
Agent-Based Computational Experiments
in Two-Sided Matching Markets

ANDRE VESKI

THESIS ON INFORMATICS AND SYSTEM ENGINEERING C125

TALLINN UNIVERSITY OF TECHNOLOGY
School of Information Technologies

Department of Software Science

This dissertation was accepted for the defence of the degree of
Doctor of Philosophy in Computer and Systems Engineering on
08.03.2017

Supervisors: Prof. Kaire Põder
Estonian Business School

Prof. Emer. Leo Võhandu
Department of Software Science
Tallinn University of Technology

Opponents: Alan Kirman, Ph.D., Aix-Marseille University, France
David Manlove, Ph.D., University of Glasgow, United Kingdom

Defence: 06.09.2017

Declaration:
I hereby declare that this doctoral thesis, my original investigation and
achievement, submitted for the doctoral degree at Tallinn University of
Technology, has not been submitted for any academic degree.

/Andre Veski/

Copyright: Andre Veski, 2017
ISSN 1406-4731
ISBN 978-9949-83-130-2 (publication)
ISBN 978-9949-83-131-9 (PDF)

INFORMAATIKA JA S TEHNIKA C125ÜSTEEMI

Agendipõhised arvutuslikud eksperimendid
kahepoolsetel sobitusturgudel

ANDRE VESKI

Contents

List of Publications 9

Introduction 11

Motivation . 15

The claims and contributions . 16

Outline of the dissertation . 17

1 Mechanism Design Background 19

1.1 Game theoretic foundations 19

1.2 Auctions . 23

1.2.1 The first price auction 24

1.2.2 The second-price auction 25

1.2.3 The VCG mechanism 25

1.2.4 Optimal auctions . 27

1.3 Fair division . 29

1.3.1 Single divisible item 31

1.3.2 Multiple divisible items 32

1.3.3 Multiple indivisible items 35

1.4 Matching markets . 35

1.4.1 Two-sided matching - stable marriage 39

1.4.2 Two-sided matching - school choice 41

1.4.3 Algorithms for on-line and decentralised matching . 43

1.4.4 Other matching problems 44

1.5 Limits of the axiomatic approach 45

1.5.1 Combinatorial auctions and limits of theory 45

1.5.2 Double sided auctions and complex systems 51

2 Zero-Intelligence in Decentralised Matching 61

2.1 Introduction . 61

2.2 Behaviour models . 65

2.3 Preference generation . 72

2.4 Computational experiments and convergence 75

2.5 Stability of a matching . 75

5

2.6 Unassigned agents in a thick market 79

2.6.1 Analysis of convergence conditions 79

2.6.2 Structured preferences 84

2.7 Unassigned agents in a thin market – the Beveridge curve . 85

2.7.1 Beveridge curve and the movement along the curve . 85

2.7.2 Shifts in the Beveridge curve 86

2.7.3 Effect of a re-matching friction 88

2.8 Price of invisibility . 90

2.8.1 Median rank in a thick market 90

2.8.2 Median rank in a thin market 93

2.8.3 Re-matching friction and median rank 96

2.9 Conclusion and discussion 97

3 Strategies in Tallinn School Choice Mechanism 101

3.1 Introduction . 101

3.2 Background: Tallinn school market 103

3.2.1 Tallinn mechanism 104

3.2.2 Example of deciding what to report 105

3.3 Model . 107

3.3.1 Environment . 107

3.3.2 Preferences . 108

3.3.3 Utility function . 109

3.3.4 Genetic algorithms 110

3.4 Results . 112

3.4.1 Expected utility maximising strategies 112

3.4.2 Social welfare . 115

3.5 Conclusion and discussion 117

4 Policy Design for Kindergarten Allocation 121

4.1 Introduction . 121

4.2 Matching mechanism design 125

4.2.1 Matching practices in Harku 126

4.2.2 Building a mechanism for kindergarten seat allocation 127

4.2.3 Particularities of the 2016 system 128

4.3 Policy design . 130

4.3.1 Efficiency and fairness 130

4.3.2 Operationalisation of policy designs 131

4.3.3 Data and initial policy design comparison 135

4.3.4 Generating counter-factual preferences 137

4.3.5 Policy sensitivity to preferences 140

4.4 Further issues . 147

4.5 Conclusion and discussion 148

6

5 Conclusions and Future Work 151
5.1 Discussion of the research methods 151
5.2 Answers to the research questions 153
5.3 Contributions . 155
5.4 Further research . 155

References 157

A Publication 1 181

B Publication 2 197

C Publication 3 211

D Publication 4 239

E Publication 5 261

Acknowledgements 303

Abstract 305

Kokkuvõte 307

Curriculum Vitae 309

Elulookirjeldus 313

7

List of Publications

1. Veski, A. and Võhandu, L. (2011). Two Player Fair Division Problem
with Uncertainty. In Barzdins, J. and Kirikova, M., editors, Frontiers
in Artificial Intelligence and Applications, pages 394–407. IOS Press,
Amsterdam

2. Veski, A. (2014). Price of Invisibility: Statistics of centralised and de-
centralised matching markets. In MacKerrow, E., Terano, T., Squaz-
zon, F., and Sichman, J. S., editors, Proceedings of the 5th. World
Congress on Social Simulation, pages 18–29, Sao Paulo

3. Veski, A. and Põder, K. (2017). Zero-intelligence agents looking for
a job. Journal of Economic Interaction and Coordination

4. Veski, A. and Põder, K. (2016). Strategies in Tallinn school choice
mechanism. Research in Economics and Business: Central and East-
ern Europe, 8(1):5–24

5. Veski, A., Biro, P., Põder, K., and Lauri, T. (2017). (forthcoming)
Efficiency and fair access in kindergarten allocation policy design.
Journal of Mechanism and Institution Design

Author’s contribution to the publications

1. The author’s contribution were the ideas of division methods, imple-
mentation of the described methods, performing the experiments, and
writing the paper

2. The author’s contribution were the ideas of decentralised matching
models, implementation of the described methods, performing the
experiments, and writing the paper

3. The author’s contribution were the ideas decentralised matching mod-
els, implementation of all the described methods and performing the
experiments. Writing the paper and interpreting results were with
the co-author

9

4. The author’s contribution was the idea of using genetic algorithms
to learn equilibrium strategies, implementation of all the described
methods and performing the experiments. Writing the paper and
interpreting results were done with the co-author

5. The author’s contribution was the idea of using counter-factual pref-
erences to evaluate policy robustness, implementation of all the de-
scribed methods and performing the experiments. Writing the paper
and interpreting results were done with the co-authors

10

Introduction

Two-sided matching markets are everywhere around us, when booking a cab
through a mobile app, applying for a school place for your child to school or
even allocating landing slots to airplanes. Usually in these markets agents
on both sides have certain preferences regarding each other. For instance,
passengers have preferences about the price, quality and type of a taxi and
similarly, the driver may prefer passengers with a longer travel distance.
Families prefer certain schools over others, while due to local regulations,
primary schools usually prioritise children on the basis of proximity. These
matching markets have been extensively studied in a static centralised situ-
ation, where all participants share their information with a central clearing
house, which then handles the allocation. A seminal paper by Gale and
Shapley (1962) initiated this type of research by providing simple axioms
and an algorithm to compute the allocation.

The inner workings of markets have long been at the centre of economics
research. The (neo)classical assumptions are that sellers and buyers are
rational, somehow find each other at the decentralised marketplace and
agree upon a price. This commodity market usually has an equilibrium
price, meaning that after all agents willing to sell or buy a good at a specific
price have transacted, there are no more agents left willing to sell or buy
at that price. If the price is too high, there might be some agents who are
willing to sell. Alternatively, some might still be willing to buy at too low a
price. Although the equilibrium price may exists, the question remains how
self-interested agents would find that price. Walras (see e.g. Bowles, 2004,
p. 216) proposed a process for such a market. This process involves an
auctioneer, now known as a Walrasian auctioneer, who iteratively collects
cost and value information from agents and proposes a price. However, this
type of market tends to be considered as highly centralised as it precludes
all out-of-equilibrium trading and thus, not realistic in real-world markets.

The questions of market and mechanism design are also prominent top-
ics in theoretical economics (Klemperer, 2004b; Milgrom, 2004), also more
recently in computer science (Roughgarden et al., 2007) and even physics
(Smith et al., 2003; Farmer et al., 2012). Several Nobel prises have been
awarded on the study of economic design. To Leonid Hurwicz, Eric S.
Maskin and Roger B. Myerson “for having laid the foundations of mech-

11

anism design theory” Nobelprize.org (2007). To Alvin E. Roth and Lloyd
S. Shapley “for the theory of stable allocations and the practice of market
design” (Nobelprize.org, 2012), which started by Gale and Shapley (1962).
In fact William Vickery, joint with James A. Mirrlees, received the prise
even sooner “for their fundamental contributions to the economic theory
of incentives under asymmetric information” (Nobelprize.org, 1996). Vick-
ery’s fundamental paper was on the second-price auction (Vickrey, 1961).
Search friction, which is central in uncoordinated matching markets, has
also received attention from the Nobel prise committee in the award to
Peter A. Diamond, Dale T. Mortensen and Christopher A. Pissarides “for
their analysis of markets with search frictions” (Nobelprize.org, 2010).

Computational agent-based economics studies the outcomes of economic
processes of interacting agents (e.g. Tesfatsion and Judd, 2006; Sterling and
Taveter, 2009; Leyton-Brown and Shoham, 2009). These agents might not
behave in a perfectly rational manner, or possess enough information to
do so and exhibit learning by doing. Neoclassical economics emphasises
the study of equilibria as it is often feasible to solve the allocation market
models by showing at least one good equilibrium with axiomatic analysis.
This might be a reasonable approach, if operating under the assumption
that economies tend to stay close to an equilibrium. Although there might
exist an equilibrium, where the transactions take place under conditions of
perfect knowledge and rationality, the equilibrium analysis does not specify
a decentralised process by which to find such a competitive equilibrium
(e.g. Bowles, 2004, p. 216).

A complex systems based approach to economics puts the agent-based
interaction model centre stage (e.g. Kirman, 2016). The main argument
is that the interaction model is an important factor in determining the
outcome. Furthermore, it is no longer that easy to analyse these systems
using fixed-point theorems, but as stated by Durlauf and Young (2001)

The hallmarks of this approach are, first, to explicitly model a
socioeconomic system as a collection of heterogeneous individ-
uals. Second, individuals interact directly as well as through
prices generated by markets. Peer groups, social networks, role
models, and the like have a prominent place when it comes to de-
termining individual behaviour. Third, individual preferences,
beliefs, and opportunities are themselves influenced by the in-
teractions that characterize the system. Fourth, the analysis of
such processes draws from methods in stochastic dynamical sys-
tems theory, supplemented by large-scale simulation techniques.
(p. 11)

12

The double-auction market mechanism is often used in financial trad-
ing. This is similar to the Walrasian model, but more decentralised and
detailed about how information is shared and trades actually occur. In
terms of allocative efficiency, simple rules suffice to find the competitive
equilibrium price even with randomised behaviour both in an agent-based
model (Gode and Sunder, 1993b) and also in the context of human exper-
iments (Gode and Sunder, 1993a). A significant part of research revolves
around how to actually establish the required trading rules. The current
state of the financial market demonstrates that setting such rules is not
easy (e.g. Patterson, 2012; Budish et al., 2013; Lewis, 2014).

However, as regards matching markets, there is no market-clearing price,
all the goods are substitutes and agents have to figure out their utility for
each individual good. Conversely, in a commodity market, goods have a
type and the only question is how to trade one type of good for another. The
mediating institution is usually money, i.e. the goods have an associated
price for which an agent can buy or sell it. In contrast, in a matching
market all the goods are potentially different. As an example of a two-sided
matching market, multiple jobs may be available, but agents have different
preferences for them which are dependent on more than only the wage.
Another example is multiple schools in which agents have a different level
of desire to obtain a place. The main characteristic typically of a matching
market is that there is no price associated with being matched to a job or
a place in a school. People usually do not buy or sell jobs (see e.g. Bowles,
2004, p. 292 for discussion) or municipal school positions. In the latter
case, allocation is usually restricted by the law and other considerations.

Although the motivations are different for job matching and school al-
location, the models are similar. For example in the school market, there
might be 50 or 1000 schools and agents have to form their preferences. In a
job market, the positions, companies and locations are different and work-
ers have to form their preferences, but it is hard to gain access to all of
the information in order to form a preference list. Moreover, what further
complicates the situation is the fact that agents need to determine how to
act based on the (available/obtained) information. In some cases, it might
be easiest to simply start from one’s most preferred option and progress de-
creasingly. However, this method might not always be beneficial as it could
potentially waste time while another agent could seize a feasible, but less
preferred option. Furthermore, thinking strategically is not only relevant at
decentralised marketplaces, but also regarding centralised clearing-houses.
Sometimes even if school choices are centralised, it is beneficial for families
to consider different strategies for revealing their preferences (e.g. Abdulka-
diroğlu and Sönmez, 2003). However, designing safe and optimal matching
markets is possible Gale and Shapley (1962). Still, there is a variety of de-

13

tails to be considered, such as application quotas (Dur et al., 2013; Aygün
and Bo, 2013), couples (Roth and Peranson, 1999), contracts (Hatfield and
Milgrom, 2005) and more. In these market the details matter. Nonethe-
less, as these papers show, there is success in designing these markets which
has also been studied before in Estonia in the context of college admission
(Veskioja, 2005).

Nevertheless, often the matching market may not be centralised. Roth
(2008) points out three main aspects of failure for a matching market:
unravelling, thickness (congestion) and strategic behaviour. A centralised
clearing-house based on the deferred-acceptance algorithm by Gale and
Shapley (1962) would solve the problems of unravelling, congestion and
strategic behaviour to an extent. Nonetheless, there remains the problem
of attracting participants to the market. Furthermore, establishing a cen-
tralised allocation may be difficult due to potential opposition from market
participants. For instance, certain agents might benefit from a decentralised
market and hence, not be interested in coordinating. Roth (2015) observes
uncoordinated and decentralised matching markets becoming more relevant
in the sharing economy and thus the issues mentioned more acute. Acker-
mann et al. (2008) studies the computational aspects of certain interaction
models and shows that the time required to find a stable solution similar
to the result of the deferred-acceptance algorithm is at least exponential
regarding the number of agents.

However, the operation mechanisms of decentralised markets have not
been extensively studied (Roth, 2008, p. 563). Similarly to a competitive
equilibrium model, there is an analytical model for a decentralised job-
market, namely the matching function (Petrongolo and Pissarides, 2001).
This models the probability of a free agent being matched to a certain
open position, but does not specify how the interaction and discovery pro-
cess work. Rather the probability is attributed to characteristics such as
education, experience, etc. and frictions that maybe attributable to an
interaction model. Nevertheless, the matching function still neglects to
specify the agent coordination model.

Moreover, with the growth of the internet economy, several matching
markets have emerged (e.g. Evans and Schmalensee, 2016; Choudary et al.,
2016). These matchmakers are often also two-sided, matching apps to users,
taxis to passengers, etc. While in many situations the goods on one side
can be considered unlimited, e.g. one user downloading an app does not
limit others doing so as well, in other situations the goods are limited. For
instance, if a taxi is booked, no other passenger can order the same taxi.

Currently, the matchmakers are concerned with attracting participants
to their platform to solve the thickness problem. Thus, the transaction
pricing model has been the main concern for these businesses (Rysman,

14

2009, p. 140). The main function of these platforms is to help market
participants to find each other. Usually, there is no coordinating mechanism
behind the platform, e.g. the Deferred-Acceptance algorithm. Rather,
agents take simple myopic short-term greedy actions to select a match.
The decentralised and dynamic nature of the markets compels us to ask if
we can do better.

In the thesis, the progression is made from a decentralised to an op-
timal centralised two-sided matching market. We start the thesis by in-
vestigating behaviours in decentralised two-sided matching markets. We
compare the matching size and allocated rank with different behaviours in
a decentralised matching market, as well as to a centralised clearing-house
based matching market. We proceed by studying the centralised two-sided
clearing-house used in the Tallinn primary school choice mechanism. As
this a manipulable mechanism, we investigate the equilibrium strategy and
compare it to an optimal and strategy-proof mechanism. Finally, we use an
optimal and strategy-proof mechanism to examine policies for constructing
priorities for kindergarten allocation. We also compare the efficiency and
fairness properties of the different policies.

Motivation

The main examples serving as our motivation are the different place allo-
cation models in use in Estonia. The two cases we study are the primary
school allocation in Tallinn and kindergarten allocation in the municipality
of Harku. In brief, the procedure in Tallinn consists of two parts: first, a
decentralised allocation of children to selective groups and schools; second,
a centralised allocation of the remaining places. In Harku, the allocation is
centralised, although it is decided by a committee of the heads of kinder-
gartens.

It is unclear how effectively families manage to behave in these allocation
settings. First, in a decentralised situation they might give up early rather
than wait for an opening in a more preferred school, or they might limit
the number of schools they apply to. This creates a kind of a lock-in, where
several families stick to their position and thus, a favourable trade might
not occur. The behaviour that would guarantee a place for a family at their
most preferred school in the second centralised stage of the Tallinn process
is also not clear. The collection procedure limits the choices of families
to three, which moreover cannot even be submitted in a preferential order.
Families have the motivation not to present their true preferences for various
reasons and the data will show that families do try to consider how best to
present their preferred schools.

15

The aim of the thesis is to investigate these matching markets. Firstly,
a way of modelling the behaviour of agents in decentralised markets is pro-
posed followed by a comparison of the aggregate outcomes with an optimal
centralised mechanism. Second, a game-theoretic model of the centralised
part of the Tallinn school choice mechanism is proposed and the equilibrium
behaviour as well as the outcome of that mechanism is investigated.

The main way of improving the allocations in matching markets is to
design a deferred-acceptance based centralised market. The municipality
of Harku has operated a nearly centralised clearing-house for several years.
However, families can only submit three alternatives and sometimes these
were not enough to provide a place. Consequently, other alternatives were
suggested to the families. This has the potential to create misallocations, as
a family could have received a higher-ranked place, if it had stated initial
preferences differently. In addition, the main criteria for selecting chil-
dren is the application date. Harku is interested in making their allocation
more flexible , based on distance from kindergarten and any siblings in the
same kindergarten. As such considerations alter the ordering of children for
kindergartens and the mechanism should take this into account. In order
to have a simple and optimal allocation mechanism for families, a redesign
of the clearing-house mechanism was required. The mechanism used thus
far was widely known to be unsatisfactory for families, even more so when
there is a limit on the number of preferences to be submitted.

The claims and contributions

The central claim of this dissertation is that designing allocation rules re-
quires very detailed consideration, as minor elements in the design can have
adverse effects on the final allocation. This can be due to the behaviour of
the agents or because of rule design for a dynamic environment. In order
to support this main claim we examine three claims in the dissertation:

A In an uncoordinated and decentralised market, the behaviour of agents
is the key determinant of the matching properties – size and rank. We
aim to show that a decentralised market is significantly worse in terms
of assigned agents and assigned rank than a deferred-acceptance based
centralised matching.

B Merely centralising the allocation process is insufficient. We aim to
show that the centralised Tallinn school choice mechanism design in-
centivises agents to report insincerely. In addition these behaviour
results in a less preferred match for some agents, while benefitting
other agents compared to an optimal allocation.

16

C Even with a mechanism where agents are motivated to report truth-
fully and are guaranteed an optimal match, we aim to show that
the allocation is sensitive to the implementation of the policy and to
changes in the structure of family preferences. For example a policy
of matching children to nearby kindergarten can be implemented ei-
ther by absolute or relative distance. The comparative allocated rank
is significantly different depending on the choice between the two.

To support these claims, we conduct three computational experiments
in the matching market framework. The basic assumption of agents with
preferences is the same in all models. We look at three two-sided match-
ing environments: a decentralised market, a centralised manipulable and a
centralised truthful mechanism design.

Outline of the dissertation

In chapter 1 we review the fundamentals of mechanism design and game
theory, including the relevant concepts for this thesis. Examples are pro-
vided of axiomatic design of mechanisms for auctions, fair division and
matching. Additionally, we discuss aspects of mechanism design wherein
the analytic axiomatic approach is intractable and we also motivate a com-
putational approach.

In chapter 2 we develop three simple behaviours in a uncoordinated and
decentralised matching market. The behaviours range from simple one-shot
matching choices to more sophisticated behaviour for producing a successful
matching transaction. It emerges that the myopic behaviour proves superior
to more informed behaviours in terms of matching size, but inferior to the
utility of the average agent. The main dimension explored are market
thickness, i.e. the balance between the numbers of agents on the two sides
of the market. We manage to recreate a Beveridge curve similar to the one
observed in job market literature. The second component is the structure
of the preferences of agents and its impact on the Beveridge curve. We
compare the decentralised mechanisms to a centralised clearing house based
on the deferred-acceptance mechanism. We use a median rank to measure
the efficiency of a matching. We found that the median rank can be as much
as 20 times worse in a decentralised market than in a centralised deferred-
acceptance based market, which occurs when correlation in preferences is
small and the lists are long. Moreover, in the case of longer preference lists,
the decentralised mechanism has many unassigned agents and the matching
is unstable. On the other hand, a centralised mechanism computes a stable
matching, usually with almost no unassigned agents.

17

In chapter 3 we describe a mechanism used for primary school alloca-
tions in the city of Tallinn. We observe that the mechanism is complicated
and consists of multiple stages of decentralised and centralised matchings.
We define and further explore the centralised mechanism in Tallinn school
choice. By using genetic algorithms, we show how the Tallinn mechanism
incentivises families to manipulate their preference revelation by report-
ing only a few schools, and not always from the top of their preference
list. This claim appears to match the observed behaviour. In addition,
it emerges that the expected utility in the Tallinn mechanism is higher
compared to the widely used deferred-acceptance mechanism, although the
number of unassigned students is also higher.

In chapter 4 we study kindergarten allocation practices in an Estonian
municipality, Harku. We describe the allocation practice used until 2015,
followed by an overview of the 2016 system, which was redesigned on the ba-
sis of our recommendations. The new mechanism provides a child-optimal
stable matching, with priorities based on siblings, distance and other fac-
tors. We evaluate seven policy designs in order to understand efficiency and
fairness trade-offs based on the 2015 and 2016 admission data. In addition
to the real data analysis, we conduct a counter-factual policy comparison
and sensitivity analysis using computational experiments with generated
preferences. The findings show that different ways of considering the same
priorities can have a significant aggregate effect on the allocation.

In chapter 5 we conclude the thesis. We discuss the assumptions in all
of the conducted experiments. We view the types of markets as stages in
moving towards an optimal centralised market allocation. Finally, we assess
the claims and their validity in light of the obtained results.

18

1 Mechanism Design Background

1.1 Game theoretic foundations

Game theory analyses situations, where agents are seeking to maximise
their utility in an interaction with other agents. We assume the agent’s
utility is known to the agent and he can assign values to different outcomes
of the game. A simple game consists of agents and their strategies. In
Table 1.1 we describe a well-known game of Prisoner’s dilemma with two
agents: Alice and Bob, with both having two possible strategies: cooperate
and defect. The intersection of each strategy describe the payoff (utility)
profile for the agents if they jointly choose to play some strategies. For
example if both would select to cooperate, they payoff for both would be 4
for both.

The game can be thought of as a model of resource economy. If two
agents would cooperate on managing the resource, by not over-consuming,
they would both receive an utility of 4. However, if just one over-consumes
then he would receive greater utility. And if you see the other agent over-
consuming you might as well over-consume, because that will increase your
utility from 0 to 2. Over-consuming will lead to unsustainable state, thus
the utilities are lower.

Table 1.1: Tragedy of the commons (Prisoner’s dilemma)

Alice
Cooperate Defect

Bob
Cooperate 4, 4 6, 0
Defect 0, 6 2, 2

If Bob would cooperate we can easily observe that Alice would do better
by playing defect, that is her utility ua would increase from 4 to 6. Similarly
we can reason, if Bob would play defect, Alice’s payoff would also be greater
if she played defect. Since the game is symmetric, we can change the names

19

of the agents and the payoffs would be the same, then the same reasoning
applies to Bob. So the result of the game would be for both to play defect.
This is the unique, dominant strategy, Nash equilibrium of the game.

Definition 1. Best response for agent i to a strategy profile s−i is a strategy
s∗i , such that ui(s

∗
i , s−i) ≥ ui(si, s−i) for all strategies si.

We denote by si the strategy of agent i and with s−i strategies for all
other agents but i. In the Prisoner’s dilemma example both agents play
their best response strategies.

Definition 2. Nash equilibrium is a strategy profile s = (s1, ..., sn) if for
all agents i, si is a best response to s−i.

Depending on the game there might be multiple Nash equilibria (e.g.
Leyton-Brown and Shoham, 2009). The game in Table 1.1 is also interesting
that agent always play defect regardless of the other agent, so the defect
strategy is the dominant strategy of the game.

Definition 3. Dominant strategy si for an agent i is a strategy that is best
response to all possible strategy profiles s−i

If we look at the game in Table 1.1, we see that both agents would be
better off by cooperating, but this is not strategically viable. Ideally we
would like the game’s Nash equilibrium solution to be Pareto optimal.

Definition 4. A strategy profile s is Pareto dominating if for any other
strategy profile s′ for all agents i, ui(s) ≥ ui(s

′) and for some agent j,
uj(s) > uj(s

′).

Definition 5. A Pareto optimal strategy profile s does no have any strategy
profile s′ that would Pareto dominate it.

In the game described in Table 1.1 both agents cooperating is the Pareto
optimal outcome of the game. Although there are other Pareto optimal
outcomes, only both cooperating Pareto dominates the equilibrium solu-
tion. The question for mechanism designer is how to design the game such
that when agents play their best strategy, the outcome would be good, e.g.
Pareto optimal. In later sections we will see depending on the game model,
there might be different optimality notions.

A central planner might provide incentives so the payoff structure of
the games changed, like for example in Table 1.2. This might be also
achieved using institution or social norm (Põder, 2010), exactly how this
is accomplished not important here, but the equilibrium solution should
emerge for both agents to cooperate.

20

Table 1.2: Tragedy of the commons (Prisoner’s dilemma)

Alice
Cooperate Defect

Bob
Cooperate 8, 8 6, 4
Defect 4, 6 2, 2

So far we considered a game where the strategies of other agents we
known to all agents. In a more general setting the payoffs for a particular
strategy might be unknown, but there is some probability distribution over
the payoff structure of the game.

There is a set θ ∈ Θ of possible games each with a probability p(θ). The
game still has a set A of actions. By sj(aj |θj) we denote the equilibrium
strategy in a particular game, which is one when action aj is played when
game is θj . This might also be a probability, when the equilibrium strategy
is not pure, but for simplicity we have not considered here.

Definition 6. Agent’s Ex ante expected utility is defined as

E[ui(s)] =
∑

θ∈Θ

p(θ)
∑

a∈A

∏

j

sj(aj |θj)

ui(a, θ)

Definition 7. Best response in a Bayesian game is

BRi(s−i) = arg max
s′i∈Si

E[ui](s
′
i, s−i)

Definition 8. Bayes-Nash equilibrium is a strategy profile that ∀i si ∈
BRi(s−i)

Assume now that with probability 1
2 we play the game in Table 1.1 and

with probability the game in Table 1.2. The expected utility of the game for
Alice and Bob would be E[uA] = E[uB] = 1

22 + 1
28 = 5 as the equilibrium

of the second game is both cooperating with a payoff of 8.
To find the equilibrium of the join game we have to compute the ex-

pected utilities for each combination of actions as in Table 1.3. The Nash
equilibrium of the game is (DC,DC) as expected. In the first game Alice
and Bob would both play defect and in the second game cooperate, as we
also found when we reasoned individually. This might no always be the
case, depending on the probabilities of being in one game or the other.

However real-world is more complex and interactions are usually not
one-shot games as described above, rather interactions are repeated. So
the strategies would have to specify longer term behaviour. One way to
model these is to use so called folk theorems, which specify a strategy for
next round as a response to observations from previous round(s).

21

Table 1.3: Joint game

Alice
CC CD DC DD

Bob

CC 6, 6 5, 4 7, 4 6, 2
CD 4, 5 3, 3 5, 3 4, 1
DC 4, 7 3, 5 5, 5 4, 3
DD 2, 6 2, 2 3, 4 2, 2

In Figure 1.4 we present some folk strategies in repeated interactions.
Here Always defect and Always cooperate ignore observations from previous
rounds. However Tit-for-Tat always adjusts to the observations, when the
other side defects (·, D) it also defects and when the other side cooperates
(·, C) it also continues or changes to cooperation.

Table 1.4: Strategies in a repeated game

Tit-for-Tat Always defect Always cooperate

// C

(·,C)

�� (·,D)
))
D

(·,D)

��

(·,C)

ii D

(·,·)

��
C

(·,·)

��

If we put these strategies to a similar matrix game, we would obtain the
payoff structure as in Table 1.5. There are two equilibrium strategies here
s1 = (Always defect, Always defect) and s2 = (Tit-for-Tat, Tit-for-Tat).
So we see that once there is some adaptivity and retaliation to defection,
cooperation is suddenly a feasible strategy as opposed to a myopic, one-
shot, behaviour.

Table 1.5: Mean payoffs in an infinite game

Alice
Always

cooperate
Always
defect

Tit-for-Tat

Bob
Always cooperate 4, 4 6, 0 4, 4

Always defect 0, 6 2, 2 2, 2
Tit-for-Tat 4, 4 2, 2 4, 4

Also the potential strategy-space in these games is very large and the
best responses depend on the strategies in the population. Here computa-
tional experiments are the main tools applied. One potential implementa-
tion is by Wilensky (2002) in NetLogo (Wilensky, 1999). Table 1.6 shows

22

mean payoffs in three possible populations using Wilensky (2002) for about
200,000 iterations. In the experiment each agent remembers other agents’
previous actions and acts according to its strategy.

Table 1.6: Mean payoffs (ū) in repeated Prisoner’s dilemma

Strategies ū Strategies ū Strategies ū
Tit-for-Tat 1.95 Tit-for-Tat 2.31 Tit-for-Tat 2.29
Always D 1.00 Always D 2.39 Always D 2.54

Always C 1.96 Always C 1.85
Random 2.25

In a population with no cooperators, Tit-for-Tat is better than always
defecting as they have higher payoffs when playing against agents with the
same strategy. However when cooperators are introduced defector can take
advantage of them and gain higher payoffs. Even random agents do better
than cooperators, in fact they do almost as good as Tit-for-Tat, although it
is also dependent on the population. In longer and more complex repeated
games it might be hard to figure out a best response as the strategy might be
very complicated. For example to find a good strategy automata has been
subject for research for quite a while (Axelrod, 1980; Nowak and Sigmund,
1993; Sigmund, 2010), and still is (Blake et al., 2015).

1.2 Auctions

In most well known auctions types there is one good for sale by one seller
and there are multiple potential buyers for the good. Each buyer has some
value vi for the item. The question is how to design a system (auction)
that have some good performance guarantees. We’ll look at two types of
performance measures: maximising social welfare and maximising expected
revenue of the seller.

We usually concentrate on looking at sealed-bid auctions. In a sealed-
bid auction buyers submit their bid to an auctioneer so that other buyers
will not see it. Then the auctioneer makes the decision to whom to allocate
the good and their payment. In most cases the good is allocated to the
highest bidder and the payment amount will depend on the chosen auction
format.

There is also another type of auctions, called open-cry auction. This
is a more traditional format, where each bidder publicly announces his bid
and the highest bidder wins. The price paid is usually the announced bid.

23

We continue by analysing the sealed-bid auctions. In some sense these
auctions can be thought of as an equivalent to some open-cry auctions,
although not in all aspects, like for example information about others val-
uations.

1.2.1 The first price auction

First price auction is probably the most well-known choice for auctioning.
In the first price auction the good is allocated to the highest bidder and
the bidder pays the amount he bid. The obvious question for the bidder is:
What to bid?

Let us look at a situation where the bidders know the distribution of
valuations of other bidders, but not the actual values. Assume it has a
uniform distribution and is between [0, 1]. Let bi denote the bid of agent
i and as before vi his true valuation. However a bidder i knows his own
valuation vi. If the bidder wins, his utility from the payoff will be ui = vi−bi
and in the case of losing ui = 0. This is known as the quasi-linear utility
setting. That is agents only care about their own value and payment and it
does not depend on the total amount of money he has (Leyton-Brown and
Shoham, 2009, p. 268). Additionally, in uncertain settings, we assume the
agents want to maximise his expected utility, i.e. they are risk-neutral.

An aspect we will not look at too closely is agent’s risk attitude. In
a first price auction it matters what is the agent’s risk attitude to what
he would bid, here we assume that all the bidders are risk-neutral. See
Klemperer (2004a) for more references on risk-aversion.

If there are only two risk-neutral bidders with values drawn indepen-
dently and uniformly from [0, 1] then (1

2 · v1,
1
2 · v2) is a Bayes-Nash equi-

librium strategy (Leyton-Brown and Shoham, 2009, p. 336). Bayes-Nash
equilibrium is an equilibrium under uncertainty, we need to reason about
the valuation of the other agent. Here we assume the value of the other
bidder in drawn from an uniform distribution.

So far we looked at only two bidders. What happens when there are
more? It would involve a lot of integrals. In general with n bidders the equi-
librium strategy profile is (n−1

n v1, ...,
n−1
n vn) (Leyton-Brown and Shoham,

2009, p. 337). Although we can observe that the strategy even for two
bidders it is not dominant strategy to bid truthfully. Also the expected
revenue from the auction is n−1

n · vmax, where vmax = max{v1, ..., vn}.
Additionally, the winner of the auction paid the highest possible price

for the item. Meaning there is nobody who would be willing to pay the
same price. The bidder might have incorrectly valued the item and is now
stuck with it, because nobody is willing to pay the same price. This is
known as “winner’s curse”. So bidders might not have incentive to bid
their true value.

24

1.2.2 The second-price auction

However there is a better way to run the auction, by using a second-price
auction. In the sealed-bid second price auction the winner is still determined
by the highest bidder, but the price for the good will be the price of the
second highest bidder. Here the weakly dominant strategy is bid your true
value (Leyton-Brown and Shoham, 2009, p. 334). Intuitively, when a bidder
value is the greatest, he will gain positive utility by bidding his true value
although is does not matter how much above the second place value he will
bid. Although when he bids lower his utility will be zero.

Both of these auction mechanisms guarantee that the item is allocated
to the highest bidder. Although with the first price auction it is only in
expectation, it does no necessarily happen in every instance. By allocating
the item to the highest bidder we make sure that we maximise the total
utility in the allocation – social welfare.

Since there exists a dominant strategy, agents do not need to reason
how other agents bid. This is beneficial for bidders, but also for the seller.
As revenue from Bayes-Nash equilibrium in first price auction is highly
dependent on agents’ behaviour, the second price auction is much less so.

If bidder valuations are drawn from an uniform distribution [0, 1] and a
winning bid is vmax there are n−1 other valuations drawn from an uniform
distribution [0, vmax]. To find the second-highest bid, we need the 1st order
statistic of the uniform distribution [0, vmax]. The kth order statistic is
n+1−k
n+k vmax, which is the expected kth largest value of the uniform distribu-

tion. So the 1st order statistic of n−1 bidders is (n−1)+1−1
(n−1)+1 vmax = n−1

n vmax.
This is the same as in first-price auction. As is turns out these auctions are
expected revenue equivalent.

Theorem 1. Assume that each of n risk-neutral agents has an independent
private valuation for a single good at auction, drawn from a common cu-
mulative distribution F (v) that is strictly increasing and atomless on [v, v̄].
Then any efficient auction mechanism in which any agent with valuation v
has an expected utility of zero yields the same expected revenue, and hence
results in any bidder with valuation vi making the same expected payment
(Leyton-Brown and Shoham, 2009, p. 323).

1.2.3 The VCG mechanism

The second price auction can be further generalised to multiple items and
multiple bidders. The described second-price auctions is also known as
Vickery auction, due to its author Vickrey (1961). But this auction applies
only to individual items, what if we have a more general setting of multiple
items? Or even more generally what might be the goals of a social planner

25

for selecting and designing a mechanism? Usually three goals are the most
prominent (e.g. Narahari et al., 2009, p. 7; Leyton-Brown and Shoham,
2009, p. 273-274; Nisan, 2007, p. 225), although there could be others:

� a mechanism should be strategy-proof, it should always be in the
participant’s best interest to state their true valuations

� a mechanism should be efficient, the items should be allocated so that
they would create the largest value in a society

� it should be feasible, in polynomial number of steps, to compute the
solution of the mechanism

All of these properties were satisfied in the second-price auction. We
saw it is easy to report ones true valuation; the items were allocated to
the highest bidder, thus maximising efficient; last, it was easy to find the
solution, it would require n steps, for n bidders.

To generalise the second-price auction, there is a class of mechanisms
known as the Groves mechanisms (Leyton-Brown and Shoham, 2009, p.
273-274). It has two components, the allocation rule:

χ(v̂) = arg max
x

∑

i

v̂i(x)

and the payment rule of the form

℘i(v̂) = hi(v̂−i)−
∑

j 6=i
v̂j(χ(v̂))

First we see that the mechanism would always allocated to goods to
highest bidders, as this would maximise the χ(v̂). It is important the
payments does not depend on i-s valuation and the two components of
℘i(v̂) do not. If that is satisfied the payment rule guaranteed to be strategy-
proof. There is also the freedom for the mechanism designer to choose hi.
Additionally, it turns out, a mechanism is strategy-proof only if it is a
Groves mechanism. See Theorem 10.4.3 (Green-Laffont) in (Leyton-
Brown and Shoham, 2009, p. 278).

The next obvious question is how to select hi. There we have Clarke
pivot rule (Leyton-Brown and Shoham, 2009, p. 280):

hi(v̂−i) =
∑

j 6=i
v̂j(χ(v̂−i))

This calculates the value of the allocation without the agent i. The χ is
still the welfare maximising allocation function. As promised this function
hi does not depend on the valuation of agent i. The resulting mechanism
would be:

26

χ(v̂) = arg max
x

∑

i

v̂i(x)

℘i(v̂) =
∑

j 6=i
v̂j(χ(v̂−i))−

∑

j 6=i
v̂j(χ(v̂)) (1.1)

What is so special about the Clarke pivot (or payment) rule? First it
guarantees that the payment χi(v̂) is always positive when all valuations
are nonnegative (e.g. Roughgarden et al., 2007, p. 219). It is individually
rational, meaning it does not create negative utility to be participating in
the mechanism. For example an option would be to set hi = ∞ or some
other large number, but this would always create a huge payment for the
participants and they would have negative utility and would not like to
participate in the mechanism. And we would still like to make sure it is
positive, so the seller can collect some revenue for the goods sold.

Although the VCG mechanism (1.1) satisfies the three properties above,
the computational complexity being satisfied when finding an efficient al-
location is doable in polynomial time, there still are some good properties
it does not satisfy. For one the revenue for the auctioneer might be very
low, compared to the winning valuation. There are many others reviewed
in (Leyton-Brown and Shoham, 2009, p. 280-288).

1.2.4 Optimal auctions

So far we have concerned ourselves with maximising the utility of the society
– social welfare. In many situations the auctioneer is instead interested in
maximising its own revenue. This arises in many situations, for example
Ad-Auctions (e.g. Edelman et al., 2007; Nisan et al., 2009) and selling goods
on auction sites (eBay, 2016).

We compared the first- and second-price auctions and found find them
to be equivalent in terms of expected revenue. If the second bidder’s value
is low and the first bidders high, then the auctioneer would gain only low
revenue from the auction. Furthermore the revenue can be arbitrarily low
even in the VCG and other mechanisms with the same allocation rule. For
example consider a situation with three bidders on two items (Ausubel and
Milgrom, 2010). Bidder one is only interested in both of the items with a
total value of 2 millione, whereas bidders 2 and 3 are both interested in
just one item are willing to pay 2 millione for an individual item. The
VCG would allocate the items to bidders 2 and 3. The payment in this
situation would be zero for both bidders, due to the nature of the payment
rule.

27

In a situation where the seller does not care about economic efficiency,
but is just interested in maximising its revenue, revenue-maximising (or
optimal) auctions are used (Leyton-Brown and Shoham, 2009, p. 329). The
differentiating aspect is that the auctioneer would set a reserve price, below
which the item would no be sold. This ensures, for example, if in the second-
price auction the second bid is low and first high, the auctioneer would still
extract at least his reserve price. Although is might happen that the reserve
price is above the highest bid, in which case the item is not sold. This is
the risk the seller would have to take in order to maximise the expected
revenue.

Define for each bidder i a virtual valuation (1.2) (Myerson, 1981; Leyton-
Brown and Shoham, 2009, p. 329).

ψi(vi) = vi −
1− Fi(vi)
fi(vi)

(1.2)

To determine the virtual valuation we would need to know the distri-
bution fi(vi), from which the value is drawn and the distribution is such
that ψi is increasing in vi. Once the virtual valuations are known for each
bidder, we use those to find the welfare maximising solution and compute
the payments according to virtual valuations. When all the virtual valu-
ations are all negative the item is not allocated. However the mechanism
still remains strategy-proof.

So the point r∗i where ψi(r
∗
i) = 0 is when virtual value becomes positive

and the item is allocated, this can be considered as a reserve price below
which the item is not sold. When the distribution for all bidders is the
same, this is simply the point r∗ when r∗ − 1−F (r∗)

f(r∗) = 0.

●
●
●
●●●●●

●●●●●●●
●
●
●
●●●

●●
●●●●●

●
●
●●

●●
●
●●●●●●●

●
●●●●●●●●●●●●

●
●●

●●●●●
●●●

●
●●●

●●●●

●●
●●

●
●
●
●●

●●
●●

●
●
●●

●
●
●
●
●
●●

●●
●0.0

0.2

0.4

0.6

0 0.25 0.5 0.75 1

Reserve price

E
xp

ec
te

d
re

ve
nu

e #bidders
●●●●● 2

3

4

5

6

Figure 1.1: Revenue with uniform valuations

28

For illustration let’s look at a small scale computational experiment
with reserve prices in range r∗ ∈ [0, 1] and randomly drawn values for
all the bidders from U(0, 1). The optimal reserve price r∗ in this case is
r∗ − 1−r∗

1 = 0 =⇒ r∗ = 0.5. In Figure 1.1 we see the optimal reserve
price with between 2, ..., 10 bidders. We see that having slightly greater
reserve price is slightly better than having a reserve price of zero. Also
we can observe that overshooting, setting a too high reserve, can also be
detrimental to revenue, much more so than not setting a reserve price at
all.

Of course the assumption of uniform valuations might not hold and
we would require more information to select revenue-maximising reserves,
which is hard if the auction has not been run before. Although this has
been successfully used in large scale ad-auctions (Ostrovsky and Schwarz,
2011) to increase revenue.

Additionally we see from Figure 1.1 that having more bidders increases
revenue and even more than the reserve price. It has been shown that
adding one more bidder to an auction is better than an optimal reserve in
a single item auction (Klemperer and Bulow, 1996).

Theorem 2. The expected revenue from an auction with n+ 1 bidders and
no reserve is at least as high as the revenue from the corresponding auction
with n bidders using the optimal reserve price (Milgrom, 2004, p. 148).

1.3 Fair division

A slightly different resource allocation problem is fair division. Here there
is no seller, who is interested in revenue maximisation. Rather there is a
pool of items that need to be allocated between agents, like for example
inheritance, divorce settlement, a lot of land etc. A fair division problem
has a set of agents and an item or a set of items to be shared. The problem
comes in many flavours, it could be:

� one continuous divisible good to be divided – cake-cutting Robertson
and Webb (1998); Brams and Taylor (1996)

� several divisible goods – fair division with divisible good Brams and
Taylor (1996)

� several indivisible goods – fair division with indivisible goods Brams
and Taylor (1996)

The problem of fair division has been present for a long time (e.g. Brams
and Taylor, 1999), but is often cited to be first formalised as a mathemat-
ical problem by Steinhaus (1948). Initially the main goal was to find an
allocation that would guarantee a proportionally 1/n fair share to all agents.

29

Over time other criteria have been introduced, like envy-freeness, utilitar-
ian, egalitarian solutions, Pareto optimality and Nash’s Bargaining Solution
(e.g. Chevaleyre et al., 2006; Veski, 2012). More recently with the advent of
algorithmic game theory (Roughgarden et al., 2007) the equilibria and in-
centive properties of different allocation procedures have been studied (Han
et al., 2011a; Van Essen, 2013; Brânzei et al., 2016; Aziz et al., 2015), but
also computational complexity (Van Essen, 2013; Nguyen et al., 2013).

More formally we have a set of n agents A = {a1..., an} and a set m
goods or resources R = {r1, ..., rm}. The goods, as mentioned, can be of
different type: heterogeneous divisible, indivisible and a single continuous
divisible good. Each agent ai has some utility ui for resources that is a
mapping ui : R → [0, 1]. It is usually assumed that

∑
rj∈R ui(rj) = 1. So

the main difference with auctions is how the valuations are treated. While
in auctions agents can have various levels of valuations, but eligibility for
bidding might also be determined by their wealth, in fair division all agents
are treated by ignoring their wealth or access to credit.

We now review some fundamental properties and solution concepts of
fair division allocation procedures.

Definition 9. Proportionality is satisfied if ui(X) ≥ 1/n for every agent
ai ∈ A

Definition 10. Utilitarian allocation is X if for any other allocation Y∑
ai∈A ui(X) ≥∑ai∈A ui(Y). Utility of an allocation is

∑
ai∈A ui(X).

This is usually the preferred solution as it produces the highest overall
welfare, similar to social welfare (efficiency) in auctions. However this might
not always be desired, as some agent might have an unduly low access to a
resource. Considering the properties above, utilitarian solution might not
necessarily be proportional, although it is always Pareto optimal. Thus we
introduce additional concepts that aim for a fairer allocation.

Definition 11. Egalitarian allocation ensures that ui(X) = uj(X) for any
pair of agents i, j with i 6= j

Definition 12. Envy-free allocation ensures that ui(X(ai)) ≥ ui(X(aj))
for any pair of agents i, j with i 6= j

Definition 13. Nash’s Bargaining Solution is a solution where the product
of individual utilities is at its maximum, i.e. X is NBS if for any other
allocation Y we always have

∏
ai∈A ui(X) ≥∏ai∈A ui(Y)

In bargaining literature the latter is a predicted outcome of a bargaining
game similar to the fair division problem. However, agents have to nego-
tiate an allocation rather than having some procedure hand it to them.

30

Assuming that the agents have enough time and will to negotiate they will
eventually reach the Nash’s Bargaining Solution (Binmore, 2005; Osborne
and Rubinstein, 2011).

1.3.1 Single divisible item

The simplest example of fair division is cake cutting between two agents –
Alice and Bob. Suppose we have a cake with two flavourings (e.g. vanilla
and chocolate). Alice has higher preference for vanilla and Bob for choco-
late. How should the cake bee divided? The cut-and-choose procedure is
simple (e.g. Robertson and Webb, 1998):

� Randomly select an agent as a Cutter

� Cutter splits the cake in two

� Chooser select one of the pieces

� Cutter receives the remaining piece

In a situation where Alice prefers only vanilla and does not know any-
thing about Bob’s valuations, the best action for her would be to cut the
vanilla part in half. This ensures that Alice will receive at least half of her
value. However if Alice knows Bob’s valuation they can do at least as good
or better. When Bob prefers also only vanilla the result would be the same.
When Bob is indifferent or prefers only chocolate, Alice would do better by
exactly along the chocolate vanilla line. Bob will pick the chocolate half
and the remaining vanilla will remain with Alice. This always assumes that
agents are utility maximising.

The cut-and-choose procedure guarantees that each agent will receive
at least 1/2 of the total cake. Denote vanilla part of the cake with V and
chocolate with C. When Alice values only vanilla, her utilities would be
ua(V) = 1 and ua(C) = 0. If she cut the cake in half with ua(V1) =
ua(V2) = 0.5, she guarantees herself at least half of her valuation. However,
when she knows Bob’s valuation, Alice would cut along the vanilla-chocolate
line. Alice would get ua(V) = 1 and Bob would pick ub(C) = 1, thus
achieving greater total social welfare of ua + ub = 2.

The 2-agent cut-and-choose could be generalised in many ways (see e.g.
Brams and Taylor, 1996; Robertson and Webb, 1998). We will present
one simpler, cut-your-own algorithm from (Steinhaus, 1969; Robertson and
Webb, 1998).

This example of 3-agents can be easily extended to n-agents. Each agent
divides the cake, or property, to 3 (or some n pieces) such that each piece
j is worth at least ui(rj) ≥ 1/3. Iteratively allocate to each agent a non-
overlapping piece, there is always a way to do this. This already guarantees

31

1/3 to everyone. Although this procedure might not allocate all the cake
and there usually is something left. This surplus could be allocated in a
similar way, or sold for additional profit.

0.00 0.25 0.50 0.75 1.00

Players

Player 1

Player 2

Player 3

Figure 1.2: 3-agent example cuts

If we assume that each agent has drawn the lines with his proportional
shares, we would obtain the cuts as overlaid in Figure 1.2. We can guarantee
each agent a proportional share if we do the allocation as indicated by the
colors. There is always a part remaining, unless all the lines overlapped.
An extensions might be as in Figure 1.3. This would guarantee each agent
more than a proportional share, although is might not necessarily be utility
maximising, equitable or envy-free.

0.00 0.25 0.50 0.75 1.00

Players

Player 1

Player 2

Player 3

Figure 1.3: Extended division

In general finding an envy-free is harder than proportional. The above
procedure can always find a proportional allocation for any number of
agents, but envy-free procedures are only known up-to four agents (Rothe,
2016, e.g.). And if we are interested in finding a single connected piece for
all agents, then it is impossible in general (Stromquist, 2008).

Regarding computational complexity, the above procedures require n(n−
1)-bits of information on cuts and only one-bit in case of two agents for pro-
portional allocation. In general we could do better, 1+nk−sk = O(n log n)
(k = blog2 nc) cuts, which is the best known bound (Robertson and Webb,
1998, p. 94). The lower bound for envy-free protocols is O(n2) (Procaccia,
2009).

1.3.2 Multiple divisible items

These solution concepts are not necessarily aligned even if we had multiple
cakes, e.g. by finding at utilitarian solution it might give unequal shares to
agents. Binmore (2005) presents some simple examples. Caragiannis et al.
(2012) has studied these trade-off in a more general setting, with a larger

32

Table 1.7: Price of X on utility for divisible goods

Price of Lower bound Upper bound

Proportionality Ω(
√
n) O(

√
n)

Envy-Freeness Ω(
√
n) n− 1/2

Equitability (n+1)2
4n n

Table 1.8: Adjusted Winner example (Brams and Taylor, 1996)

vi(·) m1 m2 m3

Agent 1 .06 .67 .27
Agent 2 .05 .34 .61

number of agents. In Table 1.7 (from Caragiannis et al., 2012; Veski, 2012),
we present a few bounds on total social welfare in the allocation regarding
other solution concepts. The Table 1.7 shows the ratio of utilities in the
best overall utilitarian solution and best utilitarian solution under some
restriction: proportionality, envy-freeness or equitability.

Brams and Taylor (1996) proposed a simple method for sharing a po-
tentially divisible items among multiple agents. The procedure is called
Adjusted Winner and works as follows:

1. There is a set K of k goods to be divided and two agents

2. Collect valuations vi(k) from each agent i, such that
∑k

j=1 vi(mj) = 1

3. In an initial allocation X, assign each good to the agent who values
it most

4. if v1(v) > v2(X), for some two agents, adjust allocation X, by trans-

ferring items mj ∈ X(1) in order v1(m1)
v2(m1) ≤

v1(m2)
v2(m2) ≤ ... ≤ v1(mk)

v2(mk) until

v1(X) ≤ v2(X)

5. if v1(X) < v2(X), then select the last good transferred ml and find α
such that v1(X \ml) + α · v1(ml) = v2(X \ml) + (1− α) · v2(ml)

For example, assume we have valuations as in Table 1.8. An initial
allocation of goods would be X = {1 : {m1,m2}, 2 : {m3}}, which would
make v1(X) = 0.73 and v1(X) = 0.61. Clearly v1(X) < v2(X). The order

of items to transfer would be m1 � m2, as v1(m1)
v2(m1) = 0.06

0.05 ≤
v1(m2)
v2(m2) = 0.67

0.34 .

After transferring m1 we would have v1(X) = 0.66 < v2(X) = 0.67. So we
will have to split up m2 by solving (1.3). This will result in α = 0.0099

0.66 + α · 0.34 = 0.0 + (1− α) · 0.67 (1.3)

33

Table 1.9: Correlations

Efficiency Envy Inequality Nash

Efficiency 1
Envy -0.21 1

Inequality 0.18 0.80 1
Nash 0.65 -0.76 -0.59 1

Notice that both agents have an incentive to misrepresent their valua-
tions. For example if Agent 1 would state v1(m2) = 0.4, then the Adjusted
Winner would result in allocation X = {1 : {m1,m2, α·m3}, 2 : (1−α)·m3}.
Clearly Agent 1 gains for misreporting. In Nash equilibrium we assume all
agents do their optimal misrepresentation and know all valuations. The
resulting loss in efficiency is known as Price of Anarchy.

Definition 14. Price of Anarchy is the rate between the optimal OPT
solution and the equilibrium EQ solution, PoA = OPT

EQ

It turns out the worst-case the PoA under some conditions in Adjusted
Winner procedure is 4/3 (Aziz et al., 2015). However, when agents are truth-
ful, Adjusted Winner guarantees that the allocation is envy-free, equitable
and Pareto optimal.

Additionally we see that the Adjusted-Winner procedure sacrifices some
utility for a more egalitarian solution. The social welfare maximising so-
lution would create the value of 134, however the Adjusted-Winner results
in 132.67, which is lower. In Table 1.7 we saw what the costs of different
properties are. Though the relevant solution concept for economist (e.g
Binmore, 2005; Osborne and Rubinstein, 2011) is the Nash Bargaining So-
lution, mainly because it is produced by free bargaining and satisfies some
reasonable axioms. Indeed it also appears that the Nash’s solution also has
some reasonable trade-off between efficiency, inequality and envy and has
the desired correlation direction with these concepts (Veski and Võhandu,
2010, 2011). In Table 1.9 we show the correlations among the criteria in
some situations. We see that the Nash’s Bargaining solution has positive
correlation with efficiency and negative with envy and inequality. That
Nash’s Bargaining solution tends to be fair is also recently explored by
Caragiannis et al. (2016).

34

Table 1.10: Price of X on total utility for indivisible goods

Price of Lower bound Upper bound

Proportionality n− 1 + 1/n n− 1 + 1/n

Envy-Freeness 3n+7
9 −O(1/n) n− 1/2

Equitability ∞ ∞

1.3.3 Multiple indivisible items

While sometimes the good are divisible like cake or land, however in some
situations the value of a good is destroyed when split-up. This procedure
requires side payments to make the allocation equitable or envy-free. One
of such procedures is the Knaster’s procedure of sealed bids (Steinhaus,
1948; Brams and Taylor, 1996). The procedure works as follows:

1. In an initial allocation X allocate items to highest bidders

2. Compute side payments Y , such that

vi(X)− vi(K)

n
+ vi(Y) = vj(X)− vj(K)

n
+ vj(Y)

for any i, j

The main feature of the procedure is that the allocation can be con-
sidered equitable. Each agent receives the same amount of money in their
valuation over what was their fair share. However, the total proportional
share is not equal, as all agents value the entire bundle differently the mon-
etary compensation is also different ratio from the total. In general it is not
envy-free either. Haake et al. (2002) describes a compensation method that
would be envy-free for any number of agents. Also, it can be easily seen
that agents have incentive to misreport their valuations, so the allocation
is not strategy-proof (Lyon, 1986). For example if an agent would under-
report their value, but would still be highest bidder, they would increase
their compensation vi(Y) amount and consequently their utility.

In Table 1.10 we see the trade-offs in solution concepts in case of in-
divisible items, similarly to the trade-offs in sharing divisible (Caragiannis
et al., 2012; Veski, 2012). The mains observation is that the bounds are
more severe in the indivisible case. We lose more utility, if we need e.g.
envy-freeness and can be infinite if equitable solution is desired.

1.4 Matching markets

A matching market consists of one or two sets of agents and/or items.
At least one set has some preference relationship over the other set. For
example considering one-sided market, with agents and items, only agents

35

have preferences over items. This is similar to the fair division model, except
that agents to not have a cardinal value for items, but rather a preference
ordering. Items higher in the order are more preferred and agents seek to
gain items high on their list and they are strategic about maximising their
utility.

We concentrate on two-sided matching, that is there is an ordering
on both sides. Agents would have preferences over agents on the other
side. This model arises in many situations, for example matching jobs to
employees. Previously, we had valuations only on one, the agent’s side.
Also, when the other side is of items not of agents we talk about priorities
that items have over to which agent it should be allocated to. In case
of priorities we assume are non-manipulable, whereas preferences could be
misreported for utility maximisation.

Table 1.11: Agents’ preferences

Side A preferences Side B preferences
a1 : b2 � b1 � b3 b1 : a1 � a2 � a3

a2 : b1 � b2 b2 : a3 � a1 � a2

a3 : b1 � b2 � b3 b3 : a1 � a3

In Table 1.11 we have an example of preferences on two-sides of the
market. We could think of side A and B respectively as men or women,
or jobs and employees depending on the situation. Ultimately we need to
find a matching between A and B. If we are interested in maximising social
welfare, we might well consider results from graph theory and find the max-
imum matching, using for example the Hungarian method O(n2m) (Kuhn,
1955), (e.g Lovasz and Plummer, 2009; Schrijver, 2003), which works with
weighted and unweighed graphs, or more efficient Hopcroft-Karp algorithm
O(n

1
2m)) (Hopcroft and Karp, 1971, 1973) and (e.g. Lovasz and Plummer,

2009; Schrijver, 2003). Here n and m are respectively vertices and edges in
a graph and an undirected graph can have at most n2 unique edges.

However, the maximum matching might not be rational for all parties
to be part of. It might be better for two agents, e.g. man and a woman, to
form a match outside the matching procedure, as they would both result in
a more preferred match. In case of preferences as in Table 1.11. The size
of a maximum matching is 3 and in any maximum matching a2 would have
to be matched to either b1 or b2. There are four possible matches of size 3
and in each matching there is a pair of agents who would prefer to match
outside of the algorithm (Table 1.12).

36

Table 1.12: Maximum, but unstable matchings

Matching Outside Matching Outside

a1 − b1 a1 − b3 a1 − b2
a2 − b2 a2 − b2 a2 − b1
a3 − b3 a3 − b2 a3 − b1

Matching Outside Matching Outside

a1 − b2 a1 − b3 a1 − b1
a2 − b1 a2 − b1
a3 − b3 a3 − b2 a3 − b2

For example in the first matching (upper left corner) agent pair a3− b2
would rather be matched to each other than their current match. The agent
a3 prefers b2 to b3 and b2 prefers a3 to a2 (Table 1.11). So we see that in
all the maximum matchings there is no such matching that would not have
this type of blocking pair. So we need to approach more carefully to find a
matching.

Furthermore if the matching procedure depends on agents’ preferences
they might be strategic about how they present their preferences. There are
only two known mechanisms (algorithms) that are strategy-proof for at least
for one side of the market – the Deferred-Acceptance and the Top Trading
Cycles (Abdulkadiroğlu and Sönmez, 2003, e.g.). Deferred-Acceptance is
also known as Gale-Shapley algorithm (Gale and Shapley, 1962) for sta-
ble marriages. In a stable matching there are no blocking pairs as in the
maximum matching example. Moving forward we concentrate on stable
matchings and the Deferred-Acceptance algorithm and its properties.

More formally we employ a model similar to that used in modelling
centralised two-sided matching markets (e.g. Roth, 2008). There is a set
A = {a1, ..., anA} of agents on one side and a set B = {b1, ..., bnB} of agents
on the other side. The number of agents on both sides can differ (nA 6= nB)
depending on market thickness. Each agent ai fromA has a strict preference
relation �ai over agents in B, and similarly for bj ∈ B there is a preference
relation �bj over agents in A. A matching µ is a mapping from A ∪ B to
itself, so that for every ai ∈ A, is matched to µ(ai) ∈ B∪{ai}, and similarly
for bj ∈ B, µ(bj) ∈ A∪{bj}. When an agent is matched to itself, µ(ai) = ai
or µ(bj) = bj respectively indicates that they are in fact unmatched. Being
matched to itself is the least preferred option for all the agents. In addition,
for every ai, bj ∈ A ∪ B, µ(ai) = bj implies µ(bj) = ai.

