main consumer of bacteria as many studies have

shown protists as the main bacterivores (Güde, 1986;

Bloem et al., 1989). Kisand and Zingel (Kisand and Zin-

gel, 2000) reported that ciliates are the main bacterial

grazers in Lake Võrtsjärv in spring, contrary to many

other works showing that HNF are generally the major

grazers on bacteria (Sanders et al., 1989; Vaqué et al.,

1992). In Lake Võrtsjärv, the main reason of the leading

role of ciliates is the very low abundance of HNF and very

high number of the planktonic ciliates, which can form

>50% of the whole zooplankton biomass (Zingel, 1999),

and their grazing impact should be considerable.

Based on the consumption of fluorescent micro-

spheres, the higher metazooplankton FR and the IR on

both bacteria and phytoplankton were estimated in Lake

Kaiavere, compared with Lake Võrtsjärv (Table II). The

elevated rates resulted in higher daily average grazing

rate on standing stock of bacteria and edible phytoplank-

ton as well as PP while grazing loss of bacterial produc-

tion was similar in both lakes (Table IV). The different

feeding conditions and different number of grazers seem

to be the main reason of higher metazooplankton FR

and the IR in Lake Kaiavere, compared with Lake

Võrtsjärv. The composition of metazooplankton in

lakes Kaiavere and Võrtsjärv is typical for eutrophic

lakes where small cladocerans such as C. sphaericus and

bosminids dominate, and the genus Daphnia is of minor

importance. Among rotifers, Keratella spp. and Polyarthra

spp. are most common. Being quite similar considering

zooplankton taxonomic composition, the biomass and

abundance occurred to be significantly higher in Lake

Kaiavere. This difference was mainly caused by rotifer

group. Also the large filter-feeding cladoceran D. cucullata

was significantly more abundant in Lake Kaiavere

compared with Lake Võrtsjärv. Considering the living

Fig. 3. Metazooplankton biomass (BMZ) and abundance (AMZ) in lakes Võrtsjärv and Kaiavere.
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and feeding conditions for zooplankton, Lake Võrtsjärv

seems to be the much worse environment with a higher

density of seston particles and large ‘inedible’ phyto-

plankton than in Lake Kaiavere where the number of

small phytoplankton cells is relatively high (Table I; Fig. 2).

High concentration of seston particles including fila-

mentous algae is known to negatively affect food collec-

tion process especially that of the large filter-feeding

cladocerans and, therefore, cause lowered filtering

and feeding activity (Porter and McDonough, 1984;
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Fig. 4. Relative proportion (% in total metazooplankton biomass) of rotifers and copepods, which did not consume microspheres in the
experiments, and the contribution of rotifers (% in total metazooplankton abundance) not consuming microspheres in studied lakes.

Table II: Filtering rate ( FR) and ingestion rate ( IR) on microspheres of different size (0.5, 3 and 6
�m) by metazooplankton (MZ), rotifers (RO) and cladocerans (CL)

Variables Microsphere size Grazers Lake Kaiavere Lake Võrtsjärv P

Minimum Maximum Mean � SE Minimum Maximum Mean � SE

FR, mL L�1 day�1 0.5 mm MZ 0.07 16.6 6.47 � 6.72 0.14 2.56 0.99 � 0.79 *

RO 0.05 15.7 4.83 � 5.65 0.001 1.05 0.27 � 0.33 **

CL 0.02 6.7 1.64 � 2.28 0.14 2.33 0.72 � 0.74 NS

3 mm MZ 0 33.9 12.3 � 12.1 0 14.0 4.51 � 4.53 NS

RO 0 13.5 4.43 � 5.76 0 0.83 0.11 � 0.28 NS

CL 0 33.8 7.88 � 11.8 0 14.0 4.21 � 4.42 NS

6 mm MZ 0.44 46.7 13.7 � 17.2 0 35.7 6.08 � 9.30 NS

RO 0 45.1 6.44 � 17.0 0 8.8 0.59 � 2.27 NS

CL 0.44 27.6 7.26 � 9.49 0 35.7 5.49 � 9.37 NS

IR, 105 cells L�1 h�1 0.5 mm MZ 0.03 42.9 11.4 � 14.9 0.07 8.18 1.74 � 2.18 NS

RO 0.02 25.1 7.63 � 9.16 0.001 2.16 0.50 � 0.69 *

CL 0.008 17.8 3.77 � 6.30 0.04 7.46 1.23 � 1.95 NS

IR, 103 cells L�1 h�1 3 mm MZ 0 49.6 10.5 � 17.7 0 3.32 1.15 � 0.97 NS

RO 0 26.6 5.67 � 9.81 0 0.57 0.05 � 0.15 *

CL 0 22.9 4.82 � 8.16 0 3.32 1.05 � 0.92 NS

IR, 103 cells L�1 h�1 6 mm MZ 0.08 15.4 4.61 � 5.43 0 1.73 0.54 � 0.57 *

RO 0 6.89 0.99 � 2.61 0 0.69 0.05 � 0.18 NS

CL 0.08 15.4 3.63 � 5.51 0 1.73 0.49 � 0.59 *

Significance level (P ) of the t test of the comparison between lakes. NS, not significant.

*P < 0.05, **P < 0.01.
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Chow-Fraser and Sprules, 1986; Tóth, 1992). The inhi-

biting effect as well as the low nutritional value of seston

and filamentous cyanobacteria may cause food limitation

in large filter-feeding cladocerans followed by decrease in

their number (Infante and Abella, 1985; Tóth, 1992). The

feeding process of small-bodied cladocerans (e.g. Bosmina

and Chydorus) is less inhibited by the presence of large

filamentous algae; probably because of their narrower
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Fig. 5. Temporal changes in ingestion rates of cladocerans and rotifers on bacteria (IRBAC) and ‘edible’ phytoplankton (IREPHY) of size class
2–5 mm (SC1) and 5–15 mm (SC2) and their total (cladocerans + rotifers) filtering rates (FRBAC; FREPHY) in lakes Võrtsjärv and Kaiavere.
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carapace gape there is a lower risk of filaments entering

the food chamber and entangling the thoracic appen-

dages (Porter and McDonough, 1984). Both qualitative

and quantitative aspects of food sources are the factors

shaping the composition and abundance of zooplankton

assemblage (Rothhaupt, 1990a; Cordova et al., 2001),

which in turn influence the grazing activity (Cyr and

Pace, 1992). That might also be the reason for lower

grazing activity in our lakes, particularly which might

be assumed for Lake Võrtsjärv, where the seston concen-

tration and the phytoplankton biomass are considerably

higher, and cyanobacteria contributed 76% of the total

phytoplankton biomass during the study period. However,

fish predation is known to affect grazer’s

community composition as well as abundance and biomass

and, therefore, control lower trophic levels (Christoffersen

et al., 1993; Jürgens and Jeppesen, 2000). Generally, its

influence is stronger in eutrophic lakes where the abun-

dance and biomass of planktivorous fish is higher (Jeppesen

et al., 1997). In the present study, both investigated lakes are

rich in fish, roach, perch and bream as the most frequent

species; however, greater abundance and biomass can be

found in Lake Võrtsjärv (P. Zingel et al., Estonian Agricul-

turalUniversity, unpublished data). Therefore,more inten-

sive predation pressure on zooplankton in Lake Võrtsjärv

could be assumed.

