metoodiline juhend

Kantserogeenidest põhjustatud kasvajad
metoodiline juhend

Kantserogeenidest põhjustatud kasvajad

Juhend valmis Eesti - Soome töötervishoiuteenuste partnerlusprojekti 2003-2004 raames
Sisukord

Saateks.. 4
SISSEJUHATUS... 5
KASVAJATE ESINEMISSAGEDUS JA TEKKIMINE... 6
Tabel 1 Soomes 2001. aastal esmaselt diagnoositud kasvajad............................. 6
Tabel 2 Peamised tööst põhjustatud kasvajad Soomes (andmed 1995. aastast) 7
ENIM DIAGNOOSITUD VÄHKKASVAJAD SOOMES... 8
Kopsukasvaja ... 8
Mesotelioom .. 9
Nahakasvaja .. 9
Ülemiste hingamisteede kasvajad ... 9
Põiekasvaja ... 10
Leukeemia ja lümfoom .. 10
Maksakasvaja ... 11
Muud kasvajad ... 11
KUTSEKASVAJATE DIAGNOSTIKA ... 11
KUTSEKASVAJA TEKE ... 11
Joonis 1 Tööst põhjustatud vähkkasvaja areng... 12
Joonis 2 Asbestist põhjustatud mesotelioomi arenemine rakkudes 13
KUIDAS SELGITADA VÄLJA KEMIKAALI KANTSEROGEEENSUS? 14
Epidemioloogilised uuringud .. 14
Loomkatsed .. 14
Mutageensustestid .. 14
KANTSEROGEEENIDE ESINEMINE TÖÖKESKKONNAS 16
Asbest .. 17
Arseen ja arseeiniühendid .. 17
Kroon ja kroomiühendid ... 17
Nikkel ja nikliühendid .. 18
Benseen .. 19
Formaldehüüd .. 19
Polütsüklilised aromaatsed süsivesinikud (PAS) ... 19
Puidutolm ... 20
KEMIKAALIDE RISKIANALÜÜS ... 21
TÖÖKESKKONNAS ESINEVATE JA KASUTATAVATE KEMIKAALIDE
VÄLJASELGITAMINE .. 22
KEMIKAALIDEGA KOKKUPUUTE VÄHENDAMINE .. 23
Kantserogeenide käitlemise piirangud ... 23
Kantserogeeni asendamine vähem ohtlikuga .. 24
Ohtliku kemikaali kasutamise piiramise või kokkupuuteaja lühendamine 25
Tootmisprotsesside optimeerimine ... 26
Üldventilatsioon, kohtventilatsioon ja “kapseldamine” 26
Isikukaitsevahendite kasutamine ... 27
Töökorralduslik tegevus ohtlike kemikaalidega kokkupuute vähendamiseks ... 28
Öigete töövõtete kasutamine – väljaõpe .. 28

Töötervishoiu Keskus
SISSEJUHATUS

Käänes juhendmaterjal tööst põhjustatud kasvajate tekke ennetamiseks on Soome Töötervishoiuinstituudi töötajate poolt loodud juhendmaterjali tõlg Soome-Eesti Phare ühisprojekti raames. Materjal on mõeldud kasutamiseks tööandjatele, töötajatele, töötervishoiuarstidele, perearstidele ja kõigile teistele asjast huvitatutele.

Kantserogeensed kemikaalid – ained ja valmistised, mis sisesehingamisel, allaeneelamisel või läbi nahatehnilisel võivad põhjustada vähktöppe haigestumist või suurendada selle haiguse esinemisalast.

Mutageensed kemikaalid – ained ja valmistised, mis sisesehingamisel, allaeneelamisel või läbi nahatehnilisel võivad esile kutsuda geeni muutusi või suurendada muutuste esinemissagedust.

(“Ohtlike kemikaalide identifitseerimise, klassifitseerimise, pakendamise ja märgistamise kord”, SOM määrus nr 37, 26.05.2000)

Töökeskkonna ohuteguritest põhjustatud vähkasvajad moodustavad kõikidest diagnoositud kasvajatest möne protsendi.

Valdavat osa tööst põhjustatud kasvajatest on võimalik ennetada, kui on teada põhjuslik seos töötaja haigestumise ja kasvajate tekitava ohuteguri vahel ning kui ohutegurite toime vähendamiseks võetakse kasutusele ühis- ja isikukaitsevahendid.

Soomes puutub oma igapäevatöös kantserogeensete aineteega kokku umbes 60 000 töötajat. Kui arvestada kantserogeenidena ka tubakasuitsu ja päikesetöimet, siis umbes 500 000 töötajat. Parimateks ennetavateks tegevusteks on kokkupuute välimine, ohtliku aine asendamine vähemohtlikuga, suletud tehnoloogiliste protsesside kasutamine, asjakohane ventilatsioon.

Inna Vabamäe
Tööinspektsooni peaspetsialist töötervishoiu alal
KASVAJATE ESINEMISSAGEDUS JA TEKKIMINE

Soomes diagnoositakse aastas umbes 20 000 vähkkasvajat, sellest põhjustatud surmasid registreeritakse umbes 10 000. Kolm enim diagnoositud vähkkasvajat on (tabel 1): meestel: eesnäärme vähk naistel: rinnavähk jämesoole vähk kopsuvähk kusepõie vähk emakavähk

<table>
<thead>
<tr>
<th>Kasvaja ja sellest haaratud organ</th>
<th>Juhtumite arv</th>
<th>% koguarvust</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eesnäärme</td>
<td>3526</td>
<td>31,9</td>
</tr>
<tr>
<td>Kopsud, trahhea</td>
<td>1362</td>
<td>12,3</td>
</tr>
<tr>
<td>Jämesool (käärsool)</td>
<td>588</td>
<td>5,3</td>
</tr>
<tr>
<td>Kusepöös, kusejuha</td>
<td>583</td>
<td>5,3</td>
</tr>
<tr>
<td>Nahk (v.a melanoom)</td>
<td>446</td>
<td>4,0</td>
</tr>
<tr>
<td>Pärasool, pärak</td>
<td>434</td>
<td>3,9</td>
</tr>
<tr>
<td>Non-Hodgkini lümfoom</td>
<td>424</td>
<td>3,8</td>
</tr>
<tr>
<td>Neerud</td>
<td>394</td>
<td>3,6</td>
</tr>
<tr>
<td>Magu</td>
<td>386</td>
<td>3,5</td>
</tr>
<tr>
<td>Kesknärvisüsteem</td>
<td>349</td>
<td>3,2</td>
</tr>
<tr>
<td>Naha melanoom</td>
<td>337</td>
<td>3,1</td>
</tr>
<tr>
<td>Pankreas (kõhunääre)</td>
<td>320</td>
<td>2,9</td>
</tr>
<tr>
<td>Leukeemia</td>
<td>217</td>
<td>2,0</td>
</tr>
<tr>
<td>Söögitoru</td>
<td>137</td>
<td>1,2</td>
</tr>
<tr>
<td>Maks</td>
<td>132</td>
<td>1,2</td>
</tr>
<tr>
<td>Müeloom</td>
<td>102</td>
<td>0,9</td>
</tr>
<tr>
<td>KOKKU</td>
<td>11 046</td>
<td>100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kasvaja ja sellest haaratud organ</th>
<th>Juhtumite arv</th>
<th>% koguarvust</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rinnanäärre</td>
<td>3658</td>
<td>32,1</td>
</tr>
<tr>
<td>Jämesool (käärsool)</td>
<td>734</td>
<td>6,4</td>
</tr>
<tr>
<td>Emakas</td>
<td>631</td>
<td>5,5</td>
</tr>
<tr>
<td>Kopsud, trahhea</td>
<td>516</td>
<td>4,5</td>
</tr>
<tr>
<td>Kesknärvisüsteem</td>
<td>506</td>
<td>4,4</td>
</tr>
<tr>
<td>Munasarjad</td>
<td>467</td>
<td>4,1</td>
</tr>
<tr>
<td>Nahk (v.a melanoom)</td>
<td>449</td>
<td>3,9</td>
</tr>
<tr>
<td>Non-Hodgkini lümfoom</td>
<td>443</td>
<td>3,9</td>
</tr>
<tr>
<td>Pärasool</td>
<td>403</td>
<td>3,5</td>
</tr>
<tr>
<td>Pankreas (kõhunääre)</td>
<td>369</td>
<td>3,2</td>
</tr>
<tr>
<td>Neerud</td>
<td>337</td>
<td>3,0</td>
</tr>
<tr>
<td>Naha melanoom</td>
<td>332</td>
<td>2,9</td>
</tr>
<tr>
<td>Magu</td>
<td>324</td>
<td>2,8</td>
</tr>
<tr>
<td>Kilpnääre</td>
<td>227</td>
<td>2,0</td>
</tr>
<tr>
<td>Kusepöös, kusejuhad</td>
<td>207</td>
<td>1,8</td>
</tr>
<tr>
<td>Leukeemia</td>
<td>182</td>
<td>1,6</td>
</tr>
<tr>
<td>Sapipöös, sapijuhad</td>
<td>168</td>
<td>1,5</td>
</tr>
<tr>
<td>Emakakael</td>
<td>156</td>
<td>1,4</td>
</tr>
<tr>
<td>Müeloom</td>
<td>101</td>
<td>0,9</td>
</tr>
<tr>
<td>KOKKU</td>
<td>11 402</td>
<td>4861</td>
</tr>
</tbody>
</table>
Töökeskkonna ohuteguritest põhjustatud kasvajad