37

Definition 15. A matching is unstable if there are at least two agents
ai and bj from opposite sides of the market such that bj �ai µ(ai) and
ai �bj µ(bj) – a blocking pair. A matching is stable, if it is not unstable.

A stable matching with preferences as in Table 1.11 would be: µ =
{a1 − b1, a3 − b2}, which is not maximum possible matching, as this was
impossible. Making the resulting matching stable does not yield a pair of
agents who would find a better matching outside the procedure, because
by definition that opportunity does not exist. Still the question if it is
beneficial for all agents to state their true preferences is open. For this we
first need to define an optimality of a matching.

Definition 16. A stable matching µ is optimal for agents in A if there
is no stable matching υ for which υ(ai) �ai µ(ai) or υ(ai) = µ(ai) for all
ai ∈ A and υ(aj) �aj µ(aj) for at least one aj ∈ A

Then it turns out that if the matching is stable and optimal for agents
in A then it is strategy-proof for those agents.

Theorem 3. In the matching procedure which always yields the optimal
stable outcome for a given one of the two sets of agents (i.e., for A or for
B), truthful revelation is a dominant strategy for all the agents in that set
(Roth, 1982)

Table 1.13: Preferences with multiple stable matchings

Side a preferences Side b preferences
a1 : b1 � b2 b1 : a2 � a1

a2 : b2 � b1 b2 : a1 � a2

In general the set of stable matchings can be greater than one (Knuth,
1997b) and not all are optimal matchings for all the agents in A or B. For
example with preferences in Table 1.13 we can obtain two stable matchings:
µ1 = {a1 − b1, a2 − b2} and µ2 = {a1 − b2, a2 − b1}. In either case there are
no blocking pairs and in one case agents in A obtain their first preferences
and in the second agents in B obtain their first preferences. This turns out
to be a general property of stable matchings (Knuth, 1997b).

Theorem 4. No stable matching procedure for the general matching prob-
lem exists for which truthful revelation of preferences is a dominant strategy
for all agents. (Roth, 1982)

Also it turns out that the number of agents is the same in any stable
matching, even more, in some conditions the same set of agents get matched.

38

Theorem 5. When all preferences over individuals are strict, and hospitals
have responsive preferences, the set of students employed and positions filled
is the same at every stable matching. Furthermore, any hospital that has
some empty positions at some stable matching is assigned precisely the same
set of students at every stable matching (e.g. Roth, 2008; Manlove, 2013,
“Rural Hospitals” Theorem)

In cases, where the preferences are complete, as in Table 1.13, all agents
are can matched in a stable matching. However, when preferences are in-
complete, as in Table 1.11, the size of the maximum and stable matchings
may be different. If we are allowed to have blocking pairs, the objective
could be to find a maximum matching with a minimum number of block-
ing pairs, number of agents with blocking pairs (Eriksson and Häggström,
2007) or even number of instances of envied agents in blocking pairs (Ab-
dulkadiroglu et al., 2017).

In general it turns out it is hard to find among maximum matchings,
and matching with the minimum number of blocking pairs or agents.

Theorem 6. Finding a matching with minimum number of blocking pairs
or agents among maximum matchings is not approximable within n1−ε,
where n is the number of agents in a given instance, for any ε > 0, unless
P = NP . (Biró et al., 2010b)

Additional results showed that this hold when the length of the prefer-
ence lists is limited to 3 (Hamada et al., 2009). However, when on at least
one side preferences are limited to 2, finding a matching with minimum
number of blocking pairs or agents is solvable in O(n3) (Biró et al., 2010b).

1.4.1 Two-sided matching - stable marriage

The stable marriage problem (Knuth, 1997b) is the simplest of the two-
sided matching problems. There are two sets of agents A and B or men and
women. Each agents can be matched to at most one agent from the other
set. In the simplest case all men and women have full list of preferences over
respectively women and men. This ensures that all agents can be matched.
Although this model can be easily generalised to a stable marriage with
incomplete lists (Manlove, 2013, p. 22) by assuming that some agents can
be left unmatched. The definition of stability remains the same if we assume
that the last option on each agent’s preference list is to be matched to itself.

To find a man (or woman) optimal stable matching we can use the
Deferred-Acceptance algorithms as proposed by Gale and Shapley (1962):

39

1. Each man proposes to his most preferred woman. Each woman who
received more than one proposal rejects all, but her most favourite
amount those who have proposed to her. However, she does not accept
him yet, but keeps on a string to allow for the possibility of someone
better may come along later

2. In the second stage those men who were rejected now propose to
their second choices. Again each woman receiving proposals chooses
her favourite from the group consisting of the new proposers and the
man on her string, if any. She rejects all the rest and again keeps the
favourite in suspense.

3. We proceed in the same manner. Those rejected at the second stage
propose to their next choices, and the women again reject all but their
best proposal they have had so far.

...

The algorithm continues until all the men are matched or have reached
the end of their preference lists. Then the matching is declared final. The
algorithms runs in O(nm) time, where n is the number of applicants and
m the number of responders, or the average length of preference lists. Gale
and Shapley (1962) showed that

Theorem 7. Every applicant is at least as well off under the assignment
given by the Deferred-Acceptance procedure as he would be under any other
stable assignment

The stable marriage problem can also be extended to a college admis-
sion problem or hospitals/residents problem (Gale and Shapley, 1962; Roth
and Sotomayor, 1990; Manlove, 2013). On one side of the market we have
students or residents, who can be accepted to at most one college or hospi-
tal. On the other side we have colleges or hospitals who have some capacity
ci on how many applicants they can accept. Both students and colleges still
have preferences over each other.

The Deferred-Acceptance procedure would need to be slightly tweaked
to work in this more general setting. To find a student optimal matching,
student would still propose to colleges, but colleges only reject students
who are above their capacity cj and lower on their preference lists. Gale
and Shapley (1962) show that Theorem 7 holds here as well.

The Deferred-Acceptance procedure can be reversed to find a woman
optimal matching or a college optimal stable matching. It turns out that
this matching is the worst possible stable matching for men or students
respectively. Also depending on who is the proposer the matching procedure

40

is strategy-proof for the proposers. In equilibrium reporting in the Deferred-
Acceptance allocation is still stable with respect to true preferences (Roth,
1984; Sotomayor, 2012). However this might not be the case even when the
proposers are colleges, as in the college admission problem as colleges can
accept multiple students and is thus a more general problem (Roth, 1985).

The earliest use of the Deferred-Acceptance algorithms was in US Na-
tional Residency Matching Program that matched fresh doctors to their
first jobs in hospitals. Initially a hospital proposing algorithm was used that
created protest from applicants and was changed in 1998 (Roth, 1997) to
be applicant proposing Deferred-Acceptance. However Roth (1997) found
that this benefited a very small number of applicants, less than 1 in 1000.
So the the difference in being a proposer in negligible in real world mar-
kets. Further results (Kojima and Pathak, 2009; Immorlica and Mahdian,
2015) show that in large markets the number of stable partners is small
and hospital and student optimal stable matchings are very close.

Although the options for manipulations might be small agents are still
motivated to find them if they exist. Teo et al. (2001) shows that if one
agent from the accepting, B-side, would know all the preferences of others
participants, it can effectively use the DA algorithm to find an optimal
truncation of preference list in O(n2) time. They also show that probability
of benefiting by cheating is small. In instances of size |A| = |B| = 8 on
average about 5% of agents in B benefit and in instances 100 and 500
agents on both sides on average about 10% of agents from B benefit.

Matsui (2011) presents algorithms in stable marriage matching for agents
in B jointly to manipulate a matching, by permuting their preference lists.
First he gave an O(n2) to check, given a matching µ′, if there is a joint strat-
egy for women that is an equilibrium and µ′ is the outcome of A-optimal
matching. Second also gave an O(n4) algorithm to check if a given joint
strategy is an equilibrium or not.

Sönmez (1997) and Sönmez (1999) further show that colleges and hos-
pitals can in general manipulate stable matchings by misreporting their
capacities and pre-arranging matches.

1.4.2 Two-sided matching - school choice

In many situations the preferences for one side of the market are based on
some objective non-manipulable criteria like an exam score, distance from
home etc. In this situation the allocation mechanism could be considered
strategy-proof overall. In the case when preferences are determined by ob-
jective criteria we call them priorities as they are not individual preferences
of schools, but rather given by a central planner and cannot be manip-

41

ulated. In turns out that this arises in many situations of school choice
(Abdulkadiroğlu and Sönmez, 2003; Pathak and Sönmez, 2013) and even
college admission (Aygün and Bo, 2013).

In designing mechanisms for school choice another type of question de-
velops – how to select the criteria and implement the priorities? In most
situations the goal of the central planner is to use fair criteria for allocating
available positions or affirmative action for more disadvantaged part of the
society (Aygün and Bo, 2013; Kominers and Sönmez, 2013; Alcalde and
Subiza, 2014). In some circumstances there is no objective criteria and a
random lottery is used to allocate students to positions and experiments
show (Abdulkadiroğlu et al., 2009) than one needs to be careful how the
lotteries are implemented.

A critical part in ensuring strategy-proofness is not to limit the prefer-
ences revealed to the mechanism (Abdulkadiroğlu et al., 2009). The limi-
tation is believed to help applicants state their preferences, as they do not
have to evaluate so many schools. Actually it turns out this introduces
another complexity to the problem, since participants also need to consider
what to report (Haeringer and Klijn, 2009).

Table 1.14: Agents’ preferences

Side A preferences Side B preferences
a1 : b2 � b1 � b3 b1 : a1 � a2 � a3

a2 : b1 � b2 � b3 b2 : a3 � a1 � a2

a3 : b1 � b2 � b3 b3 : a1 � a3 � b2

We have slightly augmented preferences in Table 1.14 from Table 1.11.
An A-optimal stable matching with original preferences would be: µ =
{a1 − b1, a2 − b3, a3 − b2}. Now if we limit the number of preferences to
two a2 would be unmatched, so it is better for him to report for example:
b2 � b3. Of course this would depend on others’ preferences, information
which might be hard to obtain, thus introduces uncertainty on the best
course of action.

The best course for a designer is usually not to limit preference sub-
mission. However, in school choice families do not usually have resources
to evaluate too many school. Some school district solve this problem by
providing limited menus to students (Shi, 2015) and in many cases the
preference lists are limited in practice (Pathak and Sönmez, 2013). Both
approaches are not without their problems and there is currently no ideal
solution.

42

1.4.3 Algorithms for on-line and decentralised matching

In some cases it might be hard to organise a centralised matching scheme.
Roth and Vate (1990) observe that some of these decentralised matching
markets are still in operation, thus might reach a stable outcome. They pro-
pose a procedure (RVV) by randomly satisfying blocking pairs and show
that this random sequence converges to a stable matching with the proba-
bility of 1. In case of equal number of agents with full preference list the
computational complexity of this algorithm is still polynomial – O(n4) (see
Manlove, 2013, p. 81-82). Another slightly different decentralised algo-
rithm (ROM) is presented by Ma (1996). Many results from RVV carry
over to ROM. In these decentralised mechanisms that agents arrive in se-
quence and are matched to already arrived agents. It turns out that it can
be beneficial for an agent to arrive later (Blum and Rothblum, 2002). This
is interesting when comparing to winning strategies in a continuous double
auction market in section 1.5.2.

However, these algorithms rely on agents fully knowing their preferences
and selecting the best possible blocking pair to satisfy in each step. In
chapter 2 we explore a randomised setting, where agents do not know their
preferences and cannot make proposals to their best blocking pair. Some of
the randomised setting have been previously explored by Ackermann et al.
(2008) and they give an exponential lower bound for the convergence time
to a stable matching.

More recently on-line matching problems and their application in e-
commerce have become more prominent. Mehta (2013a) survey matching
algorithms, which include vertex-weighted and other more complex val-
uation functions. Furthermore, they do not necessarily consider stable
matchings, rather they are interested in maximum matchings. As stable
matchings might be smaller, then for an e-commerce maximum matchings
can potentially produce more revenue. However, Mehta (2013a) does not
consider manipulations, which might reduce the overall revenue.

Gu et al. (2015) describe a framework for wireless resource allocation
using stable matching and also considers on-line (dynamic) versions. Other
application include taxi scheduling (Bai et al., 2014), allocating CPU re-
sources (Wang et al., 2015) and more. Khuller et al. (1994) considers stable
on-line matching and shows that randomised algorithms would results in
at least Ω(n2) blocking pairs. Lee (1999) experiment with windowing the
incoming requests, so they are not immediately matched, but wait until
window closes and potentially more agents or resources are available.

43

1.4.4 Other matching problems

There are many other matching settings, see books (Mehta, 2013b; Manlove,
2013) for a more extensive treatment. We will review two additional types
and highlight some of their applications.

The stable roommates problem is a non-bipartite generalisation of the
stable matching problem (Manlove, 2013). There is just one set of agents
and each agents has a preference list over other agents in the same set.
The goal is to find a pairing of agents that could for example share the
same room in a college campus. The notion of stability can be defined in
a similar manner as we did for two-sided markets. It turns out that stable
roommates problem might not admit a stable matching (e.g. Manlove, 2013,
p. 33), but if a stable matching exists we can find it in O(n2) time Irving
(1985).

The obvious a application of stable roommates problem is allocating
college students to share rooms on campus. Recently this has also been
studied involving kidney exchange markets. In this market a patient in
need of a kidney might have a donor, who is willing to donate, but is
incompatible. The kidney exchange market can help find for a swap an-
other patient, who also has an incompatible donor. Here preference lists
would constructed by compatibility between patients and donors. Allo-
cation schemes exist in many countries, for example UK (Manlove and
O’Malley, 2012), Netherlands Keizer et al. (2005) and US (Roth et al.,
2007; Beard et al., 2012; Dickerson et al., 2012). There is also a similar
organisation in Estonia (EKOTU, 2016), but how the actual matching is
organised in unclear. (Manlove, 2013, p. 37-38) highlights few other appli-
cations of the stable roommates problem.

Another more prominent matching problem is the house allocation prob-
lem (Manlove, 2013; Schummer and Vohra, 2007). There is a set of agents
and a set of houses. Each agents has a strict preference over houses and
each agents owns a unique house. A goal is to reallocate the houses in a bet-
ter way. Whereas in the two-sided market both sides had preferences, here
houses do not have preferences over agents. A Pareto optimal matching
of houses to agents is returned by the Top Trading Cycles (TTC) algo-
rithm. The TTC algorithm is also strategy-proof for all the agents (e.g.
Schummer and Vohra, 2007, p. 254). An important modification of the
TTC algorithm (Abdulkadiroğlu and Sönmez, 2003) allows us to use this
for school choice settings. The result of the TTC can be a better match for
the applicant, however the resulting allocation might not be stable, but is
still strategy-proof for the applicants. Potentially unstable allocation might
explain why it is not widely in use. Although this has also been studied for
kidney allocation (Roth et al., 2004).

44

In school choice setting we have preferences from one side and priorities
from the other, which are not directly influenced for the other side, but
are used for prioritising. The A-optimal stable matching from Table 1.14
is µ = {a1 − b1, a2 − b3, a3 − b2}. We see that agents a1 and a3 would be
both better off if they exchanged their matches, they would both obtain
their first preference instead of the second: µ = {a1 − b2, a2 − b3, a3 − b1}.
This of course assumes that we have priorities not preferences on side B.
But as a result the matching is no longer stable, as the pair a2 − b1 is a
blocking pair and agent a2 was not even involved in the exchange between
a1 and a3. So allowing these improving exchanges might create unstable
matchings.

1.5 Limits of the axiomatic approach

We saw that auctions were mostly analysed in a homogeneous setting. For
example analysing equilibrium strategies, agent were drawn from the same
distribution and acted as in equilibrium. However, when agents are het-
erogeneous in their behaviour and preferences, it is harder to analytically
understand potential outcomes. Often there are multiple equilibria and it
is hard to predict which will prevail and in a dynamic setting there might
be punctuated equilibria.

Computational agent-based models aim to make more general assump-
tions and study markets and economies in a less idealised situations. Having
heterogeneous and interacting agents whose behaviour is based on heuristics
rather than optimal rational choices. With the computational power these
models have the potential to make predictions more relevant for human
agent societies.

We survey two settings, combinatorial and double auctions, to show
how agent-based experiments can augment the axiomatic results.

1.5.1 Combinatorial auctions and limits of theory

Combinatorial auctions consider complementaries or substitutes in agents’
valuation. That is for some items S and T the value of obtaining these two
items might be (Blumrosen and Nisan, 2007):

� lower than the total value v(S ∪ T) < v(S) + v(T) of just obtaining
S or T , that is the items are substitutes

� higher than the total value v(S ∪ T) > v(S) + v(T) of just obtaining
S or T , that is the items are complementary

45

This makes finding a solution much harder in many ways. First how to
find the welfare maximising allocation, which is computationally NP-hard
even for simple cases (Blumrosen and Nisan, 2007). Second collecting infor-
mation on bidders’ valuations for packages, which might be exponentially
large. Third how to analyse strategic behaviour?

Lehmann et al. (2011) discusses the computational problem and find
that in addition for the problem to be NP-hard it is also inapproximable in
general. Intuitively we can think of having some set of k items there are 2k

subsets we would need to evaluate to determine the efficient solution. They
even find it being NP-hard, when using a particular bidding language, like
the OR and XOR.

How should bids be submitted to combinatorial auctions? In single-item
auctions bidding was easy, the agents only needed to submit one bid. In
combinatorial auctions each bidder should in a naive case submit 2k bids
for k items. In other words the bidder should evaluate each possible bundle
of items. Even in an auction where the number of items is small this could
amount to significant number of bids, eg when n = 10, 210 = 1024 bids,
which is infeasible for the bidder to express or evaluate. A better way is
required. We present a short overview from Nisan (2010).

Definition 17. Simple atomic bids. Each bidder submits a pair (S, b),
where v(S) = b the price the bidder is willing to pay for a subset S of
items. Meaning that for each T ⊆ S v(T) = p and otherwise v(T) = 0.

Definition 18. OR bids. Each bidder submits a number of atomic bids
(Si, bi), where v(Si) = bi. The bidder is willing to obtain any subset T =
Si ∪ Sj where Si ∩ Sj = ∅ for the combined price pT = v(Si) + v(Sj). The
bids/values for items can be computed by

v(S) = max
S1,...,Si∈S,S1∩S2=∅,...,S1∩Sj=∅,...,Sj−1∩sj=∅

j∑

i=1

v(Si)

For example a bidder submits an OR set of atomic bids (1.4).

{(s1, 1), (s2, 2), (s3, 4), ({s2, s3}, 7)} (1.4)

Then the values for additional subsets would be:

� v({s1, s2}) = max(v(s1) + v(s2)) = max(1 + 2) = 3

� v({s1, s2, s3}) = max((v(s1) + v(s2) + v(s3)), (v(s1) + v({s2, s3}))) =
max(1 + 2 + 4, 1 + 7) = 8

OR bidding language can represent additive valuations, for which v(s∪
T) ≥ v(S) + v(T), where S ∩ T = ∅, and not substitutable valuations.

46

Definition 19. XOR bids. The bidder still submits an arbitrary number
of atomic bids (Si, bi), but he is willing to obtain just one of the subset of
items. The bid for a set of items is calculated as

v(S) = max
Si⊆S

bi

XOR bids can represent all valuations Nisan (2010), although some of the
additive values may require an exponential number (2k) of bids.

For example a bidder submits a XOR set of atomic bids (1.5).

{(s1, 1), (s2, 2), (s3, 4), ({s2, s3}, 5)} (1.5)

Then the values for additional subsets would be:

� v({s1, s2}) = max(v(s1), v(s2)) = max(1, 2) = 2

� v({s2, s3}) = max(v(s2), v(s3), v({s2, s3})) = max(2, 4, 5) = 5

� v({s1, s2, s3}) = max((v(s1), v(s2), v(s3)v({s2, s3}))) =
= max(1, 2, 4, 5) = 5

With XOR the value for {s2, s3} is v({s2, s3}) = 5, because the items
are partially substitutable, whereas with the OR language the bid would
had been v({s2, s3}) = max(v(s2) + v(s3), v({s2, s3})) = max(2 + 4, 5) = 6,
because the bids would had been considered additive.

Obviously to make the bidding simpler we can consider a combination of
OR and XOR bids to present additive and substitutable valuations. Nisan
(2010) covers some simpler cases of combining OR and XOR bids.

From section 1.2.3 we know that the only way for strategy-proof value
elicitation is to use Groves mechanisms. This takes us back to the com-
putational complexity. We could need to compute n alternative efficient
allocations to compute the payments and in combinatorial auctions already
one of these was hard. However, alternative mechanisms would induce some
sort of strategic behaviour.

Restricting the size of bundles is an option for limiting the complexity
(Lehmann et al., 2011). Here computational experiments with various pa-
rameters are used to determine the auction format. An et al. (2005) defines
some potential strategies for the bidders and vary the number of bidders
submitting bundle bids and investigate the effect these have on the auction-
eer’s revenue. They find that more bundle bids increase the revenue of the
auctioneer and allocative efficiency. Sureka and Wurman (2005) and Mo-
chon et al. (2009) use meta-heuristics, genetic algorithms and tabu search,
to find Nash equilibrium strategies in combinatorial auctions. This is simi-
lar to the evaluation problem – value queries to the bidding language. Given

47

some subset S of items determine v(S). Value queries can be as hard as
optimization problems for welfare maximising allocations. The intuition is
that to compute the value in the OR bidding language, we would still need
to evaluate many potential ways how to subset the items to calculate the
sums, over which we would need to take the maximum value.

If bidders have some intuitive sense of the value functions it needs to be
experimentally evaluated how to best transform it to actual bids. In some
cases it might be easier when the bidder have some linear or quadratic addi-
tive value function, how to best transform it to a given bidding language. Is
some cases the bid intervals might be given as in energy markets (Contreras
et al., 2001).

Calculating social welfare maximising allocation is hard in combinato-
rial auctions. If we consider some very general bidding language we usually
need to evaluate nk potential allocations, where n is the number of bid-
ders and k the number of single items. Leyton-Brown and Shoham (2010)
have developed a generator package to test winner determination in combi-
natorial auction. Holte (2001) run computational experiments for finding
some expected, statistical, welfare guarantees. They use multidimensional
knapsack problems to test for allocative efficiency. Schwind et al. (2003)
uses similar meta-heuristic approach and also compares some existing de-
terministic formats. While others (Sandholm, 2010) have designed optimal
allocations algorithms for some instances.

Some straightforward implementations for combinatorial auctions might
turn out to be very bad. Sequential auctions are a bad idea. For example
when there is a number of perfectly substitutable items for sale and we
would allocate them in n sequential auctions. In the first second-price
auction the price would be end highest, in the next auction thirds highest
and so on. And at the last auction the price would be lowest, so bidders
would always wait to bid in later auctions. So always bidding true value is
not the best idea. See Swiss example by (Cramton, 2010, p. 102).

Additionally, sealed-bid auction on individual items is not a good idea
as items have substitutes and complements and good package bidding is
not available. It would be hard to figure out for which single items to bid,
as winning any particular item is probabilistic, a bidder would never know
if he would end up with a desirable package. And we already know why
bidding for packages to not feasible.

In US and other countries have used the Simultaneous Ascending Auc-
tion (SAA) to allocate spectrum licenses to telecommunication providers
(e.g. Klemperer, 2004b). This is not necessarily efficient or strategy-proof
(Kagel et al., 2010). The SAA broadly works as follows:

� The seller (auctioneer) decides how to split the item for bidding. This
is important decision as it will affect how bids are placed

48

� Buyers then bid for the items and may bid on multiple items (li-
censes) simultaneously. As for each bidder the aim is to cover some
geographical area and usually is differs across bidders.

� The first round with no new bids ends the auction

Wellman et al. (2008) highlights bidding strategies that could be used in
SAA, but also state that they are not optimal, which indicates the hardness
of analysing the SAA mechanism. They also show that the near-optimal
strategy is dependent on the structure of the environment, as characterized
by complementary and substitutable valuations.

New types of practical problems arise in SAA. Bidders may not want a
package of items that are missing some crucial items or package of items that
are considered duplicates by the buyer. To avoid these problems usually
some additional rules are defined in SAA:

� Activity rule: throughout the auctions the activity of the bidders can
only decrease. As the prices will go up buyers are less willing to obtain
the item.

� As some aggregations might fail, bidders are allowed to withdraw
bids. This creates strategic behaviour as bidders are not responsible
for their highest bid. Is usually regulated with fines to the high bidder
after withdrawal

� Bidders often have a quantity cap to the number of items they can
obtain

� Bidders usually have some initial down payment to ensure they are
really interested in the auction. This is refunded depending on the
final allocation

� Bids are incremented not freely placed by the bidders

The activity rule contributes to the price discovery process for all items.
As bids increase buyers can decide on which items to continue bidding and
for which items to stop. Additionally determining bids for all potential
packages of items is hard, so price discovery will help in figuring out for
which packages it might be profitable to bid and for which not. The specific
packages of interest can potentially change throughout the auction.

Signalling other bidders to keep the prices down. If there are two items
that are generally considered complements it is profitable for two buyers to
agree among each other who will get which item, as they will not compete
for the same item, thus the price will not increase. This has happened in
the past. In one auction a winning bid was $47,505,673, surely the buyer
would not care up to a dollar how much he would pay. In another auction

49

a bidder made several bids ending with 378, outbidding another bidder
several times. The bids seem to have been retaliation for bidding in area
378 (see footnote in Milgrom, 2004, p. 267).

Inefficiencies can arise in a SAA type auction. Suppose there are two
parking spaces to be allocated. Bidder 1 has a trailer desires both places
with v1({a, b}) = 100. The second bidder 2 values both spots at the same
price v2(a) = v2(b) = 75. The efficiency maximising allocation would be to
give both places to the first bidder. If we look at the SAA process, suppose
the bids are $50 for each of the spots and the first bidder is the high bidder.
His utility in the case of winning would be 0. However for bidder 2 there is
an incentive to increase any of the bids and would pay the bid. In case of
package bidding and VCG the spots would be both allocated to bidder 1,
for the price of $75 (see example in Cramton, 2010, p. 102).

This has also been referred to as the exposure problem. To win both
items bidder 1 would have to bid $150, thus creating negative utility. When
the current high bids for both items are $40 and say the bid increment is
$10. The second bidder would increase the bid for one spot to $50 and the
second bidder does not have incentive to raise his bid anymore, because his
utility would become 0. Nevertheless he is stuck with one of the spots for
the price of $40, which alone does not provide any utility. Maybe bidder 1
should not have bid for both spots at $40, but given his limited knowledge
of second bidders valuation (it might be $40), he still has the potential to
gain some positive utility.

Demand reduction involves not bidding on a second or a third substi-
tute, so as not to increase bidding by other on the first item. In multi-unit
auctions the demand reduction can be achieved by collusion, e.g. agreeing
who will bid on what item, so the price will stay low. Suppose there are
two identical items a and b and two bidders, with both valuing a single
item at $100. How would they bid? In a competitive environment both
would increase their bids until it would be close to $100 on both items, say
$99. Now if bidders would be able to communicate they would agree not
to increase the bids on other items. Both would win the auction at the
starting price (e.g. Cramton, 2010, p. 107).

Experimental papers (Kagel et al., 2010, 2014) compare two feasible
mechanism for combinatorial auctions: combinatorial clock auction (CAA)
and SAA. As theoretically analysing these mechanisms is hard, they use a
combination of computational and human experiments to compare the two
auction formats. Initially (Kagel et al., 2010) they find that SAA might
provide more revenue than CAA, while is some situations having lower
efficiency. Later (Kagel et al., 2014) that human bidders do not deal well
with the package selection problem. Humans bias towards other signals,
for example how the packages are named. This caused humans to behave

50

irrationally in CAA, they did not bid on more profitable packages (Kagel
et al., 2014). When package names match human bidder valuations the
outcome of CAA is efficient, but when not then SAA is more efficient.

1.5.2 Double sided auctions and complex systems

Single-item auctions are most popular, applicable when there is one unique
item for sale, like a work of art. Combinatorial auctions arise when there
are multiple different items for sale, which might be complementary or
substitutable, like spectrum or bus routes etc. In a situation when we have
multiple units of identical items the most often used mechanism type is
the double auction. This is because in this situation there usually are also
multiple sellers and buyers. In the case when there are only buyers, the
VCG or some modified single-side auction type could be employed.

Double sided auctions arise when there are multiple identical items for
sale and multiple sellers and buyers. The most frequent setting is buying
and selling stocks, commodities like wheat, coffee etc. More recent appli-
cations include energy pricing (e.g. Nicolaisen et al., 2001; Faqiry and Das,
2016) or allocating cloud and communications resources (e.g. Ji and Ray
Liu, 2006; Wang et al., 2010; Han et al., 2011b).

In a double auction there is a set of sellers S and a set of buyers B. To
simplify we assume that all sellers are selling one unit of identical goods
each and buyers are interested in buying one good each. All sellers have
some cost, reserve price, ci associated with good they are selling, below
which they would not sell. Similarly each buyer has a valuation vi for a
unit of good, above which they would not obtain the good. The goal of the
double auction mechanism is to find a price p that would realise all trading
opportunities. The resulting utilities of the agents are ui = p− ci for sellers
and uj = vj − p for buyers.

A seminal paper in designing a trutful static double auction is by McAfee
(1992). They design a strategy-proof mechanism, however note that is
is not necessarily efficient. McAfee (1992) mechanism assumes multiple
buyers and sellers (≥ 2) otherwise the mechanism does not work. They
analyse the efficiency of the mechanism via computational experiments, as
the analytical form is uninformative in this regard.

A more general setting is the k-double auction, however there is no
closed form solution to finding equilibria in this setting (Satterthwaite and
Williams, 1993). Satterthwaite and Williams (1989a, 1993) analyse the
k-double auction. The price in this mechanism in determined by p =
kb+ (1− k)a, where k ∈ [0, 1] and [a, b] is the interval in which the market-
clearing price is selected. After the price is determined, all agents with a

51

positive utility trade with the clearing price p. Satterthwaite and Williams
(1989b) also conduct simulations to understand the efficiency of their auc-
tion format.

For example, assume we have four sellers and four buyers. Each agent
is interested in buying or selling one unit of the good. Sellers have costs C =
{0.39, 0.43, 0.49, 0.64} and buyers have valuations V = {0.11, 0.32, 0.64, 0.71}.
The respective supply-demand curves are presented in Figure 1.4.

0.00

0.25

s(m) = 0.43

s(m+1) = 0.49

0.75

1.00

0 1 2 3 4
Quantity

P
ric

e

Figure 1.4: Supply-demand curve (k-double auction mechanism)

In the k-double auction market clearing price is in the interval [0.43, 0.49]
and at most two trades can be realised. The interval is determined by
ordering the costs and valuations, s(i) ∈ C ∪ V, in an ascending order
s(1) ≤ s(2) ≤ · · · ≤ s(2m) and setting the interval to [s(m), s(m+1)]. McAfee
(1992) uses a different method for selecting, but essentially yields a similar
interval.

The cases when k = 1 and k = 0 are special in terms of incentives. In
1-double auction the price equals s(m+1), thus the sellers have no incentive
to misreport their costs as the price is already at its maximum. If sellers
currently below 0.49 would individually increase their reported cost above
0.49 they would not trade and would gain zero utility. Otherwise they would
gain positive utility. Similarly in 0-double auction the price is s(m) and the
buyers have no incentive to misreport. In case the price is in the interval
(0.43, 0.49) all agents have an incentive to misreport to some degree.

Satterthwaite and Williams (1993) show the form of symmetric Bayes-
Nash equilibrium reporting strategies, assuming all agents know the distri-
butions F and G from where respectively sellers and buyers valuations are
drawn.

52

Theorem 8. (Satterthwaite and Williams, 1993, Theorem 1) Consider any
equilibrium (fS , fB) in which trade occurs with positive probability, every
seller always asks as much as hist cost, and every buyers bids at most his
value. A number κ exists, whose value is a function of F and G, but not of
m or (S,B), such that, for all v ∈ (v, 1] and c ∈ [0, c̄),

S(c)− c ≤ κ

m
(1.6)

and
v −B(v) ≤ κ

m
(1.7)

Also κ ∝ k. There is also a certain region where trades do not occur
due to misreporting, since sellers Bayes-Nash reporting strategy is above
buyers’ value and similarly buyers reporting strategy is below sellers’ price.
These values are v and c̄ respectively. Figure 1.5 illustrates the equilibrium
strategies and no-trade regions. The centre square has a positive probability
for a trade, when the cost and value are suitable. On the borders trades
never occur, even when the actual cost and valuations would be suitable,
as the equilibrium reporting would exclude it. Even when the actual cost
is close to zero, the seller would report v, so if seller valuation is below
this there is no trade. Similarly the seller would never report more than c̄.
From (1.6) and (1.7) we see that the misreporting decreases as the number
of agents in the market increases in proportion to O(1

m).

fS

fB

0

v

0.25

0.5

0.75

c

1

0 v 0.25 0.5 0.75 c 1
c, v

f B
,f S

Note: Adapted with permission from Elsevier.

Figure 1.5: Equilibrium strategy pair (fS , fB) (Satterthwaite and
Williams, 1993).

In reality the common assumptions required by the Bayes-Nash equilib-
rium concept might not be satisfied. The assumption was that all agents
have same prior information about the distribution of private costs and val-
ues of each agent. Satterthwaite and Williams (1993) show that by slightly

53

modifying the the allocation mechanism the equilibrium strategies can vary
widely, but Kagel and Vogt (1993) show that in human experiments there
is no significant change in strategies.

For market efficiency we look at the total utility gain by the traders,
agents who actually trade. Since the trade units have to be equal, the
number of trading buyers and sellers is the same.

TU =
∑

i∈S
(p− ci) +

∑

i∈B
(bi − p) =

∑

i∈B
bi −

∑

i∈S
ci (1.8)

Let’s denote by TU(fS , fB) the total utility gain, when agents play their
equilibrium strategies and by TU(f∗S , f

∗
B) the potential (optimal) gain when

agents would reveal their true costs and valuations.

Definition 20. We define relative efficiency ρ in double auction as

ρ(S,B) =
TU(fS , fB)

TU(f∗S , f
∗
B)

This definition is the inverse of a similar definition of Price of Anarchy
(e.g. Roughgarden, 2005).

Theorem 9. (Satterthwaite and Williams, 1993, Theorem 2) Consider any
equilibrium (fS , fB) in which trade occurs with positive probability, every
seller always offers at least as much as hist cost, and every buyer bids at
most his value. A constant ξ exists, whose value is a function of F and G,
but not of m or (fS , fB), such that the relative efficiency in the k-double
auction is as least

1− ξ

m2

So when the market is large, then the relative efficiency approaches one.

Conversely to the k-double auction, McAfee (1992) first discovered a
strategy-proof static double auction mechanism. The McAfee-mechanism
works as follows. There are m buyers and n sellers. Order the reported
bids and asks:

b(1) ≥ b(2) ≥ ... ≥ b(m) (1.9)

and

c(1) ≤ c(2) ≤ ... ≤ c(n) (1.10)

Select k ≤ min{m,n}, such that b(k) ≥ c(k) and b(k+1) < c(k+1). Define

p0 = 1
2(b(k+1) + c(k+1)).

1. if p0 ∈ [c(k), b(k)] the all buyers with bi ≥ p0 and sellers with ci < p0

trade

54

0.00

0.25

c(k+1) = 0.32

p0 = 0.405
ck = 0.43

b(k+1) = 0.49

bk = 0.64

0.75

1.00

0 1 2 3 4
Quantity

P
ric

e

Figure 1.6: Supply-demand curve (McAfee mechanism)

2. otherwise if p0 /∈ [c(k), b(k)] then only buyers and sellers (1) through
(k-1) trade. Buyers pay b(k) and sellers receive c(k) and leaving a
surplus of (k − 1)(b(k) − c(k)).

The example in Figure 1.4 would yield p0 = 0.405 as in Figure 1.6.

Theorem 10. (McAfee, 1992, Theorem 1) Honesty is a dominant strategy
for the McAfee-mechanism

Theorem 11. (McAfee, 1992, Theorem 3) The expected efficiency loss due
to a trade not being executed is E[b(k) − c(k)] ∝ 1

n

In addition there is a utility loss due to earnings from the mechanism,
which increases in the number of trades. McAfee (1992) also investigates the
loss to the market due to the mechanism’s earnings and finds it analytically
difficult. With uniform distributions of costs and values McAfee (1992)
finds using computational experiments, when m = n, that the mechanisms
earnings also increase in the number of agents and already when n = 1000
the loss percentage due to trades not executed is only 0.0002%.

There are also modifications of the McAfee-mechanism that distribute
the mechanism’s earnings, from case 2 of p0, in the market, but still leaves
some potential trades on the table (e.g. Segal-Halevi et al., 2016, and survey
therein). There are also extensions to handle heterogeneous single-unit
items Feng et al. (2012). There is even a continuous on-line truthful double
auction design, but with an efficiency loss of no more than 20% (Wang
et al., 2010).

A continuous double auction has an even richer strategy space and this
game has proven extremely hard to analyse (Rust et al., 1993, p. 158).
In a continuous double auctions buyers and sellers constantly submit their

55

offers to the mechanism and a trades occur immediately when the offers
match. Some offers might stay in the market longer, if no suitable submis-
sion arrives from the other side. Rust et al. (1993) describes an experiment
of continuous double auction strategies in the Santa Fe Institute in 1990.
They collected some 30 human defined strategies that competed against
each other. The strategy-set also included simple strategies like truth-
telling and zero-intelligence1, which is essentially playing randomly and is
only constrained by its reservation price. They find that many of these
strategies perform poorly and are easily exploited, although they guarantee
market efficiency. A simple, Kaplan (Algorithm 1 for buying), strategy that
always plays the current market price or reserve price, which ever produces
positive utility, turned out to be the best. This strategy essentially waits
until the market is about to close and then jumps in and makes its bid.

Algorithm 1 Kaplan buy strategy automata

Require: pmax, pmin, bidc, askc, pminc, π
Ensure: bid ∈ {∅,R+}
bid = ∅
if bidc 6= ∅ then

if askc 6= ∅ then
m = min(askc, π − 1)

else
m = π − 1

end if
if (m > bidc) and ((askc < pmax and u(.)

τ > 2% and askc−bidc
askc

< 10%)
or (askc ≤ pmin) or (δt < τ)) then
bid = min(askc,m)

end if
end if
return bid

Rust et al. (1993) also conducted an evolutionary game of the strategies,
where survival of a strategy was proportional to their capital share of the
market. They found that the Kaplan strategy dominated in this game as
well. However, after being the only surviving strategy, the profits declined.
Since Kaplan strategy awaits in the market until other strategies do the
negotiating and when these strategies are extinct there is almost no trading.
The Kaplan strategy activates at the end of the trading period and only few
profitable are executed. The leave open the question: are there strategies

1not to be confused with zero-knowledge, a concept from cryptography, a method to
prove that a statement is true, without revealing anything other than the truth-value of
the statement

56

and environments that are resistant to exploitation by Kaplan strategies
(Rust et al., 1993)?. This seems even more relevant when looking at the
exploitive nature of high-frequency traders (Budish et al., 2015).

Chen et al. (2009) and Chen and Tai (2010) compare the strategies eval-
uated by Rust et al. (1993) with evolutionary programming to find an even
better strategy using learning with genetic programming. They train an
even better strategy by randomly playing against strategies in the Santa Fe
experiment (Rust et al., 1993, 1994). Chen et al. (2009) uses genetic algo-
rithms to find a function based on trading statistics from previous trading
day, current state of the order-book, timing and agent’s values. Addition-
ally using mathematical functions like addition, multiplication, absolute,
maximum, minimum and if-then rules to combine the statistics. They find
that using minimum bid from previous day is most often used in a profit
maximising strategy. With larger gene population more complex strategies
emerge combining the minimum bid from previous day with highest value
the agent has for an item. The simplicity of this learned strategy is similar
to the Kaplan strategy and can even outperform it.

Zero-intelligence models have been shown to be enough to guarantee
almost 100% efficiency in continuous double auction markets (Gode and
Sunder, 1993a,b). Gode and Sunder (1993b) investigate a synchronized
double auction, where all bids and asks are collected. If highest bid and
lowest ask cross, then they are traded in a binding transaction. Otherwise
new asks and bids are asked from traders. Depending on the number of
extra-marginal traders, traders who would not trade in an ideal truthful
market, the efficiency is between 80%-100% and 95.7% on average as the
ratio of extra-marginal traders goes to infinity. Some 50%-100% efficiency
is achieved already in the first round. Gode and Sunder (1993a) run addi-
tional human and computational experiments with constrained and uncon-
strained zero-intelligence (ZI-U) trades. The ZI-U agents are not anymore
constrained by their reservation value and can bid above or below it, de-
pending if they are buyers or sellers. With the constrained ZI agents they
obtain often 99% efficiency, while with unconstrained only 90%. Moreover
with human experiments the efficiency is also close to 99%. Gode and Sun-
der (1993a,b) results suggest that individual rationality is not required to
the extraction of market surplus.

As a results there has been more works on theoretical statistical models
of continuous double auction (Chiarella and Iori, 2002; Smith et al., 2003;
Daniels et al., 2003) and empirical (Madhavan, 2000; Farmer et al., 2005;
Hasbrouck, 2007) to model aggregate properties like the bid-ask spread,
price impact function, probability of order execution, price diffusion, volatil-
ity etc.

57

Almost all models of strategies assume agents know their own inde-
pendent fundamental value vi and based on this determine their pricing
strategy. However many profiting strategies in double auctions do not re-
quire the knowledge of fundamental value. For example assuming that a
price of a security is predicted to increase or decrease an agent can profit
from arbitrage, by buying with a low and selling with a higher price. Thus
the strategy-space of a continuous double auction is inconceivably large.
Thus the price discovery or information dissemination is a critical part in
understanding such a market mechanism. Therefore the human component
is crucial part in understanding financial markets and computational ex-
periments are a useful modern tool to investigate aggregate results from
the behaviour (e.g. Friedman and Rust, 1993; Tesfatsion and Judd, 2006).

Both laboratory experiments and theoretical models show that
agents’ behaviour – and hence market outcomes – are highly sen-
sitive to the assumed information structure (Madhavan, 2000,
p. 207)

The financial market mechanism or market micro-structure design is
more concerned with traders behaviour rather than selecting an optimal
pricing rule. The design components include questions like: Should trades
be mediated by a market maker? How to offer greatest liquidity? How to
minimise trading costs? How traders react to price changes and how are
prices disseminated? See (e.g. Madhavan, 2000) for further survey.

Hommes (2006) reviews some small heterogeneous agent-based models.
The simplest model is with fundamentalist and chartist agents. First type
of agents always have some individual fundamental valuation vi for a good,
as with previously described models, and make bids and asks according
to that value. The other type of agents, chartist, behave by monitoring
the market, they buy when the price increases and sell when the price falls.
This behaviour composition already creates crashes and rapid increases and
declines in stock prices. Additionally (Sornette, 2004, p. 132) the chartists
are relatively successful free riders, not only matching the performance of
fundamentalists in the long run, but outperforming them in the short run.
Similarly to the Kaplan strategy mentioned previously.

Albin and Foley (1992) present a simple benchmark model for a de-
centralised exchange. In this model agents randomly broadcast messages
indicating a willingness to trade. However, there is a cost associated with
the signal. If the buyer’s price is higher than the seller’s asked price then an
exchange occurs. In case of multiple potential trade partners, the agents
meets sequentially in a random order with each partner. A subsequent
trade occurs only if the current holdings permit. The price is determined
by geometric average of the bid and ask prices. The agents know a lot

58

80%

85%

90%

95%

0 10 20 30
iteration

ef
fic

ie
nc

y Neighbourhood; Signalling cost
2;0.1

4;0.25

Note: Adapted with permission from Elsevier.

Figure 1.7: Exchange market efficiency (Albin and Foley, 1992).

about their potential trade partners: cost of advertising; meeting history;
marginal rates of substitution of neighbours; distribution of goods among
agents. Based on this information they estimate the expected gain from
signalling and signal if there is an expected profit. They observe that with
this model the market efficiency also converges to almost 100% with dif-
ferent messaging costs and number of targeted agents. On Figure 1.7 we
have created the chart based on data from from (Albin and Foley, 1992)
for two combinations of parameter values. In both cases the final allocation
efficiency is very close to 100%. A similar model is, for example, employed
in Beltratti and Margarita (1993).

LeBaron (2006) surveys additional centralised models and learning in a
two-sided exchange. Most models concentrate on investigating some form
of centralised allocation. Most experiments have some centralised market
mechanism and adaptive agents mostly based on genetic algorithms and
occasionally some other learning rule (LeBaron, 2006, p. 1223).

Marks (2006) reviews the main reasons to use computational agent-
based modelling. First the analytical model is intractable. It is hard to
obtain equilibrium solutions to some mechanisms, e.g. double auctions,
due to the dimensionality of the task. Second the equilibrium behaviour is
not relevant for modelling the real world and we are interested in out-of-
equilibrium behaviour. In stock markets there is lot of dynamics in the price
and the market almost never manages to converge. Third agents are not
completely rational, but are bounded and make quick and myopic decisions.
Additionally they learn market conditions and from past behaviour that
guide their future decisions.

Marks (2006) also highlights a general analysis-design framework for
mechanism design. Analysis as surveyed in previous section is important
first step, but computational experiments, simulations, provide light were
the axiomatic approach cast little or none. Marks (2006) concentrates on
evolutionary and learning techniques. First which strategies would survive

59

in some environment or which strategies emerge as a result of adaptation?
Both of these are important to understand the effect of picking a par-
ticular design and making sure the mechanism responds well to possible
adaptation. In addition computational experiments are useful to propose
behaviour model in some situation, e.g. in decentralised exchange (Albin
and Foley, 1992) and zero-intelligence (Gode and Sunder, 1993a,b; Farmer
et al., 2005).

60

2 Zero-Intelligence in Decentralised Matching

2.1 Introduction

Market economies in general experience large employment fluctuations and
average unemployment rates differ between countries. The underlying job
search and matching theory (the Diamond-Mortensen-Pissarides canonical
framework) provides a conceptual explanation for some aspects of the re-
lationship between vacancies and unemployment known as the Beveridge
curve (Figure 2.1). The core of job-search and matching models is built
on the assumption that the external rate of job creation and destruc-
tion, but also worker reallocation, determine the steady-state equilibrium
of number of unmatched workers and jobs (unassigned agents in our model)
(Mortensen and Pissarides, 1999). Because of search and recruiting costs,
hiring and firing costs and other forms of matching-specific costs, decen-
tralised markets create inefficiencies. This matching technology is implic-
itly characterised by its matching function, which summarises the trading
technology between agents, their actions and choices that eventually bring
them together into productive matches (Petrongolo and Pissarides, 2001).
In the relevant “matching function literature”, it is stressed that such a
theoretical tool is useful because it allows to reduce the complexity of in-
formation imperfection, heterogeneous agents and congestion into a tool-kit
similar to the production function or money demand function. However,
the interactions or matching technology are still rather treated as a black
box.

We open this black box by providing a simple agent-based model of a
decentralized market game in which agents (workers or job seekers) make
proposals to the agents on the other side of the market (firms) in order
to be matched to available positions. In our computational experiments, a
market game is identified by three components: the preference structure of
agents, market conditions, i.e. the relative number of positions and workers,
and the behaviour of agents (workers or firms) based on the information
they have about their own preferences and options in the market.

Search models in labour economics rely on three pillars: the decision
of workers, the decision of firms and wage setting mechanism. We concen-
trate on the first two pillars. Thus, our model belongs to the literature

61

●●

●

●

●

● ●
●

● ●

●
●

●

●● ●

●

●
● ●

●

●
● ●

●

●● ● ●
●

●●
●

●●●
●

●●

●
●

●

●

●
●

●
● ●

●●
●

●●
●
●

●●
●
● ●●

●

●

●

●

●●
●

●
●

●

●

●

● ●
●

●

●
●

●

●

●
●

●

●●

●●

●
●

●●

●

●
●
●

●

●
●●

●
●

●●

●

● ●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

● ●

●●

●
●

●●

●

●
●

● ●

●
● ●●

●
●●

●

●● ●
●

●●●

●

●●
●

●

●
●

●
●

● ●
●
●● ●

●
●

●

● ●●

●

● ●

●

●

●
●

●
●

●●

●
●●

●

●

●

●

●

●●
●

●
●●
●

●●●●
●

●●●
●

●

●

●
●●

●
●
●●

●
●

●
●●

●●●
●

● ●
● ●

●● ●●●● ● ●
● ●

● ●●●
●

●

●

●

●

●

●●
●

●● ● ●

●●●●●
●

●●
●

●

●
●

●●
●

●●
●
●

●

●

●

●●
●
●

●
●

●● ●

●

●
●●●

●

●

●

●

●
●

●●●
●

●

●

●
●

●●

●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●● ●
●● ● ●

●● ● ●
●

●
● ●
●

●
●

●

●
●●

●

●
●

●●
●
●

●●
●

●
●
●● ● ●

●
●

●
●●
●

●

●
●

●●
●●● ●

●

●●●

●
●●

●

●

●
●

●

●

●
●

●

●
●

●

●
●

●
●

●
●

●
●

●●

●
●

●

●

●●

●

●

●
●

●●

● ● ●

●

●●

●

●
●

●
●

●

●

●
●●

●

● ●
●●●

●
●

●●●●

●●
●

●● ●
●●

● ●
●

●
● ●

●●
● ●

●
●● ●●●

● ●
●

●
●

●●

● ●

●

0%

1%

2%

3%

4%

5%

0% 5% 10% 15% 20% 25%

Unemployment rate

V
ac

an
cy

 r
at

e

Empirical data
● EuroStat

US BLS

Source: Eurostat (online data code: JVS Q NACE2 and UNE RT Q)
US Bureau of Labor Statistics (online data code: JOLTS and LAUS)

Figure 2.1: Beveridge curve based on empirical data

on agent-based partial labour market models (e.g. Neugart and Richiardi,
2012) which use microsimulation to explain stylised facts about the labour
market. These agent based “micro-to-macro” models give insights into
labour markets in the form of partial or general models. In the latter
labour markets are embedded into larger economic models. We are mainly
interested in literature aiming to reproduce the Beveridge curve with search
and coordination in a partial agent-based model. Thus, models (Richiardi,
2004, 2006; Riccetti et al., 2015) aimed at explaining the job search on the
basis of wages or more general market models that interact with the em-
bedded labour market (Dawid et al., 2014; Deissenberg et al., 2008), that
lie outside of our scope.

The partial agent-based models have been developed for replicating
stylised facts from real labour markets, such as the negative-sloped Bev-
eridge curve in the unemployment-vacancy (u, v)-space. Fagiolo et al. (2004),
followed later by Silva et al. (2012), reproduce a Beveridge curve in a partial
agent-based model and come up with a standard explanation that frictions
and the institutional setting affect the position of the curve.

Moreover, giving up the assumption of rational expectations about the
behaviour of agents has produced fruitful insights. Tassier and Menczer
(2008) investigate job-hunting via social networks. They find that random
social networks spread vacancy information better and thus achieve lower
unemployment. Neugart (2004) uses an urn-ball matching model on a small
scale (30-50 agents) and endogenous matching function workers send ap-
plications randomly, however the Beveridge curve is closer to origin than
one would expect in large markets. Similarly Richiardi (2004) employs a
similar model with wages and produces a Beveridge curve further from the

62

origin. While Richiardi (2006) models labour supply in a general setting by
a non-equilibrium, adaptive agent-based model of heterogeneous workers
and firms, with on-the-job searching, endogenous entrepreneurial decisions
and endogenous wage and income determination. The latter is able to re-
produce a number of stylized facts generally accepted in labour economics
and industrial organization, including the negative-sloped Beveridge curve.
Also, in this set-up, the matching process is based on random applications
from job seekers for vacancies in the single labour market. Furthermore,
this model allows for on-the-job searching, meaning that assigned agents
can get job offers as well.

There are some other search-and-match models (e.g. Gabriele, 2002;
Deissenberg et al., 2008; Boudreau, 2010). Some of them also produce a
Beveridge curve, but usually investigate different aspect of matching. Often
their aim is to study some other aspects, like stratification and use different
underlying assumptions (e.g. centralised matching or perfect information).

Our modelled agents can be considered myopic – they make proposals
and only accept better proposals without additional strategic thinking. In
our base model, agents apply for a random position and a matching oc-
curs only when both sides find their new partner preferable to their current
match. This is similar to the Zero-Intelligence (ZI) model from financial
markets (Gode and Sunder, 1993a; Chen and Tai, 2010). Our behavioural
models are an extended version of the better response dynamic proposed
by Knuth (1997b) and further analysed by Roth and Vate (1990) and Ack-
ermann et al. (2008).

For comparative purposes, we include behaviours, where agents know
more than in the ZI model, but less than in the better response dynamic.
In our Better proposal model, we assume that agents, e.g. workers, know
of a better match or a position that would also be suitable for them and
thus do not make proposals in a wholly random manner. This can be con-
sidered similar to the Zero-Intelligence Plus model (Chen and Tai, 2010).
In order to further extend the information pool available to the agent, we
use the Blocking proposal model, where agents make proposals to their ran-
dom blocking partner, which is equivalent to the better response dynamic
proposed by Knuth (1997b).

Nevertheless, the agents will not be able to find an equilibrium (sta-
ble) matching in a micro sense. It is rather a steady-state equilibrium in a
macro sense, as the size (number of matched agent-pairs) of the matching
converges. In general, we show how the assumptions about the information
available to agents, the structure of their preferences and market thick-
ness determine the shape and placement of the Beveridge curve. Thus,
our approach not only differs from the framework of Diamond-Mortensen-
Pissarides, but also from recent discussions on job search and matching

63

efficiency (Veracierto, 2011; Shimer, 2013; Sahin et al., 2014) where the
persistent empirically observed adverse shifts (outward shifts of the Bev-
eridge curve) have been explained mostly by the deterioration in the ef-
ficiency of the matching technology. We use a partial agent-based model
as classified by Neugart and Richiardi (2012) to develop aggregate regu-
larities from the micro-behaviour of individual agents in order to illustrate
the position of the Beveridge curve in the (u, v)-space. Our model is able
to reproduce some well-known stylised facts from labour market literature
like the negative sloped Beveridge curve. Moreover, we explain the shift of
the Beveridge curve not only as related to information available to players,
but also including a level of heterogeneity of the agents’ preferences. We
model the latter on the basis of the correlation between the preference lists
of agents to indicate their similarity (or common understanding of a good
job position). In addition, we allow for different lengths of the preference
lists. Short lists indicate that there are only few acceptable positions in the
market, i.e. geographical boundaries or asset specificity could determine
the structural characteristics of the market. We show that short lists and
high correlation shift the curve to the upper-right, further from the origin.
In addition, we include a parameter for market thickness — the balance
between market sides – indicating the ratio of positions to workers. Market
thickness models the effect of interactions with other markets through job
creation and destruction rates, i.e. the out-of-equilibrium state of a general
market model. We see that this determines the position on the Beveridge
curve.

In contrast to the decentralised matching in some situations we can em-
ploy a centralised mechanism. Then all the market participants report their
preferences to a central clearing house that can then compute an optimal
matching using for example Gale-Shapley deferred-acceptance algorithm
(Gale and Shapley, 1962). Optimal usually means that the result is the
best possible stable matching for one side of the market as the optimality
can not be guaranteed for both sides. Roth (2008) observed that in some
decentralised situations where there was not a central clearing house in
place, market participants still executed a very similar algorithm as pro-
posed by Gale and Shapley (1962). A major drawback of the execution was
that usually it was time-capped, i.e. at some point the market had to be
closed. This meant that the algorithm execution might not have finished
and resulting matching may not be stable.

In addition to comparing the decentralised behaviours, we include an
idealised deferred-acceptance based clearing house. This helps us to under-
stand how far the decentralised market is from the optimal solution. There
have been a few related works involving agent-based computational experi-
ments in centralised matching markets. Oméro et al. (1997); Dzierzawa and

64

Oméro (2000) study the scaling behaviour in the obtained rankings in sta-
ble matchings. Others extend this to more general preferences, by allowing
correlation (Caldarelli et al., 2001; Caldarelli and Capocci, 2001). Zhang
(2001) studies the effect of having limited preference lists used in optimal
stable matchings. This limitation is included to an extent in our decen-
tralised model. Laureti and Zhang (2003) also investigate a decentralised
model, however they assume optimal behaviour from agents compared to
our model, namely that the agents always make the best possible proposals.

Another aspect more studied in centralised deferred-acceptance match-
ing in the ranking of the match. We look at the cost of the decentralised
matching game for agents in terms of median rank from matched agents.
We discover similar results in decentralised markets as have been discovered
for stable matchings – that proposers and agents on the smaller side of the
market obtain better matches (Pittel, 1989; Ashlagi et al., 2013b) – but less
extreme. Surprisingly the noise, ZI, behaviour results in best median rank
among our decentralised behaviours.

We view our decentralised market game as an abstract model which in
addition to studying agent-based interactions in job search and matching
markets can be used in alternative settings, e.g. decentralised school or
university choice. In all these cases, an institution or a central authority –
a clearing house or similar – is missing and agents on both sides constantly
have to react to new proposals and responses.

We continue as follows. In the second and third sections, we intro-
duce the set-up of our model, concentrating on matching behaviour which
includes search and commitment costs as well as the assumptions behind
preference formation. In the fourth section, we describe our parameter se-
lection and initial results of a steady-state. In the fifth section, we look at
when the decentralised matching results in a stable matching. In the sixth
and seventh section, we look at the number of unmatched agents in thick
and thin markets, the latter shows how a Beveridge curve depends on the
search behaviour and the structure of preferences. In the eighth section we
compare the allocated ranks with all the decentralised behaviours to a cen-
tralised clearing-house based on Deferred-Acceptance. Finally, we conclude
by discussing our contribution to the discourse on search and matching
literature.

2.2 Behaviour models

In order to translate the neoclassical matching function into an agent-based
version, we employ the framework offered by Guerrero and Axtell (2011).
This relies on three orders of assumptions, which include rationality, agent
homogeneity and “non-interactivness” in an agent-based model. The cate-
gorisation of the features is presented in Table 2.1.

65

Table 2.1: Matching model assumptions

Matching function Our agent-based model

First order
assumptions

Interaction
mechanism

Implicit (black box)
Explicit (decentralised or
centralised matching)

Second order
assumptions

Rationality
No explicit reference.
Functional form captures
information imperfections

Explicit, exact notion of
how proposals are made
and accepted

Equilibrium

Is inefficient due to nega-
tive externalities: conges-
tion, skill mismatch and
locational differences

Is inefficient because of
assumptions about be-
haviour and information.

Agent types
Representative (homoge-
neous) agent(s), heteroge-
neous sectors

Heterogeneous (different
preferences)

Third order
assumptions

Technological
advances

Technological advances in
matching shift “Beveridge
curve” (search is less
costly)

No technological ad-
vances. Preferences are
static, do not adapt.

Supply shocks
or business cy-
cles

Affect job creation and
destruction rates, but are
generally treated as an
empirical question

No explicit job creation
and destruction, but the
market thickness, is of in-
terest

Contracts
A rate of matching and
unmatching

A relationship can be bro-
ken whenever a better
match is found (and the
contract has expired)

Transaction
costs

A limitation on matching
rate

Once a better match is
found, there is no addi-
tional cost for changing
the match

66

Beginning with the first order assumptions about the nature of the in-
teraction mechanism, we can see that the literature about the matching
function often treats this procedure as a black box. In an agent-based
model, the interaction is a central question for the investigation. In finan-
cial double-auction markets, Zero-Intelligence (ZI) interaction models have
been fruitful in investigating aggregate market phenomena (e.g. Gode and
Sunder, 1993a; Farmer et al., 2005; Ladley, 2012). We employ a similar
approach for modelling search in the labour market.

Zero-intelligence (Ladley, 2012) is useful because it allows us to decou-
ple the behaviour of an agent from the market structure. Moreover, we are
interested in whether similarly to non-strategic agents (e.g. Farmer et al.,
2005; Gode and Sunder, 1993a), interesting market phenomena can be pro-
duced in the current context. To our knowledge, these types of models have
not been studied for job search. There are macro-level studies that con-
centrate on modelling unemployment and vacancies (e.g. Petrongolo and
Pissarides, 2001; Mortensen and Pissarides, 1999). There also exist agent-
based models of wage equilibrium (e.g. Guerrero and Axtell, 2011) and job
search on social networks Guerrero and Axtell (2013); Zhou et al. (2014a);
Hoefer and Wagner (2012), but there is no simple model for job search.