Relative importance of major groups and
species of grazers on various size fractions
of food

Considering the similar zooplankton taxonomic composi-

tion, the lakes differed by the leading group of bacterivores,

Table III: The major grazer’s population average species-specific filtering rates (PSFR—including
individuals with empty guts) (�L individual�1 h�1) and maximum and minimum SFR (microspheres
consumed individuals) (�L individual�1 h�1) on different size of microspheres in lakes Võrtsjärv and
Kaiavere

Species 0.5-mm microspheres 3-mm microspheres 6-mm microspheres

PSFR SFR PSFR SFR PSFR SFR

Mean � SE Minimum Maximum Mean � SE Minimum Maximum Mean � SE Minimum Maximum

Lake Kaiavere

Cladocerans

Chydorus sphaericus 0.81 � 0.26 0.15 2.36 3.13 � 3.32 1.12 50.1 2.72 � 2.18 6.41 32.5

Daphnia cucullata 2.59 � 2.07 0.04 11.9 8.59 � 10.6 1.12 100 8.05 � 9.62 4.55 64.1

Bosmina longirostris 0.85 � 0.23 0.50 1.13 5.63 � 3.81 2.68 7.10 2.39 � 2.28 4.55 10.6

Bosmina coregoni 0.29 � 0.15 0.02 0.92 3.10 � 3.96 1.12 67.9 7.57 � 6.46 6.41 32.5

Rotifers

Keratella cochlearis 0.04 � 0.03 0.02 0.31 0.04 � 0.11 7.10 7.10 Not found

Keratella cochlearis tecta 0.04 � 0.02 0.02 0.27 0.01 � 0.03 1.12 1.12 Not found

Anuraeopsis fissa 0.05 � 0.01 0.04 0.08 Not found Not found

Filinia longiseta 0.69 � 0.17 0.36 1.30 1.23 � 1.86 3.37 21.3 Not found

Pompolyx complanata 1.33 � 0.17 0.94 2.51 Not found Not found

Conochilus unicornis 0.65 � 0.03 0.63 0.67 2.81 � 3.97 5.62 5.62 Not found

Lake Võrtsjärv

Cladocerans

Chydorus sphaericus 0.69 � 0.31 0.04 3.67 5.77 � 7.79 10.5 120 4.67 � 5.76 1.93 104

Daphnia cucullata 2.65 � 1.43 0.18 9.24 10.3 � 4.43 1.74 62.7 9.35 � 8.40 13.4 63.1

Bosmina longirostris 0.45 � 0.39 0.04 2.92 5.07 � 11.4 4.53 40.7 3.89 � 4.45 19.3 82.0

Bosmina coregoni 0.20 � 0.16 0.04 1.37 5.95 � 8.39 5.21 47.5 2.41 � 2.80 7.05 31.4

Rotifers

Keratella cochlearis 0.03 � 0.03 0.04 0.35 Not found Not found

Keratella cochlearis tecta 0.02 � 0.02 0.04 0.27 Not found Not found

Anuraeopsis fissa 0.06 � 0.02 0.04 0.31 0.02 � 0.06 4.68 4.68 Not found

Filinia longiseta 0.67 � 0.47 0.41 1.37 Not found Not found
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rotifers (mainly F. longiseta ja Keratella spp.) in Lake Kaiavere

and cladocerans (mainly C. sphaericus) in Lake Võrtsjärv

(Fig. 7), accounting on average for 64 and 74% of the

daily total zooplankton bacterivory, respectively. The

higher rate of bacterivory observed in Lake Kaiavere

(Table IV) is probably because of higher density of bac-

terivorous rotifers, and the presence of efficient bacter-

ivores as P. complanata, F. longiseta and C. unicornis (Ooms-

Wilms et al., 1995; Hwang and Heath, 1999), which were

not found or only rarely observed in Lake Võrtsjärv. A

similar pattern was shown as a potential reason for dif-

ferent rate of bacterivory between the coastal and off-

shore sites in Lake Erie (Hwang and Heath, 1999).

Cladocerans were generally the main consumers of

phytoplankton, contributing on the average 72 and

94% of the total ingestion of edible phytoplankton in

lakes Kaiavere and Võrtsjärv, respectively. In Lake

Võrtsjärv, the dominant grazer C. sphaericus accounted

alone for an average 52% of total rotifer and cladoceran

grazing on phytoplankton (Fig. 7). Though cladocerans

were the dominant grazers on bacteria in Lake Võrtsjärv

and on phytoplankton in both lakes, their abundance

was low in July. The reason for that might be in size-

selective grazing by fish as well as because of the chan-

ged feeding conditions in summer period as the contri-

bution of filamentous cyanobacteria was high in that

period, while edible phytoplankton was relatively scarce

(Fig. 2). It is known that large zooplankton may be

disadvantaged during blooms of cyanobacteria and

replaced by smaller species (Zánkai and Ponyi, 1986;

Christoffersen et al., 1993). Also in this study, small

bacterivorous rotifers (mainly K. c. tecta and A. fissa)

became abundant and contributed on an average 68%

of total metazoan bacterivory in Lake Võrtsjärv in July

and at the end of August (Fig. 7). In Lake Kaiavere,

rotifers (F. longiseta, C. unicornis, Keratella spp.) formed

>50% of total grazing of SC1 of phytoplankton in July,

August and September (Fig. 5). This indicates that roti-

fers may be temporarily even more important grazers

than cladocerans in these lakes.

Phytoplankton of SC2 was consumed mostly by cla-

docerans C. sphaericus and D. cucullata in Lake Võrtsjärv

and mostly by D. cucullata in Lake Kaiavere. According

to PSFR in this study, SC2 was more readily used by

D. cucullata, while C. sphaericus preferred smaller phyto-

plankton (Table III). Although only a minor part of the

standing stock of phytoplankton SC2 was removed, the

negative correlation (P < 0.05) between cladocerans

abundance and the standing stock of SC2 support the

assumption of active use and importance of that size

fraction as food for zooplankton. Cladocerans are con-

sidered to occupy the key position in food webs of fresh-

water systems and are generally the major consumers on

phytoplankton in lakes (Lampert et al., 1986; Sterner,

1989; Cyr and Pace, 1992). In lakes Võrtsjärv and

Kaiavere, cladocerans were represented mainly by

small-bodied forms incapable to exert considerable graz-

ing loss of food sources (Jeppesen et al., 1996; Nõges,

1998a). Daphnia cucullata was the species with the highest

PSFR (Table III) being the main phytoplankton consu-

mer in Lake Kaiavere. In Lake Võrtsjärv, its abundance

was too low to have any significant effect on phytoplank-

ton in the lake where C. sphaericus was the main consu-

mer on both bacteria and phytoplankton. This small

cladoceran, originally restricted to the littoral zone (Pejler,

1975) is well adapted to conditions of eutrophic lake with

Table IV: Grazing rate on standing stock of bacteria (GRBAC) and ‘edible’ phytoplankton (<30 �m)
(GREPHY), primary production (GRPP) and bacterial production (GRBP) by metazooplankton (MZ),
rotifers (RO) and cladocerans (CL)

Variables Grazers Lake Kaiavere Lake Võrtsjärv P

Minimum Maximum Mean � SE Minimum Maximum Mean � SE

GRBAC, % day�1 MZ 0.007 1.61 0.52 � 0.54 0.008 0.26 0.09 � 0.08 NS

RO 0.0002 0.039 0.015 � 0.014 0.000003 0.004 0.001 � 0.001 **

CL 0.00007 0.03 0.007 � 0.01 0.00032 0.01 0.003 � 0.003 NS

GREPHY, % day�1 MZ 0.04 6.16 2.60 � 2.16 0 3.71 0.98 � 1.09 NS

RO 0 0.19 0.05 � 0.07 0 0.04 0.003 � 0.009 NS

CL 0.002 0.26 0.06 � 0.09 0 0.16 0.04 � 0.05 NS

GRBP, % day�1 MZ 0.13 9.47 4.10 � 3.43 0.06 20.9 4.34 � 7.21 NS

GRPP, % day�1 MZ 0.004 0.81 0.43 � 0.33 0.006 0.23 0.06 � 0.08 *

Significance level (P ) of the t test of the comparison between lakes. NS, not significant.
*P < 0.05, **P < 0.01.
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high concentration of detritus and filamentous phyto-

plankton and is often the dominant cladoceran (Porter

and McDonough, 1984; Vijverberg and Boersma, 1997;

Haberman, 1998).

Unlike relatively poorly selective feeding cladocerans

like Daphnia and Chydorus (Bern, 1990; Kerfoot and

Kirk, 1991), the feeding of Bosmina is far more complex

as it is strongly taste and size selective (Bogdan and

Gilbert, 1982; DeMott, 1982; Kerfoot and Kirk,

1991). This can be attributed to Bosmina dual-feeding

mode, using different thoracic limbs one mode for

small-particle filtering and another for large-particle

grasping (Bleiwas and Stokes, 1985; DeMott, 1986;

Kerfoot and Kirk, 1991). The dual-feeding option

enables the bosminids to employ widely varying sizes

of food particles and is apparently the important factor

in the success of Bosmina in lakes of different trophy

(Gulati et al., 1991). Bosminids are common cladocer-

ans in eutrophic lakes with the seasonal replacement

pattern, B. coregoni replaces B. longirostris as summer

progresses (Gulati et al., 1991). Bosmian coregoni is better

adapted to waters with high-food concentration domi-

nated by large food particles as it is in summer plankton

of eutrophic lakes (Gulati et al., 1991). In this study,

B. coregoni expressed lower IR and FR on bacteria than

B. longirostris; however, the difference was statistically

not significant. This result is consistent to Irvine (Irvine,

1986) that B. longirostris is more efficient feeder on

smaller-size food, whereas B. coregoni prefers larger

food particles. Irvine (Irvine, 1986) also found a niche

separation for coexistence of D. cucullata and B. coregoni as

the latter preferentially feeds on food particles >7 mm,

whereas D. cucullata is more efficient on particles <7 mm.