Tabel 2 Peamised tööst põhjustatud kasvajad Soomes (andmed 1995. aastast)

<table>
<thead>
<tr>
<th>Kasvajad</th>
<th>Diagnoositud vähkkasvajate arv 1995. aastal</th>
<th>Tööst põhjustatud vähkkasvajate arv ja % üldisest arvust</th>
<th>Põhjustaja (ohutegur)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kopsukasvaja</td>
<td>1933</td>
<td>300 (15)</td>
<td>asbest, kvarts, kroom, nikkel, arseen, polütsükliilised aromaatsed süsivesinikud, väljaheitegaasid, tubakasuits, radoon asbest</td>
</tr>
<tr>
<td>Kopsukelme kasvaja (mesotelioom)</td>
<td>72</td>
<td>50 (70)</td>
<td>aromaatsed amiinid, polütsükliilised aromaatsed süsivesinikud, värvained, kummikemikaalid</td>
</tr>
<tr>
<td>Kusepõie kasvaja</td>
<td>798</td>
<td>40 (5)</td>
<td></td>
</tr>
<tr>
<td>Nahakasvaja</td>
<td>1216</td>
<td>30 (2)</td>
<td>ultraviolettkiirgus, polütsükliilised aromaatsed süsivesinikud, arseen benseen, ioniseeriv kiirgus nikliühendid, puu-, nahajate tekstiilitolm</td>
</tr>
<tr>
<td>Leukeemia</td>
<td>386</td>
<td>20 (5)</td>
<td>muud töökeskkonna esinevad kantsereogeneenid</td>
</tr>
<tr>
<td>Nina ja põskkoobastekasvaja</td>
<td>33</td>
<td>10 (30)</td>
<td></td>
</tr>
<tr>
<td>Muud kasvajad (nt neelu-, mao-, maksa- ja neerukasvajad)</td>
<td>15672</td>
<td>50 (0,3)</td>
<td></td>
</tr>
<tr>
<td>KOKKU</td>
<td>20110</td>
<td>500 (2,5)</td>
<td></td>
</tr>
</tbody>
</table>

Töökeskkonna ohuteguritest põhjustatud vähkkasvajad moodustavad Soomes umbes 500 juhtumit kõigist esmaselt diagnoositud kasvajajuhtudest, mis on 2,5% kõikidest diagnoositud kasvajatest (5% meestel ja alla 1% naistel). Kasvajatest on kõige rohkem tööga seotud kopsuvähi, kopsukelme vähk ehk mesotelioom, kusepõevähi, nahavähi, leukeemia ja põskkoobaste (urgete) kasvaja (tabel 2). Oma kaebustelt, kliiniliselt pildilt, koenutustelt (pildilt) ja prognoosilt elule ei erine töökeskkonna ohuteguritest põhjustatud kasvaja tavalistest vähkkasvajast. Kutsehajusena hüvitatakse aastas kindlustuse poolt üle 100 juhtumi, millest peaaegu kõik on asbestist tingitud kopsuvähi ja mesotelioomi juhud.
Kopsukasvaja

Kopsuvähk on Soomes oma esinemissageduselt meeste seas 2. ja naiste seas 5. kohal (tabel 1).

Bronhogeense kartsinoomi teket põhjustab töökeskkonna sisehingatavas õhus sisalduv kantserogeense aine, mis mõjub bronhide epiteelkoele.

Histopatoloogiliselt jaotatakse kopsuvähk 4 tüüpi:

- lameepiteelkartsinoom (43%);
- väikerakuline kartsinoom (22%);
- adenokartsinoom (18%);
- suurerakuline anaplastiline kartsinoom (16%).

Ei ole leitud seost kasvajat tekitava ohuteguri ja kasvaja histoloogilise tüübi vahel. Kopsukasvaja metaastaasid (siirded) levivad kiiresti organismi vereringe ja lümfisüsteemi kaudu. Sellise kasvaja ravimine on väga keeruline.

Umbes 90% kopsukasvajate tekke põhjuseks on suitsetamine, mis suurendab tunduvalt kopsukasvajate tekkeriski (riskiteguriks on samuti passiivne suitsesena ruumis, näiteks restoranis). Tubakasuits sisaldab mitmeid keemilisi ühendeid, näiteks polütsüklilisi aromaatseid süvisesinikke (PAS, mis tekib orgaaniliste ühendite mittetäielikul põlemisel ja millest tulenevate organdite tekitavad reaktiivsed ühendid). Paljud töökeskkonnas sisalduvad PAS-ühendid põhjustavad kopsukasvajate teket, näiteks raua ja terase valu- tsehhides, samuti koksitehases.

Suurel hulgal töökeskkonnas esinev anorgaaniliste ühendite tolm, nagu kvartsi tolm või arseeni-, krooni ja niklit sisaldavad ained, suurendavad kopsukasvajate tekkeriski. Eelkõige roostevaravate terase keevitusel tekkiv kuuevaletne kroon ja nikkel, mis on tõestatud kunolises elus ja töökeskkonnas tekitavate kopsukasvajate tekkitöö. Epidemioloogiliste uuringute tulemusena on selgunud, et keevitajatel on 34% suurem risk haigestuda kopsukasvajasse.

Kokkupuude asbestiga (asbestikiud) suurendab riski haigestuda kopsukasvajasse kaks korda. Soomes on umbes 50 000 töötajat, kes on otseselt ja pidevalt kokku puutunud asbestiga. Asbestist põhjustatud kopsukasvaja peiteaeg on erinevate andmete 20–40 aastat. Suitsetamine suurendab asbestist põhjustatud kopsukasvaja riski. Tööalane kokkupuude radooniga põhjustab Soomes aastas mõningaid kopsukasvajate juhtumeid, kuigi peamine kokkupuude radooniga toimub muudes eluvaldkondades.
Mesotelioom

Mesotelioom on harvem esinev kopsu- ja kõhukelm e ning seeedorganite paha-loomuline kasvaja, mille peamiseks põhjuseks on asbestitolm (satub organismi sissehingatava õhuga või sülje allaneelamisel). Umbes 80% mesotelioomi hai-gestunutest on asbestitolmuga kokku puutunud 30–40 aastat tagasi. Mesotelioomi puhul ei suurenda suitsetamine haigestumise riski.

Haigusena on mesotelioom keeruline, kuna ta allub ravile raskesti ning patsient sureb tavaliselt mõne kuu jooksul. Ainus võimalus vähendada asbestist põhjustatu dopesotelioomiriski on täielikult vältida kokkupuudet asbestiga. Paraku toimub kokkupuude asbestiga ehitistest ja hoonete lammutustöödel, laevade remonttöödel, samuti mõnedel muudel hoolde- ja remonttöödel.

Nahakasvaja

Nahakasvajaid tekitavad ka töök keskonnas esinevad arseeniühendid, pigi ja tõrv (kokkupuutel nahaga).

Ülemiste hingamisteede kasvaja

Kokkupuude nikliga (niklitööstuses) võib põhjustada nina ja põskkoobaste vähk-kasvajat. See täheneb neelalpoolne on tehtud epidemioloogiliste uuringute käigus mitmel pool maailmas, sealhulgas ka Põhjamaades.

Nina ja põskkoobaste kasvajat võib tekitada ka puidutolm. Eriti suur haigestumise risk on tamme, pöögi ja teiste kõvade puitude töötlemisega tegelevatel tööaladel.
Samas puudub kantserogeenne toime nn pehme puidu, nagu näiteks kase, männi või kuuse töötlemisel tekkival puidutolmul.