The labour market consists of two sets of agents – workers and firms (or
positions within a firm). The main behavioural aspect is how the match is
initiated, i.e. the worker-position pair selection. We study models where
the proposing power is either only on one side of the market (A-proposing
models) or where it is proportionally shared (random agent proposing).
In other words, either workers always make proposals, proposals are made
interchangeably, or firms always make proposals, depending on who is con-
sidered side A. We call the non-proposing agent the responding agent. In
the centralised Deferred-Acceptance markets (Gale and Shapley, 1962), the
matching is always optimal and stable for the proposing side, while it is
the worst possible level for the responding side (e.g. Knuth, 1976; Roth and
Sotomayor, 1990). However, in many practical (Roth and Peranson, 1999)
and large markets (Immorlica and Mahdian, 2015), the difference seems to
be small and the effect of market thickness is much greater (Ashlagi et al.,
2013b). The matched rank structure may also affect the size of the match-
ing as proposing probabilities are different under random agent proposing.

In fact, we investigate several models (Table 2.2), where a second-order
assumption of Zero-Intelligence (ZI) is a characteristic of the base model.
The ZI model is called the Noise proposal model wherein two random
agents, one from each side, are selected, but a matching transaction occurs
only when the new match is an improvement over their current matches.
Similarly, in financial markets a deal is only accepted when the offered price
is above the reserve price for both sides, i.e. the buyer and the seller, oth-

67

erwise the price is offered at random. Thus, in our mechanism, there are
only pairwise interactions and a transaction occurs when the reserve offer
is met on both sides.

Table 2.2: Explored behaviour models

Interaction, proposer (1st order)
Rationality (2nd order) Random side A-proposing

Noise proposal Noise Proposal Noise Proposal A
Better proposal Better Proposal Better Proposal A
Blocking proposal Blocking Proposal Blocking Proposal A

In the first Zero-Intelligence Plus (ZIP) behaviour, which is the Bet-
ter proposal model, agents only make proposals to a better match, i.e. a
position higher on their preference list than their current (reserve) match.
Thus, the proposing side does not even consider non-acceptable matches.
In contrast, in the Noise proposal model an offer is made to a random agent
on the preference list, and might actually not be acceptable to the proposer.
This is learned in the transaction. In other words, in the Better proposal
model, even agents with a current high ranking match have a high proba-
bility of a new match, which only depends on the responding side finding it
acceptable. On the other hand, in the Noise proposal model a transaction
probability would also be lower for proposing agents, if their current match
is high on their preference list.

The second ZIP behaviour is the Blocking proposal model. A blocking
pair is formed by two agents from the opposite sides of the market who,
if they met, would prefer to be matched to each other. Here agents only
make a proposal to other agents when they know it would be accepted by
the other party, i.e. the blocking pair, in the current state of the market.
The match can still be broken in the future if either of the agents finds a
more preferred partner.

Although we investigate multiple behaviour models of the proposing
agents, we always assume that the responder is a ZI agent. He only and
always accepts proposals made by agents higher than the current match
on his preference list. In addition, the existence of an information aggre-
gating institution is implicitly assumed in Better and Blocking proposal
behaviour. For example finding a potential blocking pair in the Blocking
proposal model can be thought of as being supported by an institution.

We are only interested in studying the aggregate results of the search
behaviour, therefore we simplify most of the third-order assumptions. The
preferences of the agents are fixed, so they do not adapt to market con-
ditions during the search. There is also no creation or destruction rate of

68

new agents or positions, nor any external shocks that might trigger such de-
structions or creations. We do, however, explicitly model market thickness.
The market is considered thick when there is exactly the same number of
agents on both sides, so all the agents can potentially be matched. If there
are more agents on one side, the market will not be thick and there will
always be some agents unassigned. In addition, thickness has an impact on
the search outcome, as agents from the smaller side have more options to
choose from. Thickness is also an indicator of disequilibrium, as the num-
ber of jobs is not equal to the number of workers, characterising exogenous
dynamics of job creation, destruction, etc.

Finally, in our main experiments there are no limitations on matching
with a more preferred partner, i.e. no commitments to contracts or any
transaction costs for changing a match. However, in Section 2.7.3 we show
the effect of frictions of enforcing different types of obstacles, including
contractual ones, on re-matching.

More formally, we employ a model similar to that used in modelling
centralised two-sided matching markets (e.g. Roth, 2008). There is a set
A = {a1, ..., anA} of agents on one side and a set B = {b1, ..., bnB} of agents
on the other side. The number of agents on both sides can differ (nA 6= nB)
depending on market thickness. Each agent ai fromA has a strict preference
relation �ai over agents in B, and similarly for bj ∈ B there is a preference
relation �bj over agents in A. A matching µ is a mapping from A ∪ B to
itself, so that every ai ∈ A, is matched to µ(ai) ∈ B ∪ {ai}, and similarly
for bj ∈ B, µ(bj) ∈ A∪{bj}. When an agent is matched to itself, µ(ai) = ai
or µ(bj) = bj respectively indicates that they are in fact unmatched. Being
matched to oneself is the least preferred option for all the agents. Agents
would still find only the acceptable positions in their preference list, which
might not contain all positions. Similarly for the position, only some agents
might be acceptable. In addition, for every ai, bj ∈ A∪B, µ(ai) = bj implies
µ(bj) = ai.

A matching is unstable if there are at least two agents ai and bj from
opposite sides of the market so that bj �ai µ(ai) and ai �bj µ(bj) – a
blocking pair. A matching is stable, if it is not unstable. In Table 2.3 we
have listed the notation for quick reference.

With the notation in Table 2.3 we can present a General Proposal Dy-
namic in Algorithm 2. The SelectProposer() and SelectResponder() pro-
cedures are distinct for each of the described models in Table 2.2. The
SelectProposer() selects a random agent from set A∪B or A depending on
whether the behaviour model is Random side or A-proposing. The Selec-
tResponder() selects an agent from the preferences of the proposer, and the
actual selection depends on whether the behavioural model is the Random,
Better or Blocking proposal.

69

Table 2.3: Notation

Symbol Description

A Preferences of agents on side A
B Preferences of agents on side B
ai Preference profile for agent i, ai ∈ A
bj Preference profile for agent j, bj ∈ B
nA Number of agents on side A
nB Number of agents on side B
θ Market thickness θ = nB

nA

k Length of preference lists
c Correlation of preferences
τ Re-matching friction
µ Matching
s Size of matching, counted in pairs of agents
u Unassigned percentage on side A, u = 1− s

nA

v Unassigned percentage on side B, v = 1− s
nB

r(µ(i)) Matched rank of agent i in matching µ
r̃a Median matched rank of agents in A
r̃b Median matched rank of agents in B
ρi Number of blocking pairs for agent i
ρ̄i Number of blocking pairs with unmatched agents for agent i
ρ̃i Number of blocking pairs with matched agents for agent i

70

Algorithm 2 General Proposal Dynamic

Require: A, B, µ
Ensure: µ is a matching
p← SelectProposer(A,B)
mp ← µ(p)
r ← SelectResponder(p)
mr ← µ(r)
if p �r mr and r �p mp then
µ(mp)← mp, µ(mr)← mr

µ(r)← p, µ(p)← r
end if
return µ

We study the macro-level convergence properties of the search behaviour.
On an individual agent level, the market needs not to be in equilibrium.
There have been studies on the equilibrium of decentralised matching pro-
cesses. Niederle and Yariv (2009) study such applications where firms and
workers have aligned preferences and show the conditions for having a sta-
ble matching in equilibrium. Haeringer and Wooders (2011) examine equi-
librium behaviour with slightly different models, where agents cannot be
re-matched to a previously rejected partner, but their model is otherwise
similar to ours as agents have to respond immediately. Diamantoudi et al.
(2015) look at stability when agents make a commitment to a partner, which
can either be only for a certain period, or an infinite commitment so that
participants exit the market, or only a one-sided commitment. They show
that having a requirement for firms to commit to an employee can result
in unstable matchings in equilibrium. In our models we mostly concen-
trate at the no-commitment scenario, except in the impediments scenario.
Pais (2008) analyses the equilibrium with limited information about prefer-
ences. Eriksson and Häggström (2007) also study decentralised matching,
but they do not make any underlying assumptions about how the matching
is reached. Instead, they measure the degree of instability in some random
matchings. However, if some decentralised matching model is assumed,
the resulting matching would not be a uniform selection of all the possible
matchings.

In addition there have been experimental studies (Echenique and Wil-
son, 2009; Echenique and Yariv, 2013) about decentralised matching mar-
kets with human subjects which show that stability tends to be a prevalent
outcome, but is not always guaranteed. The interesting aspect in those
cases is human behaviour, which usually also restricts the size of the exper-
iments, which tend to be small – 10-20 participants. Zhou et al. (2014b) use
real-world data from small and large on-line matching markets and study

71

the statistical regularities of those matchings, mainly how the size of the
markets relates to the size of the matching. This is also what we are inter-
ested in. Unfortunately they do not count the size of the two sides of the
markets, but only the overall size.

2.3 Preference generation

Nevertheless, we look at heterogeneous agents with various degrees of cor-
relation in their preferences and the availability of matches. We model a
situation where the preferences of the agents are all idiosyncratic (effectively
random) and agents find all partners acceptable. Yet, we also look at some
structural constraints. Firstly, we introduce limited preference lists indicat-
ing that an agent finds only a fraction of the partners acceptable. Second,
preference lists are somewhat correlated, or in extreme cases, preferences
are exactly the same, indicating common tastes.

In the real world, correlated preferences show ”popular tastes”, e.g.
all agents have similar preferences for high paying jobs or are interested
in simple assignments, etc. The length of the preference list, however,
indicates the probability of an agent being found unacceptable, even if a
certain agent would be the only candidate. So a person without a pilot’s
licence would never be employed as a pilot. Thus, shorter preference lists
imply that not all agents are acceptable to a particular position.

We assume that agents have strict preferences for agents (workers or
positions) from the opposite side of the market. In the simplest case pref-
erences are random, i.e. each agent has a totally idiosyncratic preference
ordering. In general we can think of more structured preferences in a soci-
ety, parametrised by the length of the preference list (k) and the correlation
between the preference lists (c). In our experiments, the preference list limit
k is set to be the same for all agents. Correlated preferences are from a
global preference ordering. The degree of correlation is also the same for
all agents, but the preference ordering is not necessarily the same when
comparing two agents.

We generate the preferences using algorithm 3 with parameters k, c and
n. This algorithm is a modified version of a random permutation algorithm
from Knuth (1997a) to generate correlated preferences with parameter c.
The algorithm starts with a master list of n numbers (agents). Then it
iterates the list from beginning to end, each time at position j randomly
selecting a position q ∈ [j + 1, n] to exchange values with. The correlation
parameter c states how biased the randomly selected position is, higher
values indicate that the exchange position is selected closer to the cur-
rent position j. With c = 0.0 the selection is uniformly probable over all
positions, until finally at c = 1 the exchange position is always the active

72

Algorithm 3 Correlated permutation

Require: n, k ∈ [0, 1], c ∈ [0, 1]
Ensure: p is a permutation of unique numbers
p← 1, 2, 3, ..., n, j ← 0, l← k · n
while j < l do
r ← [0.0, 1.0] uniform random number between 0 and 1
q ← bn− (n− j) · r1−cc
t← pq, pq ← pj , pj ← t
j ← j + 1

end while
return {p1, p2, ..., pl}

0 1 2 3 4 5 6 7 8 9

● ●● ● ●

●
●●

●● ● ●●
●

● ● ● ● ●
●

●
●

●
●

●
● ●●

●

● ●●

●
●

●
●

●

●

●● ●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
● ●●● ●

●
● ●

● ● ●● ● ●●
●

● ●
●

●

●
●● ●

●

●
●

●

●

●
●

●
●

●
● ●

●

● ●
●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
● ●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
● ●● ●

●
● ●●

●
●

●
● ● ●●

●
●● ●

●
●

●
●

●

●
●●

● ●
●

● ●
●

●

● ●
●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●
●

●●● ●● ●
●

●● ●●●
●

●
●

●

●
●

● ●
●

●●
●

●
●● ●

●

● ●
●● ●●

●● ●

●

● ●
●

●
●

●● ●
●●●●

●
●● ●

●

●

●●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ● ●●

●
●

●●
●●●● ●
●● ●

●●●
●

●●
●●●

●
●

●
● ●

●
●●

●
●

●
●

●
●●

●
●● ●

●

●●●

●

●●

●
●

● ● ●● ●

●

●

●
●

●●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

● ●
●

●●

●
●

●

●

●

●

●

●

●

●● ●● ●●
●

●
●

●●● ●● ●
●●●

● ●●● ●●
●● ●

●
● ●

●

●
●

●●●
● ●●

● ● ●

●

●

●

●
●

●●
● ●● ●

●

●
●

●

●●

●● ●●

●

●
●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

● ●

●

●

●

● ●

●

●
●

● ●
● ●●● ●● ●● ●● ● ●●

●
● ●●

●●●● ●
●

● ●
●●

●

●
●

●
●

● ●

●
●● ●

●●●

●

●●

● ●

●

●

●

●
●

●

●

●
● ●

●

●●
●

●

● ●

●

●● ●

●

●●●

●

● ●
●

●● ●●

●

●

●

●

●

●

● ● ●

●

● ●

● ●

●

●● ● ●
● ● ●●●

●
●● ●

●
●

●●
●

●
●● ●●

● ●●
●● ●● ●●

●●
● ●● ●

●
●●● ●● ●

●
● ●

●●

●

●

● ●● ●
●●

●

●
●

●
●●● ●

●

●
●

●

●

●

●
●● ● ●

●

●

●

● ●
●

●

●

● ●

●

●

●

● ●

●

●

●●

●

●● ● ● ●●
●

●
● ●●● ● ● ●●

●
●

● ●
●

●
●

●● ● ●●● ●

●

●●●
●

● ●
●

●

●●

●
●

●
● ●

●
●●

●
●

● ●●

●

●●
● ●●

●

●

●
●

●

●
●

●
●

●
●●

●
●

●

●
● ● ● ●

●

●

● ●
●

●●
●

●● ●

●

●

●

●
●

●
●

●
●●●

●
●●

●
●●

● ●
● ●

●

●● ●

●

● ●
● ●● ●●

●
●● ● ●●

●

●●●
●● ●● ●

●

●
●

●
●

●● ● ●

●

●

●

● ● ●
● ● ●

●

●

●

●●
●

●●

●

● ●●●
●

●

● ●● ●

●

●
●●

●

●

●

0%

25%

50%

75%

100%

0.0 2.5 5.0 7.5 0.0 2.5 5.0 7.5 0.0 2.5 5.0 7.5 0.0 2.5 5.0 7.5 0.0 2.5 5.0 7.5 0.0 2.5 5.0 7.5 0.0 2.5 5.0 7.5 0.0 2.5 5.0 7.5 0.0 2.5 5.0 7.5 0.0 2.5 5.0 7.5
Value in position

P
ro

ba
bi

lit
y

Correlation (c)

●

●

●

●

●

●

●

●

●

●

●

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Position value probabilities

Figure 2.2: Preference probabilities with degrees of correlation

position and all the generated lists are exactly the same. There is one global
ordering of agents for each side of the market that is used for generating
correlated preferences.

The power of uniform distribution U1−c used to randomly select the
exchange positions while generating the correlated preference list is pro-
portional to the Beta distribution with parameters Beta(1

1−c , 1) ∼ U1−c.
In Figure 2.2, we see the probabilities of having a particular value at some
position in a list of 10 values between 0 and 9. Each box is a position in a
list and displays the probability of having a certain value in that position.
We see that when c = 1.0 then all positions have a 100% probability of
having the same value and when c = 0.0 then all values in any position are
uniformly probable.

In Figure 2.3, we compute for comparison the mean Spearman ρ and
Kendall τ correlation coefficients over all the preference lists. We compute
two types of means over the correlation coefficients, first compared to the
initial global ordering and then a mean over pairwise correlations among
a random sample of preference lists. We see that the pairwise means are
always below when compared to the correlation with the global ordering.
This is because although all the preferences are a similar distance from the
global list, the generated lists might still be far from each other, i.e. have a

73

●

●

●

●

●

●

●

●

●

●

●

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Correlaction (c)

M
ea

n
m

et
ric

 v
al

ue Metric

●●●● Kendall

Kendall pairwise

Spearman

Spearman pairwise

Correlation metrics comparison

Figure 2.3: Spearman ρ and Kendall τ of generated preferences

lower correlation. That is the case with small degrees of correlation. Still,
when the correlation c = 1.0 all the lists are exactly the same and the ρ
and τ values are also 1.0.

In reality, the limit of the preference list might be due to skill mismatch
in position requirements and for agents based on utility. Similar limitations
on the length of preferences have been studied in Zhang (2001) and Laureti
and Zhang (2003). We consider the preferences to be “known” to the agents
only in terms of the behaviour model employed. So, for example, in the
Better proposal model, agents would select a random proposal that is an
improvement over their current match, but it might not be their most
preferred match.

We do not study societies where, in general, positions and workers might
have aligned preferences as in Niederle and Yariv (2009). High correlations
between preference lists are usually driven by people receiving similar in-
formation about alternatives and also due to similar value systems. It is
observed by Roth and Peranson (1999) that high correlations limit the
size of the core of stable matchings. Certain aspects of correlation have
been investigated by Biró and Norman (2012) that looks at fully correlated
preference lists by varying the length of preference lists and its effect on
convergence to stability.

There have been additional studies on the effect of correlation. Gen-
erally, correlation is defined as the agent’s utility function in the form
uai(bj) = β · ξ(bj) + ξai(bj) (Ashlagi et al., 2013a; Caldarelli and Capocci,

74

●

●

●
●●

●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●

●●●
●●●

●

●

●
●●

●●
●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●

●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●

●

●●●
●●

●●●●
●●●●●

●●●●
●●●●●●●●●

●●●●●●●●
●●●●

●
●●●

●●●●●●●●●●●
●●●●

●●●●
●
●●●●●●●

●●●●●●
●
●●●●

●
●●●

●●●●
●●

●●●●●●●
●●●●

●
●●●●●●●●●●

●●
●
●
●●●●●●●

●●
●●●●

●●
●●

●
●●●●

●●●●●●●●●
●
●●●●●●●●●●

●●●●●●●●●●●●●
●●●

●
●●●●●●●●●●●

●●
●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●
●●●●

●●●●●●●●●●
●●●

●●●●●●●●●●●
●●●●●

●●●●●
●●

●●●●
●●●●●●●

●
●●

●●●
●●

●●●
●
●●

●●●●●
●●●●●

●

●

●●
●●●

●●●●●
●●●

●●●●●●●●
●●

●●●●●●●●●●●●●
●
●
●●●●●●

●
●●●●●●●

●●●●
●●●●●●●●●●

●●●●●●●
●●●●●

●
●●●●●●●●

●●●
●●

●●●●●●●●●●●●●●
●●

●●●●●●●●●
●●●●●

●●●●●●
●●●●●●●●●●●

●●●
●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●

●
●●●●

●
●
●
●●●

●
●
●
●●●●

●
●
●●

●●
●
●●●●●●●●●●●●

●
●●●

●
●
●
●●●●●●●●●●

●●●
●
●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●
●
●●●●

●●●
●●

●●●●●
●
●●●●●

●●●
●●

●

●

●

●
●●●

●●
●●●●●●●

●●●●
●●●●●

●
●
●●●●

●
●●●●●

●●●●●●●●●●●●●●
●
●●

●
●●

●●●●●●
●●●●●●●

●●●●●●●●●●●●
●●

●●●●●
●●

●
●●●●●

●●●
●●●●●●●●●

●●●
●
●●●●●●

●
●●●

●
●●

●●●●●●
●
●●

●●●●●
●●●

●
●●

●●●●●●
●●●●●●●●●●

●●●●
●●●

●●●
●
●●●●

●●●●
●
●●

●●●●●●●●●●●●●●
●
●
●
●●●●●●●

●●●●
●●●●●●

●●●●
●●●●●●●

●
●●●

●●●●●●●●●●●
●
●

●
●●

●●
●●

●●●●●●●●●
●●●●●●●●●●●

●●
●●

●●
●●●●●●●●

●
●●

●
●●●●●●●●●●

●

●

●●●●●
●
●●

●
●●●●

●●●●
●●●●●

●●●●●●
●

●●
●
●
●●●●

●
●●●●●

●
●●●●

●●●●●●●
●●●●●●●●

●●●●
●●●●●●●●

●●●●●●●●●●●●●●●
●●●●

●●●●
●●●●

●●●●●●
●●●

●
●●●●●

●●
●●●●●●●●●●●

●
●

●●●
●●●●●●●●●●●●

●●●●●●●●●●●
●
●●

●●●●●
●●

●●●●
●
●●●

●●●●●●●●
●
●●●●●●

●
●●

●●●●●●●
●
●●●●●●●

●●●
●●●●

●●●●
●
●
●●

●●
●●●●●●●●●●●●

●●●
●●●●

●
●●●●●

●●
●
●●●●●

●
●●●●●

●
●●

●●●●●●
●●●●●●●●●

●
●●●

●●●●●●
●●●

●●

●

●

●
●●

●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●

●

●

●
●
●●

●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●
●●●

●

●

●
●●●●●●●●●

●●●●●●●●●●●●●●
●
●●

●●●
●●●●●

●●●
●●●●●●●●●●

●●
●●●●●●●●

●

●
●●●●●●●●●●●

●●●●●●●●●●●●●
●●

●●●●●●●●●
●●●●●●

●●
●●

●●●●●●●●
●
●●

●●●●●
●●●●●●●●●●●●●●

●
●●●

●
●●

●●●●●
●●●●●

●●●●●●
●●●●●●

●●●
●
●●●●●●●●●●●●

●●
●
●●●

●
●
●●●●●●●●●●

●
●●●●●●●●●

●●●●●
●
●●●●●●●●

●●●●●●●●●●●●●
●●●●●●

●●●●●●●●●
●●●●●●●●

●●●●●●●●●
●●●●●●●

●●●●●●●●●
●
●
●●●●●

●●●●●●●
●

●

●

●
●●●●

●●●●●●
●●●●●●●●

●
●
●●●●●●●●●●

●
●
●
●●●●●●

●●●
●
●
●●●

●●●●
●
●
●●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●●

●●●
●●●●

●
●●●●

●●●●●●●●●●●●●●
●
●●●●

●●●
●
●●●●●

●●
●●●●●●

●●●●●●
●
●●●●●●●

●●●●●●●●
●●

●●●
●
●●●●●●●●●●●●●

●●●●●●●●
●●●●●●●

●●●●●
●●●●

●●●●
●●●●●●●

●●●
●●●●●●●●●●

●●●●●●●●●
●●

●●●●●●●
●●

●
●●●●●●●●●●●●●●

●
●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●

●●●
●●●●●●●●●

●

●

●
●●●●●●●

●
●●●

●●
●●●●●●●●●●●●●

●
●●●●

●
●●●

●●●
●●●●●●●

●
●
●●●●●

●●
●●●

●●●●●●
●●●●●●●●●●

●
●

●
●●●●●●●●

●●
●
●●

●
●
●●●●●●

●●●●●●●●●●
●●●●●●●

●●●●●●●
●
●●●

●
●●●

●●●●●●●
●

●
●●●●●●

●●●●●●●●●●
●●●●●●●●

●
●●●

●●●●●●
●●●●●●●●●●●

●
●●

●
●●●

●
●
●
●●

●●●●
●●●●●●●●

●●●●●●●●●●
●●

●●●●●●
●●●●●●●●●●●●●●●●●●

●
●●

●
●●

●●●●●●●●●●●●
●
●
●●●●●●

●
●●●

●●●●●
●●

●●
●●●●●●●

●●●●●●
●●

●

●

●●●●●●●●●●
●●●●●●

●●●
●●●

●●
●●

●●
●
●●●●●●●●

●●●●●●●●●
●●●●●●●●●●

●
●●

●●●●●●●●●●●
●
●
●●●●●

●●●●●●●●●●
●
●●●●●●●●●

●●
●●●●

●
●●●●●●●●●●●

●●●●●
●●

●●●●●●●●●●●●●●
●●●

●●●●
●●

●●
●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●

●
●●●●●

●
●
●
●●

●●●●●●●●●●●
●●

●
●●●●●●●●●

●
●●●●●

●
●●●●●

●●●●●
●●

●

●
●●●●●●

●●●
●●●

●
●●●●●●●●●●

●●●●●●●●●●
●
●●●

●●●●●
●●●●●●●●●

●
●●

●●●●●●●●
●●●

●

●

●
●●

●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●
●●

●●
●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●
●●●●

●●●●●●●
●●●

●●
●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●
●●

●●●●●●●●●●
●
●●●●●

●●●●●●●●●●●●●●
●●●

●
●
●
●●●●●●●●●●●●●●●

●●●●●●●●●
●●●●●

●●
●
●●●

●●
●●

●●
●●●

●●●
●●●●●●●

●●●●●●●●●●●
●●●●

●
●●

●●
●●●●●●

●●●●●●●
●●●●●●●●●●●

●
●
●●●●●●●

●
●●

●●●●●●●●●●
●●●●●●●●●

●
●●●●●●

●●●●●●
●
●●●●●●●●●

●●
●●

●●●●●●●●●●
●●●●●●●●●●●●●

●
●
●
●●

●●●●●
●●

●●●●●●
●
●●●●●●

●
●●●●●●●

●

●

●●
●●●●●

●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●
●●●

●●●●●●●●●●
●●●●●●●

●●●●●
●
●●

●●●
●●●●●●●●●●●●●●●●●

●●●
●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●

●●●●●●●●
●●

●●●●●
●●

●●●●
●●●●●●●●

●●●●●●●●●●●●●
●●●

●●
●●●●●

●●●●●
●●●●●●●●

●●●●
●●●●●●●●●

●
●●●●●●●●●●●

●●●
●●●●

●●●●
●●●

●●●●●●
●
●●●●●

●●●●●●●●●●●●●●●
●
●
●
●●●●●●●●●●●●

●●●●●●●

●

●

●
●●●●●●●

●
●●●●●

●●●●●●●●●
●●●●●●●●●

●●●●●●
●
●
●●●●●●

●
●●●●●●●●●●●●●

●●
●●

●●●●
●●●●●●

●●●
●●●●●●

●●●●●●●●●●●●●●
●●

●
●●●●●●

●
●
●
●●

●
●
●●●●●●●●●

●●●●
●
●●●

●●●●●●●
●●●

●
●
●●

●●●●●●●●●
●●●

●●
●
●●

●
●
●●●

●●●●
●●●●●

●
●●●●

●
●●●●

●
●
●
●●●●●●●

●●●●●
●●

●●●

●
●●●●●

●
●●●

●
●
●

●
●●●●●●

●●●●
●●

●●●●●●●●●●●●●●
●
●
●●●●●●

●●●●●●●●●
●●●

●
●
●
●●●

●
●●

●●●
●
●●●●●●●●●●●●

●●●●
●●●●

●

●

●●●●●●●
●●●●●

●●
●
●
●
●●●●●●

●
●
●●●●●●

●●●●●●●
●●●●●●●●●

●
●●●

●●●●
●
●●

●●●●●●●●●
●●

●
●●●●●●●

●●●
●●

●●●
●●

●●
●
●●

●●●●●●
●●●●●●●●●

●●●●
●
●
●
●●

●●●●
●●

●
●●●●●●●●●

●●●●●●●
●●●●●●

●●●
●●

●●●●●●
●●●●●●●●●●●●●●

●●●●●●●
●●

●
●●

●●●●●
●●●●●●

●
●●●●●

●
●●

●
●●●

●
●
●
●
●
●●

●
●●●●●●●●

●
●●

●●●●
●
●●

●●●●●●●●●●●●
●
●
●
●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●

●
●●

●

●

●

●
●●

●●●●●
●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●

●●
●●●

●

●

●
●
●●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●
●●

●●
●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●●
●●●●●

●●
●●●●●●●●●

●●●
●●●●●●●●●

●●●●●●●●
●●●●

●
●●

●
●●●

●
●●●●●●●

●●
●
●●●●●●●●●●●●●●●●●

●●●●●●●●
●
●●●●●●

●●●●●●●●●●
●●●●

●●●●●
●●●●●●●

●
●●●●●●●

●●●●
●●●

●●
●●●●●●●●●●●●

●
●
●
●●

●●●●●
●●●●●

●
●●●●●●●●●

●
●●

●●●●●●●●●●●●●●●●
●●●●●●

●●●●●
●●●●●

●●●●●●●●●●
●
●
●●●●●●●●●●●●●

●●●●
●
●
●●●●●●●

●●●●●●●●●●
●●●

●●●●
●●

●
●●●●

●
●
●●●●●●●●

●
●●●●●●●●●●●●

●●●●

●

●

●
●●●

●
●
●
●
●●●●●●

●●
●●●

●
●
●●●●●●

●●●●●●●●●
●
●●●●●●●●●●●●●●●

●●●●
●●●●●●●●●

●●●●●●
●
●●

●
●●●●●●●●●●

●●●●●
●●●

●●●
●
●●●●●●●●●●●●

●●●●●●●●
●
●●●●●●●

●●●●●●●
●●

●●
●●

●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●
●
●●●●●●●

●●●●●●
●●●

●
●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●

●●●●●●●●●●
●●●●●●

●●
●●

●●
●●

●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●
●●●●●●●●●●

●●●●

●

●
●

●●●●
●
●●●●●●●●

●●
●
●●●●

●●
●
●●●●●●●

●●●●●●●●
●●●●●●●

●
●●

●●
●
●●

●
●●●●●●●●

●●●●●●●●●
●●●●

●●●●●●
●●●●●●●●●●●●●●

●●●
●●

●●●●●●●
●●

●
●●●●●●●●●

●●●●●●●●●
●●

●●●
●●●●●

●●●●●●●●●●
●●●●●●●

●●●●●●●●●●●
●
●●●●●●●

●●●●●●●●
●
●●

●●
●
●
●●●●●●●●●●●●●●

●●●●
●●

●●
●●●●●●●●●●●●●●●

●●●●●●●●
●●

●●●●
●●●●●●

●●●●●●●●
●●●●●●

●●●●●
●●

●
●
●●●●●

●
●
●
●●●●●●

●●●●●●
●●●●●●

●●

●

●

●●●●
●●●

●
●
●
●●●●●●●●●●●●

●●●●●●●●●
●●

●●●
●●●●●

●
●
●
●●

●●●●
●
●●●●

●●●●●●
●
●●●●

●●●●●
●
●
●
●●●●●●●●●●●

●●●●
●●●

●
●
●
●●●●●

●
●●●●●●

●●
●●●●●●●●●●●

●●●●
●●●●●●●●●●●

●●●●
●
●
●
●●●●●●

●●●●●●●●●●●
●
●●●●●●●●●●

●●●●●●●
●
●●●●●

●
●
●●●●●●●●●●●●●●

●●●
●
●●●●●●

●●●●
●
●●●●●

●●●●●
●
●●

●●●●●●●●
●●●●●●●●●●

●●●
●●●●●●●●●●●●●●●

●●●●●
●
●●●●

●●●●●●●●●
●●●●●●●●●●●●

●●●●

●

●

●
●●●●

●●●●●●●
●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●

●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●

●●●●●●●●●●●●

●

●

●
●
●●●

●●●●
●●●●●●

●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●

●●●
●●

●

●

●
●●●

●●●●●
●●

●
●●

●●
●●●

●●●
●●

●
●●

●●●●●●●
●
●●●●●●

●●●●
●●●●●●●●●●●●

●●
●●

●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●
●●●●●●●●

●●●●●●
●●●●●●

●
●●

●
●●●●●●●●●

●
●
●●

●●●●
●●●●●●●●

●●
●●●●●●●●●

●●●●●●●●●
●●●●

●●●●●●
●
●
●
●●●●●●●●●●

●●●●●
●●●●●●●●●●●●●

●●●●●●●●●
●
●●●●

●●
●
●●●●●

●
●●●●●●●

●
●●●

●●●
●●●●

●●●●●
●
●
●●●●●●●

●●●●●●●
●●●●●●●●●●

●●●●
●●●●●●●●●●●●●

●●●●●●●●●

●

●

●●
●●●

●
●●●

●●●●●●●
●●

●●●●●
●●●

●●●●●
●●

●●●●●●●●●●
●●●●

●●●●●●●●●
●●●●●●●●●●●●

●●●
●
●●●●

●●●●●●
●●●

●
●●

●●●●●●●●
●●●●

●
●
●●●●

●●●●
●●●●●●●●

●●●●
●●

●
●●●●●●●●●●●●

●●
●
●●

●●●●
●
●●●

●●●●●
●●●●●●●●

●●●●
●●●●●

●●
●●●●●●

●●●●●●●●●●●●●
●●●●

●
●●●●●●

●●●●●●●
●
●●●●●

●●●●●
●●●●

●
●●●

●●●●●●
●●●●●●●●●

●●
●●●

●●●●●●●●●●
●●●●●●

●●●●●●
●
●●●

●●●●●●●●●●
●●

●●●●●●●●●●

●

●

●
●
●●

●●●●●●●
●●●●

●●●
●
●●●●

●
●●

●●●
●●●●

●
●
●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●

●●●
●
●●●●●●●●●●●

●●●●●●●
●●●●●●●

●
●●

●●●●●
●●●●●

●
●●●

●●
●
●●●

●●●●●
●
●●●●●●

●●●●●●
●
●●●●

●●●●●●●●●●
●
●
●●●●●

●●●●
●●

●●●●
●●●●●●

●●
●
●●●●●

●●●●●●●●●●●●●
●
●
●
●●●

●●
●
●●●●●●●●●●

●●●
●●●●

●
●●●●●●

●●●●●
●
●●●●●●●●

●●●●●●●●●
●●●●●●●●

●
●
●●

●●
●
●
●●

●●●●●●●●●●●●●●●●●
●
●
●●●●●●●●●●

●●
●

●

●

●●
●●●●●●●●

●
●●●●●

●
●●

●
●●●●●●●●●

●●●●
●●●●●●●●●●

●●●
●
●●●●●●●●

●
●
●●

●●●●●
●●●

●●●●●●●●
●●●●●●

●●●●
●
●●●●●●

●
●●

●●●●
●●

●●●●●
●●●●●●●●●●●●●●

●●●●
●●

●●●
●●

●●
●
●
●●

●●
●●●●

●
●
●●●●●●●●●●●

●●●●●
●
●●●

●●
●●●●●●●

●●●●●●
●●●●●●●●●

●●●●●●●●
●●●●●●●●●●

●●
●
●
●
●
●●●

●●●●●●●
●●●●●●

●●●
●
●●●●●

●●
●●●●●

●
●●

●●●●
●
●●●●

●
●●●●●

●●●
●●

●●●
●●●●●●●●●●●●●●

●
●
●
●
●●●●●●

●
●●

●

●

●
●●

●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●

●

●
●
●●●

●●●●●●
●●●●●●●●●●●

●●●
●●●●●●●●●●●●●●●●●●

●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●
●●●

●●●●
●●

●●●●●●●●●●●●
●●●●●●

●●
●
●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●

●●●●●●●●●●●●●●
●●●●●●●

●●●●●
●●●

●
●●●●●●●●●

●●
●●●

●
●●●●●●●●●●●●

●●●●●●
●
●●●

●●●●●●●
●●●●●●●●●●●●●●●●●●

●
●●

●●●●●●●●●●●
●●●●●●●●●●●●●

●
●●

●●
●
●
●●●●●●

●●●
●●●●●

●
●
●●

●●
●●

●●●●●●●●●
●●●●●

●●●●●
●●●

●●●●
●●●●●●●●●●

●●●
●
●●

●●●●●●
●●●

●
●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●

●●
●●●●

●●

●

●

●●
●●●●●

●●●●●●●
●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●

●
●
●
●●●●

●●
●
●●●●●●●●●●

●●
●
●●●●●●●●

●●●●
●●●●●●●

●●●●●●●●●
●
●●

●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●
●
●●●●●

●●●●●●
●●●●●●●●●●●●●●

●
●
●
●●●

●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●
●●●●●●●●●

●
●●●●

●●●●●●
●
●●●●●●

●●●●●●●●●●●●●
●●●●●

●●●●●●●●●●●●
●●●

●
●●●●●●●

●●●●●●
●
●
●●●●●●●●

●
●●●●●●

●
●
●
●●●●●

●

●
●
●●

●●●●●●●
●
●●●●●●

●●●●●●●
●

●●
●●●●●●●●●●●●●●●●

●●
●●

●
●
●
●●●

●●
●
●
●●

●
●●●●●●●

●●
●●●●●●●

●
●●

●
●●

●
●
●●●●●●●●●●●●●●

●●●●
●
●
●
●●●

●●●●●
●●●●●●●

●●●
●
●●●

●●●●●●
●
●●

●●●●
●
●●●●

●
●●●●●●●

●●●●●●
●
●●

●●●
●
●●●●●

●
●●

●●●●●
●●●

●
●
●
●
●●●●●

●●
●●

●●●●●●●●●●●●●●●●●
●●●

●●●●●
●●

●●●●●●●●●●●
●●●

●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●
●
●●

●●●

●

●
●●●●

●●●●
●●●●●

●
●●●●

●
●
●●●

●
●●●●●●

●●●
●
●●●●

●●
●●●

●
●●●

●●●●●●●●●●●●●●
●●●●●

●●●●●
●
●●●●●●●●

●●●●
●●●

●●●●●●●●●●
●
●●●●●●●

●●●●●
●●●●●●●●●●

●
●
●●●●●

●
●
●●●

●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●

●●●●●
●●●●●●●●●●●●●●

●
●
●
●●

●
●●●●●●●●●

●
●●●●

●●
●●●●●●

●●●●
●
●●

●●●●●●●●●●
●●●●●●

●●●●
●●●●●

●
●●

●●●●●
●
●
●●●●●●●

●●●●●
●●●●●

●●●●●●●
●●●

●
●●●●

●

●●
●●●●●●●

●
●●●

●

●

●
●●●

●●●●●●●●●●
●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●●●●●●

●●●
●●

●●

●

●

●
●●

●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●
●●

●

●

●●
●●

●
●
●●●●

●●●●●●
●●●●●●

●●
●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●

●●●
●●●●●

●●
●●

●
●
●●●●●●●

●
●●●●

●●●●●●
●●●

●
●
●
●●●●●●●●●

●●●●●●●●
●●●●●

●
●●●●●

●●●●
●●●●●●●

●●●●●●
●●●●●●●

●●●●●●●●
●●●●●●

●
●●●●

●●
●●

●●
●●●●●●

●●●●●●●
●●

●●●
●●

●●●●●●●●●
●●●●

●●●●●●
●●

●●●●
●
●
●●●●●●●●●●

●●●●●●●●●●●
●●●●●

●●●●●●●●●●
●●●●●●●●

●●
●●●●●●

●●●●●●●
●●●●●●●●●●●

●●●●●●●
●●●●●●

●

●

●

●●
●●●●●

●●●●●●●●
●●●●●●●

●●●●●
●
●●●●●●●●●

●●●●●●●●●●●
●●●●●●

●●●
●
●●●

●●●●●●●●●●●●●●●
●●●●

●
●
●●

●●●●●●●●
●●

●●
●●

●●●●●●●●
●
●●●●

●●●●●●●●●●●
●●●●●●●●●●

●●●●●●
●●●●●●

●
●●

●●●●●●●●●●●●●●●●
●●●●

●
●●●

●●
●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●●

●
●●●●

●
●●●●●

●
●
●
●●

●●●●●●
●●●●

●
●●●●●●

●●●●●●●●●●
●
●
●●●●●●

●●●●●●●●
●
●●●●●●

●●●●

●

●

●
●●●●●●

●●●●●●
●●●●●●●

●●●●●●
●
●●●●

●●●●●
●
●●

●●
●●●●●●●●

●●●●●●
●
●●

●●
●
●●●●

●●●●●●●●●
●
●●●●●

●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●
●●

●
●●

●
●●●●●

●●●
●
●●●

●
●●●

●
●
●
●●●●

●●
●●●●●●

●●
●●●●●

●
●
●●●

●
●
●●

●●●●●●
●●

●●●●●●●●●●●
●●●●●●●●●●●●

●●
●●

●●
●●●●●●●

●●
●
●●

●
●●●●●●●

●●
●●

●●●●●●●●●●●
●●●●●●

●●●●●●●
●●

●●
●●

●●●
●
●●●●●

●●
●●

●
●●●●

●●●●●●●
●●

●
●●●●●●●●●

●●●●

●

●
●
●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●

●●●
●●

●
●●●●●

●●●●●●●
●●●●●●

●●●●●●●
●
●
●●●●●●●●●●●

●●●●●●●●
●●●●

●
●●●

●●●●●●●●
●●●●●

●●●●●●●●●
●●●●

●
●●●

●●●
●●●●

●
●●●●●●●●●

●●●●●
●
●
●
●●●

●●●
●
●
●●●●

●
●●●●●●

●●●●●
●●●●

●
●●●●●●●

●●
●
●●●●●

●●●●●●
●●●●●

●●●●●●●
●●●●●●●●●●●●

●●●●●●●
●
●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●

●●●●●
●●

●
●
●●●●●

●●●●●●●●●●●●●
●●●●

●●●●●●●

●

●

●
●
●●●●

●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●

●

●

●
●
●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●
●●

●●

●

●

●●●
●
●
●
●●

●●●●●●●●
●●

●●●
●●●●

●●●●
●
●
●●●●●

●
●
●●●●●●

●●●●●●
●●●●●●●

●●
●
●●●●●●●●●

●●●
●
●●

●
●●

●●●●●●●●●
●●

●●●●●●●●●●●●●
●●

●●●
●●●●●●●

●●●●●
●
●
●●●●●●●●●

●●
●●●●●●●●

●
●●●●●●●●●●●●●●

●●●●●●
●●●●

●●
●●●●●

●
●●●●●●●●

●●●●●
●●●●●●●●

●
●●●

●
●●●●

●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●
●●●●●●●●

●●●●●●●●●●●
●
●
●
●●●●●●●●

●●
●●●●

●
●●●●●●●●●●

●●●
●●●●

●
●●●●●●●

●●●●

●

●

●
●●●●●

●●●●●●
●
●●●●●●●●●

●
●
●
●●●●●

●●●
●●●

●
●●

●●●●●●●
●
●●

●●●●●●●●●
●●

●●●●●●●●●
●●●●●

●●●●●●●
●●

●●●●●●●●
●●●

●●
●
●●●

●
●●

●●●●●●●●●●
●●●●●●●

●●
●●

●●
●●●●●●●●

●●●●●●
●
●●

●●●●●●●●●●
●
●●●●

●●●●●●●●●
●●●●●●

●●
●●●●●●

●●
●●●

●●●●●●●
●●●●●●●

●●●●●●●●●
●
●●●●●●

●
●●●

●●●
●
●●●●●●●●●●

●●●●
●●

●●●●
●●

●●●●●
●●●

●●●●
●
●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●●●●●●●

●●●●

●

●

●●
●●●●

●●●●●●●●●●●●
●●●

●
●●●●●●●

●●
●●

●●●
●
●●●●●●

●●●●
●●

●●●
●●●●●

●●●●
●●

●●●●●
●
●●

●
●●●●●

●●●●●
●●

●
●●●●●●

●
●●

●●●●
●●●●

●●●●●●
●●●

●●●
●●

●
●●●●●●●●

●●●●●●●●●
●●●●●●●●●

●●●●●●●●●●●
●●●●●●●

●●●●
●
●●●●●

●
●●

●
●●●

●●
●●●

●●●●●●●●●●
●

●●
●●●●●●●●●

●●●
●●

●
●●

●●
●●●●●●●●●●●●●

●
●●●●●●●

●●●●●●●●●●●
●
●●●●●●●

●●●●
●●●

●
●●●●●●●●●●●

●●
●
●●●●●●●●

●●●●●
●●

●
●
●●

●●

●

●
●
●●●●●●●●

●●●●●●
●●●●●●●●

●●●●●●●●●
●
●
●●

●
●●●●●

●
●●

●
●●

●
●●●●●●●●●●●●

●●
●
●●●●

●●●●●●●●●●●
●●●●●●

●
●
●●●●●●

●●●●●●●●
●●●

●●●●●
●
●●●●

●
●
●●●●

●
●
●●

●●●
●●●●●

●
●
●●

●●●●
●●●●●●

●●●
●

●
●
●●●●●●

●●●●
●
●
●●

●
●●

●
●
●●●●

●●●●●●●●●●●●
●●●●

●
●●●●

●●●●●●●●
●
●●●●●●●●

●
●
●●●●●●●●

●●●●●
●●●●●●

●●
●●●

●●●●●●
●●●

●●●●●●
●●

●●
●●●●●●●●●

●●●●●●●
●●●●●

●●●●●●●●●●●●
●
●●●●●●

●

●

●
●
●
●●●

●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●

●●
●●

●

●

●
●●●●●●

●●●●●
●●●●●●●●●●

●●●
●●●

●●●●●●●●●●●●●●●●●●●●

●

●

●

●●●
●●●●

●●●●●●●
●●●●

●
●●●●●

●●●●●●●●●●●
●●●●●●●●

●●●
●
●●

●
●●●●●●●●

●●●●●●●●●●●●●●
●●●

●●●●●
●●●●●●

●●●●●●●●●
●
●●

●
●●●●●●

●
●●●

●
●●●●●●●

●●●
●●●●●●●●●●●●●●

●●●●
●
●●

●●●●●●●●
●●●●●●●

●
●●

●●●●
●●●●●●●●●●●

●●●●●
●
●●●●

●
●●●●●

●●●●●●●●●●
●●●●●●●●●●●●●

●
●●●●●●●

●●●●●
●●●●●●●●●●

●●●●
●●●●●●●●●●●●●

●●●●●●●
●●●

●
●●

●●●●●
●●●●

●
●
●●

●●●
●●●●●●●●●●

●●●●●

●

●

●
●●●

●●●●
●●●●●●●●●●●●●●●●●

●●●
●●●

●
●●●

●●●
●
●●●●●●●●

●
●●●●●

●●●●●●●●●●●
●●●●●●●

●●●●●●●●
●
●●●●●●●

●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●
●
●●●

●●●●●●●●●
●
●●

●●●●●●●●
●●●●●

●
●●●●●

●●
●●●●●●

●
●●●

●●
●
●●●●●●

●●●●●
●
●●●●●●●●●●

●
●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●
●
●●●●●●●

●●●●
●●●

●
●●●●●

●●●●●●●●●●
●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●

●

●

●
●●●●●●●●●●●●●●

●
●●●●●

●●●●●
●
●
●●●

●●●●
●
●●●●●●●●

●●●●●●●
●
●●●●

●
●●●●

●●●●●●●●●
●
●●

●
●●

●
●●●●●●●●●●●●●

●
●●●●●

●
●
●●

●●●●
●●●●

●
●
●●●●●

●●
●
●
●●

●
●●

●
●
●●●●

●
●●●●●●●●●●

●
●●●●●●●●

●●●●●●●●
●●●●●●●●●●

●
●●●●●●●●●●●●

●
●●●●●●

●●●●●●
●●

●●
●●●

●●●●●●●●●
●
●●●●

●
●●

●●
●●●

●●●●●●●●●●●●●
●●●●●●●●

●●●●
●
●●●●●●●●●

●●●●●●
●●●●●●

●●
●
●
●
●●●●●

●●●
●
●●●

●●
●●

●●
●●●●●

●

●

●●●
●●●●●

●●
●●●●●●●●●●

●●●●
●●●●●

●●●●●●
●
●●●●●

●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●●
●●

●●
●●●●●●●●

●●●●●●●●●●●●●●
●●●

●
●●

●●●●●●●
●●●●●●

●●●●●●
●
●●●●●

●
●
●●●●●●●

●●●●●●●●
●●●●●●●●●

●●●●●●
●●●

●●●●●●
●
●●●

●●●●●●●●●●●●
●●●●●

●●
●●●●●●●

●●●
●
●●

●
●●●●●●●

●
●●●

●
●●●●

●●
●●

●●●●●●
●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●

●

●

●
●
●●

●●●●
●●●●●●●●●●●●●●●●

●●●
●●●●●●●●●●●●●●●●

●●●
●●

●●

●

●

●
●●●●

●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●●●●●●●●

●●●

●

●
●

●●●●
●
●●

●●
●●●●●●●●●

●●●●●
●
●
●●●

●●●●
●
●●●●●●●●

●●
●●●

●
●
●●

●●
●●●●

●●●●●●●●●●●●
●●

●●●●
●●●●

●●●
●●●

●●
●
●●●

●●●●
●
●●●●●●●●●●●

●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●

●●●●●●●●●●
●
●●●

●●
●●●●●●

●●●●●●●●●
●●●●●●●●●●

●●●●
●●●●●●●●●●

●
●●●●●●●●●

●●●
●●●

●●●
●●●●●●●●●●●●●●

●●●●
●
●●●●●

●
●●●●●●●

●●●●●
●●●●●●●

●
●●●●

●
●●

●●●●●
●
●●●

●●●●●●●●●●●●
●●●●

●●●●●

●

●

●●●●
●●●●●●●●

●●●
●●●●

●
●●●

●
●
●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●

●●●●●●●●●●
●●●●

●●●●●●
●
●●●●

●●●●●
●●●●●●

●●●●●●●●●
●
●●●●●●●●●●●●●●●●●

●●●●
●
●●

●●●●●●●●●●
●●

●●●●●●●●●
●●●●●●●●●

●

●
●
●●

●●●●●●●●●●●●●●●●●●●
●●●●●

●
●●●●●●

●●●
●●

●●●●
●●●●

●●●●●●●●●●●●
●
●●●●●●●

●●
●●

●●●●
●●●●

●
●●

●●●●●
●●●●●

●●
●●●●●●●●●●●●●

●
●●●

●●●●●●
●●●●●●●●●●●●●●●●

●●
●

●

●

●●
●
●
●●●●●●●

●
●●

●●
●●●●

●

●
●●●●●●●●●●●●

●
●●●

●●●
●●●●●●●

●●●●
●
●●

●●●●●●●
●●●●

●
●
●
●●

●●●●
●
●●●●●●

●
●●●

●●●
●●●●●

●●●●●
●●

●
●●●

●●●●●●
●
●
●●●●●●●

●●●●●●●●
●●●●●●●●●●●●●

●
●●●●●

●●●●●●●
●●●●●●

●●●●●●
●●●●

●
●●●

●●●●●●●●●
●●●●●●●●

●●●●●●●●●●●●
●
●●

●●●
●●●●●●●●

●
●
●
●●

●●●●
●
●●●●●●●●●●●●●

●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●

●
●●●●

●
●
●●●●●●●●●●●●

●

●

●●
●●●●●

●
●●

●●●●●●●●●●
●●●●●●

●
●●

●●●●●●
●

●
●●

●●●●●●●
●
●●●●●●●●

●●●●●●●●●●●
●●●●

●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●
●
●
●●●●●●

●●●
●●

●●●●●●●
●
●●●●●

●
●
●
●●

●
●●●●

●●●●●●●●●
●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●

●●●●●●●●●
●
●
●●

●●
●●●●●●

●●●
●●●●

●
●
●●●

●
●●

●●●●●
●
●●●●●●●●●●

●
●●●●●

●

●●●●●●●●●
●●●

●●●●●
●●

●●●
●●●●●●●●●●

●
●●●

●●
●●●●●●●●●●●

●●●●●●●
●●●●●●

●

●

●

●

●●●●
●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●
●●

●●●

●

●

●
●●

●●●
●●●●●

●●●●●●●
●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●

●

●●●●●
●●●●

●●●●●
●●

●●●●●●●●●●●●●●●●
●●●

●●
●●●●●●●●●●●●

●
●●●●●●

●
●●

●
●●●

●
●
●●●

●
●●●●●●●●●●●

●
●●●●●●●●●

●
●
●●●

●
●●●●●●●●

●●
●●

●
●●●

●
●●●●●●

●●●
●
●●●●●

●
●●●●●●●●●●●

●●●
●●●

●●●●
●
●●

●●●●●
●●●

●●●●●●●
●●●

●●●●●●●●●●
●
●
●●

●
●
●●●●●●●●●●●●●●

●●●
●
●
●
●●

●
●●●●●●●

●
●●●●●●●●●

●
●●●●●

●
●●●●●●

●●●●
●●●●●●●

●●
●●●

●●●●
●●●

●●●●●●●●●●●●●●●●●●
●●●

●
●●●●●●●●●●●●●

●

●

●
●●●●

●
●●●●

●●●●●●●
●●

●
●●●●

●●●●●●●●
●●●●●●●●●●●

●●●●●●●●
●●●●●●●●●

●●●●●
●●●●

●●●●●
●●●●

●●●
●
●●●●

●●●●●●●●●●●
●●

●●
●
●●●

●
●●●●●●

●●●●●●●●●
●●●●●●●●●●

●
●●●●●●●●●●

●●●●●●●
●●●●

●
●
●●

●●
●●●●

●●●●
●
●●●●●●●●

●●●●●
●●●●●●●●●

●●●●●
●●●

●●
●
●●●●●●●●●●●●●

●
●●

●●●●
●●●●●●●●●●●●

●●●
●●

●●●●●
●
●●●●

●
●●●●

●
●●●●

●●●●●●●●●●●●●●
●●●●●

●
●
●●

●
●●

●●●●
●●

●●●●●●●●

●

●

●●●●●●
●●●●●●●●

●●●●●
●●●●●●●●

●●●●●●●
●●●●●●●●●●●●●

●●●
●●●●●●

●●●●●●●●
●●●

●●
●
●●●●●●

●
●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●
●●

●
●●●●

●
●●●●

●●●●●
●

●
●●

●●
●
●
●●●

●●●●
●
●●●●●●●●●

●●●●●●
●
●●●●

●●●●●●●●●●●●●●●●●●●
●
●

●
●●●●

●●●●●●
●
●
●
●
●●●

●
●●●●●●●

●●●●●●●
●●

●
●
●
●●●●

●●●●
●
●●●●●●●●

●●
●
●
●
●●●

●●●●●●●●●●
●●●●●●

●●
●
●●●●●●●

●
●●

●●●●●●●●
●●●●●

●●●●●

●

●

●
●●●

●●
●
●
●●●●●●●

●●
●●●●●●●●●

●
●
●
●●●●●●●●

●●●●●●●
●●●●●●●●●●●●●

●
●●●●●●●

●●●●●●●●
●
●●●●

●
●●●●

●●●●●●●
●●●●●●●

●●●
●●●

●●●●●
●●●

●●●●●●●●●●●●
●
●●●●●●●●

●
●●

●
●●●

●
●●●●●●●●●

●
●
●●●

●●●
●●●●●●●●●

●●
●●●

●●●●●●●●●●●●●●
●●●●●●●●●

●●
●●●

●●●●●●●
●
●
●
●
●
●●●●●●●

●●●●●●●
●
●●●●●●

●●●●
●●●

●
●●

●●●●●●●●●
●●●●●●●

●
●
●●

●●●
●●●●●●

●●●
●
●●●

●
●●●●●●●●

●●●●●
●●●●●●

●

●

●
●●

●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●
●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●
●
●●