Also in this study, FRs of D. cucullata on tested tracer
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sizes (0.5, 3 and 6 mm) were higher than those mea-

sured for Bosmina species (Table III). The FR and graz-

ing rate of B. coregoni on the smallest food particles were

significantly different than those found for Daphnia and

Chydorus, supporting the idea of a food niche separation

for coexistence with other cladocerans. The strongest

difference was found between B. coregoni and Daphnia

(P < 0.0001).

PSFR on bacteria (0.5-mm microspheres) obtained in

this study (Table III) was quite close to those estimated

by the group of Ooms-Wilms et al. (Ooms-Wilms et al.,

1993, 1995), Ooms-Wilms (Ooms-Wilms, 1997) and

Sanders et al. (Sanders et al., 1989) using fluorescent

microspheres of the same size (Table VI), but substan-

tially lower than measured by Thouvenot et al.

(Thouvenot et al., 1999). Grazing of A. fissa and

F. longiseta on phytoplankton (particle size 3 mm) in

our experiments was generally in the same range as

found by Ooms-Wilms (Ooms-Wilms, 1997). Although

the edible phytoplankton density was lower in Lake

Võrtsjärv, the cladocerans PSFR on phytoplankton

was slightly higher than in Lake Kaiavere (Table III). At

least partly, this may be explained by lower food concen-

tration, which can cause elevated FRs (Ringelberg and

Royackers, 1985; Rothhaupt and Lampert, 1992). At

times of low algal biomass, bacteria could be an impor-

tant food supplement or become even dominant food

source for some metazoans (Børsheim and Olsen, 1984;

Christoffersen et al., 1990; Wylie and Currie, 1991).

Considering the low density of ‘edible’ phytoplankton

in Lake Võrtsjärv, bacteria in this lake are probably

more important food source for metazooplankton than

in Lake Kaiavere. Also the regression analysis suggested

that during the period of low transparency and scarce

edible phytoplankton, the bacteria were more readily

ingested by metazooplankton in Lake Võrtsjärv (r =

0.9, P < 0.001). The food shortage might also be a

reason for lower zooplankton abundance in Lake

Võrtsjärv as the food density is shown to be important

factor affecting zooplankton reproduction and popula-

tion increase (Rothhaupt, 1990a; Cordova et al., 2001).

However, in our study, substantially higher average

zooplankton FRs were measured on phytoplankton

size groups than those on bacteria (Table II), indicating

greater importance of algae as food source for

zooplankton in these lakes. Christoffersen et al.

(Christoffersen et al., 1990) and Kim et al. (Kim et al.,

2000) obtained similar results in eutrophic Frederiksborg

Table V: Zooplankton grazing rates on standing stock of bacteria (GRBAC) and bacterial production
(GRBP) and primary production (GRPP) from various studies

System GRBAC

(% day�1)

GRBP

(% day�1)

GRPP

(% day�1)

Grazers Source

Hudson estuary (May–October) 10.1 (3–16) PMZ Vaqué et al. (1992)

Lake Paul (May–August) 3.2 (2–5) PMZ Vaqué and Pace (1992)

Lake Thuesday (May–August) 3.4 (1–22) PMZ Vaqué and Pace (1992)

Lake Oglethorpe (February–September) 5.8 (2–35) 80.0 (11–162) PMZ Sanders et al. (1989)

Lake Erie coastal (May–August 1993) 28 (8–46) MZ Hwang and Heath (1999)

Lake Erie coastal (May–August 1994) 116 (16–374) MZ Hwang and Heath (1999)

Lake Erie offshore (May–August 1993) 147 (32–291) MZ Hwang and Heath (1999)

Lake Erie offshore (May–August 1994) 228 (104–407) MZ Hwang and Heath (1999)

Lake Frederiksborg Slotssø 21–87 PMZ Christoffersen et al. (1990)

Lake Frederiksborg Slotssø 5 26 >200 mm Jespersen et al. (1988)

Lake Frederiksborg Slotssø 27 Daphnia Riemann and Bosselmann (1984)

Lake Søbygaard (May–October 1984–1985) 5.4–11.8

(0.4–19.2)

8 (0.4–32) MZ Jeppesen et al. (1996)

Lake Søbygaard (May–October 1986) 43 30 MZ Jeppesen et al. (1996)

Lake Prossa (May–July) 8.8 (3.6–29) >100 mm Tõnno et al. (2003)

Lake Võrtsjärv (May–November 1984–1985) 28.5 (0.3–133) Cladocerans Nõges (1998a)

Lake Võrtsjärv (April–November 1998) 15 (3–68.2) >100 mm Nõges and Künnap (2003)

Lake Võrtsjärv (August–November 1998) 17.6 (6–40) >48–100 mm Nõges and Künnap (2003)

Lake Võrtsjärv (April–November 2000) 0.1 (0.008–0.26) 4.3 (0.06–20.9) 0.06 (0.006–0.23) MZ This study

Lake Kaiavere (April–October 2000) 0.5 (0.007–1.6) 4.1 (0.13–9.5) 0.43 (0.004–0.81) MZ This study

MZ, metazooplankton; PMZ, protists and MZ.
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Slotssø (Denmark) and in regulated large river Nagdong

(Korea), respectively.

Critical analysis of applied method

It was the first attempt to estimate bacterial consumption

by metazooplankton in Lake Võrtsjärv, hence grazing

on phytoplankton has been measured several times. Also

other studies have supported the evidence of low con-

sumption of PP by secondary producers in Lake

Võrtsjärv and assumed that the consumption of phyto-

plankton biomass proceeds most likely through the

microbial loop (Nõges, 1997; Nõges et al., 1998; Nõges,

1998a). Comparative studies have shown that the values

of the clearance and grazing rates can vary depending

on the method of the measurement (Nõges, 1998b;

Ooms-Wilms et al., 1995). In Lake Võrtsjärv, earlier

studies with different methods (radioactive, particle

counting and Chl a concentration change) have resulted

in substantially higher grazing rates on phytoplankton

(Nõges, 1998a; Nõges and Künnap, 2003) than our

study (Table V). In 1984 and 1985, the average clado-

ceran grazing accounted for 2.5% of the phytoplankton

biomass and 28.5% of the PP with maximum commu-

nity grazing of 12% of the phytoplankton biomass and

133% of the PP (Nõges, 1998a). Similar rates were

obtained in 1998 when large zooplankton (>100 mm,

mainly crustaceans) with the average FR 9.4 mL L�1 h�1

consumed 2.9% of the phytoplankton biomass and 15%

of the PP (Nõges and Künnap, 2003). Further rough

calculations of the results of the present study are based
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on the assumption that zooplankton consumes phyto-

plankton SC1, SC2, SC3 and the bacteria with same

efficiency as the microspheres of diameter 3, 6, 24 and

0.5 mm, respectively. If that is assumed, then the average

metazooplankton daily grazing could be estimated as 0.5

and 0.1% of the standing stock of bacteria and 2.6 and

1.0% of the standing stock of ingestible phytoplankton in

lakes Kaiavere and Võrtsjärv, respectively. That corre-

sponds to average daily grazing of 4.1% of the bacterial

production and 0.43% of the total PP in Lake Kaiavere,

and, 4.3 and 0.06%, respectively, in Lake Võrtsjärv.

Comparing the results with some values from the litera-

ture (Table V), a really quite a low grazing intensity on

bacteria and phytoplankton was measured in our lakes.