Foto 1.
Tubakasuits 6 000-kordses suurenduses: tubakasuits sisaldab törvapisaraid ja nõge

Põiekasvaja

Leukeemia ja lümfoom

Benseen kahjustab valgete vereliblede teket (vereloomet) luuüdis, põhjustades sellega aplastilise anemia väljakujunemist, mis omakorda on leukeemia eelastmeks. Soomes on kokkupuude benseeniga töökeskkonnas märkimisväärne tänapäevalgi, kuigi kokkupuute tasemed on tunduvalt alanenud. Kummitööstuses kasutavad muud kemikaalid suurendavad riski haigestuda leukeemiasse ja lümfoomi. Kokkupuude puukaitse- ja törjehahenditega (kloorfenool) soodustab
pehmete kudede sar koomi ja non-Hodgkingi lümfoomi teket. Tuntud leukeemia tekitajaks on ioniseeriv kiirgus.

Maksakasvaja

Muud kasvajad

Töökeskkonnas toimivad kantserogeensed ohutegurid võivad põhjustada kasvaja teket ka teistes organites. Mao- ja jāmesoolkasvajate teke on seotud eelkiige eluviisega, kuid teatud kut撒alade puhul on olemas risk kasvaja tekkimisele. Vaatamata epidemioloogilistele uuringutele, pole leitud põhjuslikku seost mõningate kasvajate ja töökeskkonnas esinevate kantserogeensete ohutegurite vahel (ajukasvaja, kõhunäärme kasvaja).

KUTSEKASVAJATE DIAGNOSTIKA

Kutsekasvajate diagnoosimine on keeruline kasvaja pika teateja tõttu. Haigus ilmneb tavaliselt siis, kui töötaja on juba pensionil. Samuti raskendab kopsukasvajate diagnoosimist suitsetamine. Kutsekasvajate peamiseks vormiks on vähk. Kutsekasvaja kahtluse korral tuleb arvesse võtta järgmisi aspekte:

- täpne ja põhjalik töö anamnees ja ohuteguri hindamine;
- kokkupuude teiste aineteega (näiteks tubakas);
- peite- ehk latentsiaeg;
- kasvaja iseloom ja asukoht;
- diagnoositud kasvaja esinemissagedus Soomes east ja soost lähtuvalt.

Soomes hüvitab kindlustus asbestist põhjustunud kopsukasvaja kui kutsehaiguse, kui täidetud on järgmised tingimused:

- asbestiga kokkupuute tõenäosus;
- asbestiga kokkupuute aeg;
- asbestiga kokkupuutumisest on möödunud vähemalt 10 aastat.

KUTSEKASVAJA TEKE

Organismis esinevad mitmed kaitsemehhanismid, eelkiige kasvaja teket mahasuruvad geenid. Need **nn kaitsegeenid** toimivad normaalsetes tingimustes raku kasvule pidurdavalt. Kui see geen on mitteaktiivses olekus, kaob "pidur" ja kontroll ning algab pahalomuline kasv.
Joonis 1 Tööst põhjustatud vähkkasvaja areng

Töökeskkonnas esinevad kantserogeenid võivad organismi sattuda töötaja naha, hingamisteede või seeedeelundkonna kaudu (alla neelamisel). Kantserogeeni toime võib olla lokaalne ehk paikne või levida üle kogu organismi teistele organitele. Veeringesüsteemi kaudu võivad keemilised ained levida üle kogu organismi.

Näiteid kantserogeenidest:
Otseselt toimivad: kuuevalentsed kroomiühendid
formaldehüüd
ioniseeriv kiirgus

Ainevahetuse kaudu aktiviseeruvad: aromaatsed amiiinid
benseen
polütsükliilised aromaatsed süsivesinikud

Muud kantserogeenid: klorofenoolid
süsiniktetrakloriid
amitrool
Töökeskkonnas esinevatest kemikaalidest või muudest põhjustest alguse saanud mutatsioonid käivitavad protsessi, mille käigus organismi normaalsed rakud võivad muutuda kasvajarakkudeks. Rakkudes võivad muutused tekkida palju varem, kui töötajal diagnoositakse kliiniliselt kasvaja.

Tsütokiinid - valgelibledesse kas aktiveerivalt või pärssivalt mõjuvad valgud.
KUIDAS SELGITADA VÄLJA KEMIKAALI KANTSEROGEENSUS?

Epidemioloogilised uuringud

Uuringute aluseks võib olla kemikaalidega kokkupuutuvatel töötajatel esinenud kütsekasvajate juhtumite kaardistamine. Epidemioloogilised uuringud on ainuke võimalus saada otsest teavet inimeste hai-gestumisest kasvajasse.

Loomkatsed

Kuna inimene ja katseloom on bioloogiliselt ja füsioloogiliselt sarnased, siis kasvajat põhjustavad kemikaalid toimivad organismile sarnaselt (katseloomadeks on tavaliselt hiired või rotid). Katsetes kasutatakse erinevaid kemikaalide koguseid ja kontrollrühmi. Uuritavat ainet viiakse katselooma organismi injektsioonidena, hingamisteede kaudu või looma toiduga. Katse kestab looma elu lõpuni, päras mida tehakse koeanalüüsid.

Ainete kantserogeensus võib olla väga erinev: aine võib olla tugevalt või nõrgalt kantserogeenne. Suurema osa ainete (üle 90%) kantserogeensus on töestatud loomkatsete abil.

Mutageensustestid

Loomkatsed on kulukad, aeganõudvad ja eeldavad laboratoriumitelt suuri investeerimuid, samuti katseloomade ohverdamist. Mutageensustestide aluseks on rakku pärilikkuse teguri ja kasvaja tekke vaheline seos, kuna DNA on kõigil organismidel ühesuguse ehitusega. Mutageensustesti kasutatakse tänapäeval eelkõige efektiivse ravimitootmise ja ennetustöö eesmärgiga.

Foto 2. Erkki Laine:

Mikroskoopiliselt: üleval on kontrolltuum ja all reaktiivsete hapnikuühenditega lõhutud tuum. Meetodiga saab hinnata DNA-ahela katkemist, mis on mikroskoopiliselt nähtav “sabana” tuuma taga. Meetodit nimetatakse “KOMEEDI” meetodiks ja rakendatakse ainete genotoksilisuse uurimistes.

Käesoleval hetkel on juurutamisel meetodid, mille abil on võimalik ennustada kasvajasse haigestumise riski üksikisiku tasemel. Üheks meetodiks on kasvajat tekistava ja "kaitsegeeni" poolt toodetud valkaine leidmine vereseerumis, kui kasvajat ei ole veel kliiniliselt diagnoositud.

Sellise valkaine esinemist on täheldatud kopsukasvajaga patsientidel. Kantseroogeenidega kokku puutunud nn tervetel inimestel sellist valku vereseerumis ei lei-tud.
KANTSEROGEENIDE ESINEMINE TÖÖKESKKONNAS

Soomes puutub kantserogeensete aineteega kokku umbes 60 000 töötajat. Kui need lisada välitöödel töötavad töötajad (kokkupuude päikesel kiirgusega) ja nn passiivsed suitsetajad (tubakasuitsus viibivad mutesuitsetajad), siis ulatub see arv Soomes üle 500 000 töötaja. 1996. aastal registreeriti Soome vähiregistris 14 972 töötajat 1444 ettevõttest, kellel diagnoositi esmaselt kutsekasvaja.

Enim registreeriti järgmisi kantserogeenseid ohutegureid:
- kuuevalentne Cr – 7020;
- Ni-ühendid – 6375;
- asbest – 2200;
- benseen – 1490;
- PAS – 1399.

Registris registreeritud töötajad olid allutatud vähemalt kahe kantserogeeni toimele.

Foto 3.
Asbestikiudude 2000 kordne suurendus: peenimad asbestikiud on alla 1 mikromeetri.
Asbest

Soomes on lõpetatud asbesti sisaldavate materjalide kasutamine. Kuid siiani lei-dub asbesti sisaldavad materjale ehitistes, toiduainetööstuses, liiklusvahendites. Asbestiga kokkupuutuvate töötajate arv: umbes 10 000.

Tööd ja kutsealad:
- ehitiste lammutus-, saneerimis- ja hooldetööd
- soojusisolatsioonitööd
- hooldetööd tööstuses (filtrite, tihendite vahetamine)
- auto remont- ja hooldetööd (piduriklotsid, süütepoolid)
- kaevandamis- ja lõhkamistöö.

Arseen ja arseeniühendid

Tööd ja kutsealad:
- klaasitööstus
- naha ja loomade konservesimine (zooloogias)
- valgustite ja prožektorite valmistamine
- kivisöe koksistamine
- metallisulamite sulatus- ja valutööd (metallurgia)
- arseeni sisaldavate immutite valmistamine

Kroom ja kroomiühendid

Kokkupuutuvate töötajate arv: 15 000.