●●●
●●●●●●

●●●
●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●
●●●●●

●●●●
●●●

●●
●●●●●

●●●●●●●●●
●
●
●●

●●
●
●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●

●●●
●
●●●●●●●●●●●●●

●●●●●●●●
●
●●

●●●●●●●●●●●●●
●
●●●●●●●●●

●●●●
●●●●

●
●●●●●

●●●●●●
●●●

●●●●●●●
●
●
●●

●●●●
●
●●●●●●●●●●●●●

●●
●●●

●●●●●●●
●
●●

●●●
●●

●●
●●

●●●●●
●●●●●●●●●●●●

●
●
●●●●

●●●●●
●
●●

●●●●●●●●
●●●●●

●●●●●●
●
●●●●●●●

●●
●
●●●●●●

●●
●●

●
●●●●●

●●
●
●●

●●●●●●●●●
●●●●●

●●●●●●●●●

●

●

●●
●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●

●●
●●●●●●●●●

●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●
●●

●●●●
●●●

●
●●●●●●●●

●●
●
●●●●●●●●

●●●
●
●
●●●●●●●●●

●●●●●●
●●●

●
●●

●●●
●●●●

●●●●●●●
●●●●

●
●●●●●●

●●●●●●●●●●●●●
●●

●●●●●●●●●●
●●●●●●●●

●●●●●
●●●●●●●●●

●
●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●
●
●
●●●●●●●

●●
●●●●●●

●●●●●●●●●●●●
●●●●●●

●●●●●●●●●●
●●●

●

●
●
●●●●●●●●

●
●●

●●●●●●●●
●●●●

●
●
●
●●●

●●●●●●●●●
●
●
●●●●●●●●●

●●
●
●
●
●●●●●●●●

●●
●●●●●●●

●●●
●●

●
●●●●●●●●●●●●●●

●●●●
●
●
●●●●●

●●●●●●●●●●
●
●●●

●●●
●●●●

●●
●●●

●●
●

●
●●●●

●
●
●
●●●●

●
●●

●●●●●●●●●●
●●●●●●●●●

●●●●●●●●
●●●●●●●●●●●●

●●●●●●
●
●
●●

●
●●●●●●●

●●●●●
●●●●

●
●●●●●●●

●●●
●
●●●

●●●
●
●●●●●●

●●
●●●

●
●●

●●●
●
●●●●●●●●

●●●
●
●●

●●●●●
●
●●●

●
●●●●●●●

●●●●
●●●

●
●●●●

●●●●●

●

●

●●●
●●

●●●
●●

●●●●●●●
●●●●●

●
●●●●●

●
●●●●

●●
●●●●

●
●●

●●●●●●●●
●●●

●
●●●●●●●●●

●●●
●
●●

●
●
●●●●●●●●

●●
●●

●●●●
●●●●

●●●●●●●●
●●

●●●●●●●●●●●●●
●●●●●●●●

●●●●●●●●●
●●

●●
●
●●●●●●●

●●●●●
●●

●
●●●●●●●●●●●

●●●●●
●●●●●

●●●●●●●●●●
●●●●●

●●●●●●●●●●●
●●●●●●●●●

●
●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●●●

●
●●●

●
●●●●●

●
●●●●●●

●●
●●

●
●●●●●

●●●●
●
●●

●
●●●

●

●

●
●●●

●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●

●

●
●
●●

●●●●●●●●
●●●●●●●●

●●●●●●
●●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●

●●●

●

●

●
●●●

●
●●●●●●●●

●
●●

●
●
●●●●●●

●●●●●●●●●
●●●●●●●

●
●●●●

●●●
●
●●●●●

●
●●●●

●●●●●●
●●

●
●
●
●●

●●●
●●●

●●●●●●
●
●●●●●●●

●●●●●●
●●●●●●●

●
●●●

●●●●●●
●●●

●●●●●●●●●
●
●●●●

●●
●
●●●

●●●●●●●●●●●●
●●●●●●●●●●

●●●
●●●

●●
●●●●●

●
●
●●●●●

●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●

●●●●●●
●
●●●●●●●●●●●

●●●●●●
●●●●●

●●●●●
●
●●●●

●●●●●●●
●●●●●●●

●●●●●●●●
●
●●●●●●●

●●●
●
●●●●●

●

●

●
●
●
●
●●●●

●●
●
●●●

●●●●●
●
●●●●●●●

●
●●

●
●●●●●●●

●●●●●
●●●●●●●●●●●

●●
●●●●●

●●●●●●●●●●●
●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●

●●●●●●●
●
●●●

●
●
●●●●●●

●●
●●

●●●●●●
●●●●

●●●●●●●
●●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●

●
●
●
●●●●●

●●●●●
●●●●●●●●●●●

●●●●●●●●●●●
●●

●
●●

●
●●●●●●●

●
●●

●●●●●●●●●●●●
●●●●●●●●●●

●●
●●●

●●●●●●●
●●●●●●●●

●●●●●●●●●●●●●
●●

●●
●●●●●●●●

●
●
●●

●●
●●

●●●

●

●

●●
●
●●

●●●●
●●●

●●●●●●●●●●
●●●●●

●●
●●●●●

●●●●●●●●
●●●

●●●●●●●●●
●●●

●●
●
●●●

●●
●●●●

●●●●●●●
●
●
●
●
●
●●●●

●●●●●
●●●●●●●●●●

●●●●●●●
●●

●●●●
●●

●●●●
●
●●●

●
●●●●●

●●●●●
●●●●

●●●●●●●
●●●●

●●●●
●●●●●●●●

●●●●
●●●●

●●
●●●●●●●●●●●●

●●●●●
●
●●●

●
●●●●●●

●
●
●●●●●●●●●●●●●●●

●
●●

●
●●●●●

●●●●
●●

●●
●
●
●●●●●●●●●●

●●●●●
●●

●●
●●●

●●●●
●●●●

●
●●●●●

●
●
●
●●

●
●●

●●●●●●●
●●●●●●●

●●
●
●●

●

●
●
●●●●●●●

●
●●●●●

●●●
●●

●●●
●●

●●
●●●

●
●●●●●●

●●●●●●●●●●●
●
●●●●

●
●●

●
●●

●●●
●●●●●●

●
●●●●●

●●●●●
●●

●●
●●●

●
●●

●
●●●●●●●●●●

●●
●
●
●●●●●●●●●●

●●●●●
●●●●●●●●●●●●●

●
●●

●
●●●●

●●●●
●
●●

●●
●●●●●●●●●●●

●
●●●●●●●●●

●●●●●●●
●●●

●
●●●●●

●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●
●●●●●●

●●●●●●●●●●●
●●●●●●●●

●
●●

●
●●

●
●
●●●

●●●●●●●
●●●●●●●●●

●●
●
●
●
●
●●●

●●●
●●●●

●●●●
●●●●●●●●●●●

●●

●

●

●
●
●●

●●●
●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●

●

●

●
●
●●●●

●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●
●●●

●

●

●
●●●

●
●
●●

●●
●●●●●

●●●●●●●
●
●●●●●

●●●●●●●●●●●●●
●
●●●●●

●●●●●●●●●●●
●●●●●●●●●

●●●●
●●●●●●●

●
●●●●●

●●●●●
●●

●
●●●●●●●●

●
●●●

●●●
●
●
●●●●

●
●●●●

●●●●●●●●●
●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●
●●

●
●●●

●●●●●●●●●●
●
●●●●

●
●●●●●

●
●●●●●●●

●●
●●●

●●●●●●●●
●●●●●●●●●●●●●●

●
●●

●●●●●●●●●●●●●●
●●●

●
●
●
●●

●●
●●●●●

●●●●●●●●●●
●●●●●●●●

●●●●●
●●●●

●●●
●●

●

●

●
●●●●

●●●
●●●●●●●●●●●

●●●
●●●●●●●●

●●●●
●●●●●●●●●●●●●●●●

●
●●●●

●
●●●●

●●●●●●●●●●●●●●●
●●●●●

●
●
●●●

●●●●●●●●●●●●
●●●●●●●●

●●●●
●
●●●●●

●●
●●●●●●●●●●●

●●●●●
●●●

●●●●●●
●●●●●

●●●●●●●●●●●
●
●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●

●
●●●●●●●●

●
●●

●
●●●●●●●●●●

●●●●●●●●
●●●●●●

●●●●
●●●

●
●●●

●●●●●●
●
●
●●●●●

●
●●●●

●●●●
●●●

●●●●●●●●●●●●●●●●
●●●●●

●●●●●●
●●●●●●●●

●

●

●●
●
●
●
●

●
●●

●●●●●●●●●●●
●●●●●●

●●●●●●●●
●●●●●

●●●●●●
●
●
●
●●

●●●●●●●
●
●●●●●

●●●●●●
●●●●●

●●
●
●●●●

●
●
●●●●●●●●●

●
●●

●
●●●●●●●

●●●●●●
●●●●●●●●●●

●●●
●●

●●●●
●●●●

●●●●●
●
●●●

●
●●●●●●

●●

●
●●●

●
●●

●●●●
●●●

●●
●●●●

●●●●●●●●●●

●
●
●●●●●

●●●●
●●●●●●●

●●●●●
●●●●●●●●●●

●
●●●●●●

●
●
●●●●●●●●●●●

●●●●
●●●●●●●●●●●

●●●
●
●●●●●●●●●●●●●

●
●●●

●●●●●●●●●●

●

●
●●●●●●●●●●●●

●
●
●●

●

●

●

●●●●●●
●●●●●

●
●●●●●●●●●●

●●●●●●●●●●●
●●●

●●●
●
●●●

●●●●●●
●●●

●●●●●●●●●●●
●●●●●●●●●●●

●●●
●●

●
●●●●●●

●●●●●●
●
●●●●

●
●●●●●●●●

●●●●
●
●●●●●

●
●●●●●

●●●●
●●●●●

●●●●●●
●●●●●

●●●●●●●●
●●●●●●

●●●●●
●●●●

●
●
●●●●●●●●

●●●●●●●●●●●●●
●
●●

●
●
●
●●●

●●●●●●●●●
●●●●

●
●●●

●●
●●●

●●●●●●●●●
●
●●●

●
●●●●●●●

●●●
●●

●
●●

●●
●●

●
●●●

●●●●●●●●●●●●●●
●●●●

●●●●●
●
●
●●

●●●
●
●●●●

●●●●●●●

●

●

●
●●●

●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●

●●
●●●●

●

●

●
●●●

●●●●●●
●●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●
●●●

●

●

●
●●

●●●
●●●●

●●●●●
●●●●●●

●●●●
●●●●●●

●
●●●●●●●●

●
●
●
●●●●●●●●●●●●●●

●
●
●●●●●●●●

●●●●●●●●
●●●●●●●

●●●
●●●

●●●●●
●
●●●●●●●●●

●●
●●●

●●●●●●●●●
●●●●●●●●●●●●●

●●●●
●
●●●●●●●●

●●●
●
●●●●●

●●●●●
●●●●●●●

●●●●●●●●●●●
●●●●

●
●●●

●●●●●●●●
●●●●

●●●●●●●●
●●

●●●●●●●●
●●●●●●●●●●

●●●
●
●●●●

●●●●●●●●●●●●●
●●●●

●
●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●

●
●●●●●●●●●●●●●

●●
●●●●

●

●

●●●●
●●●●●●

●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●
●●●

●●●●●●●●●●●●●
●●●●●

●●
●
●●

●●●●●●
●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●

●●●●●●●●●
●●●●●

●●●
●●●●●●

●●●●●●●●
●●●●●●●●●●●●●●

●●
●
●●●●●●●●

●●
●●●●●●●●●●●●

●●●●●
●
●●●●●●●

●●●●●●●●●
●●●

●●●●●●●●●
●
●●●

●●●●●●●●●●●
●
●●●

●
●
●●●●●●

●●●●●●●●
●●●●●●●

●●●●●●●●
●●●●●●●●●●●

●●●●
●●●●●●●●

●●●●
●●

●●●●●●●●●
●●●●●

●

●

●●
●
●
●●●●

●
●●●●●●●

●●●
●●●●

●●●●
●●●●●●

●●●●
●●●●

●
●●

●●●●●
●
●●●●

●●●●●
●●●

●●●
●
●
●●●●●●

●●●●●●●●●●
●
●
●●●●●

●●●●●●●●●●●●
●●

●●●●●●●●●●
●●●●●●

●●●
●
●●●●

●
●●●

●
●●

●●●●
●
●●●●●

●●
●
●●●●●

●●
●
●
●

●●●●●●
●
●●●

●
●●

●●
●●●●●●●●

●●●●●
●
●●●●●

●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●
●
●
●
●
●●●●●

●●●●●●●●●●
●
●●●

●●●●
●●●●●●

●●●●●●
●
●
●●

●●
●●●

●●
●●●●

●
●●●

●●●
●
●●

●●
●
●●●●●●●●

●●●

●

●

●●●
●●●●●●●●

●●
●
●●●●

●
●●●●

●●●●●●●●
●●●●●●●●●●

●●●●●●●●
●●

●
●●●

●●●●
●
●●●

●
●
●●●●●●

●●●●●●●●●
●
●●

●
●
●●●

●●
●
●●●

●●●●●●●●
●●●●

●
●●●●●

●
●
●●●●

●●●
●●●

●●
●●●

●●●
●
●●

●●●●●●●●
●●●●●●●●●

●
●
●●●●●●●●●●●●●●●

●●●●
●●

●●●●●●●
●●●●

●
●●

●●●●
●
●●●

●●●●●●●
●●

●●●●●●●●●●
●●●●●●●

●●
●●●●●●●●●●

●●●●●●●●●
●
●
●●●●

●●●●●
●●●●●●●●●

●
●
●●●●●●●●●●●

●●●●●●●●●
●
●●●●●●●●

●●
●

●

●

●●
●
●●●●●●●●●●●

●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●

●

●
●
●●

●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●
●●

●●●●●●●●●●●●●
●●

●●●

●

●

●
●●

●
●●●●●●

●●●●●
●●●

●
●
●●●

●
●●●

●●●●●●●●●●●●
●●●●●●●

●●
●●●●●

●●●●●
●
●●●●

●●●●●●
●●●●●●●

●●●●●●●
●●●●●●●●●●

●
●●●●●●●●●●●●●

●
●●●●●●●●●

●●●●●●
●●

●●●●●●●●●●
●●●●●

●●●●
●●●●●●●●●●●●●●●●●

●●●●●
●
●●●●●●●●●●●●●●●●●

●
●
●●●●

●●●●●
●
●●●●●●●

●●●●●●
●●●●●●●●●●●●

●
●
●
●●●

●
●
●●●

●●
●●●●●●●

●
●●●

●●
●
●●●●●●

●
●●●●●●●●●

●
●●

●●●
●●●●

●●●●
●●

●●●●●●
●●●●●●●●

●●
●●

●

●

●
●
●●●●●●●●

●●●●●●●●
●●●●●●●

●
●●●●●

●●●●●●●●●
●●●

●●●●●●●●●
●●●●●●●●●●●●●

●●
●●

●●●●●●●●●●
●●

●●●●●●
●●●●●●●●

●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●

●●●●●●●●●●
●
●●●

●
●●●●●●●

●●●●
●●●●●●●●●●

●●●●●●
●
●
●
●●●●●

●●●●●●●●●●●●
●●●●

●●●●●●●
●●●●●●●

●●●●●●●●
●●

●●●●●●●●●●●
●●●

●●●●●
●●●●●

●●●●
●●●

●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●
●●●●●●●●●

●●
●●●

●

●

●
●
●●

●●●●●●
●
●●●●

●
●
●
●
●●●●●

●●●●●
●●●●●●●●

●
●●●●●

●●●●
●●

●
●●●●●●●●●

●●●
●●

●●
●
●●●●●●●●●●

●●●●
●●●●

●●●●●
●●●●●

●
●●●●●●●

●
●●

●●●●●●●●●
●●●●●

●●●●
●●

●●●●●●●●
●●

●●●
●●●●●●●●●

●●●●●
●●●●

●
●●●●

●●
●
●●●

●●●●●●●●●●●●
●●

●●
●●●●

●●●
●
●
●●

●●●●●●●
●
●●●

●
●●●●

●
●●●

●
●
●●●●

●●●●●●●●●●●
●●●●●●

●
●●●●●●

●●●●●●
●●●●

●●●●●●
●●

●●
●
●●●

●
●●

●●●
●●●●●●●

●●●●●
●
●
●●●●●●●●

●●

●

●

●
●●

●●●●●
●●●●●●

●
●●●

●●●●
●
●●●●

●●●●●●●●●●
●
●●●●●●●●●

●
●●●

●●●●●
●●●●

●
●
●●●●●●●●

●●●●
●
●●●●●●●●●●

●
●●●●●

●●
●●

●●●●
●●●●●●●●●●●●

●●●
●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●

●●●●●●●●●
●●●●●●

●
●●●●●●●●●●

●●●
●●●●●●●●

●●●●●
●●●

●●●
●
●●●●

●
●●●●

●●●●
●●●●●●

●●●●●
●●●●●●●●

●●●●●
●●●●●●●●●●●●

●●●●●
●
●
●●●

●●
●●

●●●
●
●●●●●

●●●●●●
●●●●●●

●
●●●

●●●●●
●●●●●●●●●●

●
●

●

●

●●
●●●

●●●●●
●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●
●●●●●

●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●●●

●

●

●●
●
●●●●

●
●●●●●●

●●
●●●●●●●●●●●●●●

●●●●
●●●●●●●●●●●●●

●●●●●●●●●●
●●

●●●●●
●●●●

●
●●●●

●●
●●

●●●●●●●●●●
●●●

●
●
●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●
●●

●●●●●
●●●

●●●●●
●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●

●●●●●
●
●●●●●●

●●
●●●●●●●●●●●

●●●●●●●●●
●●●●

●
●●●●●●●●●

●●●
●●●●●●●●●●●●●●●

●●●●
●
●●●

●●●●
●●

●●●●●
●●●

●
●●●●●●●

●●●●●●●●●
●●●

●
●●

●
●●

●
●
●●●●

●●
●

●

●

●
●●

●●●
●
●●●

●●●●●●
●
●●●●●●●●●●●●●●●

●●●●●
●●●

●●●●●●
●●●●

●●●●●
●●●●●

●
●
●●●●●

●●
●
●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●
●●●●

●
●●●●

●●●
●
●●●●●●●●●

●●●●●●●●
●●●●●●●●●●●●●

●●
●●●●●●●●

●●●●●●●
●●●●●●●●●●

●●
●
●●●●●

●●●●
●
●●●●●●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●

●●●
●
●●●●●●●●

●●●●●●●
●●●●

●●●●●●●●●●●
●
●●●●

●●
●
●●●●●●●

●●●●●
●●●●●●

●●●●●●●●

●

●

●●●
●●●●

●
●
●
●●●●●

●
●
●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●

●
●●

●
●●●

●●●●
●●●●●●

●●●●
●●●●

●
●●

●●●
●
●●●●●●●●●

●●●●
●●●●

●●●
●
●●●●●

●●●●
●●●●●●●

●
●
●●●●●●●

●
●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●

●

●
●●●●●●●●●●●

●
●●●

●
●●●●●●●●●●●

●
●●

●●
●
●
●●

●●●●●●●
●●●●●●●●

●●●●●●●
●
●
●●●●

●●●●●●
●●●

●
●●

●
●
●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●
●●●●

●●●●●
●●

●●
●●●●●●

●

●

●
●●●●

●●●
●
●●

●●
●●●●

●
●●●●

●●●●●●●●●●●●●
●●●●●●●●●

●●●
●●●●●●●●●●●●●

●
●
●●●●●●●

●●●●●
●
●
●●

●
●
●●

●●●●●●●●
●●●●●●

●
●●●●●

●●●●●●
●●●

●●●●●●●
●●●●●●●●●

●●
●●●●

●●●●
●
●●●●●

●
●●

●
●
●●●●●●●●

●●●●
●●

●●●●●●
●●●●●●●●●●●●●

●●●●●●●●
●
●●●●

●●●●
●●●●●●●●

●●●●●●●●
●●●●

●
●●●

●●●●
●●●

●
●●●

●●●●●
●
●●

●●
●●●●●●●●●

●●●●●●●●●
●●●●●

●●●●●●
●
●●●●●●

●
●●●●

●
●
●●●●●●●●

●●●●

●

●

●
●
●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●

●●●

●

●

●
●
●●●●

●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●
●●

●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●

●

●

●
●●●

●●●●●●●●●
●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●

●●●●●●●●
●●●●

●
●
●●

●●●●●●
●
●●●●●●●

●●
●
●●●●●

●●●●●●
●●●●●●●

●
●●●

●●●●●●●●●●●
●●●●●●●

●●●●●●●
●
●●●●●●●●●●●●●●

●●●●●
●●●●●

●●●●●●●●●
●
●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●

●
●●●●●

●●●●●●●●●●
●
●●

●●●●
●●●●●

●
●●●●●

●
●
●●●●●

●●●●●●●●●
●●●●●●●

●●
●●●●●

●●●●
●
●
●●●●●●●

●●●●●●●●●●●

●
●●●

●●●
●●●

●●●
●●●●●●●●

●

●

●

●
●
●
●●●●

●●●
●
●
●●●

●●●●●●●●●●●●●●●●●●●
●
●●●

●●
●
●●●●●●●

●●●●●●●●
●
●●●

●●●●●
●●●●●●●●●●●●●●

●●●●●●●●
●●●●●●●●

●●●●●●
●●●●●●

●
●●●

●●●●●●●●
●
●●

●
●●●●

●●●
●●●●●●●●●●●●●●●●

●
●●●

●
●●

●●●●●●●●●●●
●
●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●

●●●●●
●●●●●

●●●●●●●●●●●●●
●●●

●

●
●
●●●●●●

●●●●●●
●●●

●●●●●●
●
●●

●●●
●●●●●●●●●

●●
●●●●●

●●●●●●
●●●●●●●●●●●●

●●●●
●
●●●●●●●●●●●●●●

●
●
●●●●●●●●●●●

●●
●●

●
●●●●●●●●●●●●

●
●●●●●●●

●
●●

●●●●
●
●
●●●●●●●●●

●●●●●●●
●
●
●●●●

●
●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●

●
●
●
●●

●

●●●●●●●●
●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●
●●

●●●●●●●
●●●●

●
●
●
●●●●●●●●

●●●
●

●●●●●
●●●●

●
●
●●

●
●
●
●
●
●
●●●●

●●●●●●●●●●●●●
●●

●

●

●●
●●●●

●
●●

●●
●
●●●●●●

●
●
●●●●●

●●●●●
●
●●●●●●●●

●●
●
●
●●●●

●
●●

●●●●●●
●●●●●

●●●●
●●●●

●●●●●●●●
●●●●

●●
●
●●●●●

●●
●●●●●●●●●●●

●●●
●●●

●●●●●●●●
●●●

●●
●●●●●

●●●●●●●
●●●●●●●●

●●●●●●●●●
●●

●
●●

●
●●●●

●●●
●
●
●
●
●●●●●●

●●●●●
●●●●●

●●●●●●●●●●
●
●●

●●●●●●
●
●●●

●●●●
●●●●●●●●●●●●●●

●●●●●●●●
●●●●●●●●●●

●●●●●●●●
●●●●●

●●●●
●
●●●●●

●
●
●●●

●
●●

●

●●
●●●●

●●●●●●●●●●
●
●
●●●●

●
●

0

250

500

750

1000

0 100 200 300
Iteration (1000)

s

Mechanism
●

●

●

●

●

●

Better Proposal

Better Proposal A

Blocking Proposal

Blocking Proposal A

Noise Proposal

Noise Proposal A

Thickness (θ)
● 0.5

1

2

Figure 2.4: Convergence over time

2001; Boudreau and Knoblauch, 2010) and then sorted to obtain a prefer-
ence ordering. The parameter β is the correlation parameter and in case
of β = 0 we would recover the uncorrelated preferences. The ξ(nj) is the
global popularity of the agent bj and ξai(bj) is the specific utility of agent
ai for agent bj . It should be noted that β can be arbitrarily large, thus it
is hard to have fully correlated preference lists. (Boudreau and Knoblauch
(2010)) define a similarity measure for preference lists after generation, but
usually the results are still far from fully correlated (c = 1.0) preferences.

2.4 Computational experiments and convergence

All our experiments are carried out with nA = |A| = 1000 agents. We vary
the market thickness θ = nB

nA
∈ [0.5, 2.0], which varies in the number of

agents on side B nB = |A| ∈ [500, 2000]. We do 300,000 matches. Figure
2.4 shows that with all the behaviour models and various values of market
thickness, the matching size converges to a steady-state. This does not
mean that there are no changes in the matching. Individual agents still
change their matches whenever their behavioural mechanism conditions are
met. In the experiments, the result was almost never a stable matching
without blocking pairs. Therefore, small fluctuations always occur in the
matching, but Figure 2.4 demonstrates that this does not have a significant
effect on the macro-level of matching.

2.5 Stability of a matching

Ackermann et al. (2008) showed that the lower bound for convergence time
to stability is exponential 2Ω(n) with respect to n being the number of
agents on one side of a thick (θ = 1.0) market and with full preference lists.
This indicates that with large n stability becomes nearly impossible. Our
decentralised behaviour models operate by satisfying blocking pairs in each

75

transaction, otherwise the proposal is rejected. These are not guaranteed
to lead to stability, as some blocking pairs are satisfied some new blocking
pairs are created. Furthermore it has been shown that by satisfying blocking
pairs in our Blocking Proposal behaviour the matching may cycle (Knuth,
1997b; Ackermann et al., 2008).

The results of probability of stability with nA = nB = 100 and varying
c and k is presented in Figure 2.5. Similar results are reported by Biró
and Norman (2012), where they look at k · n ≤ 8. We observe that the
behaviours do not always converge to a stable matching when k ≥ 0.20,
that is there are more than 19 candidates on agents’ preference lists. This
is in-line with the exponential convergence as 219 ≈ 500000 expectation of
potential proposals that are processed in our experiments.

Noise Proposal Noise Proposal A Better Proposal Better Proposal A Blocking Proposal Blocking Proposal A

0 25 50 75 100 0 25 50 75 100 0 25 50 75 100 0 25 50 75 100 0 25 50 75 100 0 25 50 75 100

0%

25%

50%

75%

100%

k (Limit)

P
ro

po
rt

io
n

of
 s

ta
bl

e

c (Correlation)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2.5: Probability of a stable matching with nA = nB = 100

However, when we enlarge the number of agents to nA = nB = 1000
we see in Figure 2.6 that stability is very rare, as there are always blocking
pairs. Stability arises only when preference lists are very short (k < 0.10)
or when c = 1. The latter only occurs in Blocking proposal behaviours.
Roth and Vate (1990) showed that by randomly satisfying blocking pairs,
the matching eventually reaches stability with probability one. Although,
there may be cycles in satisfying the blocking pairs, there is at least one
path, sequence of such pairs, that always end up in a stable matching.
Apparently when preference lists are short or very correlated, the possibility
of a cycle in satisfying blocking pairs is small, thus we converge to a stable
matching faster than with longer or less correlated preferences. Also the
situation when preferences are fully correlated, c = 1.0, is special as it
allows better coordination in a decentralised market. In Figure 2.5 we saw
that fully correlated preference lists can be must longer as still have near
100% probability of a stable matching.

As stable matchings are rare with 1000 agents on both sides, we turn our
attention the number of blocking pairs. In Figure 2.6 we show the number
of blocking pairs by k and c. We see that the length of the preference list
(k) has the greatest effect.

76

Noise Proposal Noise Proposal A Better Proposal Better Proposal A Blocking Proposal Blocking Proposal A

0 25 50 75 100 0 25 50 75 100 0 25 50 75 100 0 25 50 75 100 0 25 50 75 100 0 25 50 75 100

0

100

200

300

k (Limit)

ρ

10
00

c (Correlation)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2.6: Average number of blocking pairs in a matching with
nA = nB = 1000

If we look at the probability of having a random pair of agents a blocking
pair, we see that this is almost constant in each of the mechanisms. The
probability of a blocking pair is Pr(ρ) = ρ

nA·k·nB ·k . Fitting the probability
to a linear model in the form (2.1), we obtain the results in Table 2.4.

Pr(ρ|c) = β1 + β2[c = 0.9] + ...+ β11[c = 0.0] (2.1)

We see that with Noise models ((1), (2)) the blocking pair probability
is about Pr(ρ) ≈ 20%, slightly decreases with c, but is around 11%− 12%
when c = 0.0. For Better proposal models ((3), (4)) the Pr(ρ) ≈ 30%
and slightly higher 33% only for c = 0.9 in Better Proposal (4). How-
ever in Better Proposal A behaviour the probability of a blocking pair
decreases slightly with correlation decreasing, indicating some coordinating
effect from just A-side proposing. For Best Proposal behaviour model (5)
the fit when c = 1.0 is lowest compared to smaller correlation, but then
increases significantly when c ≈ 0.9 to 35% and finally settles to about
30%. Finally with Blocking Proposal A (6) blocking pairs probability set-
tles to about 27%, that is lower compared to just Blocking Proposal, again
indicating some coordinating effect from just A-side proposing.

To summarise, the noisy (ZI), models we have the lowest probability for
blocking pairs compared to more sophisticated behaviours. Furthermore,
the more sophisticated behaviour often benefit from having the proposing
side fixed as the proportion of blocking pairs slightly is lower.

Noise Proposal Noise Proposal A Better Proposal Better Proposal A Blocking Proposal Blocking Proposal A

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

● ●
●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●
● ●●

● ●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●
●

●

●
●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

● ●

●

●
●

●

●

●

● ●●

●

●

●

●

●●

●

● ●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●
●●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●
●

●

● ●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
● ●

●

● ●

●

●

●

●

● ●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●
●●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●● ●

●

●

● ●

●

●●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●
●

● ● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

● ●

●

●

●● ●●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●
●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●●

●●

●
●

●

●

●

●
●

●●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●
●●

●

●

●

● ●

●
●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●●

●

●

●

●●

●

●
●

●

●●

●
●

●

●

●
●

●

●

●

●

● ●

●

●

●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●
●

●

●
●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●
●●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
● ●

●

● ●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●● ●

●
●

●
●

●

●

●

●
●

●
●

●

●

●

●

●
● ●

●

●●

●

●
●

●
●

● ●

●

●
●

● ●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●●

●
● ●

●

●
●

●

●

●●

●

●

●●

●

●

●

●● ●

●●

●

●

●

●

●

●

●

●

●

●●

● ●

● ●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●●

●

●

●●

●

●●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●
●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●●

●●

●

●
●

●
●

●
●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●
●

●

●●
●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●●

●

●

●

●

●

● ● ●

●● ●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●
●

●

● ●

●

●

●

●
●

●
●

●

● ●
●

●
●

●

●●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

● ●

●

● ● ●

●

●

●●

●

●

●

●

●

● ●

●
● ●

●●

●

●

●
●

●

●

●
●

●

●
●

●
●

● ●
●

●
●

●

●

●●

●

●

● ●

●
●●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●
●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

● ●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

● ●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

● ●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●●

●

●●●

●
●

●

● ●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

● ●
●

●

●

●
● ●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●
●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●●●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●● ●

● ●

●

●

●

●

●
●

●

●

●●

●
●

●

●
●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●

●
●
●

●●●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●
●

●●

●● ●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●
●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
● ●

●
●

●

●

● ●

●

● ●

●
●

●

●

●

●

●
● ●

●
●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

● ●

●

●

●

●
●

●

●
●

●
● ●

●

●

●

●

●
●●

●

●

●

●
●

●
● ●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●
●

●

●● ●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

● ●
●

●

●
●

●
●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●● ●

●

●

●●

●

●

●

●

●
●

●

●
●

●●

●●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

● ●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●
●

●
●

●

●

●

●

●
●●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

● ●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

● ●
●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

● ●

●

●●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

● ●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

● ●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●
●

●
●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

● ●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●●
●

●

●

●

●

●

●
● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●●

● ●

●

●

●●

●

●

●

●

●

●

●

●
● ● ●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

● ●●
● ●

●
●

●

●

●
●

●

● ●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●●

●
●

●

● ●

●

●

●
●

●
●

● ●

●

●

●

●
●

●

●

●

● ●

●●

●

●

●●●
●

●

●

●

●

●●

●

●
●

●
●

●

●
●

●●●● ●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●
●

● ●

●

●

●●

●

●

●
●

●
●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

●

●

●
●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●
●

●
●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●
●

●

●

●
●●

●

●

●
●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●
●●

●

●

●

●

●

● ●
●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

●●

●

●

●

●

●

● ●●

●●

●

●

●●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●●

●●
●

●
●

●

●

●

●
●

● ●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●
●●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●●
●

●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●
●

●
●

●●●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●●
●

●

●

● ●
●

●

●

●

● ●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

● ●●

●●

●

●

●
●

●

●

●

●

●
●

●

●● ●

●

●
●

●

●

●

●

●

●

●
●

●
●●

●

●●
●

●
●

● ●

●

●

●

●

●

●

●

●

● ●●

●
●

●●

●
●

●

●

● ●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●● ●

●

●

●

●
●

●

●

●

●●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●
● ●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●●

● ●

●

●●

●

●

●

● ●

●

●

●

●

●●

●

●

●
●

●

●●

●

●

●

●

●●
●

●

●

●

●
●

●
●

●●

●
●● ●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●
●● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

● ● ●
● ●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

● ●●

● ●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●
●
●

●

●
●

●

●

●

●●
●

●
●

●

●
●●

●●●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
● ●●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●
●

●

●
●●

●

●
●● ● ●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●● ●

●

●

● ● ●

●●

● ●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●
●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
● ●●

●
●

●

●

●

●
●●

●
●

●

●

●
●

● ●

●

●
●●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

● ●

●

●
●

●

●

●

●

●

●
●●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●
●●● ●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

● ●

●●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
● ●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

● ●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●●
●

●

●

●●

●

● ●

●

●
●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
● ●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●●

●

●
●
●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●
● ●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●
●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

● ●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●●

● ●

●

●

●
●

●
● ●

●

●● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●
●●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

● ●

●

●
●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

● ●

●●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●
●
●

●

●

●

●

●
●

●●

● ●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●
●

●
●

●

●

●

● ●

●

●

●

●

●

●

●
● ●

●

●

●
●

● ●

●●

●

●

●

●
●

● ●

●

●

●
●

●

●

● ●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●●

●
●

●
●

●●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●
●

● ●

● ●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

● ●

●

●
●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●●

●

●●
●

●

●

●

●

●●

●●
●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ●

●
●

●

●
●

●
●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●● ●

●

●

● ●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●
● ●

●

●

●

●
●

●

●

● ●

●

●
● ●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●●

●

● ●

●

●

● ●
●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

● ●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

● ●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

● ●

●●●

●

●
●

●

●

●

●

●
●●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●
●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●
● ●

●

●

●

●●
●

●
●

●

●

●

●

●

●●

●

●

●● ●
● ●

●

●
●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

● ●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●●

●
●

● ●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

● ●

●

●

●
●

●

● ●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●●

●
●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●
●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●
●

●

●●
●●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●
●

●

●

●●

●

0.1

0.2

0.3

0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0
θ

ρ

n A
n B

Figure 2.7: Blocking pairs in a matching with c = 0.0 and k = 100%

77

Table 2.4: Probability of a blocking pair

Pr(ρ|c) · 100%

(1) (2) (3) (4) (5) (6)

c = 1.0 19.690∗∗∗ 19.641∗∗∗ 30.022∗∗∗ 30.558∗∗∗ 24.683∗∗∗ 32.975∗∗∗

(0.042) (0.040) (0.067) (0.068) (0.102) (0.080)

c = 0.9 −5.759∗∗∗ −5.648∗∗∗ 3.362∗∗∗ 0.651∗∗∗ 10.110∗∗∗ −0.148
(0.062) (0.060) (0.099) (0.101) (0.151) (0.118)

c = 0.8 −7.513∗∗∗ −7.455∗∗∗ 1.915∗∗∗ −1.172∗∗∗ 7.751∗∗∗ −2.597∗∗∗

(0.059) (0.057) (0.095) (0.096) (0.145) (0.113)

c = 0.7 −8.488∗∗∗ −8.266∗∗∗ 0.629∗∗∗ −2.275∗∗∗ 6.292∗∗∗ −4.205∗∗∗

(0.060) (0.058) (0.096) (0.097) (0.146) (0.115)

c = 0.6 −8.531∗∗∗ −8.440∗∗∗ 0.211∗∗ −2.777∗∗∗ 5.789∗∗∗ −4.748∗∗∗

(0.062) (0.060) (0.099) (0.101) (0.151) (0.118)

c = 0.5 −8.640∗∗∗ −8.561∗∗∗ −0.288∗∗∗ −3.062∗∗∗ 5.244∗∗∗ −5.214∗∗∗

(0.062) (0.059) (0.099) (0.100) (0.150) (0.118)

c = 0.4 −8.445∗∗∗ −8.454∗∗∗ −0.162∗ −3.272∗∗∗ 5.293∗∗∗ −5.443∗∗∗

(0.060) (0.058) (0.096) (0.098) (0.147) (0.115)

c = 0.3 −8.289∗∗∗ −8.421∗∗∗ −0.300∗∗∗ −3.337∗∗∗ 5.260∗∗∗ −5.592∗∗∗

(0.059) (0.057) (0.094) (0.096) (0.143) (0.113)

c = 0.2 −8.330∗∗∗ −8.264∗∗∗ −0.225∗∗ −3.611∗∗∗ 4.954∗∗∗ −5.884∗∗∗

(0.061) (0.059) (0.098) (0.100) (0.149) (0.117)

c = 0.1 −8.319∗∗∗ −8.234∗∗∗ −0.207∗∗ −3.526∗∗∗ 5.183∗∗∗ −5.792∗∗∗

(0.059) (0.057) (0.094) (0.096) (0.143) (0.113)

c = 0.0 −8.348∗∗∗ −8.260∗∗∗ −0.238∗∗ −3.412∗∗∗ 5.086∗∗∗ −5.904∗∗∗

(0.060) (0.057) (0.095) (0.097) (0.146) (0.114)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

78

However, the market thickness has some effect on the probability of
blocking pairs. Figure 2.7 shows how the probability of a blocking pair is
impacted by the thickness parameter θ. First we observe that the prob-
ability of a blocking pair is always highest when the market is thickest,
that is θ = 1. Also the effect is symmetrical with respect to thickness as
Pr(ρ|θ = 0.5) ≈ Pr(ρ|θ = 2.0), which is expected and the same holds
true for models where the agents from A-side are always in the proposers
role. Moreover, the noisy model is again superior to other models, as it has
always a lower probability for a blocking pair.

The Figure 2.7 indicates that the number of blocking is bounded by the
number of agent pairs, as ρ

nA·nB
→ const.. Khuller et al. (1994) show that

there is a lower bound of Ω(n2) for on-line randomised matchings. However,
we see that the constant is important, as the Noise Proposal mechanisms
result about three time lower number of blocking pairs.

2.6 Unassigned agents in a thick market

2.6.1 Analysis of convergence conditions

Our probabilistic analysis considers the simpler situation where the market
is thick (θ = 1.0), all agents have full (k = 1.0) and uncorrelated preference
lists (c = 0.0). With limited preference lists, the analysis would not hold
and would need to be augmented with probabilities of having certain agents
on a preference list. Similarly, with correlation, we would need to assume
some probability of having certain agents higher on the preference lists.
Calculations are much more simplified, when we can assume this to be of
uniform probability for all the relevant agents.

There are four types of events that can occur in all of the decentralised
matching behaviour models:

e1 Two previously unmatched agents are matched. The size of the
matched population increases by one on both sides and nobody be-
comes unmatched. The net change in the size of the matching will be
one.

e2, e3 One unmatched agent (either from A or B) is matched to another
matched agent. The matched population increases by one, but one
previously matched agent now becomes unmatched due to the divorce
of the already matched agent. The net change in the matching size
will be zero.

e4 Two already matched agents are matched to each other and conse-
quently two divorces occur. The net change in the size of the matching
will be minus one.

79

We are interested in understanding the convergence of the size of the
matching. Since for events e2 and e3 the net change in the matching is zero,
we are not interested in those events. The size of the matching changes only
with the events e1 and e4 and has converged when ∆s = P (e1)− P (e4)→
0. We analyse the probabilities of the events e1 and e4 for all of the six
decentralised behaviour models. This is similar to the model in (Mortensen
and Pissarides, 1999, p. 1185). However, Mortensen and Pissarides (1999)
analyse the model on a macroscopic level with transition probabilities on
a Markov chain. Yet, we analyse the model on an agent level, where the
transition probabilities depend on the states of the agents.

Noise Proposal and Noise Proposal A Whenever two unmatched
agents meet, they always prefer to be matched rather than unmatched,
given our assumptions about preferences. Hence, the probability for event
e1 is the probability for two unmatched agents to meet as in (2.2).

P̂ (e1) =

(
1− s

nA

)(
1− s

nB

)
(2.2)

The probability of event e4 is selecting two matched agents that prefer
to be matched. This firstly depends on selecting two matched agents, one
from A and the other from B. Secondly, the selected agents would both
have to be higher on each other’s preference lists than their current match.
The latter is an average over all the matched agents. This is summarised
in (2.3).

P̂ (e4) =

(
s

nA

)(
s

nB

)
1

s

∑

i∈s,i∈B
P (r(µ(i)) > x)P (X = x)

 ·

·

1

s

∑

i∈s,i∈A
P (r(µ(i)) > x)P (X = x)

 (2.3)

Since the probability of selecting an agent in a particular position is
uniform, P (X = x) = 1

n , and the number of agents n is either nA or nB,
depending on which side we are looking at, we can simplify (2.3), which
results in (2.4).

P̂ (e4) =

(
s

n2
A

)(
s

n2
B

)
1

s

∑

i∈s,i∈B
P (r(µ(i)) > x)

 ·

·

1

s

∑

i∈s,i∈A
P (r(µ(i)) > x)

 (2.4)

80

Better proposal A The probability of event e1 is the same as with Noise
behaviour. The probability that an unmatched agent ai is selected from A
and then the probability that the agent will select an unmatched agent is
bi ∈ B. Since agent ai has a full preference list, the selection is made from
the entire set B. This results in the probability of two unmatched agents
being selected, as expressed in Equation (2.5).

P̂ (e1) =

(
1− s

nA

)(
1− s

nB

)
(2.5)

To find the probability of event e4 of Better proposal A, we first have to
take the probability of selecting a matched agent from A. Then the selected
agent ai will randomly select an agent from the set of better matches on
its preference list. The matching is successful only if the selected agent
from B side finds ai acceptable as well. This means, by definition, that the
two agents have to form a blocking pair. With ρ̃i we count the number
of blocking pairs with another matched agent from B for agent ai. This
results in probability for event e4 as in Equation 2.6.

P̂ (e4) =

(
s

nA

)
1

s

∑

i∈µ,i∈A

ρ̃i
r(µ(i))

 (2.6)

Better proposal When an agent from either side can act as a proposer,
we only need to weigh the proposer’s selection probabilities by the size of
the respective agent-sets. For the probability of event e1, this would result
in Equation (2.7), which simplifies to the same result as (2.5).

P̂ (e1) =

(
nA

nA + nB
+

nB
nA + nB

)(
1− s

nA

)(
1− s

nB

)
=

=

(
1− s

nA

)(
1− s

nB

)
(2.7)

The probability of event e4 for Better proposal behaviour is again similar
to the Better proposal A. We first take the probability of selecting a matched
agent from either from A or B. If the proposing agent is selected, then
selecting an accepting responder has the same probability as (2.6), but
over all of the agents in A ∪ B, which results in total probability as in

81

Equation (2.8).

P̂ (e4) =
nA

nA + nB

(
s

nA

)
1

s

∑

i∈µ,i∈A

ρ̃i
r(µ(i))

+

+
nB

nA + nB

(
s

nB

)
1

s

∑

i∈µ,i∈B

ρ̃i
r(µ(i))

 =

=
1

nA + nB

∑

i∈µ

ρ̃i
r(µ(i))

(2.8)

Blocking proposal A The probability of event e1 depends on selecting
an unmatched agent ai from A and then agent ai selecting an unmatched
agent from among its blocking pairs. On average, this results in probability
as in Equation (2.9). When all agents have full preference lists, we could
simplify even further with ρ̄i = nB − s as all unmatched B agents would be
blocking pairs for any unmatched A agent.

P̂ (e1) =

(
1− s

nA

)
 1

nA − s
∑

i/∈µ,i∈A

ρ̄i
ρi

 =

1

nA

∑

i/∈µ,i∈A

ρ̄i
ρi

(2.9)

Similarly the probability of event e4 depends on selecting a matched
agent ai ∈ A and this agent ai selecting a blocking pair with a matched
agent from among all blocking pairs, including the ones with and unmatched
agent. This results in probability as in Equation (2.10).

P̂ (e4) =

(
s

nA

)
1

s

∑

i∈µ,i∈A

ρ̃i
ρi

 =

1

nA

∑

i∈µ,i∈A

ρ̃i
ρi

(2.10)

Blocking proposal Similarly to the Better proposal behaviour, we need
to weigh the probabilities in Equations (2.9) and (2.10) against the proba-
bilities of selecting an agent either from A or B. This results in probabilities
as in Equations (2.11) and (2.12) for e1 and e4 respectively.

P̂ (e1) =
nA

nA + nB

(
1− s

nA

)
1

nA − s
∑

i/∈µ,i∈A

ρ̄i
ρi

+

+
nB

nA + nB

(
1− s

nB

)
1

nB − s
∑

i/∈µ,i∈B

ρ̄i
ρi

=

=
1

nA + nB

∑

i/∈µ

ρ̄i
ρi

(2.11)

82

●

●

●

●
●

●

−0.001

0.000

0.001

Better Proposal Better Proposal A Blocking ProposalBlocking Proposal A Noise Proposal Noise Proposal A
Rationality

P
(e

1)
−

P
(e

1)

Theoretical and simulation difference

Figure 2.8: Comparison of expected and experimental probabilities of
event e1

●

●

●

●

●

●

−0.001

0.000

0.001

Better Proposal Better Proposal A Blocking ProposalBlocking Proposal A Noise Proposal Noise Proposal A
Rationality

P
(e

4)
−

P
(e

4)

Theoretical and simulation difference

Figure 2.9: Comparison of expected and experimental probabilities of
event e4

P̂ (e4) =
nA

nA + nB

s

nA

1

s

∑

i∈µ,i∈A

ρ̃i
ρi

+
nB

nA + nB

s

nB

1

s

∑

i∈µ,i∈B

ρ̃i
ρi

=

=
1

nA + nB

∑

i∈µ

ρ̃i
ρi

(2.12)

In Figures 2.8 and 2.9, we compare the results of the probabilistic match-

ing estimations from the structural properties of the matchings P̂ (·) from
the specified equations and actual observed probabilities P (·) from compu-
tational experiments. The figures show the average difference in these prob-
abilities with 99% confidence bounds on normal distributions. We see that
with all the behaviours, the statistical difference between the estimated and
observed probabilities is close to zero and is always within the 99% bound
(Figure 2.8 and 2.9). This indicates that the structural properties of the
matchings are as expected.

83

●

●

●

●

●
●

−0.001

0.000

0.001

Better Proposal Better Proposal A Blocking ProposalBlocking Proposal A Noise Proposal Noise Proposal A
Rationality

P
(e

1)
−

P
(e

4)

Simulation convergence

Figure 2.10: Statistical difference in P (e1) and P (e4)

In Figure 2.10 we investigate the convergence of the matching process.
The process converges when ∆s = P (e1)− P (e4)→ 0. This figure demon-
strates that the difference P (e1)−P (e4) ≈ 0 is statistically within the 99%
confidence bound. This is not to say that the matching freezes. There are
still new matches made as well as broken. Rather the statistical properties
of the matching, in terms of size, distribution of obtained rank, and the
distributions of blocking pairs, converge and become stationary.

2.6.2 Structured preferences

Now we vary the correlation and the length of preferences, but still keep the
market thick, that is θ = 1.0. As previously in Figure 2.6 we saw that only
with very short preference lists , k = 0.02, the decentralised behaviours
lead to stable matchings. In Figure 2.11 we show the unassigned agents in
those matchings. Due to small k there are many unmatched agents, about
70% to 90%, even when these preferences are uncorrelated (c = 0.0).

Deferred Acceptance Noise Proposal Noise Proposal A Better Proposal Better Proposal A Blocking Proposal Blocking Proposal A

0%

25%

50%

75%

100%

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
c (Correlation)

U
na

ss
ig

ne
d

pr
ob

ab
ili

ty

k (Limit)
2

10

20

30

40

50

60

70

80

90

100

Unassigned agents

Figure 2.11: Unassigned agents in a stable matching θ = 1.0

However, when k is increased, the probability of being unassigned de-
creases dramatically (Figure 2.12), to around 20%, when preferences are
uncorrelated. Then again these matchings are unstable and there is poten-
tially a significant amount of re-matches.

Additionally, in Figure 2.11, we see that the size of all the stable match-
ings is the same, even with the optimal Deferred-Acceptance. This shown
always be the case in the “Rural Hospitals” theorem reviewed previously.

84

Deferred Acceptance Noise Proposal Noise Proposal A Better Proposal Better Proposal A Blocking Proposal Blocking Proposal A

0%

25%

50%

75%

100%

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
c (Correlation)

U
na

ss
ig

ne
d

pr
ob

ab
ili

ty

k (Limit)
2

10

20

30

40

50

60

70

80

90

100

Unassigned agents

Figure 2.12: Unassigned agents in an unstable matching θ = 1.0

However, in the case when the decentralised behaviour find unstable match-
ings, we see that the optimal matching would often be an improvement, at
least when the preferences are moderately correlated, c ≤ 0.5. Noise pro-
posal does slightly better, than other decentralised behaviours, but mostly
only in the moderate correlation region. Once the preference lists are short
and highly correlated, there is always large percentage of agent unassigned,
even in the optimal stable matching.

2.7 Unassigned agents in a thin market – the Beveridge curve

2.7.1 Beveridge curve and the movement along the curve

We look at the Beveridge curve without any structure in preferences, that
is c = 0.0 and k = 1.0. Figure 2.13 contains data points for all six of the
behaviours.

The thickness (θ) of the market sides determines where on the Beveridge
curve the steady-state of the matching is situated. In Figure 2.13 the lines
represent some examples of market thickness. When the market is thick,
i.e. we have equal number of agents on both sides (θ = 1.00), the result
will lie on the 45 degree line. When the market is biased toward one or
the other side, we move along the Beveridge curve to the upper left or
lower right. Different values for thickness can be considered the effects of
outside influences, e.g. economic state that influence the job destruction
and creation rates. So the curve is the result of out-of-equilibrium state of
the wider marker.

It appears that the best and largest matching outcome is obtained
when agents behave randomly in the market, as in the two Noise pro-
posal behaviours. Moreover, it is not relevant how the proposing power
is distributed, the results are the same on average. Strangely enough, the
size of the matching is much smaller when agents exhibit more intelligent
behaviour, by proposing only to more preferred agents (Better proposing
behaviours) or only to agents they know will accept (Blocking proposing
behaviours). This is most likely the result of a matching transaction being

85

●●

●●●
●

●●

●●●●

●●

●

●
●●

●
●

●
●

●
●

●●

●●●●

●●

●
●

●
●

●●

●●●
●

●
●

●

●
●●

●●

●
●

●●

●●

●
●

●●

●●

●●
●

●

●●

●●●●

●●

●
●●

●

●●

●●●
●

●●

●
●●●

●●

●●
●

●

●●

●●
●●

●
●

●●●
●

●●

●●●
●

●
●

●
●●●

●●

●

●●
●

●●

●
●●

●

●●

●
●●●

●●

●●●●

●
●

●●●
●

●●

●
●

●
●

●●

●
●

●
●

●●

●●●●

●
●

●
●●

●

●
●

●
●

●

●

●●

●
●●

●

●
●

●
●●●

●●

●
●●●

●●

●
●

●

●

●●

●

●●
●

●●

●●●●

●●

●
●

●

●

●●

●●●●

●
●

●

●
●●

●●

●●
●

●

●
●

●●●●

●●

●

●

●

●

●●

●●
●

●

●●

●●
●

●

●●

●●●
●

●
●

●●●●

●●

●●
●●

●●

●
●●●

●●

●●●●

●●

●●
●

●

●●

●●
●

●

●●

●●
●●

●●

●●●●
●●

●●●●

●●

●
●

●

●●●

●●
●

●

●●

●●
●●

●●

●

●

●

●

●●

●●●●

●●

●●●●

●●

●●
●●

●●

●
●●●

●
●

●
●

●●

●
●

●
●●●

●●

●●●●

●●

●●●●

●
●

●

●
●●●●

●●●
●

●●

●
●●●

●●

●
●

●
●

●●

●●●
●

●
●

●
●●

●●●

●
●●

●

●
●

●●●●

●
●

●
●

●
●

●●

●
●●

●

●●

●
●●●

●
●

●
●●

●

●●

●
●●●

●●

●●
●●

●●

●●●●

●●

●●●●

●●

●

●
●

●

●●

●●●●

●●

●●●
●

●●

●●●●

●●

●●●●

●●

●

●●
●

●
●

●●
●●

●●

●
●

●
●

●●

●

●
●

●

●
●

●

●

●
●

●●

●●●●

●●

●●●●

●●

●
●●

●

●●

●
●

●●

●
●

●

●●
●

●●

●

●
●

●

●●

●
●●●

●●

●●
●

●

●●

●
●

●
●

●●

●
●
●

●

●●

●●●
●

●●

●
●●

●

●●

●●●●

●●

●●●●

●●

●●●●
●●

●●●●

●●

●
●

●●

●
●

●●
●

●

●●

●●● ●

●
●

●
●

●
●

●●

●●●
●

●●

●
●

●●

●
●

●
●

●
●

●
●

●●
●

●

●●

●
●

●●

●●

●●
●●

●●

●

●

●

●

●●

●●●●

●●

●●●●

●
●

●●
●

●
●●

●●●●
●●

●●●
●

●●

●●●●

●●

●●●●

●●

●●●●

●●

●●
●

●

●●

●●●
●

●●

●●●
●

●●

●

●
●

●

●
●

●

●
●

●

●●

●
●●

●

●●

●●●
●

●●

●●
●●

●●

●

●

●

●

●●

●●
●●

●●

●●●
●

●●

●●●●
●●

●●●
●

●●

●●●
●

●●

●

●

●
●

●●

●●●●

●●

●●●●

●
●

●●●●●●

●●●●

●●

●

●●●

●●

●
●●

●

●
●

●
●●●

●
●

●●
●

●●●

●●●●

●●

●
●

●●

●●

●
●

●●

●
●

●●●●

●
●

●
●
●●

●●

●●●●

●
●

●●
●

●

●●

●

●●●

●
●

●
●

●●

●
●

●
●

●

●

●
●

●●●
●

●●

●●●●

●●

●●●●

●●

●●●●

●●

●
●

●
●

●●

●●
●●

●●

●
●

●

●

●●

●
●

●
●

●
●

●
●●

●

●●

●●●●

●
●

●
●

●●

●●

●
●●

●

●●

●●
●●

●●

●

●●●

●●

●●●●

●

●

●
●

●
●

●●

●

●

●

●

●●

●●●●

●
●

●
●

●●

●
●

●

●●●

●●

●●●
●

●●

●●●●

●●

●

●

●
●

●

●

●●
●

●

●●

●
●●●

●●

●●●●

●●

●
●
●

●

●●

●
●●●

●●

●
●●●

●●

●
●

●
●

●●

●●●●
●●

●●●
●

●●

●●●●

●●

●
●

●●

●●

●
●

●

●

●●

●●●●

●●

●●
●

●

●●

●●●●

●
●

●
●

●●

●●

●●
●●

●●

●
●

●

●

●●

●

●
●●

●●

●
●

●

●

●●

●
●

●●

●●

●

●

●

●

●●

●
●●●

●●

●●
●●

●●

●●●●

●●

●
●

●●

●●

●
●

●●

●●

●
●

●

●

●

●

●●
●●

●●

●
●●●

●●

●●●●

●
●

●
●

●●

●●

●●●●

●●

●
●

●
●

●●

●●●●

●●

●

●

●●

●●

●
●

●
●

●●

●●
●

●

●●

●●●
●

●●

●●●
●

●●

●

●●●

●●

●●●●

●●

●●●
●

●●

●●
●

●

●●

●
●

●●

●●

●
●

●
●

●●

●●●
●

●●

●

●

●●

●●

●●●●

●
●

●●●●

●●

●●●●

●●

●

●
●

●

●
●

●
●●●

●
●

●
●

●

●

●●

●●●●

●●

●●●●

●●

●●●●

●●

●
●

●
●

●●

●
●●●

●
●

●
●
●

●
●●

●
●●●

●
●

●●
●

●

●●

●
●

●
●

●
●

●

●
●●

●●

●●●●

●●

●●●●

●●

●●●
●

●
●

●●●●

●●

●●
●

●

●
●

●
●

●●

●●

●●
●●

●●

●
●●
●

●●

●●●●

●●

●
●

●●

●●

●

●

●
●

●●

●●●●

●
●

●●
●

●

●
●

●
●●

●●●

●●●●

●●

●
●

●
●

●●

●●●
●

●●

●
●●●

●●

●
●

●●

●●

●●●
●

●●

●
●

●●

●●

●●●●

●●

●●●●●●

●●●●

●●

●●●●

●
●

●●
●

●

●●

●●●●

●●

●
●

●

●

●●

●●
●

●

●●

●
●

●

●

●●

●●●●

●
●

●

●
●

●
●●

●
●

●
●

●
●

●
●
●●

●●

●●●●

●●

●
●●

●

●
●

●
●

●

●

●●

●
●

●

●

●●

●

●

●

●

●●

●
●

●

●

●●

●

●
●

●

●
●

●
●

●

●

●●

●●●●

●●

●●
●

●

●●

●●●
●

●●

●
●

●●

●●

●

●

●

●

●●

●●●●

●●

●●●●

●●

●
●
●

●

●
●

●

●
●

●

●●

●

●

●

●

●●

●●●●

●●

●

●

●●

●●

●
●

●
●

●●

●●
●●

●

●

●

●

●

●

●●

●●●●

●●

●●●●

●●

●●●●

●●

●●●●

●●

●

●

●●

●●

●●
●

●

●●

●
●●●

●●

●
●

●●

●●

●
●

●●

●●

●●●●

●
●

●

●

●●

●●

●
●●

●

●●

●●●●

●●

●
●
●

●
●

●

●

●
●●

●●

●
●
●●

●●

●
●●●

●
●

●
●

●
●

●●

●●●●

●●

●●●●

●●

●●●●

●●

●
●●

●

●●

●
●●●

●●

●●●●

●●

●
●●●

●●

●●●●

●●

●
●

●

●
●●

●●●
●

●●

●
●

●●

●●

●
●

●
●

●●

●

●●●

●●

●●

●

●

●●

●
●

●

●

●
●

●●●
●

●
●

●
●

●
●●●

●●●
●

●
●

●
●
●

●

●●

●●
●●

●
●

●
●●●

●●

●

●
●●

●●

●●●
●

●
●

●●●●

●●

●●
●

●
●●

●●
●

●

●●

●
●●●

●●

●
●

●●

●●

●●●●

●●

●●●●

●●

●
●

●

●

●●

●●●
●

●●

●
●

●
●

●
●

●●
●●

●●

●
●

●
●

●●

●●●●

●
●

●

●
●●

●●

●●
●●

●●

●●●
●

●●

●●●●

●●

●●●●

●●

●
●●

●

●●

●●●
●

●●

●●●●

●●

●●
●

●

●
●

●
●

●
●

●●

●
●●●

●●

●●

●
●

●
●

●●
●

●

●●

●
●
●●

●●

●
●●

●

●●

●●●●

●●

●●●●
●●

●●●●

●
●

●●●●

●
●

●●●●

●
●

●

●
●

●

●●

●
●

●

●

●
●

●

●●●

●
●

●●●●

●
●

●●
●

●

●●

●●●●

●●

●●●●

●●

●
●●●

●●

●●●●

●●

●●●●

●●

●●
●

●
●●

●●●●

●●

●

●

●●

●●

●

●
●●

●●

●

●
●●

●●

●●●
●

●●

●●●
●

●●

●●●●

●●

●●
●

●

●●

●●●●

●●

●
●●

●

●
●

●
●●

●

●●

●
●

●
●

●●

●
●●●

●●

●
●●

●

●●

●
●
●●

●●

●●●
●

●●

●●
●

●
●●

●●●
●

●
●

●●
●

●

●
●

●

●
●

●

●●

●●●●

●●

●

●

●

●
●

●

●
●●●

●●

●●
●

●

●●

●●●●

●
●

●
●

●

●
●●

●●●●

●●

●●
●

●

●●

●

●●●

●
●

●●●●

●
●

●

●
●●

●●

●

●

●

●

●
●

●
●●●

●●

●
●●

●

●●

●●●●

●
●

●

●

●●

●
●

●●
●

●

●●

●●●●

●●

●●
●

●

●
●

●

●

●

●

●●

●
●

●
●

●
●

●●●●

●●

●

●
●
●

●●

●●●
●

●●

●●●●

●
●

●●●●

●●

●
●●●●●

●●●●

●●

●

●
●

●●●

●
●

●●

●●

●

●

●
●

●
●

●●●●

●●

●●●●

●●

●●
●

●

●●

●●●●

●●

●●●●

●●

●
●

●
●

●
●

●
●

●

●

●●

●●●●

●
●

●
●

●●
●●

●
●●●

●●

●

●

●
●

●●

●
●

●●●●

●● ●●

●
●

●
●

●●

●
●

●
●

●
●

●●

●
●●

●

●●

●●●
●

●
●

●
●

●
●

●●

●●●●

●●

●●●●

●
●

●
●

●
●

●●

●●●●

●●

●●●●

●●

●

●●
●

●●

●

●

●
●

●●

●
●

●
●

●●

●●
●●

●●

●●●●

●●

●●●●

●●

●
●

●●

●●

●
●●●

●●

●
●

●●
●●

●
●

●
●

●●

●●●●

●●

●●●●

●
●

●●●●

●●

●
●●●

●●

●●●●

●●

●
●

●
●

●●

●●●●

●●

●●●
●

●●

●●●
●

●●

●
●●

●

●
●

●●
●

●

●
●

●

●
●

●

●●

●●● ●

●●

●●●●

●●

●●●
●

●●

●●●●

●●

●

●

●

●

●●

●●●●

●●

●

●●●

●●

●
●

●●

●●

●●●●

●●

●
●●●

●●

●

●

●

●

●
●

●

●

●
●

●●

●
●●

●

●●

●●●●

●
●

●

●●
●

●●

●●●●

●●

●
●

●
●

●
●

●
●
●

●

●●

●●●
●

●●

●●●●●●

●●●●

●●

●●●●

●●

●●●
●

●
●

●

●

●●

●●

●●●●

●●

●
●

●
●

●●

●

●●●
●

●

●●●●

●●

●●
●

●

●
●

●●●●

●
●

●
●●

●

●●

●
●

●

●
●●

●●●●

●●

●
●

●
●

●●

●
●

●●

●●

●
●●

●

●
●

●●
●●

●●

●
●●●

●
●

●
●

●
●

●●

●

●

●
●

●●

●
●●●

●●

●●●●

●
●

●●●
●

●●

●
●

●●

●●

●
●●●

●●

●
●●●

●●

●●
●

●

●●

●●●●

●●

●●
●●

●●

●
●●●

●●

●●●●

●●

●
●●●

●
●

●
●

●
●

●●

●
●●

●

●●

●●●●

●●

●●●
●

●●

●●●●

●
●

●●
●

●

●●

●

●

●●

●●

●●●●

●●

●

●

●●
●

●

●
●

●●

●●

●●
●●

●●

●●●●

●●

●●
●●

●●

●
●●
●

●

●

●●
●

●

●●

●
●●●

●●

● ●
●

●

●
●

●
●

●

●

●●

●
●●●

●●

●
●●●

●●

●●
●●

●●

●●●●

●●

●●
●●

●
●

●
●

●
●

●●

●

●
●●

●●

●●●
●

●●

●●●●

●●

●

●●●

●●

●
●

●●

●
●

●●

●
●

●
●

●●●●

●●

●
●●●

●●

●●●●

●●

●●●●

●●

●●●●

●●

●
●

●

●

●●

●●
●●

●●

●●●●
●●

●●
●

●

●●

●
●

●
●

●●

●
●

●
●

●
●

●●●●

●●

●
●

●●

●
●

●
●

●
●

●●

●
●
●

●

●●

●
●●●

●●

●●
●

●

●●

●

●

●

●

●●

●●
●●

●●

●●●
●

●●

●

●
●

●

●●

●●●●●●

●●●
●

●●

●
●●●

●
●

●

●●●
●

●

●
●●●

●●

●●
●●

●●

●●●●

●●

●
●

●
●

●●

●●●●

●
●

●
●

●
●

●●

●
●

●

●

●●

●●●●

●
●

●●
●

●

●
●

●
●●

●

●●

●●●●

●●

●
●

●
●

●●

●
●

●
●

●●

●
●

●
●

●●

●●
●●

●

●

●●●

●

●
●

●●●●

●●

●
●

●
●

●●

●

●
●

●

●●

●

●●●
●●

●●●●

●●

●●

●

●

●●

●●
●●

●●

●●●●

●●

●●
●

●
●
●

●●
●●

●●

●●●
●

●
●

●●
●

●

●●

●
●●●

●
●

●●
●

●
●●

●
●●●

●●

●●●
●

●●

●
●●●

●●

●
●●

●
●●

●●●
●

●
●

●
●

●●

●●

●●●●

●●

●
●●●

●●

●●
●
●

●
●

●
●

●●

●●

●
●

●●
●●

●
●●●

●
●

●

●

●
●

●●

●
●

●●

●●

●●●
●

●●

●●
●

●

●●

●●●●

●●

●●●
●

●●

●
●●

●

●●

●●●

●

●●

●
●●

●

●
●

●
●●●

●●

●
●

●

●

●●

●
●●

●

●●

●●
●

●

●
●

●
●

●

●

●●

●●●●

●●

●●●●

●●

●●●

●

●
●

●●
●

●

●
●

●

●

●
●

●●

●●●●

●●

●●●●

●
●

●●●●

●●

●●●●

●●

●

●●
●

●●

●
●●●

●●

●●
●

●

●●

●●●●

●●

●
●●●

●●

●
●

●●

●●

●●●●

●●

●
●

●●

●●

●
●

●

●

●●

●●●●

●
●

●●●●

●●

●●●●

●●

●●
● ●

●●

●●●●

●●

●●●●

●●

●●●●

●●

●

●●●

●●

●●
●●

●●

●
●
●

●

●●

●●●●

●●

●●

●
●

●●

●●●
●

●●

●●

●

●

●●

●

●
●●

●●

●●●●

●●

●●●●

●●

●●
●

●

●●

●●
●●

●●

●
●

●●●●

●●
●●

●
●

●

●

●

●

●●

●
●●
●

●●

●●●●

●
●

●

●
●

●

●●

●●
●

●

●●

●●●
●

●
●

●

●

●●

●●

●●●●

●●

●●●
●

●●

●
●
●

●●
●

●

●
●●

●
●

●
●

●
●

●●

●●

●●

●●

●●●●

●
●

●●●
●

●●

●

●

●

●

●●

●●●
●

●●

●●●
●

●●

●●
●●

●●

●
●●●●●

●●
●

●

●
●

●●●
●

●●

●●●●

●●

●
●
●

●

●●

●●
●

●

●
●

●●
●

●

●●

●

●
●●

●●

●●
●●

●●

●
●

●●

●

●

●●
●●

●
●

●●●●

●●

●●●
●

●●

●●
●

●

●●

●●●●

●●

●●●
●

●●

●●●
●

●●

●●●
●

●●

●●●●

●●

●●●●

●●

●●●●

●●

●●
●

●
●●

●●●●

●●

●●●●

●
●

●●●

●

●●

●

●
●

●

●●

●●
●●

●●

●●●●
●●

●●
●

●

●●

●●
●

●

●●

●
●

●

●
●●

●
●

●●
●●

●●●●

●●

●●●●

●●

●
●

●●

●●

●●●●

●●

●

●

●
●●

●

●●●
●●●

●●●
●

●●

●
●

●
●

●●

●
●●●

●
●

●●●●

●●

●
●

●●

●
●

●
●●●

●●

●●
●●

●●

●
●●●

●●

●●
●●

●●

●
●

●
●

●●

●●●●

●●

●●●●

●●

●
●●●

●●

●
●●

●

●
●

●
●●●

●●

●
●●

●

●●

●●●●

●●

●●●●

●●

●●●●
●●

●●●●

●●

●●●●

●
●

●●●●

●●

●●●●

●●

●
●

●●

●●

●●●●
●●

●
●●●

●●

●●●●

●●

●●●●

●
●

●●●●

●●

●●●
●

●●

●
●

●
●

●
●

●

●●●

●●

●●●●

●
●

●

●

●

●

●
●

●●●●

●
●

●●
●●

●●

●
●●

●
●●

●●●●

●●

●
●

●

●

●●

●

●
●

●

●●

●
●

●

●

●●

●●
●●

●●

●●●
●

●●

●●●●

●●

●●●●

●●

●●●●

●●

●
●

●
●

●●

●●●●

●●

●
●●

●●●

●●
●●

●●

●●●
●

●●

●●●●

●●

●●●●

●
●

●
●

●●

●●

●
●●●

●●

●
●●●

●●

●●
●●

●●

●●●

●●●

●●●●

●●

●
●

●
●

●●

●

●●

●

●●

●●●●

●●

●●●●

●●

●●
●

●

●●

●

●
●

●
●●

●
●●●

●●

●
●●

●●●

●●●●

●●

●
●

●

●

●●

●●
●●

●●

●●●●

●●

●●●●

●●

●
●

●●

●●

●●●●

●●

●●●
●

●●

●●●●

●
●

●

●●●

●●

●
●

●
●

●●

●
●●●

●●

●
●●●

●●

●●●●

●●

●●
●

●

●
●

●

●

●

●

●●

●

●●
●

●
●

●
●●●

●●

●
●

●
●

●●

●●●●

●
●

●●
●

●

●●

●●●●

●●

●●●●

●●

●●●●

●●

●●●●

●●

●●●●

●●

●
●

●
●

●●

●
●●●

●
●

●

●
●●

●
●

●
●

●●

●●

●

●
●●

●●

●

●

●
●

●●

●
●●●

●●

●
●

●●

●●

●
●●●

●●

●
●

●●

●●

●●●●

●●

●●●
●

●●

●●●
●

●●

●●●●

●●

●
●●●

●
●

●

●

●
●

●●

●
●

●●

●●

●

●

●

●

●●

●●●●

●●

●
●●●

●●

●

●

●
●

●●

●●●●

●●

●●●●

●●

●●●●

●●

●●
●●

●●

●●
●●

●●

●
●●

●

●●

●
●●●

●●

●●●●

●●

●
●

●

●

●●

●
●●●

●
●

●
●●

●

●●

●
●●

●

●
●

●●●●

●●

●

●

●

●

●
●

●●●●

●●

●
●●

●

●●

●●●●

●●

●

●

●

●

●●

●●●●

●●

●
●

●
●

●●

●
●●●●●

●●●
●

●●

●●●●

●●

●●●●

●
●

●●
●

●

●●

●
●

●●

●●

●

●●●

●●

●●●●

●●

●●●●

●
●

●
●●●

●
●

●
●●
●

●
●

●●●
●

●●

●

●

●●

●●

●●●●

●
●

●

●●●

●●

●

●

●
●

●●

●●●
●

●●

●●●
●

●●

●

●●●

●●

●●●●

●●

●●●
●

●●

●●●●

●●

●●●●

●
●

●

●
●

●

●●

●
●●●

●●

●●
●

●

●
●

●●
●●●●

●●
●●

●●

●
●
●

●

●
●

●●
●●●●

●
●

●
●

●●

●●●●

●●

●
●●●

●●

●

●
●

●

●●

●●●●

●
●

●

●●●

●●

●
●

●●

●●

●
●
●

●

●●

●
●●●

●●

●
●

●
●

●
●

●

●

●
●

●●

●●●●

●●

●
●

●

●

●●

●
●●●

●●

●
●

●
●

●●

●●●●

●●

●●●●

●
●

●

●

●
●

●●

●●●●

●●

●●●
●

●●

●
●

●●

●
●

●
●

●

●

●
●

●
●●

●

●●

●

●

●
●

●●

●
●●●

●
●

●●
●

●

●●

●
●

●●

●

●

●
●

●
●

●●

●●●●

●●

●
●

●●

●●

●●●●

●●

●●●●

●
●

●

●

●

●

●●

●●●●
●●

●●
●

●

●●

●
●●●

●●

●

●
●

●●●

●
●●

●

●●

●●
●●

●●

●

●
●

●

●●

●
●●●

●●

●●
●

●

●●

●●●
●

●●

●
●●●

●●

●
●●●

●●

●

●

●

●

●
●

●
●●

●

●●

●●●
●

●●

●

●

●

●

●

●

●

●
●●

●●

●●●●

●●

●●●●

●●

●●●●

●●

●●●
●

●●

●
●

●
●

●●

● ●
●●

●●

●

●
●
●

●●

●●●●

●●

●●
●●

●●

●●●●

●●

●●
●

●
●●

●
●●●

●
●

●

●

●

●
●●

●

●
●●

●●

●●●●

●
●

●
●

●
●

●●

●●
●●

●●

●
●●●

●●

●

●

●

●
●●

●●●●

●●

●
●

●●

●●

●●●
●

●
●

●●●
●

●●

●
●

●
●

●●

●●●●

●●

●●●●

●●

●
●●

●

●●

●
●

●
●

●●

●
●●

●

●●

●●●●

●●

●●
●

●

●●

●

●
●

●

●●

●
●

●
●

●●

●●●●

●●

●●●●

●●

●
●

●●

●
●

●●●●

●●

●●●●

●●

●●
●●

●●

●
●

●
●

●●

●●●●

●●

●●
●

●

●

●

●

●

●

●

Figure 2.13: Beveridge curves

much more likely in the latter two cases than with noisy proposals. Thus
a lower steady-state is reached due to agents making many more swaps in
their partner.