The unique advantage of using fluorescent particles is

that they can directly be observed within individual

zooplankter, thereby allowing the determination of rela-

tive and absolute grazing rates. Though natural particles

and microspheres may not be equally preferred by

all species (DeMott, 1988; Ooms-Wilms et al., 1993,

1995), the selectivity is generally considered to be low

for bacteria-size particles (Kerfoot and Kirk, 1991), but

increases with the increasing particle size (DeMott, 1986;

Bern, 1990; Rothhaupt, 1990b). The zooplankton com-

munity consists of variety of organisms, which are

diverse in both feeding mechanisms and in modes of

food selection (Pourriot, 1977; Gilbert and Bogdan,

1984; DeMott, 1986). Thus results for total grazing

may strongly depend on both method of measurement

and the species composition of the zooplankton (Ooms-

Wilms et al., 1993, 1995). The low phytoplankton graz-

ing in this study may also be the result of some under-

estimation. In Lake Võrtsjärv, rotifers generally did not

consume phytoplankton. Only in a few occasions were

A. fissa and Keratella spp. observed to ingest the smallest

phytoplankton tracers in experiment. There is, however,

no reason to expect that zooplankton in Lake Võrtsjärv

is more selective than that in Lake Kaiavere. Probably,

as the tracer level used in Lake Võrtsjärv was lower

because of lower edible phytoplankton density, rotifers

might not encounter phytoplankton-size tracer particles

in the short-term feeding experiments and the grazing of

rotifers on phytoplankton was somewhat underesti-

mated. Several abundant rotifer species in our lakes,

e.g. Polyarthra spp., Trichocerca spp., Synchaeta spp. never

ingested any size of microspheres, which is also affirmed

by other studies for bacteria size microspheres (Sanders

et al., 1989; Ooms-Wilms et al., 1995; Thouvenot et al.,

1999). This support the view of Gilbert and Bogdan

(Gilbert and Bogdan, 1984) that raptorial feeders do

not consume bacteria, contrasting with the activity of

the filter-feeding rotifers. Generally, the filter-feeding

rotifers like Keratella are able to collect and process

numerous small cells simultaneously (Gilbert and Bogdan,

1984), and prey selection can mainly be described as a

passive, mechanical process in which the morphological

structure of the filtering apparatus results in size prefer-

ences (Pourriot, 1977; Starkweather, 1980; Rothhaupt,

1990b). Probably their poorly selective feeding mode

makes them also less discriminative against artificial

food tracers. But most of the abundant rotifer species

in these lakes, including Polyarthra spp. and Synchaeta spp.

have been shown to consume algae (Pourriot, 1977;

Bogdan and Gilbert, 1982; Telesh et al., 1995) and also

phytoplankton-size microspheres (Ooms-Wilms, 1997;

Kim et al., 2000). Though authors using fluorescent

inert particles as tracers have mentioned the rotifer

species not consuming microspheres (Sanders et al.,

Table VI: Species-specific filtering rates ( SFR, �L individual�1 h�1) of some zooplankton taxa from
various studies

Species 0.5-mm microspheres Published source

Cladocerans

Chydorus sphaericus <0.4 Ooms-Wilms et al. (1995)

Daphnia cucullata 1–3 Ooms-Wilms et al. (1995)

Bosmina longirostris <0.4, 9.0 Ooms-Wilms et al. (1995); Thouvenot et al. (1999)

Bosmina coregoni <0.4 Ooms-Wilms et al. (1995)

Rotifers

Keratella cochlearis 0.009–0.017, 0.006–0.097 Ooms-Wilms et al. (1995); Ooms-Wilms (1997); Sanders et al. (1989) (Keratella spp.)

Anuraeopsis fissa 0.009–0.068, 0.011–0.029 Ooms-Wilms et al. (1995); Ooms-Wilms (1997); Sanders et al. (1989)

Filinia longiseta 0.16–0.44, 0.07–0.29 Ooms-Wilms et al. (1993, 1995); Ooms-Wilms (1997); Sanders et al. (1989)

Conochilus unicornis 0.009, 2.2 Ooms-Wilms (1997); Thouvenot et al. (1999)

Measured by fluorescent microspheres as tracers.
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1989; Ooms-Wilms et al., 1995; Thouvenot et al., 1999),

none of the studies have estimated their portion of total

zooplankton community. In this study, a significant con-

tribution of rotifer species, which did not ingest micro-

spheres to the total biomass and the abundance of

metazooplankton (Fig. 4) may have resulted in very low

estimated phytoplankton consumption. However, in June

and July, most of the rotifers consumed microspheres in

the experiments. Therefore, we assume that quite realistic

values for rotifers grazing on phytoplankton were

achieved in summer in Lake Kaiavere where the rotifers

readily ingested phytoplankton-size tracers.

Also copepods generally did not ingest microspheres

in our study. This is supported by other studies (Sanders

et al., 1989; Ooms-Wilms et al., 1995; Hwang and Heath,

1999) while, however, in experiment of Kim et al. (Kim

et al., 2000), cyclopoid copepodids and nauplii ingested

microspheres, indicating consumption of phytoplankton

and very low-level bacterivory. In case of calanoid cope-

pods, plastic beads have been successfully used in size

and taste selectivity studies of zooplankton (DeMott,

1988; Kerfoot and Kirk, 1991; Zánkai, 1994). Generally,

copepods are considered to be more selective against

microspheres than rotifers and cladocerans (DeMott,

1986; Kerfoot and Kirk, 1991). Studies on copepods

feeding mechanisms with morphological examination

of the feeding appendages, laboratory selectivity studies

and new approaches with video techniques have indi-

cated them as highly selective organisms in plankton

community (DeMott, 1986, 1988; Kerfoot and Kirk, 1991;

Makridis and Vadstein, 1999; Bundy and Vanderploeg,

2002). Copepods examine their food items individually

and are able to discriminate between different foods on

the basis of particle size, taste and nutritional quality, as

well as select on the basis of biochemical composition in

terms of toxity (DeMott, 1986, 1988; DeMott and Mox-

ter, 1991; Kerfoot and Kirk, 1991). Copepods discrimi-

nate not only between natural food particles and inert

particles, depending on the nutritional environment

(Kerfoot and Kirk, 1991), but also between inert parti-

cles with and without the flavour of algae (DeMott,

1986). The relatively dense copepod assemblages in

lakes Kaiavere and Võrtsjärv are mainly formed by

cyclopoid copepods of the genus Mesocyclops and Thermo-

cyclops. Though developmental stages of cyclopoid cope-

pods nauplii and copepodites feed mostly on

phytoplankton, they are predominantly carnivorous

when adult (Hansen and Santer, 1995). Although cope-

pods (both developmental stages and adults) did not

consume microspheres in our experiments, their con-

sumption of protozoa and small metazoa can have sign-

ificant ‘indirect’ grazing impact on bacteria and

phytoplankton (Adrian and Schneider-Olt, 1999;

Hansen, 2000).

In our study, grazing on the particles >24 mm was not

estimated. Our largest, 24-mm particles were ingested

only on few occasions and thus seemed to be almost

inedible. It is, however, possible that hard spheres can-

not be ingested if they are bigger than the mouth open-

ing, while the softer and more flexible algae of the same

size can still be eaten (Rothhaupt, 1990b). Algae are

softer than polystyrene beads and could be broken and

compressed during ingestion. DeMott (DeMott, 1995)

showed in his experiment with Daphnia that algae that

are 2–5 times larger than the largest ingestible bead can

still be effectively consumed.

In summary, based on consumption of fluorescent

microspheres relatively low zooplankton grazing rates

were measured in lakes Kaiavere and Võrtsjärv. The low

consumption of standing stocks and productions of bacteria

and phytoplankton in this study support the results of many

other studies that in eutrophic lakes a major part of the

bacterial and phytoplankton PP is channelled through the

microbial food web. The metazooplankton grazing rate

was strongly influenced by the metazooplankton taxo-

nomic composition. The grazing rate on phytoplankton

could be higher than estimated in our study as microsphere

method may underestimate the IR of copepods and some

rotifer species. However, the method provided valuable

results on differential use of variable food sizes and types

on species level of cladocerans and many rotifer species in

shallow eutrophic lakes. Our results suggest that phyto-

plankton was generally the most important food source

for cladocerans and rotifers. In the periods of high-seston

concentration and scarce edible phytoplankton, bacteria

were more readily ingested.
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Mäemets, A. (1977) Eesti NSV järved ja nende kaitse. Valgus, Tallinn,

Estonia, 202 pp. (in Estonian).

Makridis, P. and Vadstein, O. (1999) Food selectivity of Artemia francis-

cana at three developmental stages. J. Plankton Res., 21, 2191–2201.

Mayer, J., Dokulil, M. T., Salbrechter, M. et al. (1997) Seasonal

successions and trophic relations between phytoplankton, zooplank-

ton, ciliate and bacteria in a hypertrophic shallow lake in Vienna,

Austria. Hydrobiologia, 342/343, 165–174.