Tööd ja kutsealad:
- roostevaba terase keevitustööd ja tootmine
- raua ja terase tootmine
- elektrolüütiline ja termiline kroomimine
- puidu immutamine
- naha ja villa töötlemine kroomiühenditeid sisaldavate vahenditega
- savi, klaasi, emaili ja kivitoodeite värvimine kroomiühenditeid sisaldavate aineteega.
TÖÖKESKKONNA OHUTEGURITEST PÕHJUSTATUD KASVAJAD

Foto 4.
Keevitusaurude 5000 kordne suurendus: üliväikestest osadest koosnev aur sisaldab raua ja muude sulamite oksiide.

Nikkel ja nikliühendid

Niklit kasutatakse legeeriva komponendina roostevabas terases ja teistes erisulamites, katalüsaatorina keemiatööstuses ning värvainena klaasi ja emaili valmistamisel.
Kokkupuutuvate töötajate arv: 10 000.

Tööd ja kutsealad:
- roostevaba terase keevitus
- terase tootmine, lihvimine
- nikli tootmine ja puhastamine
- elektrolüütiline ja termiline nikeldamine
- klaasi ja emailtoodete värvimine nikliühenditega

Foto 5.
Benseen

Benseeni saadakse nafta töötlemisel ja kasutatakse keemiatööstuses, samuti sisaldab benseeni bensiini. Benseen tekib ka kivisöö koksistamisel ja muudes püro-lüüsija reaksioonides. Kokkupuutuvate töötajate arv: 10 000.

Tööd ja kutsealad:
- benseeni tootmine ja transport
- hooldus- ja remonttööd ölitoötlemisvabrikus
- kivsi tootmine
- benseeni sisaldavate ainete (toodete) transiit bensiini vedu, müük, jaotus
- bensiinimahutite remont- ja hooldustööd automootorite remonttööd laborid.

Formaldehüüd

Formadehüüd sisaldub liimi des, tehiswaikudes, mida kasutatakse eelkõige vineeri ning ehitus- ja puitlaastplaatide tootmises. Muudeks kasutusaladeks on desinfiteerimine, steriliseerimine ja kasutamine säilitusainena, samuti ka tekstiili viimisel. Formaldehüüdi kasutatakse sageli vesilahusena (formaliin). Kokkupuutuvate töötajate arv: 10 000.

Tööd ja kutsealad:
- formaliini, tehiswaikude, liimide ja vinüültoodete valmistamine
- vineeri-, puitlaastplaatide, mineraalvilla, mööblitööstus
- värvimis-, liimimis- ja lakkimistööd
- tekstiili töötlemine kuumusele ja tulele vastupidavuse suurendamiseks
- metallide kuumvärvimine
- elektriseadmete valmistamine
- desinfiteerimine lindlates ja broilerikasvatustes
- desinfiteerimine haiglates ja toiduainetööstuses
- laborites (koepreparaatide tegemine)

Polütsüklilised aromaatsed süsivesinikud (PAS)

Polütsüklilised aromaatsed süsivesinikud (PAS) tekivad neid sisaldavate ainete põlemisel, seega esineb PAsi heitgaasides, suitsus, tahmas ja kivisöötörvast. Aromaatsete polütsükliliste süsivesinike sisaldust töökeskkonnas hinnatakse bensopüreeni esinemise alusel. Suurim bensopüreeni sisaldus töökeskkonna õhus on koksitööstuses ja kivisütt kasutavas rauavalu tootmises. Bituumenist too-dete kasutamisel võib kokkupuude PASiga toimuda ka naha kaudu. Mootorsöidu-
kite heitgaasidest ja tubakasuitsust eralduvate aromaatsete polütsükliiliste süsivesi-
nikkega ja muude kantserogeenidega puutub kokku üle 100 000 inimese.
Kokkupuutuvate töötajate arv: 5000.

Tööd ja kutsealad:
koksitööstus
raua ja terasetööstuses sulatamis-, valtsimis- ja valamistööd
metalli karastamine
bîtuumeni tootmine
puidu immutamine
korrosioonitõrjevahendid
kummitoodete valmistamine ja parandamine
korstnate ja jõuseadmete hooldustööd
toiduainete suitsutamine
tulekahjude kustutustööd
tunnelite kaevude ehitus ja hooldetööd
töö toitlustusasutustes (restoranides tubakasuits).

Puidutolm

Puidutolm tekib puidu töötlemisel: puidu ja tselluloosimassi valmistamisel, saeveskis, vineeri ja puitlaastplaatide toomises, puittoodete valmistamisel ja ehitustöödel. Puidutolm koosneb tselluloosidest, hemitselluloosidest, ligniinist ja utmisainetest (terpeenid, fenoolid, rasvhapped ja nende estrid). Lisaks võib puidutolm sisaldada looduslikke mikroobe (hallitusse ened) ja puidu käitlemisel kasutatavaid lisaineteid (liimid, värvid, vaigud).
Kokkupuutuvate töötajate arv: 70 000.

Tööd ja kutsealad:
saagimis- ja hööveldustööd
vineeri ja puitlaastplaatide tootmine
tselluloosi, puidumassi ja paberi valmistamine
mööblitöö ja teiste puidutoodete valmistamine
puusepatöö ehitusel.

Riskianalüüsi tulemuste alusel koostata kse tegevuskava, milles nähekse ette ennetusabinõud terviseriski vältimiseks või vähendamiseks. Tegevuskava on sisuliselt töökeskkonnaalase tegevuse dokumenteerimine ning see näitab, kuidas on ettevõttes korraldatud töötervishoiu ja tööohutuse probleemide valdkond. Tegevuskavast peab selguma, mis ajaks peavad planeeritud abinõud olema tarvitusele võetud. Tööandja korraldab uue riskianalüüsi, kui töötingimused on muutunud või tehnoloogiat uuendatud.

Vastavate määrustega on reguleeritud ohtlike kemikaalide kasutamise töötervishoiu ja tööohutuse nõuded kantserogeensete ja mutageensete ainete kasutamisel, plii ja selle ioonsete ühendite kasutamisel ning asbestitööde teostamiseks:

2) “Asbestitöödele esitatavad töötervishoiu ja tööohutuse nõuded” (VV määrus nr 32, 02.02.2000). Määruses sisalduvad nõudeid kohaldatakse töökohtel, kus töötajad võivad kokku puutuda asbestikiude sisaldava tolmuga. Määrus sõtestab:

- tööandja kohustused:
 - kaardistada asbesti sisaldavad konstruktsioonid;
 - märgistada asbestitolmuga saastatud töökohad;
 - tagada vajalik väljaõppe;
 - anda vajalikud isikukaitsevahendid;
 - mõõta ja jälgida töökeskkonna asbestitolmu sisaldust;
 - korraldada töötajatele tervisekontrolli;
 - teatada tööinspeksionile asbestitööde alustamisest.

- meetodid asbesti sisaldavate konstruktsioonide lammutamiseks:
 - lammutuskoheraldamise meetod;
 - lammutuskoti kasutamine;
 - koht ratõmbe kasutamine;
 - asbestdetailide eemaldamine tervikuna;

- kaitseabinõud töökohal:
- töökoha õhu asbestitolmu sisaldus ei tohi olla suurem piirnormist 0,1kiudu/cm³;
- asbesti pihustamine on keelatud;
- töötajad peavad kandma täisnäokattega tolhumaski ja tolmutkindlast materjalist peakattega kombinesooni;
- asbesti sisaldavate materjaliide vedamisel ja ladustamisel peab kasutama tihedalt suletud purunemiskindlat märgistatud pakendit.

3) Plii ja selle ionsete ühendite kasutamise töötervishoiu ja tööohutuse nõuded (VV määrus nr 193, 20.06.2000).
Määruses esitatud nõudeid kannab kohaldatakse töödel, mille käigus töötajad võivad kokku puutuda plii või selle ionsete ühenditega. Sellisteks töödeks on näiteks trükitööd, kus kasutatakse plii sisaldavaid trükvahendeid; plii sisaldavate keraamiliste toodete toodamine; autokooste- ja remonttööd. Plii ei ole siiski niivörd kantserogeen kui kroonilise mürgistuse tekijaga.

Vältimaks mitteisutetavate töötajate kokkupuudet tubakasuitsuga peab tööandja vajaduse ja võimaluse korral eraldama tähistatud spetsiaalse ruumi või ala suitsetamiseks (“Tubakaseadus”, §18, lg 2).

TÖÖKESKKONNAS ESINEVATE JA KASUTATAVATE KEMIKAALIDE VÄLJASELGITAMINE

Selleks, et eemaldada ohtlik kemikaal töökeskkonnast või vähendada kokkupuu-tevõimalusi selle ainega, peab eelkõige välja selgitama aine esinemise töökeskkonnas ja tema toimest tingitud võimaliku riski tervisele. See nõue kehtib trükitööd, kus kasutatakse plii sisaldavaid trükvahendeid; plii sisaldavate keraamiliste toodete toodamine; autokooste- ja remonttööd. Plii ei ole siiski niivörd kantserogeen kui kroonilise mürgistuse tekijaga.