It is also clear that in any of the mechanisms, which side proposes
selection does not affect the size of the match. This might be an indication
of the fact that being a proposer is not that relevant in large markets, as
has been also discovered in large centralised matching markets (Roth and
Peranson, 1999; Immorlica and Mahdian, 2015).

Depending on market thickness, the ratio of free agents is higher on
the larger side on the market. In case of Better and Blocking response
behaviours, the change in free agents depends linearly on market thickness.
In the case of the zero-intelligence Noise proposing behaviour, the relation
of the number of free agents with thickness is not linear, but is akin to
a square root function. So the size of the matching increases faster with
Noise proposing behaviour when the market is becoming thicker (θ → 1.00)
compared to other behaviours.

2.7.2 Shifts in the Beveridge curve

The Beveridge curve is concerned with the size of the matching. Most em-
pirical curves show a relationship between unemployment and vacancies,
and it is never the case that neither of them is zero. This is usually at-
tributed to the structural properties of preferences – some workers are not
suitable for some jobs. We observe a similar effect of having structure in
preferences. In addition, we show that the shift can also be the effect of
search behaviour.

86

It has been long assumed that shifts of the Beveridge curve are due
to the structure of preferences in the labour market (Abraham and Katz,
1986; Blanchard et al., 1989; Mortensen and Pissarides, 1999; Sahin et al.,
2014): namely, where workers can and would like to work, and similarly
who the employers would like to hire. If agents are low on the preference
lists for every position or not on the list at all, it is very hard for them to
find a match.

We model the preferences of the agents in terms of correlation c in a
society and the length k of the preference lists. Both these factors play
a significant role in how good, large, the match is. In the experiments in
Figures 2.14 and 2.15, we vary c and k simultaneously to understand their
interaction effects. If preference lists are very correlated (Figure 2.14), the
matching tends to be small, which is also the case when the lists are short
(Figure 2.15). However, it also appears that either of these features can
determine the location of the Beveridge curve on its own. Conversely to the
trend even when the lists are short, but with low correlation, large matches
can result. This can also occur when the lists are long and correlation is
high. Naturally, with long lists and low correlation, the matching is the
largest. So the relationship in preference list parameters (c and k) and the
size of the matching is not straightforward.

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

● ●

●

●●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

● ●

●
●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●
●●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●●●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●
● ●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

● ●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

● ●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●
● ●
●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●●
●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●● ●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●●●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

● ●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
● ●
●●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●
●●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

● ●

●●●
●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

● ●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

● ●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●●
●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●
●

●

●

●

● ●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

● ●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

● ●
●

● ●

●

●●●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●●●●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
● ●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

● ●

●

●
●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●
●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●●

●●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●
●

●●●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

● ●
●●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

● ●
●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●
●

●

●
●
● ●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

● ●

●

●

●
●

●●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●
●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●●
●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

● ●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

● ●

●●●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

● ●

●

●

●
●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
● ●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●
●

●
●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

● ●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●●

●●
●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

● ●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

● ●
●

●
●

●

●
●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●● ●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●
●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

● ●

● ●●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●●●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

● ●

● ●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●
●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

● ●

●

●
●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●
●

●

●

●

●

●

●

●

●

●

Figure 2.14: Beveridge curve and correlation in preferences c

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

● ●

●

●●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

● ●

●
●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●
●●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●●●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●
● ●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

● ●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

● ●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●
● ●
●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●●
●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●● ●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●●●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

● ●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
● ●
●●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●
●●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

● ●

●●●
●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

● ●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

● ●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●●
●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●
●

●

●

●

● ●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

● ●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

● ●
●

● ●

●

●●●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●●●●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
● ●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

● ●

●

●
●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●
●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●●

●●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●
●

●●●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

● ●
●●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

● ●
●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●
●

●

●
●
● ●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

● ●

●

●

●
●

●●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●
●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●●
●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

● ●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

● ●

●●●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

● ●

●

●

●
●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
● ●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●
●

●
●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

● ●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●●

●●
●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

● ●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

● ●
●

●
●

●

●
●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●● ●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●
●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

● ●

● ●●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●●●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

● ●

● ●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●
●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

● ●

●

●
●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●
●

●

●

●

●

●

●

●

●

●

Figure 2.15: Beveridge curve and length of preferences k

To simplify thinking about the structural properties of the preferences
of agents, we use the maximum potential matching to determine the effect
of correlations and limited lists on a matching. The maximum potential
matching is computed using the Hopcroft-Karp algorithm (e.g. Cormen

87

et al., 2004, p. 696) in networkX library (Hagberg et al., 2008). This
matching is then compared to the maximum matching with no correlations
or limits on preferences and this comes down to the number of agents in
the smaller side of the market. Thus, when nA = 1000 and nB = 500, the
maximum matching can be sm = 500. However, this can never be obtained
because the preferences are somewhat structured. The maximum matching
returns the size that can be obtained given the preference structure — the
potential size pm. Figure 2.16 looks at the effect of ϕ = pm

sm
on the Beveridge

curve. We see that ϕ is close to 1 when we find a large matching with ZI
and close to 0 when the matching with ZI is small. The latter may reflect
certain skill mismatches in the market similarly to the established stylised
facts in macroeconomic literature.

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

● ●

●

●●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

● ●

●
●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●
●●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●●●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●
● ●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

● ●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

● ●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●
● ●
●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●●
●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●● ●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●●●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

● ●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
● ●
●●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●
●●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

● ●

●●●
●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

● ●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

● ●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●●
●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●
●

●

●

●

● ●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

● ●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

● ●
●

● ●

●

●●●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●●●●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
● ●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

● ●

●

●
●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●
●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●●

●●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●
●

●●●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

● ●
●●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

● ●
●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●
●

●

●
●
● ●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

● ●

●

●

●
●

●●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●
●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●●
●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

● ●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

● ●

●●●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

● ●

●

●

●
●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
● ●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●
●

●
●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

● ●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●●

●●
●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

● ●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

● ●
●

●
●

●

●
●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●● ●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●
●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

● ●

● ●●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●●●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

● ●

● ●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●
●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

● ●

●

●
●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●
●

●

●

●

●

●

●

●

●

●

Figure 2.16: Beveridge curve and maximum potential matching

2.7.3 Effect of a re-matching friction

The main effect of the behaviours on the size of the matching originates
from the differences in probabilities that a transaction ends with a successful
re-matching. In the Noise proposal behaviour, a pair of agents is randomly
selected, whereas in Better and Blocking proposal behaviours, only the
agent on one side is randomly selected. In the latter two, the randomly
selected agent only makes proposals that they already find acceptable. ZI-
agents make proposals to random agents from the other side of the market
and learn its ranking during the transaction. Thus, they might eventually
reject the match.

Therefore, to disentangle the effect of the Noise proposal behaviour in
a comparative context, we tweak our model slightly by adding an friction
timer τ to an individual match. This would lower the probability of a
transaction to result in a successful rematch. We investigate the friction
effect with preferences, where c = 0.0 and k = 100%. A new matching is
only accepted, when the timer condition is satisfied for both agents forming
a match. We implement three types of friction timers:

1. After making a new match lazy agents wait for τ iterations before
accepting a new offer;

88

2. After making a new match patient agents wait for τ proposals before
accepting a new offer;

3. After making a new match greedy agents accept only matches that
are τ positions higher than their current match.

In Figures 2.17, 2.18 and 2.19 we show the results of lazy, patient and
greedy agents respectively. In our experiments the friction is fixed for all
agents. We see that by introducing frictions to agents before allowing them
to be re-matched, the resulting match becomes larger and the Beveridge
curve shifts closer to the origin. This is true for all our modelled behaviours.
However, the effect is significantly greater for Better and Blocking proposal
behaviours with lazy and patient agents (Figures 2.17 and 2.18). This is
caused by the initial lower re-matching probability already present in fric-
tionless Noise proposal behaviour. Moreover, the types of frictions cause
some overlap. In frictionless Better and Blocking proposal behaviour, once
a pair of agents was selected, the re-matching probability was higher com-
pared to the Noise proposal, so the effect of the friction is also greater.

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●
●

●

●●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●
●

●

●

●

●

●

● ●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●
●●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●●

●●

●

● ●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●●●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●●

● ●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●
●

●
● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
● ●

●
●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●
● ●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●
●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

● ●

●

●
●

●

●

● ●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●● ●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●● ●

●

●

●●

●

●
●

●

●

● ●

●

●

● ●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

● ●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●
●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
● ●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●
●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●●

●

●
●

●
●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

● ●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●● ●

●

●

●
●

●

●
●

●

●

●

●

●

●

● ●
●

●

●● ●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●
●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●
●

● ● ●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
● ●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●
●

●
● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●
●

●

●

●●
●

●●

●

●

●
●

●

●

● ●
●

●

●

● ●

●

●
●

●

●

●●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

Figure 2.17: Beveridge curve of lazy agents

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●
●

● ●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●●

●●

●

●

●
●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●●●

●

● ●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●●● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
● ●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●●

● ●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●
●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●
●

●

●
●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
● ●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●
●

●●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
● ●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
● ●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●

●

●
●

●●●

●

●

●

●

●

●●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

● ●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

● ●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●
●

●
●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●
●

● ●

●

●
●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ● ●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●

●

●

●●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

● ●

● ●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●
●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

● ●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

● ●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ● ●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

Figure 2.18: Beveridge curve of patient agents

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

● ●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●
●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●●
●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●●

●

● ●
●●

●

●

●

●

●

●
●
●

●

● ●●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●● ●

●

●

●

●

●●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

● ●

●

● ●●

●

●

●

● ●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●●● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●●

●●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

● ●

●

●

●

●

●

●

● ●●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●● ●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

● ●●

●

●●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●● ●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●● ●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●
●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

● ●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

● ●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●
●

●●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●
●

●

●

●
●

●

●

●

●

●

● ●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●● ●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●●
●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●●

●

● ●
●●

●

●

●

●

●

●
●
●

●

● ●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●●
●

●

●

●

●

●
●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

● ●

●

● ●●

●

●

●

● ●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●●● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●●●
●

●

●

●

● ●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●●

●●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

● ●

●

●

●

●

●

●

● ●●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●● ●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

● ●●

●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●● ●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●● ●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●
●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

● ●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

● ●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

● ●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●●

●

●

●

●
●

●

●
●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●
●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●● ●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●●

●

●

●

●

●

●
●
●

●
● ●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●
●

● ●

●

●

●
●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

● ●

●

● ●●

●

●

●

● ●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●● ●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●●

●

●

●

●

●

●●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

● ●

●

●

●

● ●

●

●
●●

●

●
●

●

● ●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●● ●●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●● ●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●
●

●

●●

●
●
●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●●
●

●

●

●

●

●

●●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●
●

●
●

●

● ●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●● ●

●

●

●

●●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●●

●

●●●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●●

●

●

●

●

●

●
●
●

●
● ●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

● ●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

● ●
●

● ●●

●

●

●

● ●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●
● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●●

●●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

● ●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●● ●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

● ●
●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●
●

●

●

●●

●

●

●

●

●

● ●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●●

●

●

●

●

●●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●●

●

● ●●●

●

●

●

●

●

●
●
●

● ● ●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●
●

●
●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

● ●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

● ●● ● ●●

●

●

●

● ●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

● ●

●

●
●

●

● ●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

● ●

●

●

●

● ●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

● ●

●

●

●

●

●

●

● ●●

●

● ●●

●

●

●

●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●● ●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●● ●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●● ●

●

●

●

●
●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●
●●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

● ●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●●

●

●●●

●

●
●

●

●

●●

●

●

●

●

●

● ●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●●●

●

●

●

●

●

●
●
●

● ● ●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●●

●

●

●

● ●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ● ●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

● ●● ● ●●

●

●

●

● ●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

● ●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

● ●

●

●

●

● ●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●●●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

● ●

●

●

●

●

●

●

● ●●

●

● ●●

●

●

●

●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●● ●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

● ●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

● ●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●● ●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●● ●

●

●

●

●
●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●
●

●

●

●

●

●●
●

●

●
●

●

●

●●
●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 2.19: Beveridge curve of greedy agents

89

For lazy and patient agents, the effects of the friction are similar. For a
patient agent to re-match, they would have to be selected on τ occasions,
whereas a lazy agent would have to wait for τ iterations. If the selection
probabilities of an agent are the same in both cases, it should be straight-
forward to scale the results of lazy agents to the matching size of patient
agents.

Furthermore, regarding patient (Figure 2.18) and greedy (Figure 2.19)
agents with large τ ≈ 100, the resulting Beveridge curve is close to the
origin for all behaviours. With a slightly unbalanced market, the number
of free agents on the smaller side becomes effectively zero.

The greedy agent type of friction with smaller values for τ does not
significantly improve the size of the matching (Figure 2.19). Greedy agents
accept a re-match only when it improves their position by at least τ ranks.
They would still accept any match if they were unmatched. Similarly to be-
haviours without the frictions, the Better and Blocking proposal behaviours
still result in more unmatched agents than the Noise proposal, as agents
would tend to accept proposals more often. Also, the probability of select-
ing a match for a greedy agent that is a τ -improvement over their current
match appears high for the selected τ as the size of the matching does not
increase significantly (Figure 2.19).

2.8 Price of invisibility

2.8.1 Median rank in a thick market

Unassigned agent is one important aspect of a matching and as a designer
we might always aim to minimise the number of unmatched agents. How-
ever agents themselves are usually more interested in being matched to a
higher ranked position or partner.

Pittel (1989) showes that in the case of random preferences the average
rank for side A should be lnn and for side B n

lnn . From our data we obtain
average rank for side A to be 7.57 and side B 134, which is close to the
expectation from Pittel (1989), as ln 1000 ≈ 6.9 and 1000

ln 1000 ≈ 145. As
the distribution of matched rank is not necessarily normal the average is
slightly different from the median, the median ranks are ≈ 5.4 for side A
and ≈ 94 for side B.

However, we use the median rank of a matching as a descriptive statistic.
The main reason is that the distribution of matched ranks is exponential,
most receive their first some their second and then the number of agents
decays by rank, and median is much better statistic for an exponential
distribution than the mean rank. Secondly median has a much better in-
terpretation to it as half of the agents received a better and half a worse
rank then the median, but there is hard to find an agent who received the

90

average rank. Another alternative would be the the rate parameter of the
exponential distribution, but the parameter describes more the skewness of
the distribution than the outcome. We denote the median rank by r̃a and
r̃b for agents on A- and B-side respectively.

We start by looking at thick, balanced, markets. In Figures 2.20, 2.21,
2.22 and 2.231 we have plotted the median rank as a function of correlation
(c) and length (k) of preference lists. Interesting observations are that in an
A-proposing deferred-acceptance matching the median rank for proposers
is usually very high (lower number indicate ranked higher), except in a
highly correlated markets. However for the responding B-side the median
rank, while in many situations it is similar to the proposing side, when
preferences are uncorrelated (c ≈ 0.0) the median rank is much higher
when compared to the proposers. This can be explained by the fact that
proposers have idiosyncratic preferences, thus make proposals to different
agents and face less competition and consequently the responders receive
only a few proposals and are sat a disadvantage.

20
40

60
80

100

0.0

0.2

0.4
0.6

0.8
1.0

100

200

300

400

k
c

r a~

20
40

60
80

100

0.0

0.2

0.4
0.6

0.8
1.0

100

200

300

400

k
c

r b~

Figure 2.20: Median rank of a deferred-acceptance matching in a thick
market (θ = 1, nA = nB = 1000)

This is the result of the stable matching lattice, reviewed in section 1.4,
as visible in the example in Table 1.13 on page 38. When preferences
become more correlated, responders have more choice and can be matched
to a higher ranked agent. These observations are also confirmed by other
papers – Immorlica and Mahdian (2005) and Kojima and Pathak (2009)
show that when the preference lists are short, even on one side, the set of
stable matchings is likely to be small, and the difference in ranks is also
small, which we observe when k ≤ 0.4. Roth and Peranson (1999) also

1Surfaces are smoothed with local linear regression

91

observed empirically that the size of the core is small when preference lists
are short. However, in the opposite situation, the difference in matched
ranks is greater, as is visible in Figure 2.20.

In Figure 2.21 we show the results from the decentralised behaviours.
The Noise Proposal behaviour results in very similar median ranks for both
sides, A and B, which can be expected as neither side has a definite ad-
vantage over the other. The Better and Best Response behaviours show
inferior median rank compared to the Noise Proposal. In Noise Proposal
model, even the proposer can later reject their own proposed match, the
probability that a matching pair will change is much lower than, for ex-
ample, in Better response. This creates some delay in changing a match
so more agents are able to find an initial potential match, thus making fu-
ture changes more robust. Many changes in a matching means that there
are more free agents (as seen in Figure 2.12) willing to accept any match ,
which can cause the median rank to be lower.

20
40

60
80

100

0.0
0.2

0.4
0.6

0.8
1.0

100

200

300

400

kc

r a~
,r

b~

Noise Proposal

20
40

60
80

100

0.0
0.2

0.4
0.6

0.8
1.0

100

200

300

400

kc

r a~
,r

b~

Better Proposal

20
40

60
80

100

0.0
0.2

0.4
0.6

0.8
1.0

100

200

300

400

kc

r a~
,r

b~

Best Proposal

Figure 2.21: Median rank of a matching in a thick market (θ = 1,
nA = nB = 1000)

In Figures 2.22 and 2.23 are the results when the proposing power is
concentrated on A-side. The median rank for agents in A and B are shown
respectively. We see that with the Noise Proposal A model the median
ranks for the two sides do no differ by much and are also very similar
to the Noise Proposal model. This indicated that when the behaviour of
agents has a significant amount of uncertainty, market power is not really
important. However, with more rational behaviour, in the Better Proposal
A and Best Proposal A models, the proposing side is able to obtain a better
rank. However, the median rank for the B side remains similar to the shared
proposing model (Figure 2.23), which suggests that agents on B-side have
nothing to lose by A-side becoming a proposer, but has potential regret by
not being proposers themselves.

92

20
40

60
80

100

0.0
0.2

0.4
0.6

0.8
1.0

100

200

300

400

kc

r a~

Noise Proposal A

20
40

60
80

100

0.0
0.2

0.4
0.6

0.8
1.0

100

200

300

400

kc

r a~

Better Proposal A

20
40

60
80

100

0.0
0.2

0.4
0.6

0.8
1.0

100

200

300

400

kc

r a~

Best Proposal A

Figure 2.22: Median rank for A in a matching in a thick market (θ = 1,
nA = nB = 1000)

20
40

60
80

100

0.0
0.2

0.4
0.6

0.8
1.0

100

200

300

400

kc

r b~

Noise Proposal A

20
40

60
80

100

0.0
0.2

0.4
0.6

0.8
1.0

100

200

300

400

kc

r b~

Better Proposal A

20
40

60
80

100

0.0
0.2

0.4
0.6

0.8
1.0

100

200

300

400

kc

r b~

Best Proposal A

Figure 2.23: Median rank for B in a matching in a thick market (θ = 1,
nA = nB = 1000)

2.8.2 Median rank in a thin market

In Table 2.5 we have summarised the median ranks from decentralised
matchings by pairwise comparisons. We compare the decentralised be-
haviour models to each other and in addition to centralised deferred- ac-
ceptance results. We fit a regression model of the form (2.13) to the data.
We are only interested in γ coefficients that are statistically significant
on p < 0.05 level and the effect of the coefficient itself is also significant
eγ − 1 > 0.05. This shows that when comparing the two mechanism, the
difference in a median rank is significant over the experiments. In the table
same or higher indicates that either one behaviour model resulted in same,
that there was no statistically or effectively significant differences, or bet-
ter rankings, the model resulted in statistically and effectively significant
differences.

93

ln(r̃) =β1[c = 0.0, k = 0.0,m = I] + ...+ βn[c = 1.0, k = 1.0,m = I]+

+ γ1[c = 0.0, k = 0.0,m = II] + ...+ γn[c = 1.0, k = 1.0,m = II]
(2.13)

The Table 2.5 shows that almost always Noise Proposal model has
higher median rank than any other decentralised behavioural model. Some
exceptions occur when the preference lists are really short (k = 0.02) or
highly correlated (c = 1.0). Exceptions occur for agents on the B-side, they
achieve better median rank in A proposing models, when preferences be-
come more correlated. This is partially explained again by the competition
example mentioned before. So it appears that responding side agents are,
in some cases, also better off giving having only A-side proposing.

Table 2.5: Comparison of median rank

I II A-side B-side

Noise Better I same or higher

Noise Best I same or higher, except when k > 0.6 and c = 1.0

Noise Noise A I same or higher
II often same, but
higher when 0.4 ≤ c ≤
0.9

Better Better A
II same or higher

I same or higher, ex-
cept when 0.7 ≤ c ≤
0.9 and 0.2 ≤ k ≤ 0.4

Best Best A
I higher, except when
c ≥ 0.7 and 0.2 ≤ k ≤
0.5

Noise A Better A
I same or higher, ex-
cept when k ≤ 0.6 and
c < 0.6 I same or higher

Noise A Best A
I same or higher, ex-
cept when k ≤ 0.5 and
c ≤ 0.5

DA Noise
I higher, except when c = 1.0

DA Noise A

Although, both sides would be better off by having just one side making
the proposals, this requires coordination, which is not always easy. As with
the Best or Better Proposal behaviours it is beneficial to be the proposing
side, as their median rank is almost always higher than for the respon-
ders (Figures 2.22 and 2.23). In these situations the responders, in more
correlated cases, would not prefer a shared market power either.

94

Even though the noise models achieved higher median rank than other
decentralised behaviour models, the fully centralised deferred-acceptance
matching is still an improvement. Only in extreme situations (k = 0.02
or c = 1.0) can the Noise models do better. In many cases the noise
behaviours are two to three times worse than the Deferred-Acceptance, for
example when k = 1.0 and c = 0.0 the Noise Proposal behaviour results
is 20 times worse median rank, r̃a ≈ 110, than the deferred-acceptance,
r̃a ≈ 5.4. This is the Price of Indivisibility of agents being merely guided
by an invisible hand, as proposed by Smith (1776) for individual behaviour
in general, in a matching market.

However, there can also be a different kind of market power. Figure 2.24
shows the results of the median rank (ra, rb) over matched weighted by the
length of the preference list (nb, na). First we see that with deferred-
acceptance mechanism the median rank abruptly changes when market
thickness shifts away from θ = 1.0. When θ = 1.0 then agents on both
sides obtain a high rank. However when θ is slighty more or less than one
then there is a significant drop in matched median rank for agents on the
larger side of the market. Similar observation is made by Ashlagi et al.
(2013a,b).

Deferred Acceptance Noise Proposal Noise Proposal A Better Proposal Better Proposal A Blocking Proposal Blocking Proposal A

●

●

●

● ●

●

●

●

●● ●●● ●●●

●

●●

●

●

● ● ●●● ● ●

●

●

● ●●●

●

●

●

●● ●●

●

●

●●

●

●●●● ●●● ●

●

●

●

●

●●

●

●

●● ●●● ●

●

●

●● ●

●
●

● ● ●● ● ● ●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

● ●●

●

●●● ●● ●
●

●

●

●

●●

●

●

● ●

●

●●● ● ●● ●●●

●

●

●
●

●●●

●

●●● ● ●● ● ●● ●

●

●●● ●● ●●

●

●●

●

●

●●

●●●● ●●

●

●

●

●

●●

●

●

●

●

●●

●

● ●

●

●

● ●

●

● ●● ● ●●

●

●

●●● ●●●

●

●

●

●

● ● ●●●

●

●

● ●● ●● ●

●

● ●● ●● ●●● ●

●

●

●

● ●● ● ●

●

●

●

●●

●

●

●

●

●

●

●●
●

●

●●● ●

●

●

●

●●● ●● ●●●● ●●● ● ●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

● ●

●

●● ●

●

●

●

●

●

● ●

●

●●

●

●

●●

● ● ●● ●● ●●● ● ●●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●●

●

●●●● ●

●

● ●● ●

●

●●●

●

●

●

●

●

● ●● ●●●

●

●

●

●

● ● ●●●●● ●

●

●

●

●●●

●

●
●

●

●

●

●

●

●● ●●

●

●

●

● ● ●

●

● ●

●

● ●

●

●

● ●

●

●

●●

●

●●

●

●●

●

● ●● ●

●

● ●● ● ●

●

●

●● ●

●

● ●●

●

●

●● ●●●● ●

●

●

● ●●● ●●

●

● ● ●

●

●●● ●●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ● ●● ●

●

●

●

●

● ●●

●

● ●

●

●●● ●●

●

● ●●● ● ●●●● ● ●

●

●

●

●● ●

●

●

●

●

●

●●● ●● ●●

●

●

● ●● ●

●

● ● ●

●

● ●● ●● ●●

●

●● ●

●

●

● ●

●

●

●

●

●

●●

●

● ●●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●●●

●

●
●

●

●

●● ●●

●

●

● ●

●

●

●● ●●

●

●

●

●

●

● ●

●

● ●

●

●

●

●●● ●

●

●● ● ●● ●●

●

● ●● ●

●

● ●● ●

●

●

●

●

●

●

● ●● ●

●

●● ● ●

●

● ●

●

●●

●

●

●

● ●●

●

● ● ●● ●● ●

●

●

●

●

●

●

●

● ●● ●●● ●● ●●● ●●

●

● ●● ●●

●

● ●●● ●● ● ●

●

●● ●

●

● ●●

●

● ●●

●

●● ●● ● ● ●

●

●

●

●

●● ●●●●

●

●

●

●

● ● ●

●

●

●

●● ● ●●

●

●● ● ●

●

●

●

●● ●● ●●

●

● ●●● ● ● ●

●

● ●●●

●

●●

●

●

●

●●

●

●

●

●● ●● ● ●●● ●

●

●

●

●

●

●

●●● ● ●

●
●

● ●● ●

●

●●

●

●● ●● ●●● ●

●

●
●

●

●

●

●

●●

●

●● ● ● ●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●● ●●

●

●● ● ●

●

● ● ●

●

●

●

●

●

●

●●● ●

●

●

●

●●

●

●

●

●●

●●

●●●

●

●●

●

●

●

● ●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●● ●●

●

●

●

●●●

●

●

●

● ●

●

● ●

●

●

●●●

●

●● ● ●●

●

●

●

●

●●

●

● ●●

●

●●● ● ● ● ●● ●● ●● ●

●

● ●

●

●

● ● ●● ●●

●

● ●● ●● ●

●

●

●

●

●

●

●

●● ●●

●

●●● ●

●

●●

●

● ●

●

●

● ●●

●

●

● ●

●

●

● ●

●

●● ●● ●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●●

●

● ●●●● ●

●

● ●●● ●

●

●

● ●

●

●

●●● ● ●

●

●●

●

●

●●

●

●● ● ●

●●

●

●

●●

●

●

●

●

●

● ●●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●●

●

●●●

●

● ●

●

●

●● ●

●

●

●

● ●●● ● ●●● ●●

●

●

● ●

●

● ●● ●●● ●● ●●● ●●● ●● ●● ●● ●● ● ●

●

●

●

●

●

● ●

●

●●●

●

●

●

●●

●

●

●

●

●● ●

●

● ●

●
●
●

● ●●● ●●● ●

●

●

●

●

●

●

● ● ●● ●

●

●●

●

●

●

●● ● ●

●

●

●●●

●

●● ●● ●●●● ●

●

● ●●●●● ●● ● ●

●

●●● ●● ● ●

●

● ●● ●●●● ●●

●

●

●● ● ●● ●

●

●

●

●

●

●● ●●

●

● ●

●

● ●

●

●

●

● ●

●

● ●● ● ●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●● ●●

●

●

●● ●● ●●●

●

● ●● ● ●

●

●● ●

●

●● ●● ●

●

●

●

● ● ●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●● ●●

●

●● ● ●

●

●●● ●

●

●

● ●●

●

●● ●●●●

●

●●● ●

●

●●●● ●●● ●●

●

●

●

●●

●

●●

●

● ●●

●

●

●

● ● ●● ● ●

●

● ●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●●

● ●

●

●

●

●
●

●

●

●

●

●

●● ●

●

●

●
●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●

● ●

● ●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●●
●

●

●

●

●

●

●

●● ●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

● ●●●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●●

●

●
●

●

●

●

● ●● ●

●

● ●

●
●

●●

●

● ●●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●●

●

● ●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●●

●

●

●

●

● ●

●

●

●

●

●●●● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●●

●

●

●
●

●● ●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

● ●
●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●
●

●●●

●
●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

●● ● ●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●●

●

●●

●

● ●

●

●

●

●

●
●

●

● ●●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

● ●

● ●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ●

●

●

●● ● ●●●

●
●

●

●

●● ●●

●

●● ●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

● ●

●

●

●

●
●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

● ●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

● ●●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
●●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●●

●●

●

●

●

●

● ●● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●●

●

●

●

●

●

●

●● ●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●●

●

● ●

●

● ●●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●●

● ● ●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

● ●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

● ●
●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●
●

●

●

●
●

●

●
●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●
●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●●
●

●

●●

●
●

●

●● ●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

● ●● ●

●

●

●

●● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●●

●

●

●

●
● ●

● ●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●
● ●

●

●

● ●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

● ●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●

●

●

●

●
●
●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●●

● ●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●●
●

●

● ●

● ●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●●

●

●

●

●
●

●●

●

●● ●
●

●

●
●

●

●

●

●

●

●

● ●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●●

●

●

●

●
●●●

●

●

●●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●
●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●
●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●●

●
● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●
●

●

●

●

●

●●●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●
●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ● ●

●

●

●

●●

●●

●

●

●

●●

●

●

●
●

●
●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●
●

●●

●

●

●●

●
●

●

●

●

●
●

● ●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●
●

●

● ●

●

●

●
●

●

● ●
●

●

●

●●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●●

●

●

●

●

●

●

●●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

● ●

●
●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●
●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

● ●

●

●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●
●

●●
●

●
● ●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●●

●

●

●

●

●

●
● ●

●

●

●
●

●

●

●

● ●

●

●

●

●
●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●●

●

●

●

●

●●
●

●

● ●

●

●●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●

●

●
●

●

●

●

●
●●●

●

●● ● ●

●

●
●

●

●

●

●

●

●

● ●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●●

●

●
●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

● ●●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●●●
●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●●

●

●●

●

●
●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
●

●

●●
●

●

●

●
●

●

●

●

●

●

●

● ●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

● ● ●

●

●

●

●●

●

●

●

●

●

●●

●

●

● ●

● ●
●

●

●

●
●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●●

●

●
●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●
●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●●

●
●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●
●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

●

●
●

●

●

●

●

●
●●

●

●●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●●

● ●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●
●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

●

●

●●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
● ●

●

●

●

●

●

●

●
●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●
●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
● ●

●

●

●

●●

●

●

●

●

●

●●

●

●

● ●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

● ●
● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

● ●

●

●

●
●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●●

●

●

●
●

●●

●

● ●
●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●
● ●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
● ●

●

●

●

●● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●●

●●
●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

● ●

●

●
● ●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●●

●

●●
●

●

●

●●

●

●

●

●

●

●

● ●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●●●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

● ●●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●
●

● ●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●
●

●●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

● ●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
● ●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●●

●
●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

● ●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

● ●

●

●

●

●●

●

●

●
●

● ●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●●

●

●
●

●●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●
●●

●● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●
●

●
●

●

●
● ●

●

●

●●

●

●

●

● ●

●

● ●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●
●

●
●

●

●
●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●
●

● ●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●●

●
●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

● ●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ● ●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●●

●

●

●

●

●

●
●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●
●

●

●

● ●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●
● ●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●
●● ●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●● ●

●

●

●

●
●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●
●

●

●

● ●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

● ●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●●●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●●

●

● ●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

● ●

●●

●

●

●●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

● ●

●●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

● ●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●
●

●

●

●
●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

● ●

●

●
● ●

●

●

●

● ●

●

●

●

●
●● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●
●

●

●

●

●

●
● ●

●

●
●

●
●●

●

●
●

●

●

●
● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●●

●
●

●

●

●

●
●●●

●

●● ● ●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●●
●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●● ●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

● ●
●

●
●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

● ●

●
●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

● ●

●

●

●
●

●

●

●●

●●
●

●

●

●
●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
● ●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

● ●

●

●●

●

●

●

●

●

●

● ●

●

●
●●

●●

●
●

●

●

●

●
●

●

●

●●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●● ●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

● ●

●

●

●

0%

10%

20%

30%

40%

0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0
θ

ra
~

nb

,
rb
~

na

Median rank

●●

●●

ra
~

nb
rb
~

na

Figure 2.24: Median rank in a decentralised thin market with c = 0.0 and
k = 100%

In decentralised behaviour models the effect of θ is not so stark. Still
agents on the smaller side usually benefit as they have greater opportunity
to choose from a larger pool. In most models there is an intersection at
θ = 1.0, so when the market is thick both sides are matched similarly
ranked agents. However, when A-side has proposing power, then in Better
Proposal A and Blocking Proposal A behaviours result in better rankings
for A-side. Agents from B-side usually end up with slight lower median
rank, however, as mentioned in Table 2.5, occasionally can benefit.

The Noise Proposal models still produce a higher median rank for both
sides among decentralised models. The Noise Proposal even results in a
higher median rank for the larger side in a thin market compared to the
centralised deferred-acceptance matching. This also comes with a cost for
the smaller side, as they would have much higher median rank in a cen-
tralised market. This can also explain why is some situations it is hard to

95

agree among market participants to organise a centralised clearing house as
some might benefit by deviating. See for example job-market for lawyers,
where some firms, despite fixed rules, managed to circumvent and make
early offers (Roth, 2015, p. 68).

2.8.3 Re-matching friction and median rank

Previously, in section 2.7.3, we saw that re-matching frictions can poten-
tially increase the seize of the match in a decentralised market. However,
the effect of these frictions is not all positive. The re-matching friction
increases the size of the matching, but decreases the median rank of the
matched agents. In Figures 2.25, 2.26 and 2.27 we show, similarly to previ-
ous section, the results of the median rank (r̃a, r̃b) over matched agents from
the lazy agent experiments, weighted by the length of the preference list
(nb, na). Lower values indicate that the median agent has a more preferred
match.

Figure 2.25: Median rank for A-side lazy agents

First, with lazy agents, we observe that with the Noise Proposal be-
haviour and minimal impediment the median rank is in about top 20% po-
sition. And surprisingly slightly worse with Blocking Proposal. However,
when only A-side has proposing power this side achieves better median
rank. However, if A-side is smaller from the two, their median rank is in
top 10% regardless of the friction. The re-matching friction also has sig-
nificant interaction effect with market thickness (θ). With noisy behaviour
the agents on the smaller side have the power to get matched to more pre-
ferred agents, regardless of the friction. However, with Blocking Proposal
behaviour the effect depends on who is on which side. For agents on the
larger side, the friction has an adverse effect, i.e. the median agent has a
less preferred match. Conversely, for agents on the smaller A-side (θ > 1.0),
the longer waiting time will result in more preferred matches.

Considering patient agents the friction effects on median rank are similar
to lazy agents. However, the median rank from different behaviour models
are much more similar. The Noise Proposal models are not significantly
superior to Best or Blocking proposal models. In addition, with lazy agents
we saw that the friction does not affect much the smaller side of the market,
however, patients agents can be negatively affected if case the friction is too

96

Figure 2.26: Median rank for A-side patient agents

severe and result in a lower median rank. We see similar effect, in different
degrees, for greedy agents (Figure 2.27). As the friction increases, initially
the median rank improves as well, however when passing a certain threshold
(here about τ ≈ 20) the median rank starts decreasing.

Figure 2.27: Median rank for A-side greedy agents

As friction waiting times decrease the expected matched rank of an
agent, it might not be rational for agents to participate in such a market.
So market participants would advocate for lowering friction, for the reward
of being better matched. However, they would also be taking an additional
risk of being left unmatched.

2.9 Conclusion and discussion

Recent contributions to the economists’ understanding of the micro- foun-
dations of the Beveridge curve have enriched the early work of Blanchard
et al. (1989). However, substantial gaps remain in our understanding of
both the impact of the matching technology as well as the process of in-
cluding mechanisms which affect the Beveridge curve. Thus, we contribute
to this research gap by studying the micro-foundations underlying the Bev-
eridge curve.

We translated the framework of Diamond-Mortensen-Pissarides to an
agent-based model, with the intention of explaining both the movements
along the Beveridge curve and the shifts (location) of the curve itself. Our
simple model shows a two-sided decentralized market game with three key
determinants – preferences, information and market conditions. Thus, it
may be argued that instead of explicitly modelling labour market institu-
tions, we implicitly include features of institutions by modelling the var-

97

ious behaviours of agents. Our agents can have degrees of heterogeneous
or completely homogeneous preferences. The structure of the preferences
indicates a notion associated with the possible mismatch of the skills of
workers across jobs. There might be high demand for the same jobs and
same workers, which form the source of the mismatch. We have multiple
approaches to model preferences. Firstly, agents can be heterogeneous with
random preferences and full-length preference lists. Secondly, preferences
can be correlated to some degree which is common to all agents. Thirdly,
the length of the preference list of the agents can vary, which indicates that
not all positions are acceptable or not all agents are suitable for certain
positions. This allows us to model the limitations of structural unemploy-
ment.

The cornerstone of our analysis is our assumption about information.
Information determines how the market game is played. Generally our
agents are myopic – at each stage of the game, they make random deci-
sions and accept better proposals without any alternative strategic thinking.
Agents do not learn. However, we studied different behavioural models. In
our initial Noise proposal (zero-intelligence) model, agents make random
proposals. For comparative purposes, we constructed two alternative deci-
sion models — the Better proposal and the Blocking proposal model. In
the Better proposal model, agents randomly make proposals only to a more
preferred agent than their current match. In the Blocking proposal model,
agents only make proposals to a random blocking pair, indicating that the
proposal is always accepted.

Through the computational experiments, we found the aggregate num-
ber of vacancies and unmatched agents which constitute the Beveridge
curve. We have three relevant agent related dimensions that explain the
position of the curve and/or the current position along the curve -– the
correlation of preferences, the length of the preference lists, and the as-
sumptions about the decision-making mechanisms of the agents. For com-
parative statics, we first showed that low correlation (heterogeneous agents)
will shift the Beveridge curve downward and long lists of preferences have
a similar effect. We also observed that the assumptions about the decision-
making behaviour affect the location of Beveridge curve considerably. Noise
proposing models shift the Beveridge curve toward the origin compared to
the Better or Blocking proposal models. This insight can be interpreted
in light of the search and wait unemployment concept – zero-intelligence
agents make random proposals that are not always accepted, while more
advanced players make better proposals, thus resulting in a better match
for the agent, but smaller matching overall.

98

In addition, we were interested in the effect of market thickness. This
is the indicator for measuring the balance between market sides, i.e. equal
number of jobs (agents) and worker agents indicates a thicker market. We
demonstrated that thickness affects movement along the Beveridge curve.
For instance, in the case of random preferences, we move right-down along
the curve if there is an decreasing number of positions (job offerors) com-
pared to agents (job seekers). This shows that the Beveridge curve is mostly
the result of out-of-equilibrium dynamics in interrelated markets, affecting
job creation and destruction rates. It appeared that regarding the Bet-
ter and Blocking proposal mechanisms, changing market thickness simply
means shifting the number of free agents or positions from one side of the
market to the other. On the other hand, when agents make proposals ran-
domly and market thickness becomes closer to one, the decrease in the rate
of free agents is not linear, but a square root of free agents from the other
side. Therefore, each additional position has a larger effect than one ad-
ditional match, meaning that it creates opportunities for more agents to
be matched. As the Better and Blocking proposals implicitly model search
institutions, e.g. job hunters, it seems that these have a decreasing effect
on employment.

The investigation of Noise behaviour revealed that the decreasing effect
on unemployment and vacancies is related to limiting the probability of
re-matches. Additional experiments showed that by enforcing some obsta-
cle, friction, on the termination of the contract brings the Beveridge curve
closer to the origin. These frictions might also have a basis from human
psychology, as a sense of duty might limit an agent’s willingness to termi-
nate an existing contract. The longer the obstacle lasts, the closer to the
origin the Beveridge curve locates. However, we also saw that frictions af-
fect the matched rankings, i.e. with stronger friction the expected matched
rankings decrease.

Finding a stable solution in a decentralised market is hard as the market
becomes large. Even when there are 1000 agents on both sides, in our ex-
periments, we rarely found a stable matching. In a very extreme situations
with short and correlated lists we find stability. In decentralised markets
the stability notion is not very useful, rather the existence of blocking pairs
results in some dynamic in the market. Furthermore, Best and Better Pro-
posal models tend to perform worse that the Noise Proposal models. In
a sequentially matched results they tend to result in more blocking pairs,
more unassigned agents and agents having a less preferred match.

The Price of Invisibility showed that in a thick market all the partici-
pants, from both sides, would prefer the centralised clearing house to the
decentralised market. In a centralised case more agents are matched and the
median rank either remain the same or is in fact better, when preference

99

list are longer or more correlated. However, all decentralised behaviours
were better in terms on median rank for the larger side in a thin, unbal-
anced, market. So in a thin market, agents on the larger side would prefer
a decentralised market to a centralised matching.

The effect of market re-matching friction on median rank also depend
on the thickness of the market. More severe frictions have an adverse effect,
the median rank increases, on the larger side of the market, while beneficial
for the smaller side. Moreover, too severe frictions can be damaging to
all participants, so when regulating a market setting this parameter need
to be carefully considered. With potentially unobservable behaviours and
dynamic market conditions, this might become a sisyphean task.

Our approach had several simplifying assumptions: no transaction costs,
no search and matching costs, no agency, homogeneous behaviour, and
no dynamics (behaviour learning, new agents or change in preferences).
Despite this, we open a path of research in agent-based modelling in order
to contribute to the search and matching literature. Modelling matching
technology by including some kind of a job board or alternative agency to
the agent-based model remains a challenge for the future research.

100

3 Strategies in Tallinn School Choice Mechanism

3.1 Introduction

Significant research has been recently carried out to explore the allocation
of school seats to students in primary (e.g. Abdulkadiroğlu et al., 2006,
2011; Dur et al., 2013), secondary (Dur et al., 2013) as well as upper-
secondary schools (Abdulkadiroğlu et al., 2015, 2009). In this agenda, two-
sided matching markets are used as in the “marriage problem” to solve “the
college admission problem”. Some unexpected results concerning agent
incentive schemes have been obtained (Abdulkadiroğlu et al., 2011; Ab-
dulkadiroğlu and Sönmez, 2003; Pathak and Sönmez, 2013, 2008; Erdil and
Kumano, 2013; Erdil and Ergin, 2008).

The existing matching mechanism literature is growing, not only in
terms of new cases and designs, but also by adding new problematic de-
sign areas; that is, encouraging diversity with the use of quotas or priority
classes that in many cases can fail to enforce social justice (Dur et al., 2013;
Kominers and Sönmez, 2013; Fragiadakis and Troyan, 2013; Erdil and Ku-
mano, 2013). However, to the best of our knowledge, there is no literature
dealing with post-communist school allocation mechanisms. Our experience
indicates that in the Soviet era, mechanisms were widely in use in many
spheres; for example, the allocation of university graduates or university
choice. One common characteristic of the communist mechanisms was the
school-proposing nature while the submitted preferences were marginally
considered. The latter has not diminished its prevalence – many applica-
tions in two sided markets are still initiated by the “stronger side” and have
no welfare considerations.

We are contributing to the matching research agenda by studying the
Tallinn school choice mechanism (Tallinn mechanism hereinafter). Notably,
Soviet-style central matching was abandoned in the Tallinn school market
during the liberal reforms after the 90s and substituted by decentralised
or semi-centralised designs. Over the last few years, central matching has
been reintroduced in the Tallinn school market for allocating children to
primary schools. Through trial and error, local policy-designers established
the Tallinn mechanism as a central marketplace in 2012. This mechanism
has specific characteristics in addition to the school proposing nature. First,

101

students are prioritised according to distance from the school. Second,
families can submit three unordered preferences. Third, the mechanism
uses immediate acceptance (Boston).

As with the shortcomings of the Boston mechanism, which has cre-
ated a rule of thumb for submitting the preferences strategically (Ergin
and Sönmez, 2006; Pathak and Sönmez, 2008; Pathak and Shi, 2013; Ab-
dulkadiroğlu et al., 2011), we show there are similar rules of thumb for ma-
nipulation under the Tallinn mechanism. In the Boston mechanism there
are different levels of sophistication among families who participate in the
mechanism; that is, one strategy was to avoid ranking two over-demanded
schools as their top choices or an unsubscribed school or popular school
was recommended to be put as the first choice plus a “safe” second choice.
Hence, as Pathak and Sönmez (2008) showed that the Boston mechanism is
a coordination game among sophisticated families. Thereby “levelling the
playing field” by diminishing the harm done to families, who do not strate-
gise or do not strategise well, is emphasised as a condition for designing the
new mechanism. Similarly, we introduce the Tallinn mechanism as a sophis-
ticated game. We ask how many preferences it is rational to report under
such a mechanism and whether families reveal their true top preferences or
manipulate in both dimensions – report only a limited number of prefer-
ences which might not be at the top of their preference lists. In addition,
we ask whether this behaviour is dependent on their preference structure –
the functional form of their estimated cardinal utility function. The latter
allows us to show whether the strategy of revealing preferences is dependent
on the relative cardinal measure of utility from first, second etc. preference
– which can be considered a measure of marginal utility. Moreover, we are
interested in social inefficiencies defined as the difference between individual
allocated ranks and unassigned families under the Tallinn mechanism com-
pared to the optimal deferred-acceptance mechanism (Gale and Shapley,
1962).

Our research design is based on computational experiments. For de-
scriptive analysis, we use data from the centralised database, e-school. The
e-school database is an electronic register, where approximately 4000 7-
year-old children with a known home address annually list their school
selections. The rest of our data is synthetic. Our research strategy is the
following. After descriptive stylised facts, we use genetic algorithms to find
the best strategies for revealing the preferences of families. We illustrate the
results by indicating some cases of utility functions. Family agents optimise
strategies by observing their allocation and the obtained utility and adapt
according to the rules of the genetic algorithm. We do not argue, that ge-

102

netic algorithms is necessarily the way how families learn, however we use it
as a tool to find an approximate Nash equilibrium strategies (Riechmann,
2001b,a).

We continue as follows. First, we describe the broader Tallinn school
market, then the concrete mechanism used by the Tallinn education admin-
istration – the Tallinn mechanism. In section 3.3, we describe the preference
generation, the utility function and genetic algorithms. In section 3.4, we
describe the results of the parental strategies and the obtained allocation
after revealing what and how much to report to the central marketplace.
Finally, we conclude by highlighting the policy implications for Estonia and
for other decentralised and centralised markets.

3.2 Background: Tallinn school market

Over the years, some schools in Tallinn have become over-subscribed. These
selective schools have inter-district admissions to primary school and have
all introduced aptitude entrance tests (hereinafter exam schools). For intra-
district comprehensive schools (hereinafter regular schools), the tradition
has been a central or semi-central catchment-based allocation based on
an application (single preference or multiple preferences) from the family.
Rejected offers were not treated centrally – each school and student should
find the match independently.

The admission process for the exam schools takes place between January
and March. We note that it has been shifting from March (in 2012) to
February (in 2013) and even to January (in 2014). The second stage (in
the Tallinn mechanism) in regular schools starts on 1st of March with the
submission of an electronic application to the e-school register. Central
but manual entries are made by 25 May. By 10 June, parents must either
accept or decline offers. There is a later decentralised round of applications
for additional vacant positions after 15 June.

To make the entire school choice procedure more transparent, we high-
light the following steps:

1. Students are assigned to exam schools based on an uncoordinated
school proposing Deferred-Acceptance (DA) mechanism of decentralised
schools

2. The remaining students are centrally assigned to regular schools based
on the Tallinn mechanism

3. Unassigned students are assigned to the closest schools potentially re-
jecting an already assigned student. Some students might be assigned
to a school they did not apply to. This continues until all students
are assigned.

103

4. Students can reject their assigned position. Once the response dead-
line has passed, schools can autonomously accept students for any
available positions.

Therefore, the hybrid structure of the Tallinn school market consists
of exam schools (decentralised matching), the Tallinn mechanism (central
matching) and the final decentralised round. We are only modelling the
Tallinn mechanism.

3.2.1 Tallinn mechanism

The Tallinn mechanism governs only the central admission procedure to all
municipal primary schools. These schools rely on the following procedural
steps. First, families submit an application where they list up to three
schools. Then the seats are allocated based on the following procedure:

0 Look at the schools in a random order. Each student is only consid-
ered for the school to which the family applied.

1 Allocate students to the first school for which they have high (siblings
and distance-based) priority until the quota is full.

2 Allocate students that were not allocated before to the second school
for which they have high priority until the quota is full.

...

k Allocate students that were not allocated before to the k-th school
for which they have high priority until the quota is full.

It is important to stress that regular school applications are limited to
three options; in other words, the parent has the right to list three schools,
but these are not considered in any particular order. The application can
also contain information about siblings and the school(s) they attend. Cen-
tralised school priorities are considered based on the student’s distance from
the school (in metres) from the officially registered address.

We use descriptive statistics to illustrate the micro-mechanism in Tallinn
over three consecutive years – from 2011 to 2013. In 2011, the market was
decentralised. However, applications were centrally collected without any
upper limit on the submitted preferences. The Tallinn mechanism has been
in use since 2012, limiting the amount of unordered preferences submitted
to three (see Table 3.1).

This stylised fact illustrates the tendency to report a limited list. Most
families submit only a single preference. However, there is no clear indica-
tion that parents do not manipulate as in the Boston mechanism and decide

104

Table 3.1: Number of reported preferences under the Tallinn mechanism

of prefs 2011 2012 2013

1 52 % 74 % 76 %
2 18 % 15 % 14 %
3 11 % 11 % 9 %
> 3 18 % 0 % 0 %

Mean 2.2 1.4 1.3

to reveal strategically lower preferences or “safe” choices. Therefore, we are
interested in whether it is rational to report less than three preferences and
what the rationality is of reporting truthful preferences.

While there Tallinn school market in more complicated and families
may report less because they are guaranteed a position in the 3rd round.
We argue that the differentiation is hard to determine and aim to show that
even when the 3rd round is not present, families may prefer to report less
than possible.

3.2.2 Example of deciding what to report

We illustrate the choice set for parents using a simple extensive form game
(Figure 3.1). In such a game, the parents in the starting node have three
strategies – to report either 1, 2 or 3 preferences. In the following subgames,
the designer randomly allocates the student to the reported school or an
outside option. In the final nodes, the utilities are reported by indicating
the preference – 1 stands for first preference and ∅ indicates the utility of
the outside option. In the illustration below, we assume risk neutral agents.

r

tt �� ''
1

.5

��
.5
��

2
.33

��
.33
��

.33

��

3
.25

��
.25
�� .25 ��.25

&&
1 ∅ 1 2 ∅ 1 2 3 ∅

Figure 3.1: Extensive form reporting game

Assume that we have two utility functions, where k indicates a position
in a preference list:

� u1(k) = 0.358− 0.025(k − 1)

105

� u2(k) = 0.658− 0.325(k − 1)

Then we obtain cardinal utilities for k ∈ {1, 2, 3} as in Table 3.2.

Table 3.2: Utilities

k u1(k) u2(k)

1 0.358 0.658
2 0.333 0.333
3 0.309 0.009

Assuming the uniform probabilities of being unassigned or assigned to
one of their preferences, as in Figure 3.1, we can compute the expected utili-
ties for both utility functions and all cases of reported preferences. Notably,
we do not take into account the demand for a school or the overall avail-
ability of places. Moreover, it is preferable to always report schools higher
in the preference list, so we do not investigate cases where, for instance,
only the second or third choice is reported, because the expected utility
will definitely be lower. This might not be the case when the probabilities
of being assigned to a particular school are not uniform.