Nõges, T. (1997) Zooplankton-phytoplankton interactions in lakes
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Tóth, L. G. (1992) Limiting effect of abioseston on food ingestion,

postembronic development time and fecundity of daphnids in Lake

Balaton (Hungary). J. Plankton Res., 14, 435–446.
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Abstract

Abundance and biomass of the microbial loop members
[bacteria, heterotrophic nanoflagellates (HNF), and
ciliates] were seasonally measured in the naturally
eutrophic and shallow (2.8 mean depth) Lake Võrtsjärv,
which has a large open surface area (average 270 km2)
and highly turbid water (Secchi depth G1 m).
Grazing rates (filter feeding rates) on 0.5-, 3-, and
6-mm-diameter particles were measured to estimate
pico- and nanoplankton grazing (filter feeding) by
micro- and metazooplankton. Among grazers, HNF
had a low abundance (G50 cells mLj1) and, due to
their low specific filtering rates, they only grazed a
minor fraction of the bacterioplankton (e4.2% of
total grazing). Ciliates were relatively abundant
(e158 cells mLj1) and, considering their high
specific feeding rates, were able to graze more than
100% of the bacterial biomass production in the
open part of the lake, whereas the average daily
grazing accounted for 9.3% of the bacterial
standing stock. Ciliates were potentially important
grazers of nanoplanktonic organisms (on average,
approximately 20% of the standing stock of 3-mm-
size particles was grazed daily). Metazooplankton
grazed a minor part of the bacterioplankton,
accounting for only 0.1% of standing stock of
bacteria. Grazing on nanoplankton (3–6 mm) by
metazooplankton was higher (0.4% of standing
stock). The hypothesis is proposed that ciliates
dominate due to a lack of top–down regulation by
predators, and HNF have a low abundance due to
strong grazing pressure by ciliates.

Introduction

Although a shift toward ciliate-dominated grazing on
pico-sized particles in eutrophic systems has been
previously described (e.g., [40, 25]), heterotrophic nano-
flagellates (HNF) are typically the main bacterial grazers
in most of aquatic ecosystems (e.g., [4, 12]). Beaver and
Crisman [2] also described the compositional shift from
large ciliates toward small ciliates (G30 mm) in oligo- and
eutrophic environments, respectively. Ciliates are be-
lieved to become important members of the microbial
loop when their food is abundant (e.g., [48, 37]) and the
importance of their competitors and predators has also
been recognized (e.g., [34]). In eutrophic systems, ciliates
are believed to be controlled top–down by metazoo-
plankton rather than by food availability [17].

An earlier short-term study in Lake Võrtsjärv has
shown the importance of ciliate grazing on bacteria [20].
Bacteriovorous ciliates (Uronema sp., Cyclidium sp.,
Urotricha furcata, Rimostrombidium sp.) were able to
efficiently control the production of heterotrophic
bacterioplankton over the short period of the spring
bloom of diatoms. The total abundance of HNF was
extremely low and thereby their total grazing on bacteria
remained minor compared to grazing by ciliates (ap-
proximately 2400 bacteria hj1 Lj1 compared to
approximately 90 bacteria hj1 Lj1, respectively).

The objectives of the present study were to compare
grazing on pico-sized [bacteria and autotrophic pico-
plankton (APP) with a diameter G2 mm] and nano-sized
(nanoalgae and protozoa with a diameter from 2 to 20 mm)
particles by the grazers HNF, ciliates, rotifers, and
cladocerans, in a shallow lake with intensive resuspension.
For comparison, the water column of marcrophyte-
dominated compartment of the same lake was studied.
This was done to assess the differences of grazing in theCorrespondence to: Veljo Kisand; E-mail: vkisand@ebc.ee
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water column of the open part (intensive resuspension,
abundant filamenous phytoplankon) and macrophyte-
dominated part of the lake. The direct aim of the study
was to prove whether ciliates dominate by numbers and
grazing on pico- and nanoplankton in phytoplankton-
dominated part of this lake over longer periods than short
occasions described earlier. The reasons for a shift from
HNF grazing toward ciliate grazing in a eutrophic and
shallow lake ecosystem are briefly discussed.

Materials and Methods

Sampling. Lake Võrtsjärv is a large (270 km2) and
shallow (mean depth 2.8 m, maximum depth 6 m)
eutrophic lake situated in Estonia (coordinates between
latitudes 58-050N, 58-250N and approximate longitude
26-000). Station1 (St1) was near the deepest area of the lake,
which has the typical limnological characteristics of a

phytoplankton-dominated lake (Fig. 1). The southernmost
part of the lake—station 2 (St2)—is narrow, very shallow
(depth G1.5 m), and filled with submerged macrophytes
that display typical macrophyte-dominated characteristics.

From April to October 2000, St1 and St2 were sampled
biweekly. The integrated lake water was obtained bymixing
the water collected via a 2-L Ruttner sampler at 1-m
intervals through the entire water column. For metazoo-
plankton samples, 10 L integrated water was filtrated
through a 48-mm plankton net and concentrated to 100
mL. Samples of phytoplankton, zooplankton, and plank-
tonic ciliates were fixed with acidified Lugol_s solution
[0.5% (vol/vol) final concentration]. Bacterial samples (20
mL) were preserved with formaldehyde [2% (vol/vol) final
concentration].

Counting the Abundance of the Planktonic Or-

ganisms. The total number of bacteria (TNB)
(meansTSD presented) was determined by fluorescence
microscopy at 1000� magnification (Leica DM RB) on
DAPI-stained 0.22-mm black membrane filters (Osmonics
Inc., Livermore, CA, USA) according to Porter and Feig
[31]. Filters were obtained from volumes of 1–5 mL of
fixed subsamples. At least 400 cells were determined per
filter. Autofluorescent picoautotrophs were detected and
counted with epifluorescence microscopy by blue and
green excitation. In total, at least 200 cells were counted
per filter.

The abundance of HNF and small ciliates (G50 mm
in size) was determined on the same filters. Samples were
fixed with buffered formalin (1% final concentration).
Preserved samples were stained for 1–2 min with DAPI at
a final concentration 2 mg mLj1 and gently filtered
through 0.8-mm pore-size black isopore filters (Poretics
Inc., Livermore, CA, USA). Protists were examined with a
Olympus BX60 fluorescence microscope under 1000�
magnification using blue light (470/505 nm, OG 515).
Auto- and mixotrophy of flagellates was checked on the
basis of autofluorescence of chloroplasts under green (546/
565 nm, OG 590) and blue light (470/505 nm, OG 515). A
total of 250 (if more than 30 cells were encountered) to 400
(if less than 15 cells were encountered) fields of view were
counted on each filter. Where possible the dominant taxa
of fluorescently stained ciliates were identified based on the
composition of parallel Lugol-fixed samples.

Ciliate biomass and community composition were
determined using the Utermöhl technique [46]. Volumes
(50 mL) were settled for at least 24 h in plankton
chambers. Ciliates were enumerated and identified with
an inverted microscope at 400–1000� magnification.
The entire content of each Utermöhl chamber was
surveyed. For metazooplankton samples, 10 L integrated
lake water was filtrated trough 48 mm plankton net and
concentrated to about 100 mL. The samples were fixed
with acidified Lugol_s solution. Triplicate samples (2.5 or

Figure 1. Sampling sites in Lake Võrtsjärv. Station 1 (St1) was
situated in the typically phytoplankton-dominated area
(BPhytoplankton lake^), and station 2 (St2) was in the macro-
phyte-dominated area (BMacrophyte lake^).
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5 mL) for each metazooplankton were counted under a
binocular microscope in a chamber (dimensions 13�6 cm,
capacity 8 mL) at 32 and 56� magnifications.

Phytoplankton species composition and biomass
were also analyzed using the Utermöhl technique [46].
Cells were enumerated with an inverted microscope
(Hund Wilovert S) at 400� magnification. Samples were
counted until at least 400 counting units (filaments, cells,
or colonies) were reached giving a counting error of
T10% for the total biomass. For grazing experiments, the
number of phytoplankton cells (G30.0 mm; presumably
edible for zooplankton) was counted separately. Size
classes (SC) were split by the maximum linear length
measure: 2.0–5.0, 5.0–15.0, and 15.0–30.0 mm for SC1,
SC2, and SC3, respectively.

Production Measurements. Total net primary
phytoplankton production (particulate + soluble) was
estimated by 14CO2 assimilation [27, 22]. Samples
were incubated for 2 h at constant light intensity (120 W
mj2) and at the same temperature as the lake. Non-
photosynthetic carbon fixation was measured in dark and
subtracted from light assimilation values.