Ohtlik kemikaal – aine või valmistis, mis oma omaduste tõttu võib kahjustada tervist, keskkonda või vara. Ohtlikud kemikaalid jaotatakse kategoriatesse ohtlike omaduste alusel.

Kemikaali käitlemine – kemikaali valmistamine, töötlemine, pakendamine, hoidmine, vedamine, müümine, kasutamine ja kemikaaliga seonduv muu tegevus. Ohtliku kemikaali pakendile peavad olema oranžile tagapõhjale musta värviga trükitud ohutunnused. Ohutunnuste olemasolu järgi pakendil saab otsustada, kas tegemist on ohtliku kemikaaliga.

Tööandja on kemikaali käitlemisel kohustatud rakendama vajalikke abinõusid kemikaalist tulenevate kahjude vältimiseks, arvestades kemikaali hulka ja ohtlikkust. Tööandjal peab olema piisavalt teavet kemikaali füüsikaliste ja kemiliste oma-
duste kohta, ohtlikkuse, ohutusnõuete ja kahjustumisamise kohta. Selline teave peab olema ka otesel kemikaali käitlejal.
Tööandja peab pidama käideldava kemikaali üle arvestust, mis peab näitama ohtliku kemikaali liikumist ettevõttes, alates selle soetamisest kuni töötlemiseni, väljastamiseni ja kahjustamiseni.

KEMIKAALIDEGA KOKKUPUUTE VÄHENDAMINE

Kantserogeense ohu vähendamiseks töökohas on mitmeid võimalusi:
- töökohal kasutatava kantserogeeni koguse limiteerimine;
- keskkonda leviku tõkestamine;
- optimaalsete tehnoloogiliste protsesside kasutamine;
- seire kantserogeenide lekke õigeaegse avastamiseks;
- asjakohased ühis- või isiku-kehtevahendid;
- kantserogeensete ohuallikate ja ohualade märgistamine;
- kantserogeensete ainete asendamine ohutute või vähemohtlike aine-tega;
- ainete käitlemine sulutud süsteemides.

Kantserogeenide käitlemise piirangud

Riigi tasandil võivad olla kehtestatud ranged nõuded kantserogeenide käitlemisele:

1. "Elanikkonnale ja loodusele ohtlike kemikaalide käitlemise piirangud" (SOM määrus nr 72, 02.11.2000) – määrus sätestab ohtlike kemikaalide käitlemise piirangud, et vältida nende võimalikku kahjulikku mõju inimesele ja keskkonnale:
- **Asbestikiude ning neid sisaldavaid tooteid** on keelatud kasutada ja műua. Tööstusseadmetes on lubatud kasutada asbestikiude sisaldavaid detaile kuni ettenähtud tööaja lõpuni, mil nad tuleb asendada asbestivabade materjali-dega.

- **Benseeni** lubatud sisaldus valmistoodetes on kuni 0,1%, mänguasjades kuni 5mg/kg. Piirangud ei kehti:
 1) mootorikütusele;
 2) tööstuslikele kemikaalidele;
 3) jäätmetele.

- **Pliiühendeid** on keelatud kasutada värvide koostises, erandina on lubatud kasutada pliivalget sisaldavaid värvä ajalooliste hoonete rekonstrueerimisel.

2. "Keelustatud ja rangelt piiratud käitlemisega kemikaalide sisse- ja väljaveo korra kehtestamine" (VV määrus nr 6, 05.01.1999).

Eesmärk: vältida kemikaalidest tulenev a kahju tekitamist inimese tervisele, oman-dile või keskkonnale.

Keelustatud kemikaal – kemikaal, mille igasugune kasutamine on tervise- või keskkonnaohutlikkuse tõttu täielikult keelatud.

Rangelt piiratud käitlemisega kemikaal – kemikaal, mille kasutamine on tervise- või keskkonnaohutlikkuse tõttu keelatud, kuid mille kasutamist võidakse kindlal ots-barbel lubada, näiteks uurimis- ja arendustöö tarbeks.

Tööprotsessis on keelatud kasutada järgmisi ohtlikke kemikaale:

<table>
<thead>
<tr>
<th>Kemikaali nimetus</th>
<th>Kemikaali number</th>
<th>Kemikaali number</th>
<th>Kemikaali maksimaalne lubatud sisaldus valmistises mahuprotsentides</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Euroopa kaubanduslike keemiliste ainete loetelu, EINECSi nr</td>
<td>Chemical Abstracts Service'is, CASi nr</td>
<td></td>
</tr>
<tr>
<td>2-naftüülamiin ja selle soolad</td>
<td>202-080-4</td>
<td>91-59-8</td>
<td>0,1</td>
</tr>
<tr>
<td>4-aminodifenüül ja selle soolad</td>
<td>202-177-1</td>
<td>92-67-1</td>
<td>0,1</td>
</tr>
<tr>
<td>Bensidiin ja selle soolad</td>
<td>202-199-1</td>
<td>92-87-5</td>
<td>0,1</td>
</tr>
<tr>
<td>4-nitrodifenüül</td>
<td>202-204-7</td>
<td>92-93-3</td>
<td>0,1</td>
</tr>
</tbody>
</table>

Erandina on neid kemikaale lubatud kasutada:
1) teaduslikkus uurimistöös;
2) nende eraldamisel kõrvaltoodetest ja jäätmeteest;
3) nende säinteesi vaheproduktilde.

Kantserogeeni asendamine vähem ohtlikuga

- **Benseeni sisaldavad lahusid laborites, kemmi ja jalatsitööstuses asendatakse muude lahustitega.
• Kroom asendatakse üha enam fosfaatide ja boraatidega.
• Asbesti kasutatakse mitmetel eesmärkidel. Kasutusest lähtuvalt asendatakse asbest erinevate materjalidega, nagu mineraalvatiga, klaaskiuga, tselluloosi jms.

Ohtliku kemikaali kasutamise piiramine või kokkupuuteaja lühendamine

Kokkupuudet kantserogeense ainega võib vähendada käitlemise piiranguga või kokkupuuteaja lühendamisega. Kantserogeen kui ringelt piiratud käitlemise kemikaal – lubatakse kasutada kindlal otstarbel:

• Kaadmium – on keelatud kasutada polüvinüülkloriidi ja selle kopolümeeri stabiliseerimiseks, mida kasutatakse järgmiste toodete valmistamisel:
 - pakkematerjal (kotid, kaaned)
 - kontoritarbed
 - mõõbli kaunistusvahendid
 - kunstnahk
Kasutamispiirangud ei kehti kaevandamises, tuumatööstuses, ookeanilaevastikus.

• Benseen – lubatud sisaldus valmistoodetes kuni 0,1%
Piirangud ei kehti:
 - mootorikütusele;
 - tööstuslikele kemikaalidele;
 - jääatmetele.

• Arseeniühendeid on keelatud kasutada:
 - veesõidukite ja kalapüügivahendite immutusvahendites;
 - puidukaitsevahendites;
 - tööstusliku vee puhastusreagendina.
Vastavalt "Asbestitööle esitatavatele töötervishoiu ja tööohutuse nõuetele" tohib asbestitöid teha töötaja, kes on saanud asbestitöödeks vajaliku väljaõppe ning ke-da on töö tegemiseks juhendatud.
Töökeskkonna ohuteguritest põhjustatud kasvajad

Tootmisprotsesside optimeerimine

Tööprotsessi on võimalik muuta ohutumaks:
- asendades ohtlikel kemikaalidel põhineva tehnoloogia ohutumaga;
- asendades ohtliku kemikaali ohutumaga;
- ohtlike kemikaalide koguste vähendamisega;
- ohtlike kemikaalidega töötamise aja lühendamisega;
- töövõtete muutmisega.

Näiteks bensiini vedavate autode bensiinitsisterne hakati täitma tsisterni allosast, nii vähenedus tunduvalt autojuhtide kokkupuude bensiiniaurudega.

Üldventilatsioon, kohtventilatsioon ja “ kapseldamine”

Ohtlike kemikaalide käitlemise on oluline võtta tarvitusele kõik töötajate ohutust tagavad abiõned.

Üldventilatsioonist piisab siis, kui kasutatavate ja töökeskkonda sattuvate kangeroogeneid hulk on väga väike.

Kohtventilatsiooni kasutatakse:
- tõmbekappides;
- tolmavate ainete käitlemise;
- puidust, metallist toodete valmistamisel;
- tolmavatel puhastustöödel;
- keevitusel;
- kemikaalide käitlemise;
- värvimis-, liimimistööidel;
- lahustite kasutamisel;
- seadmete juures, mis tekitavad kuuma gaasi ja auru.