We see that the probability of being left unassigned decreases as more
preferences are reported, but so does the probability of getting a place in
the most preferred school. The expected utilities for u1(k) are:

� for reporting one school E1[u1(k)] = 1
2(0.358 + 0) = .179

� for reporting the first two schools E2[u1(k)] = 1
3(0.358+0.333) = .230

� for reporting the first three schools E3[u1(k)] = 1
4(0.358 + 0.333 +

0.309) = .250

We see that reporting all three preferences maximised utility. With utility
function u2(k) the expected utilities are:

� for reporting one school E1[u1(k)] = 1
2(0.658 + 0) = .329

� for reporting the first two schools E2[u1(k)] = 1
3(0.658+0.333) = .330

� for reporting the first three schools E3[u1(k)] = 1
4(0.658 + 0.333 +

0.009) = .250

As Figure 3.1 illustrates the game, where under the expected utility
maximisation assumptions, parents obtain higher utility by reporting only
one or two schools with u2(k).

106

We are interested in finding near-optimal strategies in large markets,
where agents might have similar preferences or there are popular and over
demanded schools. Additionally, the revealed demand also depends on the
strategies of the agents and the revelation strategies depend on the revealed
demand.

3.3 Model

3.3.1 Environment

We are interested in understanding strategies in multiple environments. We
characterise the environment with societal parameters (Tables 3.3 and 3.4)
and the parameters of an individual. Societal parameters describe the num-
ber of schools, the number of exam (popular) schools, the correlation be-
tween ordered preferences, and so on. Exam schools exist because they are
popular overall, so we consider them as a metaphor for globally popular
schools. Moreover, in Tallinn, these schools are still allocated the most
groups through the Tallinn mechanism.

We fix the number of schools, the number of places in a school and the
number of students for all our experiments (Table 3.3). In addition, the
maximum number of ordered preferences for each agent is fixed. We model
families as agents. They are willing to apply to or can rank up to 15 schools
at the most, although the utility from lower preferences is relatively small.
This is partly driven by case specificities, as 15 was the maximum number
of schools listed in the decentralised market in Tallinn in 2011. From those
15 ordered preferences, agents have to select three to report in the Tallinn
mechanism.

We investigate societies, where agents can have random or spatially
correlated preferences – the latter indicates that schools nearby are more
desired (Table 3.4). We also look at the effect of having the same set of
popular schools – exam schools. In these societies, all agents would prefer
exam schools, even if they are further away than the nearest regular schools.
In the case of spatial preferences among exam schools, agents would still
prefer schools nearby, and no other criteria matters. In each computational
experiment, all these parameters are fixed. The priorities for schools are
always spatial, distance based. Agents closer to a school have a higher
priority in that school.

For each agent looking for a place at the school, we only have one
parameter: the functional form of the utility function described by the
parameter (α). The latter indicates the slope of the utility function. In each
experiment, our agents are heterogeneous, so they have different values for
the slope of the utility function.

107

Table 3.3: Fixed societal parameters

Parameter Description

k = 15 Length of preference lists
n = 3000 Number of family agents
m = 50 Number of schools
qj = 60 Number of places in school j

Table 3.4: Variable societal parameters

Parameter Description

c ∈ 0, 1 Spatial correlation in preferences
me ∈ {0, 10} Number of exam schools

3.3.2 Preferences

We assume that agents have strict preferences for schools. In the simplest
case, preferences are random; in other words, each agent has a totally id-
iosyncratic preference ordering. In general, we can think of more structured
preferences in a society, parametrised by the length of the preference list (k)
and the correlation between the preference lists (c). In our experiments, the
preference lists are limited to k = 15. Correlated preferences stem from a
spatial preference ordering, and can also be considered 2D-Euclidean prefer-
ences (Bogomolnaia and Laslier, 2007). The degree of correlation is also the
same for all agents, but the preference ordering is not necessarily identical
when comparing two agents due to the spatial nature of preferences.

We generate the preferences using the Algorithm 3 with parameters k,
c and m. This algorithm is a modified version of a random permutation
algorithm (Knuth, 1997a, p. 145) to generate correlated preferences with
parameter c. The algorithm starts with a master list of n numbers (agents).
Then it iterates the list from beginning to end, each time at position j ran-
domly selecting a position q ∈ [j + 1, n] to exchange values with. The
correlation parameter c illustrates how biased the randomly selected posi-
tion is; higher values indicate that the exchange position is selected closer
to the current position j. With c = 0.0 the selection is uniformly probable
over all positions, until finally at c = 1 the exchange position is always the
active position and all the generated lists are exactly the same. There is
one global ordering of agents for each side of the market that is used for
generating correlated preferences.

108

3.3.3 Utility function

While agents have a preference ordering for schools, their behaviour might
also be influenced by the cardinal utility they gain from assignment to the
particular preference. A similar notion was illustrated by the reporting
game in Section 3.2.2. In order to understand the behaviour with different
cardinal valuations, we use exponentially declining utility over alternatives.
When compared to consecutive schools i and i+1, we assume that u(i+1)

u(i) =
1 − α. Furthermore, we need to normalise the utility function such that∑k

i=1 u(i) = 1. The resulting form of the utility function is in (3.1), where
i ∈ {1, ..., k} is a position in the preference ordering.

u(i) =
α(1− α)i−1

1− (1− α)k
(3.1)

When α → 0, then cardinal utilities for all alternatives are exactly the
same u(i) = 1

k∀i. When α = 1, then all utility is concentrated in the first
preference, that is u(1) = 1. In Figure 3.2, we show the utility values using
some examples of α.

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●
●

● ● ● ● ● ● ● ● ● ● ●

●

●

●
● ● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0.00

0.25

0.50

0.75

1.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Preference

U
til

ity

α
●●●●●● 0.001

0.1

0.2

0.4

0.7

1.0

Figure 3.2: Exponential utility function

The utility function can be compared to a linear utility function over
perfect substitutes u(x1, ..., xn) = β1x1 + ...+ βnxn, where the consumer is
allocated at most one good xi. The βi is the value of the allocated good xi
to the consumer (e.g. Varian, 2006, p. 61). Our utility function (3.1) states
the shape of the decline in value βi of the goods to consumers. We assume
that agents are risk-neutral, i.e. they maximise their expected utility E[u].

Using utility ratios u(i+1)
u(i) to measure on preferences is also popular in

decision theory, Saaty scale (Saaty, 1978), is supported by some psycho-
logical observations (e.g. Franek and Kresta, 2014, and references therein)
and is often used in human decision making (Herrera et al., 2001; Chen
et al., 2013; Gavalec et al., 2015). Another reason is that differences are
greater in geometrically declining function than linearly. So the effects we
are investigating are more evident.

109

3.3.4 Genetic algorithms

We use genetic algorithms to find a near-equilibrium strategy for reporting
in the Tallinn mechanism. The genetic algorithms adapt existing strategies
to find better ones that would result in an increased utility. The result
of a genetic algorithm after optimising is a near-equilibrium steady state
(e.g. Riechmann, 2001a,b). While a steady state is also by definition a Nash
equilibrium in a game, it could simply be one among many in multiple equi-
libria games. Additionally, there is always a random mutation in genetic
algorithms, which keeps the state near, but not exactly at equilibrium. Our
experiments are carried out with populations of agents, where each type of
agent population, defined by the utility function, learns a distribution of
strategies. This is also known as one-population social-learning (Vriend,
2000) as opposed to individual multi-population learning (Chen and Tai,
2010; Chen et al., 2012).

There has been extensive use of genetic algorithms and programming
in finance (e.g. Chen, 2002; Chen et al., 2011; Chen and Tai, 2010) and
economics in general (e.g. Riechmann, 2001b). Agents learn better trading
strategies by observing the market. The main difference compared to our
model is that agents do not have much to observe about the school market.
Players do now know either the overall demand for schools or the prefer-
ences of other agents in the market. The only information source is their
own allocation and the utility they gain from the market. With genetic al-
gorithms, our approach is to find strategies that would maximise the utility
of the agents.

Here we do not assume that the manner of genetic algorithms is in reality
how humans learn. We only employ it for computational tractability, as
exploring the entire strategy-space for 3,000 agents is resource consuming.
However, there are studies that use a form of genetic algorithm as a model
for learning (see e.g. Ünver, 2001; Roth, 2002; Ünver, 2005) and is also
observed as exhibiting features with human subjects (e.g. Arifovic, 1994,
1996; Duffy, 2006).

Genetic algorithms have two basic operations for finding an improved
strategy (e.g. Simon, 2013): mutation and crossover. Mutation slightly
tweaks an existing strategy and cross-over merges two successful strategies
to find a better one. Finally, selection indicates an operation that eliminates
the least successful strategies. Since agents in our model can have various
utility functions, as specified by the α parameter, the strategy elimination
and cross-over operations are contained in the α-population. Additionally,
strategies for different α values might not be the same.

A strategy in the case of the Tallinn mechanism is simply a bit-string.
A bit-string is a series of 1-s and 0-s, which respectively stand for reported
and not reported preference. Since we limit our agent’s preferences to

110

Algorithm 4 Simple Genetic Algorithm - single iteration

Require: A set of agents, u agents utilities
Ensure: A is a set of agents
n← |A|
s←∑

a∈A ua
p← {uas , ∀a ∈ A} {selection probabilities}
i← 0
for all r1, r2 ∈ Select(A, p, n) do
{select with probability p, with replacement n pairs of strategies}
ai ← CrossOver(r1, r2) {assign new strategy to agent ai}
if RandomNumber() < 0.05 then
Mutate(ai)

end if
i← i+ 1

end for
return A

k = 15, the length of the bit-string is 15 bits. Since the Tallinn mechanism
is limited to just three preferences, the bit-string can contain at most three
bits set to one. For example, a possible strategy for agent i might be
ai = 100110000000000; that is, the agents with this strategy would report
their first, fourth and fifth preference.

We run our genetic algorithms for a fixed (2000) number of steps. In
each step, an allocation is made based on the Tallinn mechanism and we
get the utilities for each agent. Then based on the rules of the genetic al-
gorithm the strategies evolve. In Algorithm 4, we present a simple genetic
algorithm (e.g. Riechmann, 2001b; Simon, 2013). It consists of three op-
erations: selection, crossover and mutation. The selection operator selects
strategies with replacement and probability proportional to the expected
utility. The cross-over operation randomly selects the value from either
strategy for each position. Finally, with a small 0.05 probability we mutate
the new strategy.

We evaluate four versions of genetic algorithms: simple genetic algo-
rithm; genetic algorithm with election; genetic algorithm with stud selec-
tion; and genetic algorithm with elitism. The last three are slight mod-
ifications of the simple genetic algorithm. In the election modification,
the agents remember their previous strategy and the corresponding util-
ity. Before the selection operation in the next allocation, each agent picks
the strategy with a higher utility from the previously remembered and the
newly evaluated strategies (e.g. Riechmann, 2001b). In the stud selection,
we pick the top 20% of strategies with higher utility and always set one
of the strategies in the cross-over operator to be in the top 20% (Simon,

111

2013). In addition, we ignore the bottom 10% of strategies. In elitism, we
keep the top 20% of strategies fixed and only use the remaining strategies
in the crossover (Simon, 2013).

0.2

0.4

0.6

0.8

0.00 0.25 0.50 0.75 1.00
α

u

Genetic algorithm
Election

Elite

Simple

Stud

Uncorrelated (c=0) and no exam schools (me = 0)

0.05

0.10

0.15

0.20

0.00 0.25 0.50 0.75 1.00
α

u

Genetic algorithm
Election

Elite

Simple

Stud

Spatial (c=1) and with exam schools (me = 10)

Figure 3.3: Mean utility

0.00

0.25

0.50

0.75

0.00 0.25 0.50 0.75 1.00
α

V
ar

(u
)

u

Genetic algorithm
Election

Elite

Simple

Stud

Uncorrelated (c=0) and no exam schools (me = 0)

0.00

0.25

0.50

0.75

0.00 0.25 0.50 0.75 1.00
α

V
ar

(u
)

u

Genetic algorithm
Election

Elite

Simple

Stud

Spatial (c=1) and with exam schools (me = 10)

Figure 3.4: Ratio of variance and mean utility

Figures 3.3 and 3.4 show the results from the four variations of genetic
algorithms. We see that the stud selection usually performs the worst, has
the lowest utility and highest variation in utilities compared to the other
variations. If preferences are spatially correlated and there is a large number
of exam schools (me = 10), we can see that the simple genetic algorithm
does slightly better with large values of α than with alternatives. For lower
values of α, the simple model is statistically equivalent to the election and
in some cases to elite selection. As the simple model does as good as others
we further analyse the results from the simple optimisation method.

3.4 Results

3.4.1 Expected utility maximising strategies

The reported results are divided into four cases. In all of the figures il-
lustrating the results, in the upper left corner the results with no correla-
tion (random) preferences and no exam schools are indicated; in the upper
right corner, the results with spatial (2D Euclidean) preferences and no
exam schools; in the lower left corner, random preferences and ten exam

112

schools; and in the lower right corner, correlated preference lists and 10
exam schools. Figures 3.5, 3.6 and 3.7 show a plot with the average of the
population playing a type of strategy and the standard deviation of the
population over 400 experiments. The standard deviation is often small so
it is not always visible on the charts.

Uncorrelated (c = 0) Spatial (c = 1)

●

●

● ●

●

●

●

●

●

●

● ●

●

●
●

●

0%

25%

50%

75%

100%

0%

25%

50%

75%

100%

N
o exam

 schools (m
e =

0)
W

ith exam
 schools (m

e =
10)

0 1 2 3 0 1 2 3
Strategy length

P
ro

po
rt

io
n

of
 p

op
ul

at
io

n α
● 0.001

0.1

0.2

0.4

0.7

1

Number of reported schools

Figure 3.5: Reported strategy length

Uncorrelated (c = 0) Spatial (c = 1)

● ●
● ●

●
● ●

● ●
●

● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

●
● ● ●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

●
●

●

●

●

0%

25%

50%

75%

0%

25%

50%

75%

N
o exam

 schools (m
e =

0)
W

ith exam
 schools (m

e =
10)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Reported preference

P
ro

po
rt

io
n

of
 r

ep
or

te
d α

● 0.001

0.1

0.2

0.4

0.7

1

Reported preference

Figure 3.6: Reported preference by utility coefficient α

Firstly, we are interested in the strategy length – the number of schools
to be reported. In Figure 3.5, we show the strategy length by a proportion
of the respective α-population. In general, it is elucidated that the decay in
the utility function is a significant determinant of a good strategy. When
α ≈ 0.0, it is best to randomly select the number of schools to report with

113

Uncorrelated (c = 0) Spatial (c = 1)

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ●
●

● ● ● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ●
● ● ●

●
●

0%

25%

50%

75%

100%

0%

25%

50%

75%

100%

N
o exam

 schools (m
e =

0)
W

ith exam
 schools (m

e =
10)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Reported preference

P
ro

po
rt

io
n

of
 r

ep
or

te
d

Strategy
length

● 1

2

3

Reported preference

Figure 3.7: Reported preference by strategy length

roughly uniform probability. When α ≥ 0.4 and there are no exam schools,
it would almost always be best to report only one school. With random
preferences, when α ≈ 0.2, there is a phase transition in the number of
schools to report, as the variation at this point is largest. Therefore, it is
really difficult to pick a good strategy for how to report.

General trends show an increase in standard deviation in the strategy
length when moving from spatial preferences to random preferences, or from
having no exam schools to having 10 exam schools. Spatial preferences are
aligned with school priorities, resulting is more predictable matches; there-
fore, the resulting strategies have a lower standard deviation. Standard
deviation can also be interpreted as the uncertainty of the resulting match,
when playing a certain strategy. In regard to exam schools, the uncertainty
is greater than in the case of no exam schools, and even greater when the
preferences are random in addition to exam schools.

Secondly, we are interested in how the mixed nature of the market –
exam schools which are always preferred to regular neighbourhood schools
– affect good strategies. We see that in the case of random preferences
for high α, it is still often optimal to only report a single school. For
medium α, the best strategy is to report 2 or 3, and only with low α (i.e.
marginal utility is almost constant) is it best to randomly select the number
of schools. If we assume that parents do not have a preference between the
top three exam schools, they report the maximum number of preferences.

We are also concerned with what to report. Figures 3.6 and 3.7 show
the preferences reported by the agents’ α and the strategy length. We see
that without exam schools it is almost always (≈ 90%) optimal for α ≥ 0.4
to report from the top of the preference list, namely just their first prefer-

114

ence. In regard to exam schools and random preferences, optimal reporting
depends more on α, but generally the top three schools are reported. Fig-
ure 3.6 illustrates that in the case of exam schools and spatial preferences
with high α, it would be better to report something from the higher and
lower ends of exam schools, skipping the middle. Reporting schools lower
on the preferences lists probably indicates that those agents would be oth-
erwise unassigned, due to high demand, so they gain at least some utility.
For medium α, the first three preferences are almost equally good. For
indifferent agents, α ≈ 0.0, it would be best to randomly pick some schools
from the list of regular schools. Also for agents with α = 0.1, it would be
beneficial to specify their most preferred exam school and most preferred
regular school.

In Figure 3.7 the preferences are reported with different strategy lengths.
The results show that it is always best to at least report one’s most preferred
school, as one might get lucky. If reporting more schools, it is useful to
add the second most preferred school or with a small probability select
something from even lower on the preference list. However, when reporting
three choices, the selection of schools depends on the state of the school
market. When preferences on the market in general are random with 50%
probability, the first two preferences should be reported and the remaining
options uniformly from the remainder of the preferences. In the case of
spatially correlated lists or exam schools, the most preferred school should
be almost always given. And when preferences are generally spatial, select
the remaining options randomly. On the other hand, with exam schools
and uncorrelated preferences when it is best to report three schools, it is
usually best to report the top three.

3.4.2 Social welfare

Previously we investigated the individual behaviour of agents, but now we
consider how these behaviours influence the outcome for the entire society.
For this, we compare the results of the Tallinn mechanism to the widely
used Deferred-Acceptance (DA) mechanism (Gale and Shapley, 1962; Ab-
dulkadiroğlu and Sönmez, 2003) as described in Section 1.4. Similar to the
Tallinn mechanism, the priorities in the Deferred-Acceptance mechanism
are also only based on distance.

We look at two measures of social welfare. First, the proportion of
unassigned agents (Figure 3.8) and second the mean utility in the allocation
(Figure 3.9). Usually, the measure used in matching problems are the
allocated preferences, but this is mostly due to not having access to the
utility. Since in our experiments, we know the agent’s utility, we measure
the mean utility over all the agents.

115

Uncorrelated (c = 0) Spatial (c = 1)

0%

20%

40%

60%

80%

0%

20%

40%

60%

80%

N
o exam

 schools (m
e =

0)
W

ith exam
 schools (m

e =
10)

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
α

P
ro

po
st

io
n

un
as

si
gn

ed
 o

n
av

er
ag

e

Mechanism
Deferred acceptance

Tallinn mechanism

Unassigned by allocation mechanism

Figure 3.8: Unassigned agents

Figure 3.8 illustrates assignment probability based on the agents’ α.
We see that by using the DA mechanism and assuming random preferences
(c = 0.0) and no exam schools (me = 0), there are no unassigned agents.
When preferences are spatially correlated (c = 1.0), we can see that about
10% of students are unassigned, and this probability does not depend on
agent type.

As described in section 3.3.2, we have me = 10 exam schools that are
always first on the agents’ preference lists. Under such circumstances, only
a small fraction of students receive a position in the top ten schools of
their preference. Since there are fifty schools, exam schools account for
20% of places, so 20% of students receive a place in one of their top ten
schools. Again, with uncorrelated preferences, DA can guarantee a place
for all the students. Naturally, the students might receive a less preferred
school. In the case of spatial preferences (c = 1.0,me = 10), even with DA,
a significant number of students - about 10% - would be left unassigned.
With the Tallinn mechanism, the number of unassigned students would be
even higher – about 70% of students who have α > 0.2 would be unassigned.
This is mainly due to agents maximising their expected utility and do not
have a negative utility by being left unassigned.

In Figure 3.9 we show the expected utility under the two mechanisms.
Expected utility is often higher in the Tallinn mechanism compared to the
DA results. A similar result was discovered in the manipulable Boston
mechanism Abdulkadiroğlu et al. (2011). This leads to the conjecture that
manipulable mechanisms provide the option to maximise an agent’s ex-

116

Uncorrelated (c = 0) Spatial (c = 1)

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

N
o exam

 schools (m
e =

0)
W

ith exam
 schools (m

e =
10)

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
α

u

Mechanism
Deferred acceptance

Tallinn mechanism

Mean utility by allocation mechanism

Figure 3.9: Mean utility comparison: Deferred-Acceptance and Tallinn
mechanism

pected utility at the risk of being unassigned or assigned to a low ranked
preference. Yet, as a result, a large number of agents are unassigned in the
Tallinn mechanism.

We observe that agents with α = 0.999 would maximise their expected
utility by only reporting their first preference (Figure 3.5 and 3.6). This
is due to the high utility value of their first preference, but because only
a few preferences are reported, there is also a large probability of being
unassigned under the Tallinn mechanism (Figure 3.8).

When agents are not particularly concerned with the school they are
allocated to (α is small), the best strategy is to report randomly (see Fig-
ure 3.6). This also guarantees that students will not be unassigned, which
is demonstrated in Figure 3.8. Other agents trade the probability of being
unassigned with being assigned to a more preferred school. We see that for
agents who have α ≥ 0.3, there is a high probability of being unassigned.
However, there must be a considerable number of agents who are assigned
to their top preferences on the condition of there being no exam schools,
which increases the average utility from the allocation.

3.5 Conclusion and discussion

Our aim was to contribute to the mechanism design literature about school
choice by adding a description of the Tallinn mechanism, which is a cen-
tralised school-selecting assignment based on the student’s distance from

117

the school. Moreover, we wanted to indicate what the manipulative be-
haviour of agents is under such a mechanism; that is, how many preferences
they report and how truthful their preference revelation is.

We used computational experiments to show the near-optimal strategies
of the agents. For optimisation, we used a simple genetic algorithm, which
outperformed the alternatives.

Our model setup was the following: 50 schools (10 exam schools), 60
seats in each school and 3,000 agents. The agents (families) were heteroge-
neous, but their spatial preferences could have been correlated. Therefore,
our emphasis in comparative static analysis has been on three parameters –
the shape of the utility function of the agents, the number of exam schools
and the correlation in the preferences of the agents. The first parameter
space (α) illustrates the decreasing utility over alternatives and makes it
possible to study cardinal preferences. The second parameter makes it pos-
sible to study case specificity – exam schools are popular schools at the
centre of the city that are preferred by most families due to public in-
formation from league tables or from their reputation according to “hot
knowledge”. The third parameter makes it possible to indicate the effect
of the homogeneity-heterogeneity of the agents. Homogeneity of agents can
be interpreted as a post-Soviet tendency towards non-diversity of “good
taste” – correlated preferences show that agents have similar preferences
for schools. However, we used spatial preferences and we always put exam
schools at the top of the list. This action is justified by empirical evidence
(Põder and Lauri, 2014).

Our results show that in many circumstances under the Tallinn mecha-
nism it is often best to report only one school, even if there is an option to
report multiple schools. It is rarely beneficial to report three options (the
maximum number). Nevertheless, it would benefit agents to report a school
from the top of their preference lists. When reporting three schools, it is
not always best to report the top schools and it seems to be advantageous to
select the third option uniformly randomly from the remaining preferences.
For agents with near-zero marginal utility, if they exist, it is best to report
schools randomly. Additionally, the Tallinn mechanism maximises the ex-
pected utility of the agents, if the agents learn what and how to report, but
also runs a large risk of agents not being assigned to schools. The max-
imisation of expected utility seems similar to a similar phenomenon in the
Boston mechanism (Abdulkadiroğlu et al., 2011) given that families know
how to manipulate and might be a more general property of manipulable
mechanisms.

We were interested in a situation, when agent have significant utility dif-
ferences over preferences, we used a multiplicative form utility function to
model the change in utilities over alternatives. To some extent our results

118

are influenced by this assumption. However, the multiplicative form has
been shown to be useful and applicable in many situation with human de-
cision making. Alternative form utility function remain for future research.
In addition, the derived equilibrium is sensitive to the distribution of the
degrees of the utility function in the population. As population changes,
other equilibria might emerge.

Finally, we were interested in whether the Tallinn mechanism hurts fam-
ilies compared to a strategy-proof stable mechanism such as the Deferred-
Acceptance mechanism. We saw that the number of unassigned students
is much higher under the Tallinn mechanism. This can partially be in-
terpreted as an inefficiency of behaviour due to the mechanism. However,
there is no considerable mean welfare effect – agents optimise their utility
maximising strategies under the Tallinn mechanism.

We see that we manage to find beneficial strategies under the Tallinn
mechanism; however, due to the non-repetitive nature of the game, real-life
learning can be relatively limited for most of the families. Nevertheless,
as a stylised fact about the reporting of preferences indicated, agents learn
not to report the maximum number of preferences, rather they limit their
reported lists. In addition, in the case of exam schools, they tend to report
schools from the top of the list, yet there remains a high probability of local
regular schools also being reported. This could be the “learning effect” –
the Tallinn mechanism prioritises neighbourhood kids by using the cardinal
measure of distance.

In conclusion, it was demonstrated that post-Soviet school-proposing
mechanisms use some properties of the central marketplace that are open to
manipulation – such mechanisms force families to learn strategic behaviour
by reporting non-truthful preferences. In this respect, the Tallinn mecha-
nism is similar to the infamous Boston mechanism. Moreover, it was shown
that both would result in a higher expected utility for the agents compared
to the optimal, stable and strategy-proof Deferred-Acceptance mechanism,
which might be the property of generally manipulable mechanisms.

119

4 Policy Design for Kindergarten Allocation

4.1 Introduction

Families have become a much-debated issue in all developed countries and
they form the focal point of debates about “new risks” and the much needed
“new policies” for Western welfare states. The questions of who should care
for children, to what extent and for how long, lie at the centre of conflicts
about the values that shape not only policies and struggles around poli-
cies, but also individual and family choices (Saraceno, 2011). Moreover, in
Eastern Europe, the Soviet legacy has paved the way for the dominance
of publicly provided care, but in many countries, including the case exam-
ined here, there is a shortage of early childhood care places for children
aged 18 months to three years. This shortage of places has forced munic-
ipalities, who are the main providers, to set priorities for the allocation
of these places. Priorities are aimed not only at solving the problem of
oversubscription, but also at implementing social goals. Thus, we concep-
tualise the process of implementing priorities accompanied with allocation
principles (matching design) as policy design.

Policy design entails taking the approach of a matching mechanism de-
sign in order to propose a good way to allocate children to kindergartens.
There are process descriptions about the (re-)design of school choice mech-
anisms, e.g. in various cities in the US (Pathak and Sönmez, 2013; Pathak
and Shi, 2013; Ergin and Sönmez, 2006) and in Amsterdam (de Haan et al.,
2015). Nevertheless, to the best of our knowledge, our paper is the first to
report such a redesign of a kindergarten allocation mechanism. However,
our theoretical founding relies on the mechanism design literature moti-
vated by related applications, such as school choice (Abdulkadiroğlu and
Sönmez, 2003; Abdulkadiroğlu et al., 2005a), college admissions (Biró et al.,
2010b; Chen et al., 2012) and job assignments (Roth, 2008). Mechanism
design provides methods for allocation under given welfare criteria and se-
lection priorities, but it does not prescribe the way in which these priorities
should be applied. The general policy considerations for school choice are
the allocation of siblings to the same school and the proximity of the school.
Some countries also use some affirmative action measures, e.g. prioritising
children of low socio-economic status. Similar principles are applicable to

121

our kindergarten policy design case study while aiming for the clear-cut
implementation and operationalisation of policies. The latter not only con-
cerns a clear definition of proximity as a priority (i.e. defined as a walk-zone
(Shi, 2015) or a continuous cardinal measure (West et al., 2004)) or the or-
dering of priority classes but also allows for the implementation of welfare
considerations in policy evaluation.

Our welfare considerations aim at two social goals: efficiency and fair-
ness. We define efficiency as the ability of a policy to meet predefined goals,
the utility of families (high rank in their preferences and siblings in the same
kindergarten) accompanied with social goals such as minimising the travel
distance or time to kindergartens. Defining fairness is more problematic
and entails more uncertainty. Our definition of fairness is based on the idea
of equal access. It is operationalised by the probability that the child is
assigned to her first preference.

Instead of implementing certain social goals by policy design, the most
commonly used priority in Estonian municipalities is the date of applica-
tion, while in limited cases, catchment areas are applied to ensure proximity.
Children are ordered on the basis of the application date in a manner sim-
ilar to a serial dictatorship mechanism, thus forcing one-sided matchings
without enabling the implementation of affirmative action policies or social
goals, such as fairness. In addition, parental preferences are not consid-
ered or these are limited. In the Harku case, the number of preferences
was bounded by three until 2015. The latter restriction implies that pref-
erences are not revealed truthfully and moreover, the matching has been
done manually.

Between 2014 and 2016 as part of an Estonian project we collaborated
with the representatives of the Harku municipality. We monitored their
2015 allocation practice and suggested a revision which led to a transitory
system in 2016. In the 2016 allocation, the standard student-proposing
deferred-acceptance mechanism was used under a special priority setting
which is described in detail in Section 4.2.3. This mechanism is known to
be strategy-proof, and the parents were encourage to submit full preference
lists, so we can expect the submitted applications to be truthful. We made
a comparative assessment of policies using the 2016 data. As an input we
used preference data collected from 152 families who have the right to a
kindergarten place.

In the assessment, we proposed seven different policies which consist
of different metrics of indicating distance (as absolute, relative or binary
measures), siblings, quotas; and their priority order. Ties are broken by
assigning random numbers either with a single or with multiple lotteries.

122

Our research methods are partially inspired by Shi (2015), but we investi-
gated some novel policies as well. Perhaps the most interesting aspect of
these policies is the way the distance is used in the priorities.

The classical way of creating proximity priorities is the catchment area
system, where the city is partitioned into areas and the students living in
an area have the highest priority in all schools in that area. This sim-
ple method can be seen as unfair, as one student can have a higher priority
than another student, even though the actual distance of her location to the
school is greater than for the other child. Therefore instead of catchment ar-
eas, most applications have switched to absolute or relative distance based
priorities. The simplest absolute distance based policy is the walk-zone pri-
ority scheme, used in many US cities (e.g. New York (Abdulkadiroğlu et al.,
2005a)), where the children living within a well-defined walking distance are
in the high distance priority group for that school and the ties are broken
by lottery. Strict priorities based on absolute distances are used in Sweden
as well (Andersson, 2017). However, there were also discussions and court
cases about the fairness of such absolute distance based priorities1.

The absolute distance based priority schemes can be unfair for those
living far from all (or most) of the (good) schools, therefore the so-called
relative distance based methods are also commonly used in many applica-
tions (e.g. Calsamiglia and Güell (2014); Shi (2015)). The relative distance
priority means that we give the highest priority to all children for their
closest kindergarten, no matter how far that is, and the children will be in
the second priority group in their second closest kindergarten, and so on. A
rough version of this rule is to give high priority for all children in a given
number of closest schools.

1In the city of Lund parents have challenged allocation decisions in court based on
an alternative option distance argument. The city used the absolute distance priority in
their allocation, but some parents have found this policy unfair, as they would have to
travel 1000m more to their second choice school than to their first choice school, whilst
there was another student who would only need to travel 650m more if allocated to
their second choice school rather than their first choice school. The court accepted this
argument and gave a seat to the appealing student in their first choice school.

123

Barcelona changed its catchment area systems to a relative distance
system in 2007. After the change, students have priority in at least six of
their closest schools (Calsamiglia and Güell, 2014, Section 5.1)2. In Boston,
another relative distance policy was proposed recently by Shi (2015), mainly
in order to reach the goal of the city to cut down busing costs.

Note that there are also applications where the distance based priorities
are considered unfair, as they can limit equal access to good schools. The
Amsterdam school choice system (de Haan et al., 2015) does not use any
distance based priority, only a pure lottery. In the Harku case, where
kindergartens are of more or less the same quality, the authority was in
favour of using the distance based priorities in order to decrease the overall
commuting costs and also to satisfy the preferences of the parents that
were typically for nearby kindergartens. Based on the unfairness of the
catchment area system described above, we only considered absolute and
relative distance based priority approaches. We explain the distance based
priorities that we studied in more detail in Section 4.3 with examples.

Besides the distance we also investigated different ways of taking the
sibling priorities into account and also the way the lotteries are conducted
in case of ties. The way the distance and sibling factors are considered has
already been studied in the literature (Dur et al., 2013). The particular
solution chosen for the 2016 transitory system is an interesting rotation
priority scheme, which can lead to a well-balanced solution with respect to
the two factors. Regarding the lotteries, we analysed the effects of using a
single lottery for all kindergartens compared to using multiple lotteries (one
at each kindergarten), and we have seen results similar to other research
papers (Ashlagi and Nikzad, 2015).

As the second main contribution of our paper, we present a sensitiv-
ity analysis of various metrics of fairness and efficiency of policy designs
based on counter-factual preference profiles. The policies that provide the
best solutions for the current Harku data may not be ideal for other ap-
plications or robust for Harku, where the preferences of the parents are
different. This can be the case in cities, or in other countries with different
kindergarten/school qualities, or for applications at different education lev-
els (e.g. primary and secondary schools). Therefore, we found it important
to investigate the effects of the changes in priorities in the performance of

2“Before 2007, the city was divided into fixed neighbourhoods. The neighbourhoods
varied in size for semi-public and public schools, but were conceptually the same. For
semi-public schools, the neighbourhood coincided with the administrative district. For
public schools, the neighbourhoods were smaller areas within the administrative district.
The new neighbourhoods are based on distance between schools and family residences.
An area (specifically, a minimum convex polygon) around every block of houses in the
city was established to include at least the six closest schools (three public and three
semi-public).”

124

different policies (i.e. different priority structures for the student-optimal
deferred acceptance mechanism). As a novel approach, we studied the fair-
ness (or equal access) of the allocations measured in the probabilities of
getting placed in the first choice schools. The results indicate that pref-
erence structures, more precisely their endogeneity on proximity, influence
the “optimal” policy design. However, in general we can advocate for a
relatively simple policy that prioritises siblings first and relative distance
second.

We structure the chapter as follows. In Section 4.2 we review the
practices and processes of kindergarten choice of an Estonian municipality,
Harku, before the process was redesigned on the basis of our recommen-
dations in 2016. In Section 4.3 we define seven alternative policies and
descriptive statistics of our data, including our results from computational
experiments. Finally, we conclude in Section 4.5.

4.2 Matching mechanism design

The design of an allocation mechanism is usually based on a two-sided
matching market model, in this case between 1) families and 2) kinder-
gartens. Participants on both sides have linear orderings over the partici-
pants on the other side. Families have preferences over kindergartens and
they seek to get allocated to their most preferred kindergartens. Kinder-
gartens have a priority ranking over children. Priorities become important
if there are fewer places available in a particular kindergarten than the
number of families who would like to be allocated to that kindergarten.
In those circumstances, kindergartens accept children who are higher on
their priority list, which in practice usually means children who live closer
and/or who have a sibling in the kindergarten. Kindergartens do not seek
to admit higher priority children, which is different from some applications
of two-sided markets. In college admissions for example (Gale and Shap-
ley, 1962), both students and colleges seek to get more preferred matches,
therefore they might act strategically in the allocation mechanism.

There are two prominent strategy-proof mechanisms for solving match-
ing problems, the Deferred-Acceptance (DA) and the Top-Trading Cycles
(TTC) mechanisms (Abdulkadiroğlu and Sönmez, 2003). The DA mech-
anism guarantees that no preferences and priorities (policies in our case)
are violated, and there is no child who could get a place in a more pre-
ferred kindergarten by priority, so there are no blocking pairs. A matching
with no blocking pairs is called stable. A blocking pair can also be seen
as a child having justified envy, since there is a family that would pre-
fer a kindergarten that either has free places or has accepted a child with

125

lower priority. These kinds of justified envy situations are not tolerated
in most applications (Pathak and Sönmez, 2013), and are sometimes even
prohibited by law. Thus, stability is a crucial property of any mechanism.

While there is potentially a number of stable allocations (Knuth, 1997b),
the child-proposing DA mechanism that is usually implemented results in
the best possible preference for all families among the stable solutions, and
this option also makes it safe for the families to reveal their true preferences.

The theoretical properties and disadvantages of DA were studied by
Haeringer and Klijn (2009), backed by evidence from laboratory experi-
ments (Calsamiglia et al., 2010) and by practical applications across the
world (Pathak and Sönmez, 2013). In addition to advocating for DA, the
main policy implications of these studies indicate that for efficiency gain,
it is advised to increase the bounds on the number of collected preferences
or to abolish the limit on the number of submitted preferences.

4.2.1 Matching practices in Harku

Before its redesign, the application process of the Harku municipality had
many design features, but it was not a transparent system. Families could
submit up to three ordered choices. The application date and the home
address were also collected. The application date was relevant for the al-
location, as families with an earlier application date had higher priority.
Therefore, families tended to submit their applications as early as possible,
usually a few weeks after child-birth. The application data typically re-
mained unchanged until the actual allocation occurred, which could make
the originally true preferences out of date (e.g. it was possible that the
family moved to a different place or their older sibling has received a place
in a different kindergarten during the waiting period). The address could
be a factor, as some heads of kindergartens considered it when assigning
places. Secondly, a qualifying condition for a kindergarten place is that the
parents have to be registered residents in Harku, and residency is based on
where the local taxes are collected.

Moreover, the matching was done manually using the following proce-
dural rules. First, the number of vacant places was settled by January of
each year, when the allocation process started. Place offers were made to
families by the heads of kindergartens if their kindergarten was the first
choice of the family. Second, if there were more families than places, then
priority was given to the applications with earlier registration dates, al-
though proximity or siblings could also be occasionally relevant. Third,
if an offer was accepted, the child became assigned to the kindergarten,
otherwise that place was offered to the subsequent family on the waiting
list.

126

In the case of unassigned children, the procedural rules where com-
plicated and discretionary. Generally the heads of the kindergarten com-
municated with each other to find a place for the children who remained
unassigned. In the case of families who ordered popular kindergarten on
the top of their list and remained unassigned in the first round, second or
third choice was considered, although these could already be full. If that
was the case, the families with an earlier application date would be re-
jected from their second choice because the children already assigned there
had listed that kindergarten as their first preference, irrespective of their
application dates. Thus, some children were allocated to a less preferred
kindergarten, simply because of how the family ordered their preferences.
This is a well-known property of the Immediate-Acceptance mechanism
(e.g. Abdulkadiroğlu and Sönmez, 2003) and the procedure that had been
used in Harku until 2015 was very similar to this.

4.2.2 Building a mechanism for kindergarten seat allocation

Our redesign of Harku kindergarten allocation mechanism inspired by lit-
erature has four main areas as described in Table 4.1. The application
procedure before 2016 which was initiated by collecting preferences had
several drawbacks. First, since parents could get higher priority if they
applied earlier, they tended to apply soon after the birth of the child. How-
ever, during the subsequent three years, the preferences of the families could
have changed. That was usually not reflected in the application data, thus
resulting in a high number of cancellations. Second, families could only
list their top three choices. Limited preference not only created a large
number of unassigned children, but also manipulation with the revelation
of preferences.

Our design changed the data collection procedure and the number of
preferences collected. Families use the application platform3 during a lim-
ited period (one month) six months before the service delivery (1. Septem-
ber) and listed all their preferences. Giving up application date as a priority
will be an imminent result of the procedural amendments.

Finally, the central allocation mechanism applied until 2016 was not
transparent, the priorities were not clearly defined or adhered to by the
heads of the kindergartens. The first priority of the application date was
sometimes violated. Children with siblings were usually considered to have
higher priority, but not always. Our design introduced clearly defined prior-
ity metrics and a centralised allocation system that ensures that the criteria
are always followed. Moreover, instead of unstable and manipulable Imme-
diate Acceptance mechanism we proposed the child-proposing DA. This is

3https://www.haldo.ee/

127

Table 4.1: Redesign of Harku mechanism

2015 2016

Application procedure

Applications are collected af-
ter the birth of the child due
to prioritising according to
application dates

Applications are collected
from 1 January until 1 Febru-
ary for allocating places from
1 September of the same year

Limited preference lists

Limited to three kinder-
gartens

List all kindergartens they are
willing to attend (no limit)

Priorities (policies)

Not clearly defined
See Section 4.3.2 for policy de-
sign alternatives

Matching mechanism

Decentralised mechanism
which has some properties
of Serial dictatorship and
Boston (Immediate accep-
tance)

Deferred-Acceptance

a standard method for school choice (Abdulkadiroğlu and Sönmez, 2003),
which eliminates justified envy, and gives incentive for the families to state
their true preferences.

4.2.3 Particularities of the 2016 system

Before the final implementation of our platform-based matching design,
there was a transitory system in place in Harku in 2016 that partially ap-
plied our design recommendations, but experimented with priorities. Fam-
ilies were asked to rank all seven kindergartens. Additionally, the home
address, application date, status of siblings and the child’s birth date were
collected. The allocation process was designed on the basis of the DA mech-
anism with slots (Dur et al., 2013) while policy transformation regarding
fixing priorities was more complex. There were four types of priorities that
are defined per position as follows, in the order of precedence:

1. siblings, distance, age, application date

2. distance, age, application date, siblings

3. application date, siblings, distance, age

128

4. age, application date, siblings, distance

5. siblings, distance, age, application date

6. distance, age, application date, siblings

...

The positions are considered in order, with families first applying to
the first position, then the second position, etc. This can also be thought
of as each kindergarten being split into a number of seats, with each seat
potentially having a unique priority criteria. Then, the preferences of the
families are modified so that within each kindergarten, they rank the posi-
tion with the higher precedence higher. If the number of available places is
not exactly divisible by four, then some type of priorities might have more
positions available than others.

The main reason for the complicated policy design or for considering
the four types of priorities rotationally was backed by the argument of
equal treatment. Granting equal opportunity to all ”types of families” (the
ones that have siblings; those living nearby; early applicants; and families
with an older child) was the preference of the local municipality. In future
allocations, the application date will not be used anymore. It was used as
here as some families still had the expectation of being allocated by the
application date.

The precedence order of priority classes matters in the allocation proce-
dure, as shown by Dur et al. (2013) by demonstrating that a simple priority
scheme might be discriminating for some groups. For instance, let us as-
sume there are five seats with siblings and distance priority and a further
five seats with only distance priority. There are more than five children
with a sibling and in total more than ten children. If for the first five po-
sitions we would consider children with siblings and then by distance, this
would be disadvantageous for children with siblings compared to first only
considering distance and then siblings as well as distance. In the latter case,
some children with siblings might already be allocated by distance alone,
so other children with siblings have lower competition and a better chance
of getting a desired place. On the other hand, it might occur that some
children living closer have an unfair disadvantage. The aim of the rotating
scheme is to balance these two effects. That leads us to the equal treatment
issues related to policy design.

129

4.3 Policy design

4.3.1 Efficiency and fairness

In mechanism design the goals are usually related to designing an allocation
method that maximises a form of efficiency, while not violating some con-
straint(s). In the matching domain, the usual criterion is selecting a Pareto
optimal matching among a set of stable matchings. In a public resource
two-sided matching setting, e.g. school seats, usually in fact two selections
are made: first, the priorities of applicants and second, the mechanism. In
a school choice setting, the priorities are often based on siblings and dis-
tance, although there are other alternatives (Matching in Practice, 2016).
However, in designing the allocation mechanism these priorities are usually
treated as a given.

When evaluating the allocation methods we concentrate on two main
criteria: efficiency and fairness. Efficiency characterises the level at which
we, as a designer, can satisfy the preferences of the applicants. Thus, we
look at the average allocated preference. We also include the percentage of
applicants receiving their first preference as this is often the case and the
average might not always be a good indicator.

In addition to efficiency and stability (lack of envy), our policy design is
driven by equality concerns. In the literature on distributive justice, discus-
sion on fairness (fair access in our case) is often accompanied by discussion
on the principles of affirmative action, i.e. the Rawlsian difference principle
(Rawls, 1971). In our case, fair access is defined as the chance for the family
to access their most preferred kindergarten. Moreover, we include in our
design some positive discrimination, or controlled choice, through policies
such as prioritising siblings.

Fair access is essentially different from the efficiency metrics for the
priorities of local municipalities and the preferences of families. The goal
of fair access is to provide an opportunity for everyone to get into their
most preferred kindergarten. As some families might live far away from
all kindergartens, they would always be low on the priority list for any
kindergarten. We measure fair access as the proportion of families placed
in their most preferred kindergarten on two levels, at least 10% chance and
50% chance. This is similar to access to quality in (Shi, 2015) where quality,
in addition to being ranked high, contains an objective quality metric. Since
there is no quality ranking for a kindergarten in our case and only a small
number of kindergartens we look at the probability of families having a
chance to be allocated to their first choice. Since not all policy designs use
lotteries, some will be inherently unfair in terms of fair access.

130

The mechanism also allows the local authorities to have social objec-
tives, which are usually, but not always aligned with the preferences of the
parents. The two most prominent goals are

� having siblings in the same kindergarten, and

� placing children in a kindergarten near their home.

Prioritisation of proximity and siblings is also recommended by the reg-
ulations responsible for the allocation of kindergarten places (Preschool
Child Care Institutions Act, 2014). While proximity and siblings are com-
mon practice in the case of school and kindergarten choice design, often
favoured as the means to sustain community cohesively and avoid unrea-
sonable transportation costs (see Shi, 2015, for instance), this practice may
cause various concerns. The proximity principle may lead to problems in
segregated areas, where it may result in the concentration of children from
a similar socio-economic background into the same kindergartens. Further
social objectives could be the prioritisation of disadvantaged families or
children with special needs, but there was no access to this kind of infor-
mation in the data, so those goals were disregarded in this study. However,
the main goal is still to provide families with a place in their most preferred
kindergartens.

4.3.2 Operationalisation of policy designs

A short list of social objectives indicated in the previous section does not
mean that policy designs are limited to two alternatives, as the priority
structures for siblings and proximity have many variants. Children with
siblings might always have priority over others, or might only be priori-
tised over families living further away. Proximity can also be considered
in multiple different ways, such as a walk-zone or a catchment area or a
geographical distance.

A simple way to consider geographic aspects is to define catchment areas
for each kindergarten, and prioritise the children living in the catchment
area where the kindergarten is located. The drawback of this method is that
these priorities may not reflect the personalised distances, as a kindergarten
might be relatively far from an address in the same area, whilst another
kindergarten in a different area can actually be nearby. Therefore, it may
be more appropriate to use personalised distances. We can use continuous
(real) distances or discretise them somehow, for instance giving priority to
a kindergarten within a 10-minute walking distance, or giving priority to
the closest, or several closest kindergartens. Another option is to give high
priority to a child in a number of nearby kindergartens. A special version

131

of the latter so-called menu system has been evaluated and used in Boston
school choice (Shi, 2015). Below we specify the distance-based priorities
that we used in our policies.

� absolute: Strict priorities based on the personalised absolute distances
between the child’s location and the school, measured in walk time
or kilometres.

� walk-zone: Coarse priorities based on the above-described absolute
distance. A child is in the high priority group for a school if she lives
within a 10-minute walking distance to this school.

� relative: Every child is in the highest distance-based priority group
in her closest school, she is in the second highest priority group in the
second closest school, and so on.

� 3 closest: A binary variant of the above-defined relative distance pol-
icy, where every child is in the high priority group of a school, if this
school is among the three closest schools for this child.

When we consider the children in walk-zones to have a higher priority,
followed by children with siblings, the following priority groups are ob-
tained: 1. siblings in walk-zones, 2. children in walk-zones, 3. siblings, 4.
the rest. Siblings could also be considered to have a higher priority, which
would result in the priority groups: 1. siblings in walk-zones, 2. siblings,
3. children in walk-zones, 4. the rest. This simple classification is used
in many US cities, such as New York (Abdulkadiroğlu et al., 2005a) and
Boston (Abdulkadiroğlu et al., 2005b), together with a randomised lottery
for breaking ties. The lottery can also be conducted in two ways, either as a
single lottery which is used in all kindergartens, or as multiple lotteries, one
for each kindergarten. The typical choice, used in most US school choice
programmes and also in Irish higher education admissions (Chen, 2012),
is the single lottery. We will investigate both in our computational exper-
iments. This question is discussed further by Ashlagi and Nikzad (2015)
and Pathak and Sethuraman (2011).

If it is considered undesirable that a high proportion of children get
admitted by sibling priority, then one option is to set a quota for siblings,
for example 50% of the places. In this case, there is high priority for siblings
for only some proportion of the places available, and the remaining places
are prioritised by distance only. In such a setting, how the allocation is
implemented is crucial. It can be done by allocating the places for siblings
first and then the remaining seats or in reverse. Dur et al. (2013) showed
that the reverse approach can benefit children with siblings, and Hafalir
et al. (2013) showed that reserving places for a certain minority results in a

132

better allocation for the minority than limiting the quota for the majority
does. Under the latter policy, both groups (minority and majority) could
be worse off. We evaluate policy design by the reservation of places for
siblings or for families living nearby. In Harku, only about 20% of children
have a sibling, so 20% of the places were set to have a sibling priority.

The Deferred-Acceptance algorithm can be slightly modified to accom-
modate for reserves and quotas. The priority quotas can be considered as
separate kindergartens. In this variant, the child is first placed in a quota
group high in the precedence order, and if rejected, the child is then placed
lower, etc. Thus, each child will be placed in the highest possible precedence
quota group.

Table 4.2: Summary of policies (priority order in parentheses)

Policy Distance (D) Siblings (S) Lottery
Quotas

(Precedence)

DA1 absolute (2) (1) no no
DA2 walk-zone (2) (1) (3) no
DA3 walk-zone (1) (2) (3) no
DA4 3 closest (2) (1) (3) no

DA5 absolute (2) (1) no
[80%, 20%]
([D, S+D])

DA6 absolute (2) (1) no
[20%, 80%]
([S+D, D])

DA7 relative (2) (1) (3) no

In this study, in order to explore the described aspects, we settled on
seven priority policies (summarised in Table 4.2) for evaluation:

DA1. Children with siblings always have the highest priority and children
living closer have higher priority. Priority classes would be considered
in the order: 1) siblings; 2) walking distance.

DA2. Children with siblings always have the highest priority, then children
in the walk-zone have higher priority. The walk-zone is defined as a
10-minute walking distance from home. Additional ties are ordered by
a random lottery for all kindergartens. The order of priority classes is:
1) siblings + walk-zone; 2) siblings; 3) walk-zone; 4) the remainder.

DA3. Children in the walk-zone always have the highest priority, then chil-
dren with siblings have higher priority. Additional ties are ordered by
a random lottery for all kindergartens. The order of priority classes is:
1) siblings + walk-zone; 2) walk-zone; 3) siblings; 4) the remainder.

133

DA4. Children with siblings always have the highest priority, and children
have higher priority for the three closest kindergartens. Additional
ties are ordered by a random lottery for all kindergartens. Priority
precedence order: 1) siblings + one-of-three-closest; 2) siblings; 3)
one-of-three-closest; 4) the remainder.

DA5. Children with siblings have the highest priority for the reserved 20%
of places, otherwise priority is by distance. Precedence order: 1) by
distance up to 80%; 2) children with siblings + distance up to 20%;
3) remaining places, if any, by distance.

DA6. Children with siblings have the highest priority for the reserved 20%
of places, otherwise priority is by distance. Precedence order: 1)
children with siblings + distance up to 20%; 2) remaining places, if
any, by distance.

DA7. Children with siblings always have the highest priority, and children
have higher priority in the closest kindergarten, second highest in the
second-closest, etc. Additional ties are ordered by a random lottery
for all kindergartens. Priority precedence order: 1) siblings; 2) closest-
number.

To demonstrate the effect of policies we construct a simple example. Let
us assume we have four children C = {c1, c2, c3, c4} and four kindergartens
K = {k1, k2, k3, k4}. In Table 4.3 we show the distances between homes
and kindergartens. We have no children with siblings in this example.

Table 4.3: Distances between homes and kindergartens (km-s)

km k1 k2 k3 k4

c1 .7 1.2 1.0 1.7
c2 .4 .6 .3 .7
c3 .9 .5 .4 .3
c4 .8 .3 .9 1.0

Assuming that walk-zone distance is ≤ .6 km, the resulting priorities
are in Table 4.4. We can observe that with absolute distance or walk-zone
the child c1 would not have a high priority in any kindergarten. However
with the 3-closest policy, there is at least some chance of having the highest
priority in some kindergarten and with relative distance, each child has
the highest priority in at least one kindergarten. While this is not always
guaranteed with relative distance, the lottery has lower impact compared
to the 3-closest policy.

134

Table 4.4: Distance priorities

absolute (DA1) walk-zone (DA2, DA3)

k1 c2 ≺ c1 ≺ c4 ≺ c3 c2 ≺ {c1, c3, c4}
k2 c4 ≺ c3 ≺ c2 ≺ c1 {c2, c3, c4} ≺ c1

k3 c2 ≺ c3 ≺ c4 ≺ c1 {c2, c3} ≺ {c1, c4}
k4 c3 ≺ c2 ≺ c4 ≺ c1 c3 ≺ {c1, c2, c3}

3-closest (DA4) relative (DA7)

k1 {c1, c2, c4} ≺ c3 c1 ≺ {c2, c4} ≺ c3

k2 {c1, c2, c3, c4} c4 ≺ {c1, c2, c3}
k3 {c1, c2, c3, c4} c2 ≺ {c1, c3} ≺ c4

k4 c3 ≺ {c1, c2, c4} c3 ≺ {c1, c2, c4}

4.3.3 Data and initial policy design comparison

From a total of 152 families, 151 ranked all seven kindergartens and only
one family submitted a single kindergarten as their preference. Table 4.5
shows the number of available places in each kindergarten. Also 37, about
24% of, children have a sibling in one of the kindergartens.

Table 4.5: Harku allocation

Kindergarten Number of places

A 20
B 20
C 34
D 18
E 20
F 38
G 5

Total 155

Table 4.6 compares the allocations over all the policies with the sub-
mitted preferences. The listed Harku allocation does not exclude those
few families who declined their assigned place. However, many (115, i.e.

135

76%) of the families were allocated to their most preferred kindergarten.
Since most families ranked all kindergartens and there are more places than
children, no children remained unassigned.

For policies that included lotteries, we computed averages over 20 lot-
teries. In the parentheses we show the standard error over the lotteries.
In addition, we compared policies using a single (S) lottery for all kinder-
gartens or multiple (M) lotteries, one for each kindergarten.

Table 4.6: Year 2016 comparison of policies using reported preferences

Policy
Mean
prefer-
ence

First Unassigned
Mean

distance
(km)

With
siblings

Harku 1.68 115 0 4.24 95 %

DA 1 1.76 110 0 4.26 100 %

DA 2 (M)a
1.85

(0.01)
98.75
(0.61)

0
4.59

(0.02)
100 %

(0.0 %)

DA 2 (S)
1.72

(0.01)
108.05
(0.61)

0
4.44

(0.01)
100 %

(0.0 %)

DA 3 (M)
1.83

(0.01)
98.30
(0.79)

0
4.51

(0.02)
95 %

(0.25 %)

DA 3 (S)
1.72

(0.01)
107.75
(0.38)

0
4.45

(0.02)
96 %

(0.3 %)

DA 4 (M)
1.91

(0.01)
89.25
(1.06)

0
4.53

(0.02)
100 %

(0.0 %)

DA 4 (S)
1.75

(0.01)
104.85
(0.7)

0
4.49

(0.01)
100 %

(0.0 %)
DA 5 1.76 110 0 4.26 100 %
DA 6 1.76 110 0 4.26 100 %

DA 7 (M)
1.78

(0.01)
107.60
(0.47)

0
4.30

(0.01)
100 %

(0.0 %)

DA 7 (S)
1.76

(0.01)
107.75
(0.47)

0
4.31

(0.01)
100 %

(0.0 %)

aFor policies with lotteries, (M) indicates multiple tie-breaking lotteries and (S) single.
The standard errors over lotteries are in parentheses.

By using a simpler policy such as the DA1, we saw that there are fewer
families receiving a place in their first choice kindergarten than with the
transitory Harku priority system. Moreover, two children (about 5%) are
not allocated to the same kindergarten as their siblings with the transitory
rule, but with most other policies all siblings end up in the same kinder-

136

garten. The only exception to this is DA3, which has siblings as a second
priority over walk-zone, and on average also allocated 95% of siblings in
the same kindergarten, but fewer children to their first preferences.

It seems that the transitory policy of Harku invoked the so-called va-
cancy chains (Blum et al., 1997), where at the expense of one child with a
sibling several others could obtain better places along an augmenting path.
In particular, by denying places for two children in the same kindergarten
as their sibling, around seven more families could obtain their first choices.
This leads to an interesting trade-off between the goals of satisfying the
sibling priority or granting the first choice of slightly more parents.

In 2016, the allocations based on policies DA5 and DA6 were exactly
the same. This indicates that the gain in allocating more children to their
first preference with Harku’s policy is not due to allocating children to a
closer kindergarten, but due to application date and age priorities. There-
fore, if these two criteria will not be used in future policies, we expect that
the rotation scheme based only on siblings and proximity will provide al-
locations similar to DA1, DA5 and DA6, assuming that the proportion of
children and seats is similar.

4.3.4 Generating counter-factual preferences

We use the 2016 data for counter-factual policy evaluation. To generate
the counter-factual preferences we only use the distance between homes and
kindergartens and sibling status in a kindergarten. The collected preference
data is used to understand which features to use in the ranking function, the
functional form of the utility function and the fixed effects of kindergartens.

For each family and kindergarten we know the geographical location
from address lookup from google maps4 and Estonian Land Board (Maa-
amet5) and distance calculations taken from Google maps distance6. We
have a rich dataset for distance, as for each family-kindergarten pair we
know the driving and walking distances in kilometres and minutes. We
also have the direct distance between the two points calculated with the
haversine formula. The features are described in Table 4.7.

We fit a multinomial rank-ordered logit model (Croissant, 2011), which
is similar to the model used by Shi (2015). The model assumes that families
have an utility function of the form,

uij = αj +
∑

k

βk · xkij + εij (4.1)

4https://developers.google.com/maps/documentation/geocoding/intro
5http://inaadress.maaamet.ee/geocoder/bulk
6https://developers.google.com/maps/documentation/distance-matrix/intro

137

Table 4.7: Family’s kindergarten features

Feature Description

preference rank Families rank of the kindergarten, be-
tween 1-7

walking distance sec walking time between family’s home and
kindergarten, based on Google (2015)

walking distance m walking distance between family’s home
and kindergarten, based on Google (2015)

driving distance sec driving time between family’s home and
kindergarten, based on Google (2015)

driving distance m driving distance between family’s home
and kindergarten, based on Google (2015)

haversine distance m direct distance between family’s home and
kindergarten

walking distance rank kindergarten rank by walking distance
driving distance rank kindergarten rank by driving distance
haversine distance rank kindergarten rank by haversine distance
sibling 1 if kindergarten has a sibling already at-

tending, 0 otherwise
log walking distance sec log(walking distance sec)
sqrt walking distance sec

√
walking distance sec

log walking distance m log(walking distance m)
sqrt walking distance m

√
walking distance m

log driving distance sec log(driving distance sec)
sqrt driving distance sec

√
driving distance sec

log driving distance m log(driving distance m)
sqrt driving distance m

√
driving distance m

log haversine distance m log(haversine distance m)

sqrt haversine distance m
√
haversine distance m

138

where αj are fixed effect of kindergartens, βk is the coefficient for feature
k and εij is the family’s personal unexplained preference. We further use the
utilities to find a probability if a ranking. In a ranked-order logit model the
probability of a ranking is a multiple of a kindergarten begin is a particular
position, which in our case is Pr(ranking 1, 2, ..., 7) = Pr(ranking =
1) · Pr(ranking = 2) · ... · Pr(ranking = 7). The probability of family i
ranking kindergarten j at some position are,

Prij(ranking = 1) = euij∑7
r=1 e

uir

Prij(ranking = 2) = euij∑7
r=2 e

uir

...