Net heterotrophic bacterial biomass production was
measured using tritiated leucine incorporation (TLI).
TLI was measured in three 10-mL replicates and two
formalin killed negative controls with 59.0 Ci L-(4,5-3H)-
leucine mmolj1 (Amersham Ltd., Arlington Heights, IL,
USA) [41]. The samples were incubated for 60 min at in
situ temperature in the dark. Incubations were stopped
by addition of a final concentration of 2% (vol/vol)
formaldehyde. The filters were rinsed with cold trichloroacetic
acid [TCA, 5% (vol/vol)] and washed with cold 80% (vol/
vol) ethanol. Filters were radioassayed in a LSC Rackbeta
1211 (LKB Wallac, Turku, Finland) and quenching
corrected using the external standard ratio method giving
a counting efficiency of about 40%. Net bacterio- plankton
production (BP) was calculated from leucine incorporation
rates by using the empirically derived conversion factors
(4� 1016 cells molj1) suggested by Kisand and Nõges
[19] for L Võrtsjärv. Gross BP was calculated from net BP
by using the bacterial growth efficiency (BGE) values
(average 30%) suggested by Biddanda et al. [3] and del
Giorgio et al. [8].

Calculation of Planktonic Organism_s Biomass.

Biomass was calculated from average biovolume (i.e.,
wet weight) of particular groups of organisms using
conversion factors from biovolume to carbon biomass.
These were 240 fg C mmj3 for APP [49], 100 fg C mmj3

for the remaining algae [28], 380 fg C mmj3 for bacteria
[23], 220 fg C mmj3 for HNF [5], and 190 fg C mmj3

for ciliates [33]. Dry weight biomass of metazooplankton
was estimated by length/weight relationships according
to Dumont et al. [10] and Bottrell et al. [6]. Carbon

biomass of metazooplankton was calculated assuming that
wet weight constitutes 10% of dry weight and the latter
constitutes 40% of carbon.

Grazing Experiments. Grazing by proto- and
metazooplankton was measured by in situ feeding
experiments with fluorescent microspheres of diameters
0.5 mm (Fluoresbrite\; Polysciences Inc., Warrington, PA,
USA) for bacteria and APP, and of 3, 6, and 24 mm (Duke
Scientific Corporation, Palo Alto, CA, USA) for unicellular
phytoplankton and other unicellular organisms of
corresponding size. The tracer amount that did not exceed
10% of the density of corresponding size groups of natural
pico- and nanoplankton in lake water was added to
integrated lake water.

For metazoans, a 3-L incubation vessel was used.
Incubations lasted for 7 min (the grazing rate was linear,
the vials were shaken gently twice during incubation),
after which the water was filtered through a 48-mm mesh
size plankton net, anesthetized with carbonated water
(submerging the net together with animals into carbon-
ated water for 10 s), and fixed in formaldehyde [final
concentration, 4% (vol/vol)]. For microsphere counting,
individual metazooplankters were collected from the
samples on a polycarbonate filter of 10 mm pore size
(Poretics). The number of microspheres in animal guts
was counted at 1000� magnification using an epifluo-
rescence microscope (Zeiss Axiovert S100). The ingestion
rates (IR; cells individualsj1 hj1) for each taxon and
community ingestion rates (CIR; cells Lj1 hj1) were
calculated as follows:

IR ¼ Mt � T � P=M;

CIR ¼ IR� N ;

where Mt is the number of microspheres ingested per
individual during the incubation time (microspheres indi-
vidualj1); M is the concentration of microspheres in
incubation vessel (mLj1); T is the incubation time (h); P
is the concentration of food particles (bacteria, phytoplankton)
in the incubation vessel (cells mLj1), N is the abundance of
the grazer taxon (individuals mLj1). CIR were determined
as the sum of species specific IR for all representative taxa
observed. The individuals that had empty guts were
included.

In experiments with protozoans, the incubation was
carried out in 20-mL vials. Incubations lasted for 7 min,
after which samples were fixed with buffered formalin
(1% final concentration). Preserved samples were stained
for 1–2 min with DAPI at a final concentration 2 mg
mLj1 and gently filtered through 0.8 mm pore-size black
isopore (Poretics Inc.) filters. Protists and the contents of
their food vacuoles were examined with a Olympus BX60
fluorescence microscope under 1000� magnification
using blue light (470/505 nm, OG 515). Where possible
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the dominant taxa of fluorescently stained ciliates were
identified based on the composition of parallel Lugol
fixed samples. To estimate total ciliate grazing rate, their
uptake rates were multiplied by their total in situ
abundances as in the case of the metazooplankton.

Carbon Consumption by Grazers. Gross grazer
production was calculated from the grazing rates and
biomass of the grazed food. Biomass of the food was
calculated on the bases of the average biovolume of particular
size of particles; for 0.5 mm fluorescent microspheres the
carbon content of bacteria (380 fg C mmj3) was used and
for SC1, 2, and 3 the carbon content of algae (100 fg C
mmj3) was used. The biovolume of the SC was calculated
from the average diameter of spherical particles in the
corresponding SC.

Results

Environment. At station 1 (Fig. 1), temperature varied
from 6.7 to 19.3-C, Secchi depth from 65 to 100 cm, total
phosphorus (TP) concentration from 50 to 71 mg Lj1,
and total nitrogen (TN) concentration from 0.65 to 1.20
mg Lj1. At station 2 (St 2), TP and TN concentrations
were slightly higher compared to St 1 (the highest values
were 98 mg Lj1 and 1.70 mg Lj1, respectively).

Abundance of Plankton Organisms. The TNB was
statistically equal (t-test, p=0.81) at St 1 (3.45� 106T
2.42�106 cells mLj1, number of replicates n=15)
compared to St 2 (3.16�106T1.68�106 cells mLj1,
n=7) (Table 1 and Fig. 2). APP was also less abundant (t-
test, p=0.04) at St 2 (16.7�104T10.1�104 cells mLj1;
n=7) compared to St 1 (50.5� 104T49.8�104 cells
mLj1; n=15). The abundance of HNF was very low at
both sampling sites [22.9T8.6 cells mLj1 (n=11) and

70T10 cells mLj1 (n=6) at Sts 1 and 2, respectively].
Total abundance of ciliates at St 1 (77.8T47.5 cells mLj1;
n=11) was equal (t-test, p=0.36) to St 2 (66.8T38.4 cells
mLj1; n=6).

During the investigated period the average popula-
tion of ciliated protozoans was dominated by oligotrichs

Table 1. Abundance and total grazing rates in the L. Võrtsjärv water column

Abundance
(cells mLj1)

TNB St1 0.31–7.86�106

St2 1.27–5.35�106

APP St1 5.42–179.5�104

St2 4.8–31.6�104

Abundance
(individuals Lj1)

Grazing on picoplankton
(particles mLj1 hj1)

Grazing on nanoplankton
(particles Lj1 hj1)

HNF St1 9.4–39.7�103 284–1243 –
St2 56.2–84.3�103 573 – 1824 –

Ciliates St1 28–158�103 5.31–77.14�103 17.3–84.7�103

St2 13–106�103 10.8–20.3�103 5.3–342�103

Rotifers St1 32.9–1967 0.065–215.8 0–685
St2 10–1187 0.382–186.6 0–578

Cladocerans St1 6–178 0.123–0.746 0–5043
St2 0–91 2.0–275.3 52–5099

TNB: total number of bacteria; APP: autotrophic picoplankton; HNF: heterotrophic nanoflagellates.

Figure 2. (A) Abundance of bacteria, autotrophic picoplankton.
(B) Heterotrophic nanoflagellates and total abundance of ciliates.
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(57.4%), scuticociliates (14.6%), prostomatids (11.3%),
and gymnostomatids (10.8%). The most common
oligotrichs were Rimostrombidium sp. (1.2–33.5 cells
mLj1, average 10.5), Halteria sp. (0.0–8.5 cells
mLj1, average 1.1), Pelagostrombidium sp. (0.6–8.5
cells mLj1, average 2.5), Limnostrombidium sp. (0.4–
12.6 cells mLj1, average 1.0), and Codonella cratera
(0.0–25.1 cells mLj1, average 4.9). Scuticociliates were
dominated by Uronema sp. (0.5–18.3 cells mLj1, average
7.2) and Cyclidium sp. (0.5–28.6 cells mLj1, average 6.4).
The most common prostomatids were Urotricha sp. (0.2–
15.3 cells mLj1, average 6.7), and Balanion plank-
tonicum (0.8–9.7 cells mLj1, average 3.2) and most
common gymnostomatids were Mesodinium pulex (4.6–
27.4 cells mLj1, average 8.7) and Dileptus sp. (0.0–0.2
cells mLj1, average 0.1). The spring peak was domi-
nated by large sized herbivorous oligotrichs (44.8% of
total numbers) with the most abundant species being
C. cratera (up to 25.1 cells mLj1). The summer peak
consisted of small bacterivorous scuticociliates and
oligotrich species (29.7% and 26.6% of total number,
respectively). The most abundant species were Cyclidium
sp. (28.6 cells mLj1) and Rimostrombidium sp. (33.5
cells mLj1).