Foto 8. Sinikka Vainiotalo:
Kaalud võib panna tõmbekappi, kui laboratooriumis kasutatakse kantserogeenseid aineid.
Kohtäratömme peab olema tööpinnale nii lähedal, kui seda lubab töö või tööprotesses, sest mida suurem on äratömbel kaugus tööpinnast, seda madalam on selle efektiivsus.

- Asbestitööde puhul rakendatavad ohutusnõuded on määratletud “Asbestitööle esitatavate töötuvishoiu ja tööohutuse nõuetega” (VV määrus nr 32, 02.02.2000).

Foto 9. Juhani Jaakkola: Asbesti sisaldava isolatsiooni lammutasine.

Isikukaitsevahendite kasutamine

Kui ohtliku kemikaali toimet töökeskkonnas ei saa vältida või vähendada tehniliste ühiskaitsevahenditega ja töökorraldusabinõudega, on tööandja kohustatud töötajale väljastama isikukaitsevahendid.

- Asbestitõmmega kokkupuutuvad töötajad peavad kandma täisnäokattega tolmumaski ja tolmukindlast materjalist peakattega kombineesooni, kaitsekindid ja -jalatseid.

Töökorralduslik tegevus ohtlike kemikaalidega kokkupuute vähendamiseks

- Vähendada nende töökohtade arvu, kus kasutatakse kantserogeenseid aineid.
- Kantserogeenseate ohuallikate ja ohualade märgistamine.
- Optimaalsete tehnoloogilise protsesside kasutamine.
- Evakuatsiooniplaani koostamine, evakuatsiooniteede ja -pääsude märgistamine.
- Ajakohaselt märgistatud pakendite kasutamine kantserogeense aine ohutuks käitlemiseks väljaspool tootmisprotsessi.

Õigete töövõtete kasutamine – väljaõpe

Iga töötaja, kes käitleb ohtlikku kemikaali, peab omama vastavat kvalifikatsiooni, mis eeldab:

- käideldava kemikaali omaduste tundmist;
- oskusi identifitseerida kemikaali ohtlikkust selle ohutuskaardi, pakenilliselt oleva märgistuse ja muu teabe alusel;
- kemikaalidega seotud ohutuse tundmist;
- oskust kasutada önetuse korral esmaseid pääste- ja abivahendeid ning anda esmaabi;
- ohutustehniliste, tervise- ja keskkonnakaitsete võtete tundmist;
- kemikaali kohta kehtestatud ohutusnõuete järgmist;
- ohtliku kemikaali kätlemisega tegeleva töötaja kvalifikatsiooni eest vastutab tööandja.
KEMIKAALIDEST TULENEVA RISKI OHJAMINE

Kemikaalide märgistamine ja teave ohutu käitlemise kohta

Pakendimärgistus

Ohtliku kemikaali pakendi märgistusel peavad olema selgelt loetavad järgmised andmed:

- kemikaali kaubanduslik nimetus, koostisosade nimetused;
- valmistajafirma või importija nimi, aadress;
- ohutunnus;
- riski kirjeldus;
- ohutusnõuete kirjeldus;
- kemikaali kogus.

Kemikaali ohutuskaart

Ohtliku kemikaali valmistaja või importija peab koostama ning enne kemikaali üleandmist käitlejale üle andma ohutuskaardi, mis sisaldab kemikaali kohta järgmisi andmeid:

1) identifitseerimine;
2) koostis;
3) ohtlikkus;
4) esmaabi andmise viis;
5) tegutsemine tulekahju korral;
6) önnetuse vältimise abinõud;
7) käitlemine ja hoiustamine;
8) mõju inimesele, isikukaitsevahendid;
9) füüsikalised ja keemilised omadused;
10) püsivus ja reaktsioonivõime;
11) terviserisk;
12) keskkonnarisk;
13) jäätmekäitluse viis;
14) veonõuded;
15) reguleerivad õigusaktid;
16) muu teave.
Ohutunnus

Ohtlike kemikaalide klassifitseerimine toimub nende ohtlike omaduste alusel. Vastavalt “Ohtlike kemikaalide identifitseerimise, klassifitseerimise, pakendamise ja märgistamise korrale” (SOM määrus nr 37, 26.05.2000) on ohtlikud kemikaalid jaotatud 15 kategooriasse.

Kantserogeensete ainete puhul on kasutatud järgmisi ohutunnuseid ja riskilau-seid:

- **T** – mürgine, **Xn** – kahjulik
 - **T; R45** – võib põhjustada vähktõbe;
 - **T; R49** – sissehingamisel võib põhjustada vähktõbe (kasutatakse kemikaalide puhul, mille vähkitekitav toime võib avalduda sissehingamisel);
 - **Xn; R40** – võib põhjustada pöördumatuid tervisekahjustusi.

Näiteks asbesti puhul kasutatavad märgistused (vastavalt SOM määrusele nr.59 30.11.1998 ja nr.36 15.02.2002 “Ohtlike ainete loetelu kinnitamine”) on:

- **T**
- **S-lause** – 53-45 – ohutu kasutamise tagamiseks tutvuda enne käitlemist kasutusjuhendiga. Õnnetusjuhtumi või halva enesetunde korral pöörduda arsti poole (võimaluse korral näidata talle pakendit või etiketti).
- **Klassifikatsioon** – kants. kat 1, R45, T, R48/23.

Vastavalt “Asbestitööle esitatavate töötervishoiu ja tööohutuse nõuetele” (VV määrus nr 32, 02.02.2000) on tööandja kohustatud panema asbestitolmusele tööruumile või selle juurde viivale uksele hoiatusmärgi “Ohuala”, mille all on silt selgesti loetava tekstiga:

“Ettevaatust! Asbest. Kasuta isikukaitsevahendit.”
TÖÖTERVISHOID

Foto 10. Juhani Jaakkola:

Autoremonttöödel puututakse kokku benseeni ja väljaheitetaasides sisalduvate aromaatsete süsisvesi-kega. Kokkupuute ulatust saab hinnata tööhügieeni ja bioloogilise seire meetoditega.
Kantserogeenide sisaldust töökeskkonnas hinnatakse nende sisalduse järgi õhus, samuti töötajate vere- ja urinianalüüside alusel.

- Õhus sisalduvat tolmu kogutakse vastavatele filtritele, millele järgneb hilisem laboratoorne analüüs.
- Gaasis või aurus sisalduva kemikaali näidised kogutakse vastavast töökeskkonna õhus sobivale absorbendile ja analüüsitakse hiljem laboris.
- Bioloogilised näidised vere ja uriini näo l kogutakse töövahetuse või töövahetuse lõpus ja analüüsitakse laboris.

Töökeskkonnas esinevad ohtlikud kemikaalid ei tohi ületada “Töökeskkonna keemiliste ohutegurite piirnormide” (VV määrus nr 293, 18.09.2001) poolt lubatud piirnorme.

Piirnorm – ohuteguri parameetri ajaüheksu põhjusel keskkone või toodetud keskkone väärtus, mis kaheksatunnise tööpäev (40-tunnise töönädala) jooksul töötajale mõjutab seda, et sellest töötajale terviselt ei põhjusta õhuriske.

Lisa 1

Vabariigi Valitsuse määrus nr. 6 “Keelustatud ja rangelt piiratud käitlemisega tööstuslike kemikaalide sisse- ja väljaveo kord” 05.01.1999

Korra eesmärk on luua õiguslik alus inimese tervisele, omandile või keskkonnale kemikaalidest johtuva kahju vältimiseks nii Eestis kui ka teistes riikides.