P rij(ranking = 6) = euij∑7
r=6 e

uir

(4.2)

First our aim is to select one of the distance metrics from Table 4.7
to include in the utility model (4.1). For this we do 100 bootstrap runs
with each metric. In Figure 4.1 we plot the resulting log-likelihood with its
standard error. We see that the

√
driving distance sec provides the best

prediction on average. We also see that including the sibling status would
improve the prediction accuracy, however the statistical significance of the
coefficient is low (Table 4.8) in any combination of features. So we select
the model (3) from Table 4.8 as our final model.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

sqrt(haversine_distance_m)

walkng_distance_sec

walkng_distance_m

driving_distance_sec

driving_distance_m

haversine_distance_m

log(walkng_distance_sec)

log(walkng_distance_m)

log(driving_distance_sec)

log(driving_distance_m)

log(haversine_distance_m)

sqrt(walkng_distance_sec)

sqrt(walkng_distance_m)

sqrt(driving_distance_sec)

sqrt(driving_distance_m)

0.98 0.99 1.00 1.01 1.02 1.03

Mean Log−likelihood

P
re

di
ct

or

Figure 4.1: Predictive features

139

For policy comparison we generate the ranking over all kindergartens.
We do not model the cut-off levels for outside options, when the family
would rather keep the child at home. We assume they would always rather
have a place in any of Harku’s kindergartens.

To obtain a full ranking of kindergartens we use the probabilities from (4.2).
For counter-factual preferences we vary the coefficient for distance. The
parameter values are in (4.3). For each combination of parameters we gen-
erate several (7) different preference profiles and evaluate the policies on
the average over all the preference profiles.

β1 ∈ {0.0, 0.05, 0.1, 0.23, 0.25, 0.5, 1, 2, 4, 10} (4.3)

To better interpret the results we look at the results by conditional prob-
abilities of a parameter set. We look at two conditional effects: (a) proba-
bility of ranking kindergarten higher given it is closer; and (b)probability of
ranking a kindergarten higher given a kindergarten has a sibling. Formally
the conditional probability are defined in (4.4) and (4.5).

Pr(r1 < r2 | d1 < d2) =
Pr(d1 < d2, r1 < r2)

Pr(d1 < d2)
(4.4)

Pr(r1 < r2 | s1 > s2) =
Pr(s1 > s2, r1 < r2)

Pr(s1 > s2)
(4.5)

The mean conditional probability with fitted regression parameter, β =
0.25, is Pr(r1 < r2 | d1 < d2) ≈ 0.79 ± 0.027. This is similar to what we
observe it the 2016 data, where Pr(ri � rj | di < dj) = 0.81, i 6= j. In
Figure 4.2a shows the relationship between the logistic parameters and the
conditional probabilities.

4.3.5 Policy sensitivity to preferences

When comparing policies, one may wonder how sensitive the results are to
changes in the preferences of parents. This can also be important when ap-
plying our policy recommendations in other applications. In kindergarten
allocation, and sometimes also in school choice, when the kindergartens are
more or less of the same quality, the most important factor influencing the
preferences of parents is the location. Therefore, we conducted a compara-
tive study wherein the intensities of this factor in the preferences of parents
is varied. We evaluated the efficiency and fairness of the alternative policies
accordingly. For the generation of preferences, we use the locations and the
information on the siblings from the 2016 preference data.

71.96 standard deviations, 95% probability

140

Table 4.8: Rank-ordered logit coefficients

preference rank
(1) (2) (3)

αB −0.643∗∗∗ −0.646∗∗∗ −0.532∗∗∗

(0.150) (0.151) (0.143)

αC −0.642∗∗∗ −0.637∗∗∗ 0.556∗∗∗

(0.179) (0.181) (0.146)

αD 0.223 0.206 1.690∗∗∗

(0.181) (0.187) (0.155)

αE 0.250 0.232 0.994∗∗∗

(0.153) (0.156) (0.142)

αF 0.223 0.247 1.662∗∗∗

(0.178) (0.184) (0.153)

αG −1.868∗∗∗ −1.916∗∗∗ −1.563∗∗∗

(0.193) (0.197) (0.177)

β1 −0.247∗∗∗ −0.247∗∗∗√
driving distance sec (0.016) (0.017)

β1 20.910 21.560
sibling (2,616.377) (2,702.194)

Observations 906 906 906
Log Likelihood −871.479 −825.165 −955.807

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

141

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●● ●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●● ●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●● ●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●● ●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●● ●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●● ●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●● ●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●● ●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●● ●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●● ●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●● ●●●●●●●●●●●
●●●●●●●●●●●

0.6

0.7

0.8

0.9

0.1 1.0 10.0

β1

P
r(

r 1
<

r 2
|d

1
<

d 2
)

(a) Conditional probability on distance

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●● ●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●● ●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●● ●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●● ●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●● ●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●● ●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●●

●●●●●●●●●●● ●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●● ●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●● ●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●● ●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●

0.4

0.5

0.6

0.7

0.8

0.9

0.1 1.0 10.0

β1

P
r(

r 1
<

r 2
|s

1
>

s 2
)

(b) Conditional probability on siblings

Figure 4.2: Coefficients and conditional probabilities

We characterise preference profiles by the conditional probability of a
family ranking a closer kindergarten higher (Pr(ri � rj | di < dj), i 6= j)
and ranking a kindergarten with a sibling higher (Pr(ri � rj | si > sj),
i 6= j). Where ri is rank of kindergarten i, di is distance to kindergarten i
and si is one when there is a sibling and zero otherwise. In the collected
2016 preference data, the Pr(ri � rj | di < dj) = 0.81 and the Pr(ri � rj |
si > sj) = 1.0, i 6= j.

The main dimensions of the evaluation are the preference rank achieved
in an allocation as well as the effect of the average distance from kinder-
gartens and the share of siblings in the same kindergarten.

For statistical comparison, we generated twenty preference profiles of
each of the parameter values. A total of 200 preference profiles were gener-
ated. For each policy that has a lottery, we run twenty different randomised
lotteries for each instance. As we saw in Table 4.6 the standard errors
over the twenty lotteries are small. All the figures of the results show the
smoothed8 results of the ten allocations over policies with a 95% confidence
bound. For policies with lotteries, there are results with a single (S) and
multiple (M) lotteries over kindergartens.

Each year the number of available kindergarten positions varies. How-
ever, on average about 20 places should be available in each kindergarten
each year, as one group of children leaves for school. Occasionally, there
might be more or fewer places. In our experiments, we set the number
of available places to 20 in each kindergarten. However, this creates ad-
ditional competition and the resulting matched ranks will be lower (see

8smoothed with local polynomial regression

142

Ashlagi et al., 2013a,b) in these experiments than in the actual data in Ta-
ble 4.6. Additionally, in our interpretations we implicitly assume the effect
of the competition will be similar for all the policies.

Figures 4.3a and 4.3b demonstrate the average preferences obtained and
the proportion of families getting their first choices for all policies. Policy
DA7 is the most sensitive to changes in the preferences of families. When
preferences are strictly based on distance with conditional probability of
Pr(ri � rj | di < dj) → 1.0, it produces one of the highest average rank
score, one similar to other policies such as DA1, DA5 and DA6. Surpris-
ingly, when the preferences of families are close to random, with conditional
probability of Pr(ri � rj | di < dj) → 0.5, then DA7 (S) is the policy that
has one of the lowest average ranks and the lowest number of families with
a first preference. Policies that do worse are the ones using multiple lot-
teries, one per kindergarten. In addition, the difference of having a single
or multiple lotteries for kindergartens is not very significant for DA7, most
likely due to lower usage of tie-breaking in this policy compared to others
with a lottery.

At face value, DA7 seems to be the most egalitarian policy as every
family has the highest priority in at least one of the kindergartens. However,
it seems that families that do not prefer to be in the closest kindergarten
tend to be rejected more often from their preferred kindergartens further
away where they have a lower priority. As the matched rank drops more
in DA7 than other policies, when Pr(ri � rj | di < dj) → 0.5. Since
the preferences and priorities are not aligned, the probability of the family
being rejected in some round of the process is higher. The probability of
being rejected at a certain point seems to be smaller for other policies.

In terms of average matched preference rank, the policies DA2 and DA3
are almost indistinguishable from each other, most likely because there are
too few siblings in this data. Nevertheless, it is always better to use a single
rather than multiple tie-breaking lotteries for both of these policies. The
average preference achieved is always better with a single lottery and also
there are more families with their first preference (Figure 4.3b). Policies
with a single lottery, such as DA2 (S), DA3 (S) and DA4 (S) – with the ex-
ception of DA7 (S) – are significantly better for families in most situations.
Only when Pr(ri � rj | di < dj) > 0.9, did policies DA1, DA5 and DA6,
which use absolute distance, turn out to be better than the single lottery
policies.

The policies DA1 and DA6 always produce exactly the same matching,
DA5 is occasionally slightly different (for about 2-6 children), but the ag-
gregate results are still very similar. This is most likely because the selected
reserve of 20 % is close to the percentage of siblings in the data.

143

M
ulitple T

B
S

ingle/N
o T

B

60% 70% 80% 90%

2.1

2.4

2.7

3.0

2.1

2.4

2.7

3.0

Conditional probability of distance in preferences (Pr(r1 < r2|d1 < d2))

A
ve

ra
ge

 p
re

fe
re

nc
e

Policy

DA 1

DA 2 (M)

DA 2 (S)

DA 3 (M)

DA 3 (S)

DA 4 (M)

DA 4 (S)

DA 7 (M)

DA 7 (S)

(a) Average preference

M
ulitple T

B
S

ingle/N
o T

B

60% 70% 80% 90%

30%

40%

50%

60%

30%

40%

50%

60%

Conditional probability of siblings in preferences (Pr(r1 < r2|s1 > s2))

C
hi

dr
en

 in
 fi

rs
t p

re
fe

re
nc

e

Policy

DA 1

DA 2 (M)

DA 2 (S)

DA 3 (M)

DA 3 (S)

DA 4 (M)

DA 4 (S)

DA 7 (M)

DA 7 (S)

(b) Proportion with first preference

Figure 4.3: Conditional probability of distance

Interestingly, most policies, with the exception of DA7, are quite robust
to changes in preferences. The same proportion of families almost always
receive their first preferences, about 50% to 60% with DA2, DA3 and DA4
and 60% to 70% with DA1, DA5 and DA6. There is a slight increase in the
average preference when preferences become determined by distance. With
DA7, the proportion varies widely between 40% and 70%, and families fare
better when preferences are aligned with distance.

Figure 4.4a shows the average distance between families and kinder-
gartens. The average distance is smaller for all policies when the prefer-
ences of families are determined more by distance. Expectedly, the smallest
average distance is always with DA1 (including DA5 and DA6), as these
policies are aimed to minimise distance. The average distance is the largest
with DA2 and DA3, policies based on walk-zones, probably caused by the
randomness in the priorities of kindergartens. Furthermore, these policies
have a slightly lower average distance with a single tie-breaking lottery,
when preferences are correlated with distance. On the other hand often,
if preferences are random, the multiple tie-breaking lotteries have a lower
average distance than single lotteries. A small improvement of average
distance in policies with lotteries is obtained by not using discretisation
by walk-zones, and instead having a higher priority for a fixed number of
kindergartens, as in DA4.

With random preferences, there is a trade-off between achieved prefer-
ence and average distance in the results obtained by DA7 (M) and, DA2
(M) and DA3 (M), where DA4 (M) is at the middle point among these poli-

144

M
ulitple T

B
S

ingle/N
o T

B

60% 70% 80% 90%

4

5

6

4

5

6

Conditional probability of distance in preferences (Pr(r1 < r2|d1 < d2))

A
ve

ra
ge

 d
is

ta
nc

e
fr

om
 k

in
de

rg
ar

te
n

(k
m

)

Policy

DA 1

DA 2 (M)

DA 2 (S)

DA 3 (M)

DA 3 (S)

DA 4 (M)

DA 4 (S)

DA 7 (M)

DA 7 (S)

(a)

M
ulitple T

B
S

ingle/N
o T

B

50% 60% 70% 80% 90%

40%

50%

60%

70%

80%

40%

50%

60%

70%

80%

Conditional probability of siblings in preferences (Pr(r1 < r2|s1 > s2))

S
am

e
ki

nd
er

ga
rt

en
 a

s
si

bl
in

g

Policy

DA 1

DA 2 (M)

DA 2 (S)

DA 3 (M)

DA 3 (S)

DA 4 (M)

DA 4 (S)

DA 7 (M)

DA 7 (S)

(b)

Figure 4.4: Average distance and conditional probability of distance in
preferences

cies in this aspect. Policy DA7 always achieves the lowest average distance
among the lottery policies, others produce better matched ranking. When
preferences are more correlated with distance, then DA7 is better by both
average preference and distance.

Figure 4.4b depicts the probability of children being in the same kinder-
garten as their siblings. When the preferences of families are random with
respect to siblings, most policies place about 40% to 60% of siblings in the
same kindergarten as their siblings. When families prefer closer kinder-
gartens, then more siblings end up in the same place. This higher percent-
age is most likely due to siblings already being in a nearby kindergarten.
We have also added the 45 degree line, indicating that policies that are be-
low this have some children, who would prefer a kindergarten with sibling,
assigned to a different kindergarten. Multiple lottery policies seem to be
better at placing children in the same kindergarten with siblings.

In Figures 4.5a and 4.5b, the probability of a child being matched to
the family’s first preference in at least one lottery is measured. This is a
measure for fairness, or fair (equal) access to kindergartens, which is similar
to the measure of access to quality used by Shi (2015). We have plotted the
fairness of access for policies DA1, DA5 and DA6, even though there is no
sensible interpretation, since there are no lotteries. However, these policies
are still useful for comparison.

145

M
ulitple T

B
S

ingle/N
o T

B

60% 70% 80% 90%

40%

60%

80%

100%

40%

60%

80%

100%

Conditional probability of distance in preferences (Pr(r1 < r2|d1 < d2))

Fa
ir

ne
ss

 o
f a

cc
es

s
(1

0%
 c

ha
nc

e
at

 fi
rs

t p
re

f.)

Policy

DA 1

DA 2 (M)

DA 2 (S)

DA 3 (M)

DA 3 (S)

DA 4 (M)

DA 4 (S)

DA 7 (M)

DA 7 (S)

(a)

M
ulitple T

B
S

ingle/N
o T

B

60% 70% 80% 90%

20%

40%

60%

20%

40%

60%

Conditional probability of distance in preferences (Pr(r1 < r2|d1 < d2))

Fa
ir

ne
ss

 o
f a

cc
es

s
(5

0%
 c

ha
nc

e
at

 fi
rs

t p
re

f.)

Policy

DA 1

DA 2 (M)

DA 2 (S)

DA 3 (M)

DA 3 (S)

DA 4 (M)

DA 4 (S)

DA 7 (M)

DA 7 (S)

(b)

Figure 4.5: Fairness of access

With the lottery policies DA2, DA3 and DA4, with both single and
multiple lotteries, about 60% to 95% of families have about a 10% chance
of a place in a kindergarten that is their first preference. The DA4 (S) is
the best performer when preferences are aligned with distance and DA2
(S) and DA3 (S) when preferences only have a kindergarten effect. Policy
DA7 (S) comes close to DA4 (S) only when preferences are almost perfectly
aligned with distance.

However, when we make our fairness notion slightly stronger, i.e. there
has to be at least a 50% chance of a place in the family’s first choice kinder-
garten, the proportion of families achieving this drops to only about 40%.
This is even lower than with deterministic policies like DA1. Therefore, it
seems that with lotteries we can give some families a small 10%, chance of
getting their first preference, but as a result, some families lose their first
preferences. With a larger chance, 50%, there are more families losing their
first preference than those gaining.

In terms of trade-offs, the policy DA4 (S) is better on fairness and aver-
age matched preference, but worse on average matched distance. DA1 and
similar policies do better on average matched rank and distance, however
they fare worse on fairness, i.e. families living far away from all kinder-
gartens have a smaller chance of a preferred match. When preferences are
not entirely determined by distance, then these two (DA1 and DA4) are
the best options to choose from. However, with distance-based preferences,

146

DA7 can prove to be an improvement. In this case with DA7, the fairness
is almost as good as with DA4, average distance was a significant improve-
ment over DA4, and average allocated rank very close to DA1.

4.4 Further issues

There are some additional aspect of kindergarten allocation to consider.
These were not included in the current design mainly because it would
require a more profound change to the data collection during the application
procedure or were very small scale, involving potentially one or two children
a year. We present here a summarised overview of Further issues section
from (Veski et al., 2017).

One of the issues with potentially the biggest impact is the procedure of
considering children with special needs. Currently some two to four places
are held back due to knowing beforehand if there will be any such cases as
children with special needs are considered to take up-to three places. If no
such cases arise the parental committee might make these places available.
This creates another round of applications, where potentially also already
allocated children might be interested to get a place in a more preferred
kindergarten. There are two potential mitigation to this reallocation: first,
evaluate early on the need for special needs; second, make the reallocation
available to all families to avoid potential blocking pairs in the resulting
match.

Some parents may works in a neighbouring municipality and might also
consider getting a kindergarten place there. If these allocation procedure
are not coordinated, the final selection of the parents creates an additional
free place in the other municipality. After the allocation is already made it
would be hard to ensure stability in the new allocation.

In many municipalities the shortage of places is acute so private child-
care provides additional flexibility. However this is usually compensated for
the family. Some families for some price might prefer a place in the private
childcare, but for the local municipality it is often cheaper to provide a
place their kindergarten. How this compensation should work to allow for
optimal use of resources is for further research.

Often kindergarten have the option to open multiple groups or mixed
age groups. Usually the age and mixing of the groups is decided before the
allocation. It might be beneficial for the families if these decision were made
during the allocation procedure to ensure that more preferred kindergartens
to more families. However in general this problem is computationally hard
to solve and might require heuristics to be tractable (Biró et al., 2010a,
2014).

147

4.5 Conclusion and discussion

We have reviewed the kindergarten matching practices in one Estonian
municipality, Harku. Until 2015, the collected preferences were unlikely
to reflect the true preferences of the parents, since the data were out-of-
date by the time of the allocation, the number of applications were limited
and the allocation mechanism was not incentive-proof either. Therefore,
the resulting allocation could create justified envy and it was also lack-
ing transparency. In 2016, the municipality changed its allocation system
mostly based on our recommendations.

In our study, we first listed well-known practices from matching mecha-
nism design that present solutions to some of the problems and also provide
policy tools for the local municipalities. These practices consist of:

� getting complete rather than limited preferences from families,

� using child-proposing stable matching for allocating places,

� defining clear policies for the local municipality based on a transparent
priority system.

In assisting in the redesign of the allocation mechanism, it emerged that
although the policy goals might be clear, the choice of exactly which imple-
mentation method to use can create significant differences in the results. In
most cases, the goals of the local municipalities are to have siblings in the
same kindergarten and to provide a place in a kindergarten close to home,
in addition to the main consideration of providing a place in the most pre-
ferred kindergartens of the families. We evaluated seven different policies
for implementing the policy goals, first based on data from 2016, and then
based on generated data. The 2016 transitory system that follows our main
recommendations provides a child-optimal stable allocation under a rota-
tional priority structure based on four factors, such as location, siblings,
registration and birth dates. The limit on the number of applications was
also removed, so the preferences of the families can be considered truthful.
Our main findings regarding the seven policies evaluated on the real data
and in the computational experiments are summarised below.

The simplest policy is to give higher priority to children with siblings
and to families living nearby, which is policy DA1. This was also demon-
strated to be one of the most effective policies. The resulting allocation had,
on average, matched a lot of families with their most preferred kindergarten,
while also having one of the smallest average distances. This remained true
when the preferences of families were agnostic about distance.

Policy DA1 might occasionally seem unfair, as small differences in dis-
tance might affect whether families are placed in their first preference or a
lower one. Policies DA2, DA3 and DA4 group kindergartens by distance

148

within equal priority classes, DA2 and DA3 by defining a walk-zone and
DA4 by having high priority in the three closest kindergartens. Families
in the walk-zone are treated equally and priorities are defined by lottery.
It appeared that the multiple tie-breaking rule might create a more egal-
itarian access to kindergartens, however it is not without its cost. The
average number of children who are placed in their most preferred kinder-
garten is usually significantly lower and the average distance is greater.
However, with a single tie-breaker over kindergartens, families are on aver-
age allocated to their more preferred kindergarten, even when compared to
deterministic policies like DA1. Nevertheless, an allocation based on ran-
domness might prove hard to justify to families. If having more egalitarian
access is important, policy DA4 with a single tie-breaker would be the best
of the three. The level of fair access is the same, satisfaction with average
preferences is the best, and distance is the lowest.

Siblings always being given higher priority might prove another source
of seemingly unfair treatment. If a family already has a child in a particular
kindergarten, they are almost guaranteed to get a place in the same kinder-
garten for a sibling, even when there is another family living closer than
them. We considered two policies, DA5 and DA6, which limit the number
of places in a kindergarten that consider having a sibling a priority at up to
20%. Even though the number of places reserved for siblings was low, most
families still received a place in that kindergarten if they preferred it. There
is almost no difference from policy DA1 on any measure, nor between DA5
and DA6, although theoretically DA6 should provide more opportunity to
nearby families, and DA5 to children with siblings.

A clear oddity is policy DA7, which was initially designed to deliver
more equal access to kindergartens for families who live far away from all
kindergartens. While policy DA1 would give such families low priority
everywhere, DA7 would still give them the highest priority in their clos-
est kindergarten. When most families have a high preference for nearby
kindergartens and for those where their siblings are, the result of DA7 is
one of the best policy designs in all aspects. DA7 gives many families their
first preference, it has the shortest average distance and even one of the
best results for equality of access. However, the result is radically different
when family preferences are mostly idiosyncratic and are almost indepen-
dent from distance. In this case, DA7 is the worst policy of all for families.
On average less than 40% of children get matched to their first preferences,
but the average distance is the one of lowest. Thus the lesson from policy
DA7 seems to be that the policy designer needs to predict the preferences
of the society fairly accurately to select a good trade-off. When preferences
and priorities are aligned, both of the main goals can be met. A downside
of this policy is that it is vulnerable when preferences and priorities are

149

misaligned, and then the price paid is significant in terms of efficiency and
fairness. If a local municipality aims to minimise the distances between
homes and kindergartens, then DA1 is the best option. The latter objec-
tive recently turned out to be crucial in Boston, where the local authority
became concerned about the busing costs (Shi, 2015).

A few interesting aspects of designing a more flexible mechanism might
improve the allocation for families. Making decisions on the size and the
age composition of the groups in kindergartens and determining this in
an optimal way based on the application data could give an additional
boost to the number of families receiving a place in their most preferred
kindergarten. Some of this research has been done in terms of lower quotas
for opening groups (Biró et al., 2010a).

150

5 Conclusions and Future Work

5.1 Discussion of the research methods

In this thesis, we have applied three agent-based computational techniques
to model the behaviours and outcomes in two-sided matching markets.
First, we employed a very general agent-based model for behaviour in de-
centralised matching markets. Second, we used genetic algorithms in an
agent-based model with a centralised clearing-house to study equilibrium
behaviour in that market. Third, we proposed and, using computational
experiments, compared policy designs for kindergarten allocation.

The decentralised agent-based models were partially motivated by the
complicated school market in Tallinn, but also by the goal of understanding
the outcomes of decentralised two-sided matching markets in general. We
proposed three behavioural models, some of which were already studied
before in the literature, while others were inspired by similar studies in the
double-auction markets. The included behaviours were a noisy behaviour
or zero-intelligence agents, which is also used as a benchmark model in
double-auction markets. Two additional behavioural models were included
that incorporated some knowledge of the market in order to make a more
rational proposal choice.

While decentralised markets require sophisticated behaviour, the cen-
tralised allocation component used for school choice in Tallinn is also vul-
nerable to manipulation. Families are incentivised not to report their true
preferences, but rather have to reason on the basis of which schools they
are the most likely to get admitted to. We used genetic algorithms to inves-
tigate potential beneficial near-equilibrium strategies in the Tallinn school
choice mechanism. We implemented four variations of genetic algorithms
based on literature and select the results of the best performing, expected
utility maximising, variation for interpretation. We ran computational ex-
periments in four idealised environments in order to model the effect of the
preference structure on the size and average utility of the matching for the
agents.

In the final chapter, we commenced designing an centralised allocation
mechanism. Kindergartens in Harku have long been centrally allocated by
a board of the heads of kindergartens. In most cases, the allocations were

151

settled using a mix of immediate-acceptance mechanisms and negotiations.
Harku was interested in changing the working of the allocations by min-
imising the effort required by parents as well as ensuring that families have
an option to send siblings to the same kindergarten, which would also be
close to home. We based the design on a well-known strategy-proof and op-
timal deferred-acceptance mechanism. This mechanism requires two-sided
preferences. On the one side, there are families with preferences and on
the other, kindergartens with local priorities. In the case of Harku, the
priorities would be siblings and distance. Our question was how these pri-
orities should be implemented. Multiple options can be found both in the
literature and in practice. We compared seven alternatives based on actual
and counter-factual preference profiles.

The computational experiments are all agent-based, as in each case,
there was a set of agents with heterogeneous preferences that exhibited
some type of behaviour. In a decentralised marketplace, the significant
aspects were the behaviour of the agent and the confounding effect of mar-
ket thickness. While in societies behaviour is rarely so clear-cut, we could
nevertheless see the effect on allocation. Nevertheless, a mix of behaviours
might have unexpected effects on the macro steady-state and the dynamics.
However, we saw that in some real-world markets, the aggregate outcome
of unassigned agents is in-between our described behaviours. A large as-
pect that we neglected was the market dynamics and adaptability of the
behaviour of agents. The dynamics might include external shocks or inter-
actions with other markets or even adapting by agents based on feedback
from the market or due to learning from other agents through social net-
works. All these are fruitful avenues for further research, as our current
contribution can be considered as a baseline model.

Another major application of the agent-based model is to study the
effect of learning and adaptability. Using genetic algorithms, we found
a distribution of near-equilibrium strategies in the Tallinn school choice
mechanism. However, this automatically assumes that all agents act in a
near-optimal manner, but this might not always be the case. It is still un-
clear how to adapt to a distribution of strategies. Also, the four modelled
environments are idealised, but show some stylised facts similar to the data.
As the true preferences of the families are unknown, we assumed a distri-
bution of multiplicative utility functions. With more realistic preference
structures, other types of equilibrium strategies might emerge.

We conducted several computational experiments to compare the poli-
cies based on the deferred-acceptance algorithm for kindergarten allocation
in Harku. Since the mechanism in strategy-proof, we can assume truth-
ful behaviour by the agents and we do not have to model their behaviour.
First and foremost, we compared the allocations to the actual reported

152

preferences of the families. However, these might be misreported due to
vulnerabilities in the mechanism or might change from year-to-year. In
addition, we were interested in understanding how robust the policy de-
signs are to changes in preferences. Due to these two aspects, we built
a family utility function based on siblings in and the driving distance to
kindergartens. Having varying degrees of utility for allocation to a nearby
kindergarten or to one with a sibling, we ran the experiments using existing
data. We found that the degrees of utility for siblings and distance can have
a significant effect on allocation for some policies.

While we assumed that the preferences of families are based on sib-
ling allocation and distance from home, there might be other factors that
influence the utility of a particular kindergarten that are currently unob-
served. Another simplification was to assume that families would prefer to
be matched to any of the available kindergartens, rather than to be un-
matched. That is to say they did not have an outside option. Also, as
we observed in the 2016 allocation, families tend to rank all alternatives.
However, some later declined a position, clearly indicating some outside op-
tion. As families and local municipalities learn how the mechanism works,
it would make sense not to rank all the alternatives. This in turn might re-
quire a re-evaluation of the policies. Additionally, some kindergartens hold
back positions to be allocated later and this has an effect on the stability of
the outcome. This is hopefully also remedied by learning from experience
by kindergartens, as was the case with schools in the New York High School
matching (Roth, 2015).

5.2 Answers to the research questions

Claim A stated that in an uncoordinated and decentralised market, the
behaviour of the agents is the key determinant of the matching proper-
ties – size and rank. We aimed to show that a decentralised market is
significantly worse in terms of assigned agents and assigned rank than a
deferred-acceptance based centralised matching.

The results showed that the noisy behaviour in a decentralised is often
better on aggregate, resulting in fewer unassigned agents and a higher me-
dian rank compared to other decentralised models. Nevertheless, the results
using a centralised deferred-acceptance based clearing-house would almost
always assign more agents and to a higher ranked alternative. In extreme
situations with highly correlated preferences, a decentralised model would
have a higher median rank, but at a cost to the stability of the market. A
key determinant of both decentralised and centralised is the state of mar-
ket thickness. A decentralised market seems to benefit, in terms of median
rank, the agents of the larger side, thus explains why in some situation
centralised matching is hard to implement.

153

Claim B stated that merely centralising the allocation process is insuffi-
cient. We aim to show that the centralised Tallinn school choice mechanism
design incentivises agents to report insincerely. In addition these behaviour
results in a less preferred match for some agents, while benefitting other
agents compared to an optimal allocation.

We investigated the Tallinn school choice mechanism and discovered
that with some utility functions, agents are better off only reporting one or
two schools. Although often these choices should be the top preferences for
the families, it is not immediately clear if it should be only the first, second
or third or some combination of three. In a less competitive environment,
it would be optimal to report just the most preferred school. However, if
the environment is more competitive, reporting schools from the very end
of the preference lists would be the best option, depending on the utility
functions, as well as the risk a family is willing to take. The observations
from empirical data show that about 75% of families only report one school,
which is a good strategy in the case of there is significantly utility in highly
ranked schools.

Claim C stated that even with a mechanism wherein agents are moti-
vated to report truthfully and are guaranteed an optimal match, the allo-
cation properties are sensitive to policy implementation and to changes in
the structure of family preferences. The policy of matching children to a
nearby kindergarten can be implemented either by absolute or relative dis-
tance. The comparative allocated rank is significantly different depending
on which of the two is used.

We experimented with several policy designs for allocating children to
kindergartens in Harku. The policies were based on two essential metrics:
the distance between home and kindergarten and the placement of any sib-
lings in the same kindergarten. With the current preferences, we found
that the main difference in allocation is determined by using a lottery or a
deterministic policy. When evaluating with counter-factual preferences, we
found that when preferences are close to random, families do not necessarily
prefer nearby kindergartens. Thus, a policy using relative distance as a pri-
ority creates adverse competition, so eventually most families are allocated
to less preferred kindergartens than with a policy with absolute geographic
distance as a priority. Moreover, we observed trade-offs in policy design.
Policies with randomised lotteries gave more families a chance to obtain a
place in their most preferred kindergarten, while those kindergartens were
on average further away from home and often a less preferre alternative.
Deterministic policies minimised the average distance and average matched
rank, but many families were unfairly treated due to their location. A pol-
icy design using relative distance can be fair for some preference profiles,

154

on average with minimal distance and matched to a high-ranking alterna-
tive. However, this policy becomes less desirable when families preferences
are more random. Thus, we showed that the aggregate properties of the
matching are determined by policy design and not all criteria can always
be optimised. Details matter in selecting the sweet-spot of trade-offs.

5.3 Contributions

The main contributions of this thesis:

1. We proposed a simple zero-intelligence behavioural model for de-
centralised two-sided matching markets, which reproduce some well-
known stylised fact from labour markets

2. We quantified several loss metrics in decentralised two-sided match-
ing markets compared to a fully centralised model. The metrics in-
cluded the probability of having a stable match, the probability of
being unassigned and the median rank achieved in the market. The
main aspects investigated are the thickness of the market as well as
the structure of preferences in terms of the available alternatives and
correlation among alternatives.

3. We specified the mechanism used in school choice in Tallinn and
showed that it might be beneficial for families to manipulate their
revealed preferences. Furthermore, we demonstrated the effective re-
porting strategies in this centralised admission procedure, assuming
that all agents behave strategically. We further observed similar be-
haviour by the families in the Tallinn primary school allocation data
compared to the behaviours in our experiments.

4. We showed that the Tallinn school choice mechanism might increase
the expected utility of families with only a few preferences compared
to widely used and strategy-proof deferred-acceptance mechanism.

5. We proposed seven alternatives for re-designing kindergarten alloca-
tion in the municipality of Harku. We compared the allocation criteria
in terms of efficiency and fairness.

6. We proposed an approach based on counter-factual preference esti-
mation for comparing the alternatives.

5.4 Further research

The experiments regarding the proposed decentralised model are the first of
their kind and provide a simple and robust benchmark model. These models
could easily be extended to include dynamics, e.g. a process of agents

155

entering and leaving the market, and/or adapting to market conditions
based on feedback signals. Also, the market composition was very simple
for these experiments. A more diverse mix of behavioural strategies might
have a significant effect on the outcome, dynamics and convergence.

The policy space in the kindergarten allocation experiments was rela-
tively strict, just seven alternatives. It would be interesting to have a larger
policy space from where to search for policies that would satisfy some social
goals. Much of the research on matching mechanism design treats policy
criteria as given, but it is unclear how the criteria affect the goal. Is the
matching reasonably close to minimal distance? Policy makers usually have
these social goals in mind rather than specific criteria. It seems to be worth-
while to consider the criteria and goals together for a better optimisation
of the policy goals.

The growing sharing economy could be seen as a significant applica-
tion of research in decentralised matching markets. Currently, the most re-
searched issue is pricing (e.g. Choudary et al., 2016; Evans and Schmalensee,
2016) for attracting supply and demand to the app-based marketplace.
Once the marketplace is established, designing the matching criteria be-
comes more relevant. These marketplaces seek to maximise revenue, and
we observed that this goal might sometimes conflict with efficiency maximi-
sation, as sometimes the goods are not allocated. Similar issues are likely
to arise when matching apartments to tenants or taxis to passengers, as
participants have specific preferences and the allocated goods cannot be
considered a commodity. Roth (2015) already observes some aspects of
matching markets to be relevant in designing the allocation practices in
these new electronic marketplaces.

156

References

Abdulkadiroglu, A., Che, Y.-K., Pathak, P., Roth, A. E., and Tercieux, O.
(2017). Minimizing Justified Envy in School Choice: The Design of New
Orleans’ OneApp. NBER Working Paper No. 23265.

Abdulkadiroğlu, A., Agarwal, N., and Pathak, P. A. (2015). The Welfare
Effects of Coordinated Assignment: Evidence from the NYC HS Match.
Technical Report May, National Bureau of Economic Research, Cam-
bridge, MA.

Abdulkadiroğlu, A., Che, Y.-K., and Yasuda, Y. (2011). Resolving Con-
flicting Preferences in School Choice: The “Boston Mechanism” Recon-
sidered. American Economic Review, 101(1):399–410.

Abdulkadiroğlu, A., Pathak, P. A., and Roth, A. E. (2005a). The New York
City High School Match. American Economic Review, 95(2):364–367.

Abdulkadiroğlu, A., Pathak, P. A., and Roth, A. E. (2009). Strategy-
proofness versus Efficiency in Matching with Indifferences: Redesigning
the NYC High School Match. American Economic Review, 99(5):1954–
1978.

Abdulkadiroğlu, A., Pathak, P. A., Roth, A. E., and Sönmez, T.
(2005b). The Boston Public School Match. American Economic Review,
95(2):368–371.

Abdulkadiroğlu, A., Pathak, P. A., Roth, A. E., and Sönmez, T. (2006).
Changing the Boston School Choice Mechanism. National Bureau of
Economic Research, Working Paper Series 11965.

Abdulkadiroğlu, A. and Sönmez, T. (2003). School Choice: A Mechanism
Design Approach. American Economic Review, 93(3):729–747.

Abraham, K. and Katz, L. F. (1986). Cyclical unemployment: sec-
toral shifts or aggregate disturbances? Journal of Political Economy,
94(3):507–522.

157

Ackermann, H., Goldberg, P. W., Mirrokni, V. S., Röglin, H., and Vöcking,
B. (2008). Uncoordinated two-sided matching markets. In Proceedings
of the 9th ACM conference on Electronic commerce, pages 256–263, New
York. ACM Press.

Albin, P. and Foley, D. K. (1992). Decentralized, dispersed exchange with-
out an auctioneer. A Simulation Study. Journal of Economic Behavior
& Organization, 18(1):27–51.

Alcalde, J. and Subiza, B. (2014). Affirmative action and school choice.
International Journal of Economic Theory, 10(3):295–312.

An, N., Elmaghraby, W., and Keskinocak, P. (2005). Bidding strategies and
their impact on revenues in combinatorial auctions. Journal of Revenue
and Pricing Management, 3(4):337–357.

Andersson, T. (2017). Matching Practices for Elementary Schools - Swe-
den. MiP Country Profile 24 http://www.matching-in-practice.eu/

wp-content/uploads/2017/01/MiP_-Profile_No.24.pdf.

Arifovic, J. (1994). Genetic algorithm learning and the cobweb model.
Journal of Economic Dynamics and Control, 18(1):3–28.

Arifovic, J. (1996). The Behavior of the Exchange Rate in the Genetic
Algorithm and Experimental Economies. Journal of Political Economy,
104(3):510–541.

Ashlagi, I., Kanoria, Y., and Leshno, J. D. (2013a). Unbalanced random
matching markets. In Proceedings of the fourteenth ACM conference on
Electronic commerce, pages 27–28, New York. ACM Press.

Ashlagi, I., Kanoria, Y., and Leshno, J. D. (2013b). Unbalanced
random matching markets: the stark effect of competition. http:

//web.mit.edu/iashlagi/www/papers/UnbalancedMatchingAKL.pdf

(Accessed 14.09.2016).

Ashlagi, I. and Nikzad, A. (2015). What matters in tie-breaking rules?
How competition guides design. Unpublished working paper.

Ausubel, L. M. and Milgrom, P. (2010). The Lovely but Lonely Vickrey
Auction. In Cramton, P., Shoham, Y., and Steinberg, R., editors, Com-
binatorial Auctions, chapter 1, pages 1–37. MIT Press.

Axelrod, R. (1980). Effective Choice in the Prisoner’s Dilemma. The Jour-
nal of Conflict Resolution, 24(1):3–25.

158

Aygün, O. and Bo, I. (2013). College Admission with Multidimensional
Reserves: The Brazilian Affirmative Action Case. https://www2.bc.

edu/inacio-bo/AygunBo2013.pdf (Accessed 02.08.2016).

Aziz, H., Brânzei, S., Filos-Ratsikas, A., and Frederiksen, S. K. S. (2015).
The Adjusted Winner Procedure: Characterizations and Equilibria. In
Yang, Q. and Wooldridge, M., editors, Proceedings of the 24th Interna-
tional Conference on Artificial Intelligence, pages 454–460.

Bai, R., Li, J., Atkin, J. A. D., and Kendall, G. (2014). A novel approach to
independent taxi scheduling problem based on stable matching. Journal
of the Operational Research Society, 65(10):1501–1510.

Beard, T. R., Jackson, J. D., Kaserman, D., and Kim, H. (2012). A time-
series analysis of the U.S. kidney transplantation and the waiting list:
donor substitution effects. Empirical Economics, 42(1):261–277.

Beltratti, A. and Margarita, S. (1993). Evolution of trading strategies
among heterogeneous artificial economic agents. In Meyer, J.-A., Roit-
blat, H. L., and Wilson, S. W., editors, Proceedings of the second interna-
tional conference on From animals to animats 2 : simulation of adaptive
behavior: simulation of adaptive behavior, pages 494–501, Cambridge.
MIT Press.

Binmore, K. (2005). Natural Justice. Oxford University Press, New York.

Biró, P., Fleiner, T., Irving, R. W., and Manlove, D. F. (2010a). The
College Admissions problem with lower and common quotas. Theoretical
Computer Science, 411(34-36):3136–3153.

Biró, P., Manlove, D. F., and McBride, I. (2014). The Hospitals / Residents
Problem with Couples: Complexity and Integer Programming Models. In
Gudmundsson, J. and Katajainen, J., editors, Experimental Algorithms,
pages 10–21. Springer International Publishing.

Biró, P., Manlove, D. F., and Mittal, S. (2010b). Size versus stability in the
marriage problem. Theoretical Computer Science, 411(16-18):1828–1841.

Biró, P. and Norman, G. (2012). Analysis of stochastic matching markets.
International Journal of Game Theory, 42(4):1021–1040.

Blake, P. R., Rand, D. G., Tingley, D., and Warneken, F. (2015). The
shadow of the future promotes cooperation in a repeated prisoner’s
dilemma for children. Scientific Reports, 5:14559.

Blanchard, O. J., Diamond, P., Hall, R. E., and Yellen, J. (1989). The
Beveridge curve. Brookings Papers on Economic Activity, 1(1989):1–76.

159

Blum, Y., Roth, A. E., and Rothblum, U. G. (1997). Vacancy Chains
and Equilibration in Senior-Level Labor Markets. Journal of Economic
Theory, 76(2):362–411.

Blum, Y. and Rothblum, U. G. (2002). “Timing Is Everything” and Marital
Bliss. Journal of Economic Theory, 103(2):429–443.

Blumrosen, L. and Nisan, N. (2007). Combinatorial Auctions. In Roughgar-
den, T., Nisan, N., Tardos, E., and Vazirani, V. V., editors, Algorithmic
Game Theory, chapter 11, pages 267–299. Cambridge University Press,
New York.

Bogomolnaia, A. and Laslier, J.-F. (2007). Euclidean preferences. Journal
of Mathematical Economics, 43(2):87–98.

Boudreau, J. W. (2010). Stratification and growth in agent-based matching
markets. Journal of Economic Behavior and Organization Organization,
75(2):168–179.

Boudreau, J. W. and Knoblauch, V. (2010). Marriage matching and inter-
correlation of preferences. Journal of Public Economic Theory, 12(3):587–
602.

Bowles, S. (2004). Microeconomics: Behavior, Institutions and Evolution.
Princeton University Press, New Jersey.

Brams, S. J. and Taylor, A. D. (1996). Fair Division: From Cake-Cutting
to Dispute Resolution. Cambridge University Press, New York.

Brams, S. J. and Taylor, A. D. (1999). The win-win solution: guaranteeing
fair shares for everybody. W. W. Norton & Company, New York.

Brânzei, S., Caragiannis, I., Kurokawa, D., and Procaccia, A. D. (2016).
Equilibria of Generalized Cut and Choose Protocols. http://arxiv.

org/abs/1307.2225 (Accessed 30.06.2016).

Budish, E., Cramton, P., and Shim, J. (2015). The High-Frequency Trading
Arms Race: Frequent Batch Auctions as a Market Design Response. The
Quarterly Journal of Economics, 130(4):1547–1621.

Budish, E. B., Cramton, P., and Shim, J. J. (2013). The High-Frequency
Trading Arms Race: Frequent Batch Auctions as a Market Design Re-
sponse. Chicago Booth Research Paper No. 14-03.

Caldarelli, G. and Capocci, A. (2001). Beauty and distance in the stable
marriage problem. Physica A: Statistical Mechanics and its Applications,
300(1-2):325–331.

160

Caldarelli, G., Capocci, A., and Laureti, P. (2001). Sex-oriented stable
matchings of the marriage problem with correlated and incomplete in-
formation. Physica A: Statistical Mechanics and its Applications, 299(1-
2):268–272.

Calsamiglia, C. and Güell, M. (2014). The Illusion of School Choice: Em-
pirical Evidence from Barcelona. Federal Reserve Bank of Minneapolis
Working Paper 712 https://www.mpls.frb.org/research/wp/wp712.

pdf (Accessed 22.12.2016).

Calsamiglia, C., Haeringer, G., and Klijn, F. (2010). Constrained
School Choice: An Experimental Study. American Economic Review,
100(4):1860–1874.

Caragiannis, I., Kaklamanis, C., Kanellopoulos, P., and Kyropoulou, M.
(2012). The Efficiency of Fair Division. Theory of Computing Systems,
50(4):589–610.

Caragiannis, I., Kurokawa, D., Moulin, H., Procaccia, A. D., Shah, N.,
and Wang, J. (2016). The Unreasonable Fairness of Maximum Nash
Welfare. In Proceedings of the 17th ACM Conference on Economics and
Computation, pages 305–322, New York. ACM Press.

Chen, L. (2012). University admission practices – Ireland. http://

www.matching-in-practice.eu/higher-education-in-ireland/. ac-
cessed 2016-01-18.

Chen, S., Liu, J., Wang, H., and Augusto, J. C. (2013). Ordering based
decision making – A survey. Information Fusion, 14(4):521–531.

Chen, S.-H., editor (2002). Genetic Algorithms and Genetic Programming
in Computational Finance. Springer US, Boston, MA.

Chen, S.-H., Chang, C.-L., and Du, Y.-R. (2012). Agent-based eco-
nomic models and econometrics. The Knowledge Engineering Review,
27(2):187–219.

Chen, S.-H., Kampouridis, M., and Tsang, E. (2011). Microstructure Dy-
namics and Agent-Based Financial Markets. In Bosse, T., Geller, A.,
and Jonker, C. M., editors, Multi-Agent-Based Simulation XI, chapter 9,
pages 121–135. Springer, Berlin.

Chen, S.-H. and Tai, C.-C. (2010). The agent-based double auction mar-
kets: 15 years on. In Takadama, K., Cioffi-Revilla, C., and Deffuant, G.,
editors, Simulating Interacting Agents and Social Phenomena, chapter 9,
pages 119–136. Springer Japan, Tokyo.

161

Chen, S.-H., Zeng, R.-J., and Yu, T. (2009). Co-Evolving Trading Strategies
to Analyze Bounded Rationality in Double Auction Markets. In Worzel,
B., Soule, T., and Riolo, R., editors, Genetic Programming Theory and
Practice VI, chapter 13, pages 1–19. Springer, Boston.

Chevaleyre, Y., Dunne, P. E., Endriss, U., Lang, J., Lemaitre, M., Maudet,
N., Padget, J., Phelps, S., Rodriguez-Aguilar, J. A., and Sousa, P. (2006).
Issues in Multiagent Resource Allocation. Informatica, 30(1):3–31.

Chiarella, C. and Iori, G. (2002). A simulation analysis of the microstruc-
ture of double auction markets. Quantitative Finance, 2(5):346–353.

Choudary, S. P., Alstyne, M. W. V., and Parker, G. G. (2016). Platform
Revolution: How Networked Markets Are Transforming the Economy –
and How to Make Them Work for You. W. W. Norton & Company, New
York.

Contreras, J., Candiles, O., de la Fuente, J., and Gomez, T. (2001). Auction
design in day-ahead electricity markets. IEEE Transactions on Power
Systems, 16(3):409–417.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2004). Intro-
duction to algorithms. MIT Press, Boston, 2nd edition.

Cramton, P. (2010). Simultaneous Ascending Auctions. In Cramton, P.,
Shoham, Y., and Steinberg, R., editors, Combinatorial Auctions, chap-
ter 4, pages 99–114. MIT Press.

Croissant, Y. (2011). Estimation of multinomial logit models in R:
The mlogit Packages. https://cran.r-project.org/web/packages/

mlogit/vignettes/mlogit.pdf (Accessed 12.12.2006).

Daniels, M. G., Farmer, J. D., Gillemot, L., Iori, G., and Smith, E. (2003).
Quantitative Model of Price Diffusion and Market Friction Based on
Trading as a Mechanistic Random Process. Physical Review Letters,
90(10):108102.

Dawid, H., Gemkow, S., Harting, P., Hoog, S. V. D., and Neugart, M.
(2014). An agent-based nacroeconomic nodel for economic policy analy-
sis: The Eurace@ unibi model. Working Papers in Economics and Man-
agement 01-2014.

de Haan, M., Gautier, P. A., Oosterbeek, H., and van der Klaauw, B.
(2015). The performance of school assignment mechanisms in practice.
IZA Discussion Papers 9118.

162

Deissenberg, C., van der Hoog, S., and Dawid, H. (2008). EURACE: A
massively parallel agent-based model of the European economy. Applied
Mathematics and Computation, 204(2):541–552.

Diamantoudi, E., Miyagawa, E., and Xue, L. (2015). Decentralized match-
ing: The role of commitment. Games and Economic Behavior, 92:1–17.

Dickerson, J. P., Procaccia, A. D., and Sandholm, T. (2012). Optimizing
kidney exchange with transplant chains: theory and reality. In Proceed-
ings of the 11th International Conference on Autonomous Agents and
Multiagent Systems - Volume 2, pages 711–718, Richland. IFAAMAS.

Duffy, J. (2006). Agent-Based Models and Human Subject Experiments. In
Tesfatsion, L. and Judd, K. L., editors, Handbook of Computational Eco-
nomics Volume 2 - Agent-Based Computational Economics, chapter 19,
pages 948–1012. North-Holland, Amsterdam.

Dur, U. M., Kominers, S. D., Pathak, P. A., and Sönmez, T. (2013). The
Demise of Walk Zones in Boston: Priorities vs. Precedence in School
Choice. NBER Working Paper Series 18981.

Durlauf, S. N. and Young, H. P. (2001). The New Social Economics. In
Durlauf, S. N. and Young, H. P., editors, Social Dynamics, chapter 1,
pages 1–14. MIT Press, Cambridge.

Dzierzawa, M. and Oméro, M.-J. (2000). Statistics of stable marriages.
Physica A: Statistical Mechanics and its Applications, 287(1-2):321–333.

eBay (2016). eBay. http://pages.ebay.com/help/sell/reserve.html.
accessed 2016-06-27.

Echenique, F. and Wilson, A. J. (2009). Clearinghouses for two-sided
matching: an experimental study. Social Science Working Paper 1315.
California Institute of Technology.

Echenique, F. and Yariv, L. (2013). An experimental study of decentral-
ized matching. http://people.hss.caltech.edu/%7Elyariv/papers/

ExpDecentralizedMatching.pdf (Accessed 25.05.2016).

Edelman, B., Ostrovsky, M., and Schwarz, M. (2007). Internet Advertising
and the Generalized Second-Price Auction: Selling Billions of Dollars
Worth of Keywords. American Economic Review, 97(1):242–259.

EKOTU (2016). Eesti Kudede ja Organite Transplantatsiooni Ühing. http:
//www.elundidoonorlus.ee/uhingust/. accessed 2016-06-17.

163

Erdil, A. and Ergin, H. (2008). What’s the Matter with Tie-Breaking?
Improving Efficiency in School Choice. American Economic Review,
98(3):669–689.

Erdil, A. and Kumano, T. (2013). Prioritizing Diversity in School Choice.
http://www.matching-in-practice.eu/wp-content/uploads/2013/

09/Erdil-Prioritizing_Diversity.pdf (Accessed 02.08.2016).

Ergin, H. and Sönmez, T. (2006). Games of school choice under Boston
Mechanism. Journal of Public Economics, 90:215–237.

Eriksson, K. and Häggström, O. (2007). Instability of matchings in decen-
tralized markets with various preference structures. International Journal
of Game Theory, 36(3-4):409–420.

Evans, D. S. and Schmalensee, R. (2016). Matchmakers: The New Eco-
nomics of Multisided Platforms. Harvard Business Review Press, Boston.

Fagiolo, G., Dosi, G., and Gabriele, R. (2004). Matching, bargaining, and
wage setting in an evolutionary model of labor market and output dy-
namics. Advances in Complex Systems, 07(02):157–186.

Faqiry, M. N. and Das, S. (2016). Double-Sided Energy Auction Equi-
librium Under Price Anticipation. http://arxiv.org/abs/1605.06564
(Accessed 11.08.2016).

Farmer, J. D., Gallegati, M., Hommes, C., Kirman, A., Ormerod, P., Cin-
cotti, S., Sanchez, A., and Helbing, D. (2012). A complex systems ap-
proach to constructing better models for managing financial markets and
the economy. The European Physical Journal Special Topics, 214(1):295–
324.

Farmer, J. D., Patelli, P., and Zovko, I. I. (2005). The predictive power
of zero intelligence in financial markets. Proceedings of the National
Academy of Sciences, 102(6):2254–2259.

Feng, X., Chen, Y., Zhang, J., Zhang, Q., and Li, B. (2012). TAHES:
A Truthful Double Auction Mechanism for Heterogeneous Spectrums.
IEEE Transactions on Wireless Communications, 11(11):4038–4047.

Fragiadakis, D. and Troyan, P. (2013). Market Design under Dis-
tributional Constraints: Diversity in School Choice and Other
Applications. http://tippie.uiowa.edu/economics/tow/papers/

troyan-spring2014.pdf (Accessed 02.08.2016).

Franek, J. and Kresta, A. (2014). Judgment Scales and Consistency Mea-
sure in AHP. Procedia Economics and Finance, 12:164–173.

164

Friedman, D. and Rust, J. (1993). The Double Auction Market: Insti-
tutions, Theories, and Evidence. Perseus Publishing, Cambridge, Mas-
sachusetts.

Gabriele, R. (2002). Labor market dynamics and institutions: an evolu-
tionary approach. LEM Working Paper Series 2002/07.

Gale, D. and Shapley, L. S. (1962). College admissions and the stability of
marriage. The American Mathematical Monthly, 69(1):9–15.

Gavalec, M., Ramı́k, J., and Zimmermann, K. (2015). Pairwise Comparison
Matrices in Decision Making. In Decision Making and Optimization,
chapter 2, pages 29–90. Springer.

Gode, D. K. and Sunder, S. (1993a). Allocative efficiency of markets with
zero-intelligence traders: market as a partial substitute for individual
rationality. Journal of Political Economy, 101(1):119–137.

Gode, D. K. and Sunder, S. (1993b). Lower Bound for Efficiency of Surplus
Extraction in Double Auctions. In Friedman, D. and Rust, J., editors,
The Double Auction Market: Institutions, Theories, and Evidence, chap-
ter 7, pages 199–219. Perseus Publishing, Cambridge.

Google (2015). The Google Maps Distance Matrix API. https://maps.

googleapis.com/maps/api/distancematrix/. accessed 2015-12-31.

Gu, Y., Saad, W., Bennis, M., Debbah, M., and Han, Z. (2015). Matching
theory for future wireless networks: fundamentals and applications. IEEE
Communications Magazine, 53(5):52–59.

Guerrero, O. A. and Axtell, R. L. (2011). Using agentization for rxploring
firm and labor dynamics. In Emergent Results of Artificial Economics,
chapter 12, pages 139–150. Springer, Berlin.

Guerrero, O. A. and Axtell, R. L. (2013). Employment growth through
labor flow networks. PLoS ONE, 8(5):e60808.

Haake, C.-J., Raith, M. G., and Su, F. E. (2002). Bidding for envy-freeness:
A procedural approach to n-player fair-division problems. Social Choice
and Welfare, 19(4):723–749.

Haeringer, G. and Klijn, F. (2009). Constrained school choice. Journal of
Economic Theory, 144(5):1921–1947.

Haeringer, G. and Wooders, M. (2011). Decentralized job matching. Inter-
national Journal of Game Theory, 40(1):1–28.

165

Hafalir, I. E., Yenmez, M. B., and Yildirim, M. A. (2013). Effective affir-
mative action in school choice. Theoretical Economics, 8(2):325–363.

Hagberg, A. A., Schult, D. A., and Swart, P. J. (2008). Exploring network
structure, dynamics, and function using NetworkX. In Varoquaux, G.,
Vaught, T., and Millman, J., editors, Proceedings of the 7th Python in
Science Conference, pages 11–15, Pasadena.

Hamada, K., Iwama, K., and Miyazaki, S. (2009). An improved approxi-
mation lower bound for finding almost stable maximum matchings. In-
formation Processing Letters, 109(18):1036–1040.

Han, L., Su, C., Tang, L., and Zhang, H. (2011a). On Strategy-Proof
Allocation without Payments or Priors. In Chen, N., Elkind, E., and
Koutsoupias, E., editors, Proceedings of 7th International Workshop on
Internet and Network Economics, pages 182–193, Berlin. Springer.

Han, Z., Niyato, D., Saad, W., Başar, T., and Hjorungnes, A. (2011b).
Game Theory in Wireless and Communication Networks. Cambridge
University Press, New York.

Hasbrouck, J. (2007). Empirical Market Microstructure: The Institutions,
Economics, and Econometrics of Securities Trading. Oxford University
Press.

Hatfield, J. W. and Milgrom, P. R. (2005). Matching with Contracts. The
American Economic Review, 95(4):913–935.

Herrera, F., Herrera-Viedma, E., and Chiclana, F. (2001). Multiperson
decision-making based on multiplicative preference relations. European
Journal of Operational Research, 129(2):372–385.

Hoefer, M. and Wagner, L. (2012). Locally stable matching with general
preferences. http://arxiv.org/abs/1207.1265 (Accessed 22.08.2016).

Holte, R. C. (2001). Combinatorial Auctions, Knapsack Problems, and Hill-
Climbing Search. In 14th Biennial Conference of the Canadian Society
for Computational Studies of Intelligence, pages 57–66.

Hommes, C. H. (2006). Heterogeneous Agent Models in Economics and
Finance. In Tesfatsion, L. and Judd, K. L., editors, Handbook of Compu-
tational Economics Volume 2 - Agent-Based Computational Economics,
chapter 23, pages 1109–1186. North-Holland, Amsterdam.

Hopcroft, J. E. and Karp, R. M. (1971). An n5/2 Algorithm for Maximum
Matchings in Bipartite Graphs. In Proceedings of the 12th Annual Sym-
posium on Switching and Automata Theory, pages 122–125, New York.
IEEE.

166

Hopcroft, J. E. and Karp, R. M. (1973). An n5/2 Algorithm for Maximum
Matchings in Bipartite Graphs. SIAM Journal on Computing, 2(4):225–
231.

Immorlica, N. and Mahdian, M. (2005). Marriage, Honesty, and Stability.
In Proceedings of the 16th annual ACM-SIAM symposium on Discrete
algorithms, pages 53–62, Philadelphia. SIAM.

Immorlica, N. and Mahdian, M. (2015). Incentives in large random two-
sided markets. ACM Transactions on Economics and Computation,
3(3):1–25.

Irving, R. W. (1985). An efficient algorithm for the “stable roommates”
problem. Journal of Algorithms, 6(4):577–595.

Ji, Z. and Ray Liu, K. (2006). Belief-Assisted Pricing for Dynamic Spec-
trum Allocation in Wireless Networks with Selfish Users. In Proceedings
of 3rd Annual IEEE Communications Society on Sensor and Ad Hoc
Communications and Networks, pages 119–127. IEEE.

Kagel, J. H., Lien, Y., and Milgrom, P. (2010). Ascending Prices and
Package Bidding: A Theoretical and Experimental Analysis. American
Economic Journal: Microeconomics, 2(3):160–185.

Kagel, J. H., Lien, Y., and Milgrom, P. (2014). Ascending prices and
package bidding: Further experimental analysis. Games and Economic
Behavior, 85:210–231.

Kagel, J. H. and Vogt, W. (1993). Buyer’s Bid Double Auctions: Pre-
liminary Experimental Results. In Friedman, D. and Rust, J., editors,
The Double Auction Market: Institutions, Theories, and Evidence, chap-
ter 10, pages 285–306. Perseus Publishing, Cambridge.

Keizer, K., de Klerk, M., Haase-Kromwijk, B., and Weimar, W. (2005).
The Dutch Algorithm for Allocation in Living Donor Kidney Exchange.
Transplantation Proceedings, 37(2):589–591.

Khuller, S., Mitchell, S. G., and Vazirani, V. V. (1994). On-line algorithms
for weighted bipartite matching and stable marriages. Theoretical Com-
puter Science, 127(2):255–267.

Kirman, A. (2016). Complexity and Economic Policy: A Paradigm Shift
or a Change in Perspective? A Review Essay on David Colander and
Roland Kupers’s Complexity and the Art of Public Policy. Journal of
Economic Literature, 54(2):534–572.

167

Klemperer, P. (2004a). A Survey of Auction Theory. In Auctions : The-
ory and Practice, chapter 1, pages 9–61. Princenton University Press,
Princeton.

Klemperer, P. (2004b). Auctions: Theory and Practice. Princeton Univer-
sity Press, Princeton.

Klemperer, P. and Bulow, J. (1996). Auctions Versus Negotiations. Amer-
ican Economic Review, 86(1):180–194.

Knuth, D. E. (1976). Mariages stables. Les Presses de l’Université de
Montréal, Montréal.

Knuth, D. E. (1997a). Seminumerical Algorithms. Addison-Wesley, Read-
ing, MA, 3rd edition.

Knuth, D. E. (1997b). Stable marriage and its relation to other combina-
torial problems. American Mathematical Society, Providence.

Kojima, F. and Pathak, P. A. (2009). Incentives and Stability in Large
Two-Sided Matching Markets. American Economic Review, 99(3):608–
627.

Kominers, S. D. and Sönmez, T. (2013). Designing for Diversity in Match-
ing. Boston College Working Papers in Economics 806.

Kuhn, H. W. (1955). The Hungarian method for the assignment problem.
Naval Research Logistics Quarterly, 2(1-2):83–97.

Ladley, D. (2012). Zero intelligence in economics and finance. The Knowl-
edge Engineering Review, 27(02):273–286.

Laureti, P. and Zhang, Y.-C. (2003). Matching games with partial informa-
tion. Physica A: Statistical Mechanics and its Applications, 324(1-2):49–
65.