Among the metazooplankton, bacterivorous rotifers
dominated, whereas cladocerans were considerably less
abundant (Table 1). In May and June, Keratella cochlearis
(127–495 individuals Lj1, with an average of 249) and
Polyarthra spp. (18–123 Lj1, average 79) dominated.
In July and August, K. cochlearis tecta (7–1509 Lj1,
average 360), Polyarthra spp. (3–439 Lj1, average
186), Anuraeopsis fissa (20–292 Lj1, average 173), and
Trichocerca spp. (35–135 Lj1, average 82) were abundant.
The highest abundance of cladocerans was observed in
June (up to 142 individuals Lj1) and the dominant
cladoceran was Chydorus sphaericus (up to 131 individuals
Lj1). For more details about metazooplankton, see Agasild
and Nõges [1].

Filamentous phytoplankton (diatoms and especially
cyanobacteria, Aulacoseira spp., Oscillatoria amphibia f.
tenuis, Planktolynbya limnetica, Limnotrix redekei, and
Aphanizomenon sp.) dominated in L. Võrtsjärv. Edible
phytoplankton for grazers (mostly algae G30 mm in size)
comprised only a minor part of the phytoplankton
biomass and was the most abundant in June and August.
Size class 1 members (2–5 mm) were mainly green algae
(Pediastrum sp.) and small unidentified algae; SC2 (5–15
mm) were mainly green algae (Scenedesmus sp.), cryso-
phytes (Dinobryon sp.), and some chryptophytes; mean-
while, SC3 (15–30 mm) was mainly made up of diatoms
(Stephanodiscus sp. and Fragillaria sp.), dinophytes
(Peridinium sp.), and green algae (Scenedesmus sp.).

Grazing Rates at the Community Level. In L.
Võrtsjärv the main grazers of picoplankton (bacteria

and APP) and nanoplankton were ciliates (Table 1,
Fig. 3). Total grazing rates of bacteria by ciliates was
considerably higher compared to grazing by meta-
zooplankton (about 100- to 1000-fold) and HNF (8- to
270-fold). Compared to metazooplankton, ciliates grazed
5- to 250-fold more nanoplankton (NP) at St 1, and 8- to
7000-fold more NP at St 2. Ciliates grazed only the
smaller fraction of NP (SC1) and none from the larger
fraction (SC2 or SC3).

Community-level Loss of Bacteria Due to Protozoan

Grazing. Bacterioplankton production calculated
from 3H-leucine incorporation rates ranged from 31 to
164,500 cells mLj1 hj1. As calculated from measured
grazing rates, ciliates could potentially graze from 6% over
100% (median of about 100%) of the bacterial production.
HNF grazed from only small fraction (median of 4.8%) of
the bacterial production.

Carbon Fluxes in the Microbial Loop. Median
carbon flux rates were compared in the phytoplankton
(St 1; Fig. 4a) and macrophyte-dominated areas (St 2;
Fig. 4b) of the lake. In the phytoplankton-dominated
area, phytoplankton biomass was double that observed
at the macrophyte dominated compartment (2.28 and

Figure 3. Comparison of total grazing on bacteria (A) by HNF
with grazing by rotifers and cladocerans, and (B) by ciliates with
grazing by rotifers and cladocerans.
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1.04 mg C Lj1, respectively, statistically higher by t-test,
p=0.02). Smaller sizes of algae (2–30 mm) edible to
zooplankton formed a small proportion of the total
phytoplankton (0.04% and 0.9% in the open and
macrophyte areas, respectively). Primary production (PP)
at St 2 (19.4 mg C Lj1 hj1) was about 4-fold higher than
at St 1 (5.0 mg C Lj1 hj1, statistically different t-test,
p=0.05). Bacterial biomass was roughly equal in both
compartments (0.46 and 0.36 mg C Lj1 at Sts 1 and 2,
respectively, t-test, p=0.71). Similarly to PP, the net

bacterial production (netBP) at St 2 (4.37 mg C Lj1

hj1) was approximately 8 times higher compared to St 1
(0.54 mg C Lj1 hj1, statistically different, t-test, p=0.037).
At St 1, the netBP was nearly balanced by grazing, which
equaled an average of 0.65 mg C Lj1 hj1. At St 2, total
bacterial grazing (sum of all groups) was estimated to
consume only 10% of the netBP.

Average daily removal of bacterial standing stock by
ciliates was 9.3%, and 0.5% by HNF. Ciliates grazed 20.7%
of the standing stock of autotrophic nanoplankton (SC1).
In the phytoplankton-dominated compartment of the lake,
within 24 h rotifers and cladocerans were able to graze
about 0.01% and 0.07% of the standing stock of bacteria,
respectively. Estimates for the macrophyte-dominated
compartment were 0.04% and 0.14%, respectively.

Discussion

The aim of the study was to compare the role of HNF
and ciliates in grazing of pico- (bacteria and APP) and
nano-sized (large microorganisms such as unicellular
flagellates and algae) particles in a turbid, shallow, and
eutrophic lake. The major source of turbidity is resus-
pension of the partly mineralized sediment particles; the
seston concentration varied between 6 and 24 mg Lj1 of
DW during the study period [1], and the carbon content
of seston was in average 22% [29]. Our results showed
that ciliates, rather than heterotrophic flagellates, were
the predominant grazers on the bacteria and APP all over
the productive season. Outcompetition of HNF by
ciliates over the whole seasonal period in nonhumic
eutrophic ecosystems has not been described earlier. In
addition, filter feeding metazooplankton did not graze a
significant portion of 0.5- to 6-mm-diameter particles.
The importance of ciliates in terms of grazing did not
differ between the water columns of macrophyte- and
phytoplankton-dominated parts of the lake. Flux rates of
organic carbon were different between the macrophyte-
and phytoplankton-dominated parts. In the macrophyte-
dominated compartment, most of the autochthonously
produced organic carbon was channeled to heterotrophic
bacteria but was not taken up by protists, whereas in the
phytoplankton-dominated part of lake the BP was
balanced by ciliate bacteriovory.

Dominance of Ciliates. The L. Võrtsjärv ciliate
community is extremely rich and usually contains 950%
of the whole zooplankton biomass as planktonic ciliates
[43]. The annual maximum abundance usually occurs in
late July or early August, when the community of ciliates
is mostly dominated by small (G30 mm) bacterivorous
taxa. The species composition of ciliates in L. Võrtsjärv is
highly variable with altogether 70 taxa of ciliates, more
than two-thirds of which are considered to be rare, for
instance, various benthic species (e.g., Uroleptus piscis,

Figure 4. Average carbon flux charts for the (A) phytoplankton-
and (B) macrophyte-dominated compartments of the L. Võrtsjärv
water column. Diagonal length of the boxes equals the median
biomass of planktonic organisms (mg C lj1, numbers represent
median carbon biomass, in brackets the absolute range) and
the width of the arrows equals the median flux rate (mg C lj1

hj1, underlined numbers represent median flux rate). Grey
arrows represent production and black arrows show the
grazing intensity of planktonic organisms on the different
compartments of the food web (e.g., phytoplankton and
bacteria).
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Stichotricha aculeata, Stylonychia mytilus, Euplotes spp.)
that are probably stirred up by intensive wave action.
However, their abundance in the water column remains
low (G1 individual mLj1) and their ecological impact
to the plankton community is therefore small. There have
been few reports of benthic ciliates being resuspended into
the water column, e.g., in Kattegat [26] and in a shallow
subtropical lake [36]. Therefore, this mechanism in the
change in diversity can be considered as unimportant. It
is also known that most ciliate species are rare and are
only present a few weeks of the year [11]. Thus, it must
be acknowledged that many important shifts in protozoan
plankton dynamics may be missed due to the low
sampling frequency [44]. The most abundant species in
L. Võrtsjärv are euplanktonic pico- and nanovores,
which seem very well adapted to the shallow and highly
turbid ecosystem.