Rangelt piiratud käitlemisega kemikaal – on kemikaal, mille kasutamine on tervise- või keskkonnaohutlikkuse tõttu keelatud, kui mille kasutamist võidakse kindlal otstarbel lubada.
Keelustatud ja rangelt piiratud käitlemisega kemikaalide nimekiri

<table>
<thead>
<tr>
<th>Kemikaal</th>
<th>CAS nr (a)</th>
<th>EINECS nr (b)</th>
<th>Kaubakood (c)</th>
<th>Kasutusala (d)</th>
<th>Kasutus-piirangud (e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1,1-trikloroetaan</td>
<td>71-55-6</td>
<td>200-765-3</td>
<td>2903 19 10 00</td>
<td>t</td>
<td>k</td>
</tr>
<tr>
<td>1,2-dibromoetaan</td>
<td>106-93-4</td>
<td>203-444-5</td>
<td>2903 30 36 00</td>
<td>p</td>
<td>k</td>
</tr>
<tr>
<td>1,2-dikloroetaan</td>
<td>107-06-2</td>
<td>203-458-1</td>
<td>2903 15 00 00</td>
<td>t/p</td>
<td>k</td>
</tr>
<tr>
<td>2-naftüülamia ja tema soolad</td>
<td>91-59-8</td>
<td>202-080-4</td>
<td>2921 45 00 00</td>
<td>t</td>
<td>k</td>
</tr>
<tr>
<td>2,4,5-T</td>
<td>93-76-5</td>
<td>202-273-3</td>
<td>2918 90 90 00</td>
<td>p</td>
<td>k</td>
</tr>
<tr>
<td>4-aminobifenüül ja tema soolad</td>
<td>92-67-1</td>
<td>202-177-1</td>
<td>2921 49 80 00</td>
<td>t</td>
<td>k</td>
</tr>
<tr>
<td>4-nitrobifenüül</td>
<td>92-92-3</td>
<td>202-204-7</td>
<td>2904 20 00 00</td>
<td>t</td>
<td>k</td>
</tr>
<tr>
<td>Arseeniühendid</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asbestkidid:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kroküdoliit</td>
<td>12001-28-4</td>
<td>310-127-6</td>
<td>2524 00</td>
<td>t</td>
<td>k</td>
</tr>
<tr>
<td>Amosiit</td>
<td>12172-73-5</td>
<td></td>
<td>2524 00</td>
<td>t</td>
<td>k</td>
</tr>
<tr>
<td>Antofüüliit</td>
<td>77536-67-5</td>
<td></td>
<td>2524 00</td>
<td>t</td>
<td>k</td>
</tr>
<tr>
<td>Aktinoliit</td>
<td>77536-66-4</td>
<td></td>
<td>2524 00</td>
<td>t</td>
<td>k</td>
</tr>
<tr>
<td>Tremoliit</td>
<td>77536-68-6</td>
<td></td>
<td>2524 00</td>
<td>t</td>
<td>k</td>
</tr>
<tr>
<td>Krüosotiil</td>
<td>132207-32-0</td>
<td></td>
<td>2524 00</td>
<td>t</td>
<td>k</td>
</tr>
<tr>
<td>Benseen</td>
<td>71-43-2</td>
<td>200-753-7</td>
<td>2902 20 00 00</td>
<td>t</td>
<td>rp</td>
</tr>
<tr>
<td>Bensidiin ja tema soolad</td>
<td>92-87-5</td>
<td>202-199-1</td>
<td>2921 59 90 00</td>
<td>t</td>
<td>rp</td>
</tr>
<tr>
<td>Bensidiini derivaadid</td>
<td>–</td>
<td>–</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Binapakrüül</td>
<td>485-31-4</td>
<td>207-612-6</td>
<td>2916 19 80 00</td>
<td>p</td>
<td>k</td>
</tr>
<tr>
<td>DBB</td>
<td>75113-37-0</td>
<td>401-040-5</td>
<td>2931 00 95 00</td>
<td>p</td>
<td>k</td>
</tr>
<tr>
<td>Dikofool, mis sisaldab <78% p,p'dikofooli või 1g/kg DDT ja DDT lähedasi ühendeid</td>
<td>115-32-2</td>
<td>204-082-0</td>
<td>2906 29 00 00</td>
<td>p</td>
<td>k</td>
</tr>
<tr>
<td>Dinoseb, tema atsetaat ja soolad</td>
<td>88-85-7</td>
<td>201-861-7</td>
<td>2908 90 00 00</td>
<td>P</td>
<td>k</td>
</tr>
<tr>
<td>Dinoterb</td>
<td>1420-07-1</td>
<td>215-813-8</td>
<td>2908 90 00 00</td>
<td>P</td>
<td>k</td>
</tr>
<tr>
<td>DNOC</td>
<td>534-52-1</td>
<td>208-601-1</td>
<td>2908 90 00 00</td>
<td>p</td>
<td>k</td>
</tr>
<tr>
<td>Elavhõbedaühendid:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elavhõbekloriid (kalomel);</td>
<td>10112-91-1</td>
<td>233-307-5</td>
<td>2827 39 80 00</td>
<td>p</td>
<td>k</td>
</tr>
<tr>
<td>Elavhõbeoksii ja teised</td>
<td>21908-53-2</td>
<td>244-654-7</td>
<td>2825 90 50 00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Endriin</td>
<td>72-20-8</td>
<td>200-775-7</td>
<td>2910 90 00 00</td>
<td>p</td>
<td>k</td>
</tr>
<tr>
<td>Etüleenoksii</td>
<td>75-21-8</td>
<td>200-849-9</td>
<td>2910 10 00 00</td>
<td>p</td>
<td>k</td>
</tr>
<tr>
<td>Maleinhüdrasiid ja tema soolad</td>
<td>123-33-1</td>
<td>204-619-9</td>
<td>2933 99 90 00</td>
<td>p</td>
<td>k</td>
</tr>
<tr>
<td>Kemikaal</td>
<td>CAS nr (a)</td>
<td>EINECS nr (b)</td>
<td>Kaubakood (c)</td>
<td>Kasutusala (d)</td>
<td>Kasutuspiirangud (e)</td>
</tr>
<tr>
<td>--</td>
<td>------------</td>
<td>---------------</td>
<td>---------------</td>
<td>----------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>(b) Maleiinhüdrasiidi kolliin, kaaliüm- ja naatriumsoolad, mis sisaldavad rohkem kui 1mg/kg vaba hüdrasini väljadatuna happeekvivalendina</td>
<td>51542-52-0</td>
<td>220-147-6</td>
<td>2933 91 90 00</td>
<td>P</td>
<td>K</td>
</tr>
<tr>
<td>Etüülasinfoss</td>
<td>2642-71-9</td>
<td>220-147-6</td>
<td>2933 91 90 00</td>
<td>P</td>
<td>K</td>
</tr>
<tr>
<td>Fentiinatsetaat</td>
<td>900-95-8</td>
<td>212-984-0</td>
<td>2931 00 95 00</td>
<td>P</td>
<td>K</td>
</tr>
<tr>
<td>Fentiinhüdroksiid</td>
<td>76-87-9</td>
<td>200-990-0</td>
<td>2931 00 95 00</td>
<td>P</td>
<td>K</td>
</tr>
<tr>
<td>Fenvaleraat</td>
<td>51630-58-1</td>
<td>257-326-3</td>
<td>2926 90 95 00</td>
<td>P</td>
<td>K</td>
</tr>
<tr>
<td>Ferbaam</td>
<td>14484-64-1</td>
<td>238-484-2</td>
<td>2930 20 00 00</td>
<td>P</td>
<td>K</td>
</tr>
<tr>
<td>Fluoroatseetamiid</td>
<td>640-19-7</td>
<td>211-363-1</td>
<td>2924 19 00 00</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>Fosfamidoon:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E- ja Z-isomeeride segu</td>
<td>13171-21-6</td>
<td>236-116-5</td>
<td>3808 10 40 00</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>E-isomeer</td>
<td>297-99-4</td>
<td>3808 90 90 00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z-isomeer</td>
<td>23783-98-4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HCH, mis sisaldab vähem kui 99% gammasomeeri</td>
<td>608-73-1</td>
<td>210-168-9</td>
<td>2903 51 00 00</td>
<td>P</td>
<td>K</td>
</tr>
<tr>
<td>Heksakloroetaan</td>
<td>67-72-1</td>
<td>200-666-4</td>
<td>2903 19 80 00</td>
<td>T</td>
<td>K</td>
</tr>
<tr>
<td>Kaadmium ja tema ühendid</td>
<td>7440-43-9</td>
<td>231-152-8</td>
<td>8107</td>
<td>T</td>
<td>RP</td>
</tr>
<tr>
<td>Kaptäool</td>
<td>2425-06-1</td>
<td>219-363-3</td>
<td>2930 90 70 00</td>
<td>P</td>
<td>K</td>
</tr>
<tr>
<td>Kintotseen</td>
<td>82-68-8</td>
<td>201-435-0</td>
<td>2904 90 85 00</td>
<td>P</td>
<td>K</td>
</tr>
<tr>
<td>Kloordimeform</td>
<td>6164-98-3</td>
<td>228-200-5</td>
<td>2925 20 00 00</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>Loorfenapüür</td>
<td>122453-73-0</td>
<td></td>
<td>2933 99 90 00</td>
<td>P</td>
<td>K</td>
</tr>
<tr>
<td>Klorobensülaat</td>
<td>510-15-6</td>
<td>208-110-2</td>
<td>2918 19 80 00</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>Kloroform</td>
<td>67-66-3</td>
<td>200-663-8</td>
<td>2903 13 00 00</td>
<td>T</td>
<td>K</td>
</tr>
<tr>
<td>Klosolinaat</td>
<td>84332-86-5</td>
<td>282-714-4</td>
<td>2934 99 90 00</td>
<td>P</td>
<td>K</td>
</tr>
<tr>
<td>Kemikaal</td>
<td>CAS nr (a)</td>
<td>EINECS nr (b)</td>
<td>Kaubakood (c)</td>
<td>Kasutusala (d)</td>
<td>Kasutuspiirangud (e)</td>
</tr>
<tr>
<td>----------</td>
<td>-----------</td>
<td>---------------</td>
<td>---------------</td>
<td>---------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Kreosoot ja sellega seotud kemikaalid</td>
<td>8001-58-9</td>
<td>232-287-5</td>
<td>2707 91 00 00</td>
<td>t</td>
<td>k</td>
</tr>
<tr>
<td></td>
<td>61789-28-4</td>
<td>263-047-8</td>
<td>2707 91 00 00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>84650-04-4</td>
<td>283-484-8</td>
<td>2707 91 00 00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>90640-84-9</td>
<td>292-605-3</td>
<td>2707 91 00 00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>65996-91-0</td>
<td>2266-026-1</td>
<td>2707 91 00 00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>90640-80-5</td>
<td>292-602-7</td>
<td>2707 91 00 00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>65996-82-2</td>
<td>266-019-3</td>
<td>2707 91 00 00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8021-39-4</td>
<td>232-419-1</td>
<td>2707 91 00 00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>122384-78-5</td>
<td>310-191-5</td>
<td>2707 91 00 00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lindaan (γ-HCH)</td>
<td>58-89-9</td>
<td>200-401-2</td>
<td>2903 51 00 00</td>
<td>p</td>
<td>k</td>
</tr>
<tr>
<td>Metamidofoss</td>
<td>10265-92-6</td>
<td>233-606-0</td>
<td>3808 10 40 00</td>
<td>p</td>
<td></td>
</tr>
<tr>
<td>Metüülparatioon</td>
<td>298-00-0</td>
<td>206-050-1</td>
<td>3808 10 40 00</td>
<td>p</td>
<td></td>
</tr>
<tr>
<td>Monokrotofoss (kemikaali lahustuvad vedelad valmistised, milles on üle 600 g/l aktiivseid koostisos)</td>
<td>6923-22-4</td>
<td>230-042-7</td>
<td>3808 10 40 00</td>
<td>p</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3808 90 90 00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monolinuron</td>
<td>1746-81-2</td>
<td>217-129-5</td>
<td>2928 00 90 00</td>
<td>p</td>
<td>k</td>
</tr>
<tr>
<td>Monometüüldibromodifenüül metaan (DBBT)</td>
<td>99688-47-8</td>
<td>401-210-1</td>
<td>2903 69 90 00</td>
<td>t</td>
<td>k</td>
</tr>
<tr>
<td>Monometüüldiklorodifenüülm metaan (Ugilec 121 või Ugilec 21)</td>
<td>–</td>
<td>400-140-6</td>
<td>2903 69 90 00</td>
<td>t</td>
<td>k</td>
</tr>
<tr>
<td>Monometüültetraklorodifenüülm metaan (Ugilec 141)</td>
<td>76253-60-6</td>
<td>278-404-3</td>
<td>2903 69 90 00</td>
<td>t</td>
<td>k</td>
</tr>
<tr>
<td>Nitrofeen</td>
<td>1836-75-5</td>
<td>217-406-0</td>
<td>2909 30 90 00</td>
<td>p</td>
<td>k</td>
</tr>
<tr>
<td>Paratioon</td>
<td>56-38-2</td>
<td>200-271-7</td>
<td>2920 10 00 00</td>
<td>p</td>
<td>k</td>
</tr>
<tr>
<td>Pentaklorofenool</td>
<td>87-86-5</td>
<td>201-778-6</td>
<td>2908 10 00 00</td>
<td>p</td>
<td></td>
</tr>
<tr>
<td>Permetriin</td>
<td>52645-53-1</td>
<td>258-067-9</td>
<td>2916 20 00 00</td>
<td>p</td>
<td>k</td>
</tr>
<tr>
<td>Polübromobifenüülid (PBB) heksa</td>
<td>36355-01-8</td>
<td>252-994-2</td>
<td>2903 69 90 00</td>
<td>t</td>
<td>rp</td>
</tr>
</tbody>
</table>
Tähistused:

CAS – Chemical Abstract Service
EINECS – European Inventory of Existing Commercial Chemical Substances
(Kaubanduslike keemiliste ainete nimekiri)

Kaubakood – Eesti kaupade nomenklatuuri kaubakood

Kasutusala:
- p – pestitsiid
- t – tööstuskemikaal

Kasutuspiirang:
- rp – rangelt piiratud
- k – keelatud.

<table>
<thead>
<tr>
<th>Kemikaal</th>
<th>CAS nr (a)</th>
<th>EINECS nr (b)</th>
<th>Kaubakood (c)</th>
<th>Kasutusala (d)</th>
<th>Kasutuspiirangud (e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>okta</td>
<td>27858-07-7</td>
<td>248-696-7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>deka</td>
<td>13654-09-6</td>
<td>237-137-2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polükloroterfenüülid (PCT)</td>
<td>61788-33-8</td>
<td>262-968-2</td>
<td>2903 69 90 00</td>
<td>t</td>
<td>k</td>
</tr>
<tr>
<td>Profaam</td>
<td>122-42-9</td>
<td>204-542-0</td>
<td>2924 29 95 00</td>
<td>p</td>
<td>k</td>
</tr>
<tr>
<td>Pürasofoss</td>
<td>13457-18-6</td>
<td>236-656-1</td>
<td>2933 59 95 00</td>
<td>p</td>
<td>k</td>
</tr>
<tr>
<td>Süsiniktetrakloriid</td>
<td>56-23-5</td>
<td>200-262-8</td>
<td>2903 14 00 00</td>
<td>t</td>
<td>k</td>
</tr>
<tr>
<td>Teknatseen</td>
<td>117-18-0</td>
<td>204-178-2</td>
<td>2904 90 85 00</td>
<td>p</td>
<td>k</td>
</tr>
<tr>
<td>Tina(IV)triorgaanilised ühendi</td>
<td>–</td>
<td>2931 00 95 00</td>
<td>p</td>
<td></td>
<td>rp</td>
</tr>
<tr>
<td>Tris(2,3 dibromopropüül)fosfaat</td>
<td>126-72-7</td>
<td>204-799-9</td>
<td>2919 00 90 00</td>
<td>t</td>
<td>rp</td>
</tr>
<tr>
<td>Trisasiridinüülfosfiinoksiid</td>
<td>545-55-1</td>
<td>208-892-5</td>
<td>2933 91 90 00</td>
<td>t</td>
<td>rp</td>
</tr>
<tr>
<td>Tsineb</td>
<td>12122-87-7</td>
<td>235-180-1</td>
<td>3824 90 99 00</td>
<td>p</td>
<td>k</td>
</tr>
<tr>
<td>Tsühalotriin</td>
<td>68085-85-8</td>
<td>268-450-2</td>
<td>2926 90 95 00</td>
<td>p</td>
<td>k</td>
</tr>
</tbody>
</table>
JUHENDIS VIIDATUD EV ÕIGUSAakTIDE LOETELU

1. Töötervishoiu ja tööohutuse seadus
2. Kemikaaliseadus
3. Ohtlike ainete loetelu kinnitamine (SOM määrus nr. 59, 30.11.1998; nr.36, 15.02.2002)
4. Ohtlike kemikaalide identifitseerimise, klassifitseerimise, pakendamise ja märgistamise kord, (SOM määrus nr 37, 26.mai 2000)
5. Kantseregeensete ja mutageensete ainete kasutamisel esitatavad nõuded töökohal (VV määrus nr 51, 15.02.2000)
6. Asbestitöödele esitatavad töötervishoiu ja tööohutuse nõuded (VV määrus nr 32, 02.02.2000)
7. Plii ja selle ioonsete ühendite kasutamise töötervishoiu ja tööohutuse nõuded (VV määrus nr 193, 20.06.2000)
8. Ohtlike kemikaalide ja neid sisaldavate materjalide kasutamise töötervishoiu ja tööohutuse nõuded (VV määrus nr 105, 20.02.2001)
9. Töökeskkonna keemiliste ohutegurite piirnormid (VV määrus nr 293, 18.09.2001. a.)
10. Isikukaitsevahendite valimise ja kasutamise kord (VV määrus nr 12, 11.01.2000)
11. “Elanikkonnale ja loodusele ohtlike kemikaalide käitlemise piirangud” (SOM määrus nr, 722.11.2000.a.)
12. Keelustatud ja rangelt piiratud käitlemisega kemikaalide sisse- ja väljaveo korra kehtestamine (VV määrus nr 6, 05.01.1999.a)