Ciliates are usually strongly regulated by metazoo-
plankton communities [13, 17]. However, this might not
be the case in shallow and turbid environments with high
abundance of filamentous algae and strong resuspension.
Although several ciliate species have an active chemical
defense against rotifers [48], we speculate that in turbid
environments with a highly abundant filamentous phy-
toplankton community resuspended particles disturb the
grazing by metazooplankton. Therefore, it seems that
metazooplankton are not able to regulate the ciliate
community.

Low Numbers of Heteretrophic Nanoflagellates. HNF
are the major bacteriovores in most lakes because of their
efficiency and higher abundance compared to small ciliates
(e.g., [34]). In L. Võrtsjärv, consumption of HNF by ciliate
grazing may explain why their abundance was so low in the
water column and, consequently, why they only played a
minor role in bacteriovory. It has been reported that small
algivorous ciliates are able to regulate HNF dynamics (e.g.,
[42, 47]), and filter feeding daphnids and rotifers are also
considered to be highly efficient grazers of HNF [15].
However, in light of the low grazing rates of
metazooplankton on nano-sized particles in L. Võrtsjärv,
this mechanism can be excluded. The domination of ciliate
grazing on bacteria (as observed in L. Võrtsjärv) has only
been rarely observed. Therefore, we have to compare
conditions that are very different from L. Võrtsjärv
ecosystems. For instance, a relatively low ratio of HNF to
ciliate biomass was reported in the small experimental bog
lake L. Fuchskuhle [38, 24], and a study from Canadian
boreal lakes demonstrated that ciliates (particularly
Cyclidium glaucoma) played a major role in grazing on
bacteria [45]. Low abundances of HNF have mainly been
reported from humic lakes, reaching several hundreds of
cells per mL (compared to G100 mLj1 in L. Võrtsjärv). In
Canadian boreal lakes, the HNF and ciliate carbon
biomasses represented approximately 5% and 13% of the

bacterial carbon biomass, respectively (mean abundance of
5400 cells mLj1). Similar to L. Võrtsjärv, ciliates
were more effective consumers of nanoplankton than
metazooplankton (grazing approximately 20% and 1% of
the 3-mm-size particles, respectively). However, these
ecosystems were different compared to the turbid
eutrophic L. Võrtsjärv where the abundance of ciliates
and grazing rates were much higher than in Canadian lakes.
In L. Võrtsjärv the grazing rates were comparable to lower
range in some eutrophic ecosystems, e.g., in the Řı́mov
Reservoir in south Bohemia where ciliate grazing values
remained in the range of 10–100�103 bacteria mLj1 hj1

[39]. Comerma et al. [7] found that ciliates were voracious
grazers of bacteria in the eutrophic Sau Reservoir (northeast
Spain), consuming 12–146% of the bacterial production. In
L. Võrtsjärv the respective values were even higher, with a
median of 127% of the bacterial production. In the Sau
Reservoir the ciliate abundance was in the same range as in L.
Võrtsjärv, and the ciliate grazing rates mostly remained
below 40�103 bacteria mLj1 hj1 with only one
exceptional peak (180�103 bacteria mLj1 hj1). In a
turbid system where the seston concentrations are very
high, the food capture rate may be somewhat reduced. Thus,
irrespective of high food supply, the IR of ciliates may stay
lower than expected.

Minor Role of Metazooplankton. In shallow and
turbid lakes the high concentration of large inedible
filamentous and colonial forms of algae does not support
the development of a metazooplankton community.
Considering the metazooplankton composition in L.
Võrtjärv, i.e., abundant population of small rotifers
(Keratella spp., Polyarthra spp., A. fissa, and Trichocerca
spp.), small-bodied cladocerans (mainly C. sphaericus),
and cyclopoid copepods (Mesocyclops spp.), a high grazing
pressure on phytoplankton would be unexpected. Based on
consumption of fluorescent microspheres, relatively
low zooplankton grazing rates on both bacteria and
phytoplankton were measured in L. Võrtsjärv. On
average, only 0.1% and 1.0% of the standing stock of
bacteria and ingestible phytoplankton were grazed daily by
metazooplankton, respectively (see also [1]). Therefore, it
was concluded that metazoan grazing was unimportant in
loss of both bacteria and nanoalgae.

In many lakes, large cladocerans (particularly Daph-
niidae) have been shown to be the key species in
controlling phytoplankton as well as influencing the
entire microbial community [21, 15, 16]. In the shallow,
turbid, and plankton-dominated L. Võrtsjärv, the genus
Daphnia was represented by low numbers of D. cucculata
(median, 4 individuals Lj1) of relatively small individ-
uals (median, 0.015 mg individualj1). A high concen-
tration of seston particles (including filamentous algae) is
known to negatively affect food collection processes,
especially of large filter-feeding cladocerans (e.g., [32]).
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In addition to the inhibiting effect, the low nutritional
value of seston and filamentous cyanobacteria may
initially limit growth of large filter-feeding cladocerans
followed by a decrease in their number [14]. Another
explanation could be that in L. Võrtsjärv, the low
numbers of Daphnia can be attributed to size selective
predation by the abundant fish including roach, ruff,
perch, and bream ([30]; Salujõe and Haberman, personal
communication).

The experimental framework, although on the single
species level for a three-link food chain: prey–intraguild
prey–intraguild predator, was described by Diehl and
Feissel [9]. The basal food and top species are predicted
to increase with enrichment (i.e., eutrophication). We
speculate that in the eutrophic L. Võrtsjärv the cascading
effects in the microbial loop are as follows: low
abundance of the metazooplankton allows the develop-
ment of a large community of ciliates (intraguild
predator) that grazes on both nano and pico-sized
particles; HNF community (intraguild prey) is sup-
pressed and does not have a significant effect on bacteria.

Carbon Fluxes. Carbon biomass estimates showed
that filamentous phytoplankton and bacteria were the
important reservoirs of the living carbon biomass in both
compartments of L. Võrtsjärv (Fig. 4). However, the
carbon fluxes were different between the macrophyte- and
phytoplankton-dominated compartments, and the ratio
of the phytoplankton to bacteria biomass was higher in the
macrophyte-dominated part of the lake. Carbon flux was
more balanced in the Bphytoplankton lake.^ Calculation
of the carbon consumption (bacterivory and herbivory)
showed that the bacterivory carbon flux was substantial in
the phytoplankton-dominated part of the lake. In the
Bmacrophyte lake,^ the majority of planktonic PP was
neither channeled through planktonic bacteria to
planktonic protozoa, nor passed directly by herbivory to
higher trophic levels. However, these differences did not
change the main range of HNF, and ciliates abundance
and their grazing on bacteria and HNF remained
unimportant in the food web.

Methodological Remarks. A tracer method using
fluorescently labeled inert particles has several methodological
advantages. Experiments with particles are conceptually
simple, fluorescent microspheres are highly visible inside
the consumer, and they do not grow, decompose, or fade. A
combination of different diameter spheres in the
experiment enabled implications for food type selection
to be discerned, e.g., bacteria and different size of
phytoplankton [18]. It has been shown that some grazers
prefer labeled bacteria to microspheres (e.g., [35]). The
size spectrum of natural food is much more variable and
this significantly influences the rates of particle uptake;
and also, the fluorescent microspheres and labeled

bacteria fit only for measuring the grazing rates of
unselective filter feeders. This method does not enable
measurements of the grazing rates of organisms that
actively recognize, select and catch specific prey.

Conclusion

Results from the present study support the hypothesis
that small ciliates (G30 mm) are the major consumers of
bacteria and algae in such shallow turbid ecosystems as L.
Võrtsjärv. Considering the eutrophic conditions, grazing
rates were not too high and resembled the more oligo- or
dystrophic conditions of highly humic water bodies; in
the latter, a similar dominance of ciliates over HNF has
been reported. We hypothesize that ciliates do not
dominate in L. Võrtsjärv due to favorable eutrophic
feeding conditions, but rather due to the lack of top–
down regulation by predators. However, the influence of
feeding conditions can not be completely excluded. In
most eutrophic and hypereutrophic lakes dominated by
filamentous algae, phytoplankton edible to zooplankton
is scarce, but due to their greater feeding flexibility
ciliates seem to dominate in L. Võrtsjärv where the
concentration of other seston particles is high.
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