LeBaron, B. (2006). Agent-based Computational Finance. In Tesfatsion, L.
and Judd, K. L., editors, Handbook of Computational Economics Volume
2 - Agent-Based Computational Economics, chapter 24, pages 1187–1233.
North-Holland, Amsterdam.

Lee, H. (1999). Online stable matching as a means of allocating distributed
resources. Journal of Systems Architecture, 45(15):1345–1355.

Lehmann, D., Müller, R., and Sandholm, T. (2011). The Winner Determi-
nation Problem. In Cramton, P., Shoham, Y., and Steinberg, R., editors,
Combinatorial Auctions, chapter 12, pages 297–317. MIT Press, Boston.

168

Lewis, M. (2014). Flash Boys: A Wall Street Revolt. Simon & Schuster
Audio.

Leyton-Brown, K. and Shoham, Y. (2009). Multiagent Systems: Algorith-
mic, Game-Theoretic, and Logical Foundations. Cambridge University
Press, New York.

Leyton-Brown, K. and Shoham, Y. (2010). A Test Suite for Combinatorial
Auctions. In Cramton, P., Shoham, Y., and Steinberg, R., editors, Com-
binatorial Auctions, chapter 18, pages 451–478. MIT Press, Cambridge.

Lovasz, L. and Plummer, M. D. (2009). Matching Theory. AMS Chelsea
Publishing, New York.

Lyon, R. M. (1986). Equilibrium properties of auctions and alternative
procedures for allocating transferable permits. Journal of Environmental
Economics and Management, 13(2):129–152.

Ma, J. (1996). On randomized matching mechanisms. Economic Theory,
8:377–381.

Madhavan, A. (2000). Market microstructure: A survey. Journal of Finan-
cial Markets, 3(3):205–258.

Manlove, D. F. (2013). Algorithmics of Matching Under Preferences, vol-
ume 2 of Series on Theoretical Computer Science. World Scientific Pub-
lishing, Singapore.

Manlove, D. F. and O’Malley, G. (2012). Paired and Altruistic Kidney
Donation in the UK: Algorithms and Experimentation. In Lecture Notes
in Computer Science, volume 7276, pages 271–282. Springer, Berlin.

Marks, R. E. (2006). Market Design Using Agent-Based Models. In Tesfat-
sion, L. and Judd, K. L., editors, Handbook of Computational Economics
Volume 2 - Agent-Based Computational Economics, chapter 27, pages
1339–1380. North-Holland, Amsterdam.

Matching in Practice (2016). Matching Practices in Europe. http://www.
matching-in-practice.eu/ (Accessed 27.12.2016).

Matsui, T. (2011). Algorithmic Aspects of Equilibria of Stable Marriage
Model with Complete Preference Lists. In Hu, B., Morasch, K., Pickl,
S., and Siegle, M., editors, Operations Research Proceedings 2010, pages
47–52. Springer, Berlin, Heidelberg.

McAfee, R. P. (1992). A dominant strategy double auction. Journal of
Economic Theory, 56(2):434–450.

169

Mehta, A. (2013a). Online Matching and Ad Allocation. Foundations and
Trends® in Theoretical Computer Science, 8(4):265–368.

Mehta, A. (2013b). Online Matching and Ad Allocation. Foundations and
Trends® in Theoretical Computer Science, 8(4):265–368.

Milgrom, P. (2004). Putting Auction Theory to Work. Cambridge Univer-
sity Press, Cambridge.

Mochon, A., Saez, Y., Isasi, P., and Gomez-Barroso, J. (2009). Testing
bidding strategies in the clock-proxy auction for selling radio spectrum:
A Genetic Algorithm approach. In Proceedings of the IEEE Congress on
Evolutionary Computation, pages 2348–2353. IEEE.

Mortensen, D. T. and Pissarides, C. A. (1999). Job reallocation, employ-
ment fluctuations and unemployment. In Taylor, J. B. and Woodford,
M., editors, Handbook of Macroeconomics, volume 1, chapter 18, pages
1171–1228. North Holland, Amsterdam.

Myerson, R. B. (1981). Optimal Auction Design. Mathematics of Opera-
tions Research, 6(1):58–73.

Narahari, Y., Garg, D., Narayanam, R., and Prakash, H. (2009). Game
Theoretic Problems in Network Economics and Mechanism Design Solu-
tions. Springer, London.

Neugart, M. (2004). Endogeneous matching functions: and agent-based
computational approach. Advances in Complex Systems, 07(02):187–201.

Neugart, M. and Richiardi, M. (2012). Agent-based models of the labor
market. Laboratorio Riccardo Revelli Working Paper no. 125.

Nguyen, N.-T., Nguyen, T. T., Roos, M., and Rothe, J. (2013). Compu-
tational complexity and approximability of social welfare optimization
in multiagent resource allocation. Autonomous Agents and Multi-Agent
Systems, 28(2):256–289.

Nicolaisen, J., Petrov, V., and Tesfatsion, L. (2001). Market power
and efficiency in a computational electricity market with discriminatory
double-auction pricing. IEEE Transactions on Evolutionary Computa-
tion, 5(5):504–523.

Niederle, M. and Yariv, L. (2009). Decentralized matching with aligned
preferences. NBER Working Paper Series 14840.

170

Nisan, N. (2007). Introduction to Mechanism Design (for Computer Scien-
tists). In Nisan, N., Roughgarden, T., Tardos, E., and Vazirani, V. V.,
editors, Algorithmic Game Theory, chapter 9, pages 209–241. Cambridge
University Press, Cambridge.

Nisan, N. (2010). Bidding Languages for Combinatorial Auctions. In Cram-
ton, P., Shoham, Y., and Steinberg, R., editors, Combinatorial Auctions,
chapter 9, pages 215–231. MIT Press, Boston.

Nisan, N., Bayer, J., Chandra, D., Franji, T., Gardner, R., Matias, Y.,
Rhodes, N., Seltzer, M., Tom, D., Varian, H. R., and Zigmond, D. (2009).
Google’s Auction for TV Ads. In Albers, S., Marchetti-Spaccamela, A.,
Matias, Y., Nikoletseas, S., and Thomas, W., editors, Automata, Lan-
guages and Programming, chapter 26, pages 309–327. Springer, Berlin.

Nobelprize.org (1996). The Sveriges Riksbank Prize in Economic
Sciences in Memory of Alfred Nobel. Nobel Media AB 2014.
http://www.nobelprize.org/nobel_prizes/economic-sciences/

laureates/1996/ (Accessed 20.12.2016).

Nobelprize.org (2007). The Sveriges Riksbank Prize in Economic
Sciences in Memory of Alfred Nobel. Nobel Media AB 2014.
http://www.nobelprize.org/nobel_prizes/economic-sciences/

laureates/2007/ (Accessed 08.12.2016).

Nobelprize.org (2010). The Prize in Economic Sciences. No-
bel Media AB 2014. http://www.nobelprize.org/nobel_prizes/

economic-sciences/laureates/2010/ (Accessed 20.12.2016).

Nobelprize.org (2012). The Prize in Economic Sciences. No-
bel Media AB 2014. http://www.nobelprize.org/nobel_prizes/

economic-sciences/laureates/2012/ (Accessed 08.12.2016).

Nowak, M. A. and Sigmund, K. (1993). A strategy of win-stay, lose-shift
that outperforms tit-for-tat in the Prisoner’s Dilemma game. Nature,
364:56–58.

Oméro, M.-J., Dzierzawa, M., Marsili, M., and Zhang, Y.-C. (1997). Scal-
ing Behavior in the Stable Marriage Problem. Journal de Physique I,
7(12):1723–1732.

Osborne, M. J. and Rubinstein, A. (2011). A Course in Game Theory.
MIT Press, Boston.

Ostrovsky, M. and Schwarz, M. (2011). Reserve prices in internet advertis-
ing auctions. In Proceedings of the 12th ACM conference on Electronic
commerce, pages 59–60, New York. ACM Press.

171

Pais, J. (2008). Incentives in decentralized random matching markets.
Games and Economic Behavior, 64(2):632–649.

Pathak, P. A. and Sethuraman, J. (2011). Lotteries in student assignment:
An equivalence result. Theoretical Economics, 6(1):1–17.

Pathak, P. A. and Shi, P. (2013). Simulating Alternative School Choice
Options in Boston. Technical report, MIT School Effectiveness and In-
equality Initiative.

Pathak, P. A. and Sönmez, T. (2008). Leveling the Playing Field: Sincere
and Sophisticated Players in the Boston Mechanism. American Economic
Review, 98(4):1636–1652.

Pathak, P. A. and Sönmez, T. (2013). School Admissions Reform in Chicago
and England: Comparing Mechanisms by their Vulnerability to Manip-
ulation. American Economic Review, 103(1):80–106.

Patterson, S. (2012). Dark Pools: The Rise of the Machine Traders and
the Rigging of the U.S. Stock Market. Random House Business Books,
London.

Petrongolo, B. and Pissarides, C. A. (2001). Looking into the black box:
a survey of the matching function. Journal of Economic Literature,
39(2):390–431.

Pittel, B. (1989). The Average Number of Stable Matchings. SIAM Journal
on Discrete Mathematics, 2(4):530–549.

Põder, K. (2010). Structural Solutions to Social Traps: Formal and Infor-
mal Institutions. PhD thesis, Tallinn University of Technology.

Põder, K. and Lauri, T. (2014). When Public Acts like Private: the failure
of Estonia’s school choice mechanism. European Educational Research
Journal, 13(2):220–234.

Põder, K., Lauri, T., Karmo, K., Veski, A., Roosalu, T., and Simm, K.
(2015). Lasteaiakohtade jagamine Soovitused kohalikele omavalitsustele.
Gutenbergi Pojad, Tallinn.

Põder, K., Lauri, T., and Veski, A. (2016). Does School Admission by Zon-
ing Affect Educational Inequality? A Study of Family Background Effect
in Estonia, Finland, and Sweden. Scandinavian Journal of Educational
Research, pages 1–21.

Põder, K., Veski, A., and Lauri, T. (2014). Eesti põhikooli- ja gümnaasi-
umivõrgu analüüs aastaks 2020. Technical report, PRAXIS Poliitikau-
uringute keskus.

172

Preschool Child Care Institutions Act (2014). Riigikogu RT I, 13.03.2014,
4. https://www.riigiteataja.ee/en/eli/517062014005 (Accessed
04.08.2016).

Procaccia, A. D. (2009). Thou shalt covet thy neghbor’s cake. In Proceed-
ings of the 21st International Joint Conference on Artificial Intelligence,
pages 239–244, Palo Alto. AAAI Press.

Rawls, J. (1971). A Theory of Justice. Harvard University Press, Cam-
bridge.

Riccetti, L., Russo, A., and Gallegati, M. (2015). An agent based decentral-
ized matching macroeconomic model. Journal of Economic Interaction
and Coordination, 10(2):305–332.

Richiardi, M. (2004). A search model of unemployment and firm dynamics.
Advances in Complex Systems, 07(02):203–221.

Richiardi, M. (2006). Toward a non-equilibrium unemployment theory.
Computational Economics, 27(1):135–160.

Riechmann, T. (2001a). Genetic algorithm learning and evolutionary
games. Journal of Economic Dynamics and Control, 25(6-7):1019–1037.

Riechmann, T. (2001b). Learning in Economics: Analysis and Application
of Genetic Algorithms. Springer, Berlin.

Robertson, J. and Webb, W. A. (1998). Cake-Cutting Algorithms: Be Fair
if You Can. A. K. Peters, Natick.

Roth, A. E. (1982). The Economics of Matching: Stability and Incentives.
Mathematics of Operations Research, 7(4):617–628.

Roth, A. E. (1984). Misrepresentation and stability in the marriage prob-
lem. Journal of Economic Theory, 34(2):383–387.

Roth, A. E. (1985). The college admissions problem is not equivalent to
the marriage problem. Journal of Economic Theory, 36(2):277–288.

Roth, A. E. (1997). The Effects of the Change in the NRMP Matching
Algorithm. JAMA: The Journal of the American Medical Association,
278(9):729.

Roth, A. E. (2002). The Economist as Engineer: Game Theory, experimen-
tation, and Computation as Tools for Design Economics. Econometrica,
70(4):1341–1378.

173

Roth, A. E. (2008). Deferred acceptance algorithms: history, theory, prac-
tice, and open questions. International Journal of Game Theory, 36(3-
4):537–569.

Roth, A. E. (2015). Who Gets What - and Why? Understand the Choices
You Have, Improve the Choices You Make. William Collins, London.

Roth, A. E. and Peranson, E. (1999). The redesign of the matching market
for American physicians: some engineering aspects of economic design.
American Economic Review, 89(4):748–780.

Roth, A. E., Sönmez, T., and Ünver, M. U. (2004). Kidney Exchange. The
Quaterly Journal of Economics, 119(2):457–488.

Roth, A. E., Sönmez, T., and Ünver, M. U. (2007). Efficient Kid-
ney Exchange: Coincidence of Wants in a Structured Market with
Compatibility-Based Preferences. The American Economic Review,
97(3):828–851.

Roth, A. E. and Sotomayor, M. A. O. (1990). Two-sided matching: a study
in game-theoretic modeling and analysis. Cambridge University Press,
Cambridge.

Roth, A. E. and Vate, J. H. V. (1990). Random paths to stability in two-
sided matching. Econometrica, 58(6):1475–1480.

Rothe, J., editor (2016). Economics and Computation. Springer Texts in
Business and Economics. Springer, Berlin.

Roughgarden, T. (2005). Selfish Routing and the Price of Anarchy. MIT
Press, Cambridge, Massachusetts.

Roughgarden, T., Nisan, N., Tardos, E., and Vazirani, V. V. (2007). Algo-
rithmic Game Theory. Cambridge University Press, New York.

Rust, J., Miller, J. H., and Palmer, R. (1993). Behavior of Trading Au-
tomata in a Computerized Double Auction Market. In Friedman, D. and
Rust, J., editors, The Double Auction Market: Institutions, Theories,
and Evidence, chapter 6, pages 155–198. Perseus Publishing, Cambridge.

Rust, J., Miller, J. H., and Palmer, R. (1994). Characterizing effective
trading strategies. Journal of Economic Dynamics and Control, 18(1):61–
96.

Rysman, M. (2009). The Economics of Two-Sided Markets. Journal of
Economic Perspectives, 23(3):125–143.

174

Saaty, T. L. (1978). Exploring the interface between hierarchies, multiple
objectives and fuzzy sets. Fuzzy Sets and Systems, 1(1):57–68.

Sahin, A., Song, J., Topa, G., and Violante, G. L. (2014). Mismatch un-
employment. American Economic Review, 104(11):3529–3564.

Sandholm, T. (2010). Optimal Winner Determination Algorithms. In
Cramton, P., Shoham, Y., and Steinberg, R., editors, Combinatorial Auc-
tions, chapter 14, pages 337–368. MIT, Boston.

Saraceno, C. (2011). Family policies. Concepts , goals and instruments.
Carlo Alberto Notebooks, (230).

Satterthwaite, M. A. and Williams, S. R. (1989a). Bilateral trade with
the sealed bid k-double auction: Existence and efficiency. Journal of
Economic Theory, 48(1):107–133.

Satterthwaite, M. A. and Williams, S. R. (1989b). The Rate of Convergence
to Efficiency in the Buyer’s Bid Double Auction as the Market Becomes
Large. The Review of Economic Studies, 56(4):477.

Satterthwaite, M. A. and Williams, S. R. (1993). The Bayesian Theory
of k-Double Auction. In Friedman, D. and Rust, J., editors, The Dou-
ble Auction Market: Institutions, Theories, and Evidence, pages 99–124.
Perseus Publishing, Cambridge.

Schrijver, A. (2003). Combinatorial Optimization: Polyhedra and Effi-
ciency. Springer, Berlin.

Schummer, J. and Vohra, R. V. (2007). Mechanism Design without Money.
In Nisan, N., Roughgarden, T., Tardos, E., and Vazirani, V. V., editors,
Algorithmic Game Theory, chapter 10, pages 243–266. Cambridge Uni-
versity Press, New York.

Schwind, M., Stockheim, T., and Rothlauf, F. (2003). Optimization heuris-
tics for the combinatorial auction problem. In Proceedings of the 2003
Congress on Evolutionary Computation, volume 3, pages 1588–1595.

Segal-Halevi, E., Hassidim, A., and Aumann, Y. (2016). SBBA: a Strongly-
Budget-Balanced Double-Auction Mechanism. http://arxiv.org/abs/
1607.05139 (Accessed 16.08.2016).

Shi, P. (2015). Guiding School-Choice Reform through Novel Applications
of Operations Research. Interfaces, 45(2):117–132.

175

Shimer, R. (2013). Job search, labour force participation, and wage rigidi-
ties. In Acemoglu, D., Arellano, M., and Dekel, E., editors, Advances
in Economics and Econometrics: Theory and Applications: Tenth World
Congress, chapter 5, pages 197–234. Cambridge University Press, New
York.

Sigmund, K. (2010). The Calculus of Selfishness. Princeton University
Press, Princeton.

Silva, S. T., Valente, J. M. S., and Teixeira, A. A. C. (2012). An evolution-
ary model of industry dynamics and firms’ institutional behavior with
job search, bargaining and matching. Journal of Economic Interaction
and Coordination, 7(1):23–61.

Simon, D. (2013). Evolutionary optimization algorithms: biologically-
inspired and population-based approaches to computer intelligence. Wiley,
Hoboken.

Smith, A. (1776). An Inquiry into the Nature and Causes of the Wealth of
Nations. Metalibri, London, 2007 edition.

Smith, E., Farmer, J. D., Gillemot, L., and Krishnamurthy, S. (2003). Sta-
tistical theory of the continuous double auction. Quantitative Finance,
3(6):481–514.

Sönmez, T. (1997). Manipulation via Capacities in Two-Sided Matching
Markets. Journal of Economic Theory, 77(1):197–204.

Sönmez, T. (1999). Can Pre-arranged Matches Be Avoided in Two-Sided
Matching Markets? Journal of Economic Theory, 86(1):148–156.

Sornette, D. (2004). Why Stock Markets Crash: Critical Events in Complex
Financial Systems. Princeton University Press, Princeton.

Sotomayor, M. (2012). A further note on the college admission game. In-
ternational Journal of Game Theory, 41(1):179–193.

Steinhaus, H. (1948). The Problem of Fair Division. Econometrica,
16(1):101–104.

Steinhaus, H. (1969). Mathematical Snapshots. Oxford University Press,
New York, 3rd edition.

Sterling, L. S. and Taveter, K. (2009). The Art of Agent-Oriented Modeling.
MIT Press, Cambridge, MA.

Stromquist, W. (2008). Envy-free cake divisions cannot be found by finite
protocols. The Electronic Journal of Combinatorics, 15:R11.

176

Sureka, A. and Wurman, P. R. (2005). Applying metaheuristic techniques
to search the space of bidding strategies in combinatorial auctions. In
Beyer, H.-G., editor, Proceedings of the 7th annual conference on Genetic
and evolutionary computation, pages 2097–2103, New York. ACM Press.

Tassier, T. and Menczer, F. (2008). Social network structure, segregation,
and equality in a labor market with referral hiring. Journal of Economic
Behavior and Organization, 66(3-4):514–528.

Teo, C.-P., Sethuraman, J., and Tan, W.-P. (2001). Gale-Shapley Stable
Marriage Problem Revisited: Strategic Issues and Applications. Man-
agement Science, 47(9):1252–1267.

Tesfatsion, L. and Judd, K. L. (2006). Handbook of Computational Eco-
nomics, Volume 2: Agent-Based Computational Economics. North-
Holland, Amsterdam.

Ünver, M. U. (2001). Backward unraveling over time: The evolution of
strategic behavior in the entry level British medical labor markets. Jour-
nal of Economic Dynamics and Control, 25(6-7):1039–1080.

Ünver, M. U. (2005). On the survival of some unstable two-sided matching
mechanisms. International Journal of Game Theory, 33(2):239–254.

Van Essen, M. (2013). An Equilibrium Analysis of Knaster’s Fair Division
Procedure. Games, 4(1):21–37.

Varian, H. R. (2006). Intermediate Microeconomics. W. W. Norton &
Company, New York, 7th edition.

Veracierto, M. (2011). Worker flows and matching efficiency. Economic
Perspectives, 35(4):147–169.

Veski, A. (2012). Some issues in Multi-Agent Resource Allocation. In Pro-
ceedings of the 6th Annual Conference of the Estonian National Doctoral
School in Information and Communication Technologies, pages 101–104,
Tallinn. TUT Press.

Veski, A. (2014). Price of Invisibility: Statistics of centralised and decen-
tralised matching markets. In MacKerrow, E., Terano, T., Squazzon, F.,
and Sichman, J. S., editors, Proceedings of the 5th. World Congress on
Social Simulation, pages 18–29, Sao Paulo.

Veski, A., Biro, P., Põder, K., and Lauri, T. (2017). (forthcoming) Effi-
ciency and fair access in kindergarten allocation policy design. Journal
of Mechanism and Institution Design.

177

Veski, A. and Põder, K. (2015). Primary School Choice in Tallinn: Data
and Simulations. TUTECON Working Paper No. WP-2015/1.

Veski, A. and Põder, K. (2016). Strategies in Tallinn school choice mecha-
nism. Research in Economics and Business: Central and Eastern Europe,
8(1):5–24.

Veski, A. and Põder, K. (2017). Zero-intelligence agents looking for a job.
Journal of Economic Interaction and Coordination.

Veski, A. and Võhandu, L. (2010). Another View on Territory Fair Division.
In Barzdins, J. and Kirikova, M., editors, Databases and information
systems : proceedings of the Ninth International Baltic Conference, pages
261–276, Riga. University of Latvia Press.

Veski, A. and Võhandu, L. (2011). Two Player Fair Division Problem
with Uncertainty. In Barzdins, J. and Kirikova, M., editors, Frontiers in
Artificial Intelligence and Applications, pages 394–407. IOS Press, Ams-
terdam.

Veskioja, T. (2005). Stable Marriage Problem and College Admission. PhD
thesis, Tallinn University of Technology.

Vickrey, W. (1961). Counterspeculation, auctions, and competetive sealed
tenders. The Journal of Finance, 16(1):8–37.

Vriend, N. J. (2000). An illustration of the essential difference between
individual and social learning, and its consequences for computational
analyses. Journal of Economic Dynamics and Control, 24(1):1–19.

Wang, L., Liu, S., Lu, C., Zhang, L., Xiao, J., and Wang, J. (2015). Stable
Matching Scheduler for Single-ISA Heterogeneous Multi-core Processors.
In Chen, Y., Ienne, P., and Ji, Q., editors, Advanced Parallel Processing
Technologies. APPT 2015. Lecture Notes in Computer Science, vol 9231,
pages 45–59. Springer, Cham.

Wang, S., Xu, P., Xu, X., Tang, S., Li, X., and Liu, X. (2010). TODA:
Truthful Online Double Auction for Spectrum Allocation in Wireless Net-
works. In Proceedings of IEEE Symposium on New Frontiers in Dynamic
Spectrum, pages 1–10. IEEE.

Wellman, M. P., Osepayshvili, A., MacKie-Mason, J. K., and Reeves, D.
(2008). Bidding Strategies for Simultaneous Ascending Auctions. The
B.E. Journal of Theoretical Economics, 8(1).

West, A., Hind, A., and Pennell, H. (2004). School admissions and ’selec-
tion’ in comprehensive schools: policy and practice. Oxford Review of
Education, 30(3):347–369.

178

Wilensky, U. (1999). NetLogo. http://ccl.northwestern.edu/netlogo/.
Center for Connected Learning and Computer-Based Modeling, North-
western University, Evanston.

Wilensky, U. (2002). NetLogo PD N-Person Iterated model. http://ccl.
northwestern.edu/netlogo/models/PDN-PersonIterated. Center for
Connected Learning and Computer-Based Modeling, Northwestern Uni-
versity, Evanston.

Zhang, Y.-C. (2001). Happier world with more information. Physica A:
Statistical Mechanics and its Applications, 299(1-2):104–120.

Zhou, B., He, Z., Jiang, L.-L., Wang, N.-X., and Wang, B.-H. (2014a).
Bidirectional selection between two classes in complex social networks.
Scientific Reports, 4:7577.

Zhou, B., Qin, S., Han, X.-P., He, Z., Xie, J.-R., and Wang, B.-H. (2014b).
A model of two-way selection system for human behavior. PLoS ONE,
9(1):e81424.

179

A Publication 1

Veski, A. and Võhandu, L. (2011). Two Player Fair Division Problem with
Uncertainty. In Barzdins, J. and Kirikova, M., editors, Frontiers in Artifi-
cial Intelligence and Applications, pages 394–407. IOS Press, Amsterdam

181

Two Player Fair Division Problem with
Uncertainty1

Andre VESKI a,2, Leo VOHANDU a,3

a Ehitajate tee 5, Tallinn, Estonia
Technical University of Tallinn, Institute of Informatics

Abstract. This paper analyses the territory fair division, problem initially posed
by Hugo Steinhaus [1], by studying the solutions given by different algorithms on
a large generated set of inputs for two players. Main algorithm used is Adjusted
Winner, developed by S. Brams and A. Taylor [2]. We compare it to combinatorial
enumeration and some algorithms proposed for experimentation by authors. Ad-
ditionally we define measures to characterize the initial task and game theoretic
measures to select the best solution. Moreover we extend the problem by allowing
uncertainties in the players’ value representation of items to be divided, based on
the example of territorial division. For uncertainty management we use the belief
system from Dempster-Shafer Theory [3].

Keywords. Fair division, Dempster-Shafer Theory

Introduction

Division problem is a more general task of the well known partitioning problem. Several
different techniques have been developed to provide a fair division of goods or a single
homogeneous good (e.g. cake). In general there are two classes of techniques: turn based
information sharing and decision making; or providing full information to a mediator
who then proposes a solution. In this paper we concentrate on the later type of algorithms,
where we have all the information available from all players.

At first it may seem that a fair division is unreachable, because each player has their
own subjective opinion about the goods being distributed. Ultimately just because of
those subjective estimations, a fair division is possible. Unfortunately most of the world
relies on experts’ objective opinions and not on their own attitudes.

Initially this problem was described by Steinhaus [1], [4] as the problem of fair divi-
sion. In his example two heirs have a territory to divide and both expect to get half of it.
In Steinhaus’ solution they both draw a vertical dividing line that would split the territory
into two subjectively equal parts [1] (Figure 1). At first both players receive a piece of the
territory they value more per area unit. In our example I1 would be attributed to bidder
B and I3 to A. The remaining piece, I2, can be divided similarly or split randomly, since
each of the players has already gained a half.

1The final publication is available at IOS Press through http://dx.doi.org/10.3233/978-1-60750-688-1-394
2E-mail: andre.veski@gmail.com
3E-mail: leov@staff.ttu.ee

Figure 1. Division

To characterize fitness of a fair distribution, we use three measures proposed by
Brams and Taylor [2]: envy, equality and efficiency. Envy shows how much a participant
desires some one else’s gains. Efficiency illustrates the final results of all players. A
division is efficient when every participant got at least what he bargained for – with two
player half of his initial values. Equality shows similarity in each participant’s total gain.
We will give a formal definition of these measures later in the paper. In order for the
division to be fair it has to be as envy-free, efficient and equal as possible. There are
cases where these measures contradict each-other and one can not drive all of them to
the maximum. We also look how to fuse these three measures and use a single measure
to evaluate the result such as Nash’s Bargaining Solution.

Figure 2. Conflicting division

In our paper we also add a level of generalization to the fair division problematique,
based on an example of territory division. Instead of having non-crossing division lines as
in Figure 1 we introduce crossing lines as on Figure 2. Hence we get a total of four items
to be divided, but valuations only for item sets of two. This means we have some level of
uncertainty. While we know how participants value part of their division, we don’t know
how it translates to each of the four individual sections as depicted on Figure 2.

1. More Formal Description of the Problem

We have a set S of n bidders S1, ..., Sn and a set I ofm items I1, ..., Im. Each bidder has
a real-valued valuation function vi that for each item Ij ∈ I gives the value vi(Ij) that
bidder Si obtains if he receives Ij . A division of items among the bidders is a matching
mutually exclusive subsets of items to bidders. For every bidder Si, Sj where i 6= j
Di, Dj ⊆ I is an allocation such that Di ∩Dj = ∅. For all bidders

⋃
Si∈S Di = I . The

total utility obtained is defined by
∑

Si∈S vi(Di).
As already mentioned, the problem of fair division is similar to the known NPC

problem of partitioning, where items of different value need to be partitioned into n

Table 1. Valuations

v I1 I2 I3

vA 0.44 0.6 0.50
vB 0.50 0.5 0.45

distinct sets, all with equal total value. In fair division case, each bidder can be considered
as a partition. And for each bidder Si ∈ S the value functions are the same, meaning
that for any i, j and l the vi(Il) = vj(Il). Often total equality between partitions is not
achievable then we need to use a measure of fitness – equality between partitions. Having
m items to be partitioned into two sets D1 and D2, the goal is to minimize the difference

Equality(D1, D2) =

∣∣∣∣∣
∑

Ii∈D1

v1(Ii)−
∑

Ii∈D2

v2(Ii)

∣∣∣∣∣ (1)

For example having items with values {1, 2, 3} then these can be easily divided
into two sets of equal value {1, 2} and {3}. The simplest algorithm to solve this task
is Algorithm 1.1. Start from the largest element, assign it to a set, then second largest
element to the set with a lower value, until there are no more items left. Partitioning
problem can be generalized by adding some degrees of freedom. For example in fair
division we have to take into account differences of opinion, i.e. the same item can have
different values depending on the set they are assigned to – A or B. For simplicity, in
the rest of the paper we will look at a problem with two bidders denoted A = SA or
B = SB .

Algorithm 1.1: MFP(I)

[Initialize] A,B ← {}
while not empty I

do

[Find maximum] max{v(I1), ..., v(Im)}, and Il is the maximal
[Select lower value set] if Total(v(A)) <= Total(v(B))

then A[elements+ 1]← Il
else B[elements+ 1]← Il

return (A,B)

Let us take an example of fair division as presented on Figure 1. Assume that A
and B have the value functions for items {I1, I2, I3} as in Table 1. The valuations are
normalized so that for both A and B the total value would be 1. A good algorithm to
solve this has been developed by Brams and Taylor [2], called Adjusted Winner (Algo-
rithm 1.2), which has some similarities with Algorithm 1.1. In the first round the main
goal is to return maximal efficiency by assigning each item to the highest bidder. In the
second, adjustment step the result is equalized by giving most similarly valued items to
the worst-off player. The algorithm tries to optimize all three criteria mentioned above.

Figure 3. Valuations

Alternatively we may aim for highest utility as in Algorithm 1.3, which, as we shall see
later, will in some cases yield a better result.

Algorithm 1.2: AWT(I)

[Initialize] A,B ← {},m← |I|, v ← 0
for i← 1 to m

do

[Select largest and add]
if vA(Ii) > vB(Ii)

then A[elements+ 1]← Ii
else B[elements+ 1]← Ii

[Adjust A and B to be equal valued] if Total(vA(A)) > Total(vB(B))
then repeat

for i← 1 to n

do

c← 2/(vA(Ii)/vB(Ii))
[Select best] if v < c

then v ← c, s← i
B[elements+ 1] = Is

until Total(vA(A)) <= Total(vB(B))
else if Total(vA(A)) < Total(vB(B))
then [Exchange] A←→ B, ancontinueatstep[Adjust]

return (A,B)

Algorithm 1.3: MFT(I)

[Initialize] A,B ← {}, J ← {Ii|i = {1, ...,m}, |Ii| = 1}, o← |J |
for i← 1 to o

do

[Select largest and add] if vA(Ji) > vB(Ji)
then A[elements+ 1]← Ji
else B[elements+ 1]← Ji

return (A,B)

Let’s look at the case where participant’s valuations are uncertain, example on Fig-
ure 3. We have values for playerA, with the value function vA({I1, I2}) = vA(I1∪I2) =

0.5 and for individual items vA({I1}) = 0.42 and vA({I2}) = 0.6. The leftover value
vA(I1 ∩ I2) = vA({I1, I2}) − vA({I1}) − vA({I2}) = 0.5 − 0.42 − 0.06 = 0.02 is
the value that comes from owning both of these items together. In other words, it is the
value of the connection between those two items. In Dempster-Shafer Theory (hence-
forth DST) [3] we have upper and lower bound values for all items. Going forward, we
describe briefly the necessary part of DST [3]. On a valuation lattice (Figure 3) there are
at least three ways of looking at each item set:

1. Total value of items which an item contains - belief
2. Total value of items in which an item is part of - plausibility
3. Total value of items in which an item is not part of and does not contain itself -

doubt

The base values for each item or set of items is called mass or basic probability
assignment [3] and is the value only for that particular item. The mass values for all
item sets in the power set add up to 1 and value of an empty set is 0. Meaning that for
single items the mass is the value of that item and in larger item sets the value of the
connection (intersection). In our example (Figure 3) the mass mA(I1, I2) = vA(I1 ∪
I2) = 0.02 and the belief value bA(I1, I2) = vA(I1, I2) = 0.5. The belief function
from DST corresponds to our idea of a value function so that bA(Ii) = vA(Ii). Here∑

Ii∈I mA(Ii) = 1, whereas
∑

Ii∈I vA(Ii) >= 1. The definitions for item set value
functions are given below.

Definition 1. Belief is a sum of masses from all the sets where observed element Ii
is a part of or in other words a lower bound for an item set A that contains the certain
knowledge about the item set. On Figure 4 we have belief for I6 = {I2, I3} presented
with gray background.

Belief(Ii) = b(Ii) =
∑

Ij⊂Ii
v(Ij) (2)

Definition 2. Plausibility is a sum of masses from all the item sets where the union
with the observed element Ii is not an empty set or in other words an upper bound for a
set Ii that Ii would have if it got assigned all the uncertain values. On Figure 5 there is
plausibility for I1 with a gray background.

Plausibility(Ii) = p(Ii) =
∑

Ij∩Ii 6=∅
v(Ij) (3)

Definition 3. Doubt is a sum of masses from all the item sets where the union with
the observer element Ii is an empty set or value that Ii can never have even if it got
assigned all the uncertain values. On Figure 4 there is doubt for I1 presented with a gray
background.

Doubt(Ii) = d(Ii) =
∑

Ij∩Ii=∅
v(Ij) (4)

Figure 4. Belief I6, Doubt I1 Figure 5. Plausibility I1

2. Measuring Solutions and Tasks

With each additional degree of freedom there are more possibilities to evaluate the fitness
of a solution. On the simple partitioning task there is a measure of equality between sets.
As the number of partitions grows, new measures come up such as a total difference of
values in pairwise comparison etc.

A fair division is usually described by three measures according to Brams and Taylor
[2]: efficiency, envy and equality and we also use total product. The latter is also used
by Nguyen and Kreinovich [5] and is known in the game theory as Nash’s Bargaining
Solution [6].

Definition 4. (Pareto) Efficiency is the total value of the solution. This is actually
a condition where no player can be made better off by making someone else worse off.
But if an item can change owners and create more value from that, the initial owner can
be compensated by some uniform measure – e.g. money.

Efficiency(A,B) = ef(A,B) =
∑

Ii∈A
mA(Ii) +

∑

Ii∈B
mB(Ii) (5)

Definition 5. Envy is the amount by which in one player’s valuations other players
result was larger than his. The total envy is the total sum on pairwise comparisons and
consists of two parts:

Envy(A,B) = en(A,B) = max

((∑

Ii∈B
mA(Ii)−

∑

Ii∈A
mA(Ii)

)
, 0

)
(6)

Envy(B,A) = en(B,A) = max

((∑

Ii∈A
mB(Ii)−

∑

Ii∈B
mB(Ii)

)
, 0

)
(7)

TotalEnvy(A,B) = Envy(A,B) + Envy(B,A) (8)

Definition 6. Equality is the amount by which end results differ for each player
and is calculated as a sum of pairwise differences

Equality(A,B) = eq(A,B) =

∣∣∣∣∣
∑

Ii∈A
mA(Ii)−

∑

Ii∈B
mB(Ii)

∣∣∣∣∣ (9)

Definition 7. Product is the total product of all players end results

Product(A,B) = pr(A,B) =
∑

Ii∈A
mA(Ii) ·

∑

Ii∈B
mB(Ii) (10)

Envy and equality are somewhat similar. In partitioning task we have equality as our
measure of fitness. Since each subset of items has now different values based on every
players individual preferences, we also need the envy measure to assess fitness from all
players viewpoints.

Efficiency is a new kind of measure. With simple partitioning this measure is equal
to the total value of items and is always the same, regardless of the actual solution. In
fair division, since the total values of partitioned subsets are different in each solution, it
is important to make sure that we would get the maximum possible total value.

Similarly measuring the goodness of a solution, there are measures to characterize
the initial players valuations. We will use these to generalize the input in order to create
a relationship with the output.

Definition 8. Conflict is defined as a conflict measure in the DST [3]

Conflict(A,B) = c(A,B) = 1−
n∑

i=1

n∑

j=i,Ii∩Ij=∅
mA(Ii) ·mB(Ij) (11)

Definition 9. Difference is a pairwise difference in participants’ valuations. This is
recommended by authors and as we see later it has a good correlation with the solution.

Difference(A,B) = d(A,B) =

∑n
i=1 |vA(Ii)− vB(Ii)|

2
(12)

Difference describes the total difference in players’ value functions. Looking at the
Algorithm 1.2, the more different the players’ value functions are, the more efficient
the solution should be. In extreme cases where valuations are completely opposite, the
resulting gain would be double of that the players initially subjectively expected.

Definition 10. Uncertainty is an amount of uncertainty in the valuations as total
sum of mass on item sets with greater volume than 2.

Uncertainty() = un() =

n∑

i=1,|Ii|>1

mA(Ii) +mB(Ii) (13)

In Table 2 we have presented an example calculation of definitions given above. It is
based on problem from Table 1 where the result is for A = {I1} and for B = {I2, I3}.

Table 2. Example calculations

Player A Player B

Result 0.50, 0.6 0.50
Efficiency 0.6 + 0.50 + 0.50 = 1.06

Envy 0.67 - (0.27 + 0.6) = 0.34 0.61 + 0.5 - 0.34 = 0.33
Equality 0.67 - 0.61 - 0.05 = 0.01
Product 0.56 · 0.50 = 0.28

Conflict
1 - 0.44 · 0.05 - 0.44 · 0.45 - 0.06 · 0.5 -

- 0.06 · 0.45 - 0.5 · 0.5 - 0.5 · 0.05 = 0.448
Difference 1

2
· (|0.44− 0.50|+ |0.6− 0.5|+ |0.50− 0.45|) = 0.06

Uncertainty 0.0

3. Algorithms Modifications for Uncertainty

So far we have examined two algorithms for fair division: Maximal First and Adjusted
Winner for two bidders. As a next step we need to figure out how to handle uncertain
valuations in these algorithms. In authors’ views handling uncertainty could be done in
at least two ways.

1. Using different value functions from DST to determine a value for item compar-
ison, e.g. belief or plausibility

2. Start the division process with different volumes sets of items, e.g. on the second
level of the valuation lattice where all item sets have a cardinality of two. Without
uncertainty, all item sets have a cardinality of one.

In the paper we will explore only the first. More precisely we shall compare results
from three algorithms.

1. Enumerating all possible combinations (Algorithm CT and Algorithm C)
2. 2-step Adjusted Winner (Algorithm AWT and Algorithm AW)
3. Maximal valued First (Algorithm MFT and Algorithm MFL)

In other words, all algorithms will be used in two models.

1. Model with uncertainty (Algorithms C, AW and MFL)
2. Model without uncertainty (Algorithms CT, AWT and MFT)

Algorithms AW (Algorithm 3.1) and MFL (Algorithm 3.2) are modifications of their
certain world counterparts AWT (Algorithm 1.2) and MFT (Algorithm 1.3). With AW we
still loop only over single items, but when comparing the item sets we use the plausibility
function. We also add a step to check if we can add some item sets already covered by
single items. In generalizing MFT to MFL we use the belief measure, not just mass, but

again we loop through single items and add larger item sets at the final stage.

Algorithm 3.1: AW(I)

[Initialize] A,B ← , J ← {Ii|i = {1, ...,m}, |Ii| = 1}, o← |J |
for i← 1 to o

do

[Select largest and add] if pA(Ji) > pB(Ji)
then A[elements+ 1]← Ji
else A[elements+ 1]← Ji

[Adjust] v ← 0
if Total(vA(A)) > Total(vB(B))

then repeat

for i← 1 to o

do

a← bA(Ji)b← bB(Ji)c← 2/(a/b)
[Keep best matching item] if v < c

then v ← c, s← i
A[i]← nil, B[i] = Ji

until Total(vA(A)) <= Total(vB(B))
else if Total(vA(A)) < Total(vB(B))
then [Exchange] A←→ B, and continue at step[Adjust]

K ← {Ii|i = {1, ...,m}, |Ii| > 1}, q ← |J |
for i← 1 to q

do

if Ki ⊂ A
then A[elements+ 1]← Ki

else if Ki ⊂ B
then B[elements+ 1]← Ki

return (A,B)

Algorithm 3.2: MFL(I)

[Initialize] A,B ← , J ← {Ii|i = {1, ...,m}, |Ii| = 1}, o← |J |
for i← 1 to o

do

[Select largest and add] if bA(Ji) > bB(Ji)
then A[elements+ 1]← Ii
else B[elements+ 1]← Ii

K ← {Ii|i = {1, ...,m}, |Ii| > 1}, q ← |J |
for i← 1 to q

do

if Ki ⊂ A
then A[elements+ 1]← Ki

else if Ki ⊂ B
then B[elements+ 1]← Ki

return (A,B)

Table 3. Valuation example

I1 I2 I3 I4 I1, I2 I3, I4 I1, I3 I2, I4

Player A 0 0 0 0 0.5 0.5 0 0
Player B 0 0 0 0 0 0 0.5 0.5

Algorithm 3.3: C/CT(I)

[Initialize] l← 0, A,B ← {}
repeat

A← CombinationofItems(I)
B ← I −A
[Compare the new solution with the current solution] if pr(A,B) > l

then l← pr(A,B)
[All combinations tested]

until OutOfCombinations()
return (A,B)

4. Algorithm Comparison Setup

To compare the results for the algorithms we look at a large set of generated inputs,
basically taking assumptions for both player on their values for single items (I1, I2, I3
and I4). Our goal is to look at many different settings. Some of them have uncertainty,
some of them are closely valued and some are very different. To make sure we have
all the possible settings we generate a full set of combinations. Since vA({I1, I2}) =
vA({I3, I4}) = 0.5 will hold and respectively vB({I1, I3}) = vB({I2, I4}) = 0.5. If we
know that vA(I1) = 0.1 then we also know that vA(I2) can be at most 0.4). Meaning that
for the valued item set H = {H1, H2} we have 6+5+4+3+2+1 = 21 ways to share
the vA(H) = 0.5 between the individual items H1 and H2. Since there are two such
item sets for both players, we get 212∗2 = 194481 examples. We don’t need examine all
the examples. To reduce the amount of computation we skip mirrored valuations, such
that vB2

(I1) = vA1
(I1), vB2

(I3) = vA1
(I2), vB2

(I2) = vA1
(I3), vB2

(I4) = vA1
(I4),

vA2
(I1) = vB1

(I1), vA2
(I2) = vB1

(I3), vA2
(I3) = vB1

(I2) and vA2
(I4) = vB1

(I4).
Assuming that Player A is A1 and A2 from example 1 and example 2 respectively and
B1 and B2 Player B. This leaves us with 97461 examples.

1. Table 3 example has high uncertainty and high conflict.
2. Table 4 example has no uncertainty, has high conflict and high difference.
3. Table 5 has some conflict, some uncertainty and by our definition no difference.

Additionally to compare algorithms that can’t handle uncertainty, we need to trans-
form the input. For this we use the plausibility measure. For all single items we calcu-
late their plausibility and then normalize that to add up to 1. This calculation basically
distributes the uncertainty uniformly between the items.

Table 4. Valuation example

I1 I2 I3 I4 I1, I2 I3, I4 I1, I3 I2, I4

Player A 0.5 0 0.5 0 0 0 0 0
Player B 0 0.5 0 0.5 0 0 0 0

Table 5. Valuation example

I1 I2 I3 I4 I1, I2 I3, I4 I1, I3 I2, I4

Player A 0.2 0.2 0.2 0.2 0.1 0.1 0 0
Player B 0.2 0.2 0.2 0.2 0 0 0.1 0.1

Table 6. Correlations

Efficiency Envy Inequality Product

Efficiency 1
Envy -0.21 1
Inequality 0.18 0.80 1
Product 0.65 -0.76 -0.59 1

5. Assessing Metrics

Based on the metrics presented, which would be the best to maximize? We have pre-
sented Envy, Efficiency, Equality and Nash’s Bargaining Solution. In Brams and Taylor
[2] Adjusted Winner algorithm efficiency is preferred to reach at least 1 and after that the
aim is to equalize the solution. In general we wish to go in all directions at once: mini-
mize envy, maximize efficiency and equality. It appears that Nash’s Bargaining Solution
does just that.

On Figure 6 we can see the relation between all the four metrics. These values have
been generated from all possible solutions (16) to our set of 97461 examples using Al-
gorithm 3.3. This results in total about 1.6 million cases. In a rough summary the rela-
tionships between the metrics are (based on Figure 6):

1. Product has a good correlation with Efficiency (Table 6)
2. The highest Product is almost always with low Envy. There are always tasks

where Envy is unavoidable, the extreme case being the example in Table 3 in the
previous section

3. With a higher inequality the product approaches 0, as can be seen from the chart
(Figure 6) starting from bottom left and moving to upper right

Since all the correlations with the product are in the right direction (Table 6) as
stated: maximizing efficiency and equality and minimizing envy and all correlation co-
efficients with Nash’s Bargaining Solution are above 0.5 which makes it a good metric
to assess the fitness of our solutions. Moreover there is more justification on using the
Nash’s Bargaining solution in [6] and [7].

Figure 6. Solution metrics

6. Initial Results

Solving tasks in the model without uncertainty, the resulting solution is usually well pre-
dicted by the initial difference of opinions between the players. The greater the difference
the better the result will be as on Figure 7.

As expected, adding uncertainty creates additional level of complexity. The differ-
ences of opinion don’t have such strong impact on the result as before. On Figure 8 we
see that the difference itself does not give as good an explanation as before. Difference
still has a similar direction as in the model without uncertainty, the best result is achieved
only with the biggest difference, but not the other way around i.e. larger difference does
not guarantee a better solution. Moreover from Figure 8 we see that there is no definite
impact by uncertainty and conflict either. Although there is visible direction with un-
certainty, i.e. the greater uncertainty implies lower product value, but with decreasing
uncertainty the variability of the Nash’s Bargaining Solution increases.

Next let us compare results from different algorithms, with (Figure 10) and without
(Figure 9) uncertainty. On the certain world (Figure 9) we see that all the algorithms
produce quite similar results. Most of the results from algorithms AWT and MFT produce
results quite near to the ideal, both have some deviation from CT, but not very much.
In general there is room for improvement for both algorithms, although AWT manages
always to beat MFT.

Adding uncertainty to algorithms the best algorithm is not that obvious anymore.
When comparing algorithms AW and MFL it is visible on Figure 10 that MFL is in some

Figure 7. Difference without Uncertainty

Figure 8. Difference with Uncertainty

cases able to achieve better results than AW. This means that second stage in Algorithm
AW, adjustment for equality, has some negative impact on other metrics in terms of
Nash’s Bargaining Solution. This is definitely one of the places to start creating an even
better algorithm.

Figure 9. Results without Uncertainty Figure 10. Results with Uncertainty

7. Conclusion

It has been confirmed once more that Nash’s Bargaining Solution contains all the nec-
essary properties of the bargaining game. While maximizing utility value it also tries to
balance mutual equality and minimize envy. It is also important to understand the limita-

tion we have here; we just have looked at a limited, but a large set of examples. It might
be that examples included here belong to a separate class of behavior.

Looking at the various charts it is apparent that the quality of the solution is deter-
mined by initial limits we have set on item values as seen on Figure 10. Having certain
valuation it is clear that the outcome is defined by the initial differences in players val-
uations. Although in the case of uncertainty the determination is not that clear. But in
general, as would be expected by intuition, adding uncertainty also degrades the possible
solution. Uncertainties impact on the solutions for more complex problems (three and
more players) remains to be investigated. What would be an efficient algorithm in that
case?

Moreover the setup of our test environment is quite limited. Currently we have only
tested the case of two participants, who had four items to share. Making the task more
complex can reveal new insights on the algorithms. Next steps on the test settings should
be:

1. Expanding the task for 3 and more participants
2. Expanding the item space and therefore the valuation lattice will be more com-

plex
3. Extending the initial task beyond the territory division to allow more freedom,

i.e. item set values between [0;1]

References

[1] Hugo Steinhaus, The problem of fair division, Econometrica, 16, 101-104 (1948)
[2] Steven J. Brams, Alan D. Taylor. Fair Division: From cake-cutting to dispute resolution, Melbourne

(1996)
[3] William L. Oberkampf, Jon C. Helton. Evidence Theory for Engineering Applications Appeared in

Engineering Design Reliability Handbook, Danvers (2004)
[4] Hugo Steinhaus. Mathematical Snapshots, New York (1969)
[5] Hung T. Nguyen, Vladik Kreinovich, How to divide a Territory: A New Simple Formalism for Opti-

mization of Set Functions, International Journal of Intelligent Systems, 223-251 (1999)
[6] Duncan Luce, Howard Raiffa. Games and Decisions: Introduction and critical survey, Dover (1989)
[7] Ken Binmore. Natural Justice, Oxford (2005)

B Publication 2

Veski, A. (2014). Price of Invisibility: Statistics of centralised and decen-
tralised matching markets. In MacKerrow, E., Terano, T., Squazzon, F.,
and Sichman, J. S., editors, Proceedings of the 5th. World Congress on
Social Simulation, pages 18–29, Sao Paulo

197

Price of Invisibility: Statistics of centralised and

decentralised matching markets

Andre Veski⋆

Tallinn University of Technology, Tallinn, Estonia
andre.veski@ttu.ee

Abstract. We simulate a model of a decentralized and a centralised
two-sided matching market in order to compare the efficiency of the two
mechanisms. Also we parametrise the preference structure with prefer-
ence list correlation and length. We use well known better response dy-
namic matching for a decentralised marketplace. We compare the decen-
tralised mechanism to a centralised clearing house based on the Deferred-
Acceptance mechanism. We use median rank and the number of unas-
signed agents to measure the efficiency of a matching. We found that
median rank is statistically at most five times worse on a decentralised
market, which occurs when correlation in preferences is small and list are
long. Also with longer preference lists the decentralised mechanism has
many unassigned agents and the matching is unstable, whereas a cen-
tralised mechanism computes a stable matching and usually with almost
no unassigned agents.

Introduction

Two-sided matching markets have been studied quite extensively in the past half
a century, starting with the National Residency Matching Program in US and
the seminal result by David Gale and Lloyd Shapley [7] on a stable matching
mechanism. This mechanism has proved useful in many entry-level job-markets
(see e.g. [13]) and school choice markets (e.g. [1,12]). The general model is a
two-sided market, where both sides have preferences or priorities over the agents
on the other side.

The main benefit of a matching mechanism is that it is centrally applied.
All the market participants report their preferences to a central clearing house
that then can compute an optimal matching using for example Gale-Shapley
Deferred-Acceptance algorithm [7]. Optimal usually means that the result is
the best possible stable matching for one side of the market as the optimality
can not be guaranteed for both sides. Stability is defined as a situation where
participants do not have an incentive to deviate - there is no participant on the
other side that the agent would prefer to his current match and that would also
prefer him.

⋆ This research was supported by European Social Fund’s Doctoral Studies and Inter-
nationalisation Programme DoRa, and grant ETF8997

18

Roth [13] observed that in some situations where there was not a central
clearing house in place, market participants still executed a very similar algo-
rithm as proposed by Gale and Shapley. A major drawback of the execution was
that usually it was time-capped, i.e. at some point the market had to be closed.
This meant that the algorithm execution might not have finished and resulting
matching may not be stable.

We model a situation where agents randomly interact and always select a
better, compared to their current, match if available. This is also called a better
response dynamic in [2]. Agents do not know all participants from the other side
of the market, but rather become aware and form preference of them as they
meet. Then they decide to change their match or not. In a real market setting
there are always some cost related to a change , but in our current model we do
not consider it.

Our main aim and contribution is to understand the benefit of having a
centralised mechanism instead of a decentralised. Our secondary goal is to study
the effect of preference structure on the outcome for both market mechanisms.

1 Market models

In a two-sided matching market there is a set A = {a1, ..., an} of agents on one
side and a set B = {b1, ..., bn} of agents on the other side. Although the number
of agents on both sides can be different, we consider here only cases where the
two sets are of equal size, i.e. the market is balanced. Each agent ai from A has
a strict preference relation ≻ai over agents in B, and similarly for bj ∈ B there
is a preference relation ≻bj over agents in A. A matching µ is a mapping from
A ∪ B to itself, such that for every a ∈ A, is matched to µ(a) ∈ B ∪ {a}, and
similarly for b ∈ B, µ(b) ∈ A∪{b}. When an agent is matched to itself, µ(a) = a
or µ(b) = b respectively indicates that they are in fact unmatched. Also for every
a, b ∈ A ∪ B, µ(a) = b implies µ(b) = a. A matching is unstable if there is are
at least two agents, a blocking pair, a and b from opposite sides of the market
such that b ≻a µ(a) and a ≻b µ(b). A matching is stable if it is not unstable.

1.1 Decentralised random matching model

For modelling a decentralised market we use NetLogo ([15]). As usual in NetLogo
agents are positioned on a grid, we use the default size of 33 × 33, with each
position occupied by at most one agent. After the preference profiles have been
set, at each time step an agent selects a random free position on the grid in
the distance of 10 positions, if the position is occupied the agent remains in
his current position for this round. The grid has a periodic boundary condition,
meaning when an agent selects a position out of the grid, he is just moved to
opposite side of the grid as the grid is toroidal.

After all agents have found a new position, we find the closest neighbour to
all agents, from opposite side of the market, on the neighbouring 8 positions. If

19

there is more than one at the same distance, one is chosen randomly. Note that
some agents might not have a neighbour at each step.

After all agents have been assigned a neighbour they start a transaction
with the selected neighbour. First they both check if they are on each other’s
preference lists. If they are on each other’s lists, the agents are myopic, they
compare their current assignment with the neighbouring agent and decide to
change their match if the neighbour is higher in their preference list (Algorithm
1). This is described as random better response dynamics in [2]. In one timestep
t some agents might have multiple transactions if they were selected as closest
neighbour by multiple agents, but only the best match will remain.

Algorithm 1 Better response dynamic

Require: a, b, ≻a, ≻b, µ
Ensure: µ is a matching

ma ← µ(a), mb ← µ(b)
if b ≻a ma and a ≻b mb then

µ(ma)← ma, µ(mb)← mb

µ(a)← b, µ(b)← a
end if
return µ

1.2 Centralized matching model

We compare our results from the decentralised matching model to one that
would be centrally managed. In this case both parties submit their preferences
to a central clearing-house that then outputs a matching. A classical algorithm
used is the Deferred-Acceptance algorithm (DA), discovered by Gale and Shapley
in [7].

The DA algorithm always produces a stable matching as showed by [7]. Fur-
thermore depending the side that initiates the proposing sequence also obtains
an optimal stable matching where agents from that side are matched to the
best possible partner. The A-proposing algorithm is presented in Algorithm 2,
similarly we can construct B-proposing algorithm that outputs stable matching
optimal for B. These matchings may be, but necessarily are not the same, as
there can be multiple stable matchings. It is also known that in general that
A-side optimal stable matching is the worst stable matching for agents in B and
vice-versa, see for example [13].

2 Selected parameters

The preference structure is parametrised by the length of the preference list (k)
and correlation between the preference lists (c). The preference list limit k is the

20

Algorithm 2 A-Proposing deferred-acceptance

Require: A,B,≻a,≻b

Ensure: µ is a matching
while There are unmatched agents in A with proposals do

for all a ∈ A and µ(a) = a and ≻a is not empty do
b← FIRST (≻a,B) // Most preferred match for a in B
µ(a)← b, µ(b)← {µ(b), a}

end for
for all b ∈ B do

a← FIRST (≻b, µ(b))
A′ ← µ(b) \ {a}, µ(b)← a
for all a ∈ A′ do

µ(a)← a, ≻a←≻a without b
end for

end for
end while
return µ

same for all agents. Although the preferences themselves are not necessarily the
same, they might be correlated to some degree or might be totally random as
defined by parameter c.

In reality the limit on the preference list might be artificial, due to limited
processing capacity of the clearing mechanism. Or it might also be driven by
agents themselves, due to the cost of additional information processing. It is
hard to evaluate all the alternatives in a market, so they settle on listing or
evaluating just a few. Or when considering the labour market, the list might be
limited because some agents lack the skill to be matched with some jobs. Similar
limitations to length of preference have been studied in [16,11].

High correlations between preference lists are usually driven by similar in-
formation people receive over alternatives and also similar value systems. It is
observed in [14] that high correlations limit the size of the core of stable match-
ings. In some aspects correlation has been investigated in [4], where they look
at fully correlated preference (uniform) lists and the effect on convergence to
stability.

There have been additional studies on the effect of correlation. Mostly cor-
relation is defined as as a utility function of the agents in the form uai(bj) =
β · ξ(bj) + ξai(bj) ([3,6,5]) and then sorted to obtain preference ordering. The
parameter β is the correlation parameter and in case of β = 0 we recover the un-
correlated preferences. The ξ(nj) is global popularity of the agent bj and ξai(bj)
is the agent ai specific utility for agent bj. Note that β can be arbitrarily large,
thus it is hard to have fully correlated preference lists. In ([5]) they define a
similarity measure for preference lists after generation, but usually the results
are far from total correlation.

21

Algorithm 3 Random permutation

Require: n, k ∈ [0, 1], c ∈ [0, 1]
Ensure: p is a permutation of unique numbers

p← 1, 2, 3, ..., n, j ← n, l ← k · n
while j > 0 do

r ← random number between 0 and 1
q ← ⌊j · r1−c⌋+ [c 6= 1]
t← pq, pq ← pj , pj ← t
j ← j − 1

end while
return {p1, p2, ..., pl}

Table 1: Parameter spaces

Parameter Values

Knowledge limit (k) 0.02, 0.1, 0.2, ..., 1
Correlation (c) 0, 0.1, 0.2, 0.3, 0.4..., 1

2.1 Generating the preferences

The preferences are generated using algorithm 3 with parameters k, c and n.
This algorithm is taken from [9] and modified to generate correlated lists with
parameter c. The algorithm starts with master list of n numbers. Then it iterates
over the list from end to beginning, each time at position j randomly selecting
a position q ∈ [1, j) to exchange values with. The correlation parameter c just
states how biased the randomly selected position is, higher values indicated that
the exchange position is selected closer to the current position j. With c = 0
the selection is uniformly probable over all positions, until finally at c = 1 the
exchange position is always the active position and all the generated lists are
exactly the same.

2.2 Parameter space

We run our simulation for multiple combinations of parameters k and c with
the pattern as in Table 1, altogether 11 · 11 = 121 combinations. Each set of
parameters is executed 100 times, to account for some variability. Since we are
interested in effects of k and c we fix the market size to n = 100 for both sides
of the market. So altogether there are 200 participants in the market. There is
some research on unbalanced markets [3], where there are more participants on
one side of the market. Also there is most likely significant interaction with our
selected parameters and the size and the balancedness of the market, but this
currently remains future work.

22

3 Results

We define two measures for the outcome of a matching mechanism: median
rank and the number of unassigned agents. And Price of Invisibility measure for
comparing the two matching mechanisms.

Definition 1 The rank of bj in preference relation ≻ai of an agent ai is defined
as ρai(bj) = |{b′ : b′ ≻ai bj}|. Similarly we define the rank of ai in bj preference
list by ρbj (ai).

Definition 2 Given a matching µ then side A’s median rank ra is defined as

P (ρa(µ(a)) ≤ ra) ≥ 1
2 , P (ρa(µ(a)) ≥ ra) ≤ 1

2 , ∀a ∈ {a′ : µ(a′) 6= a′, a′ ∈ A} .
(1)

Similarly we define a median rank rb for agents on side B.

Definition 3 Given a matching µ the number of unassigned agents is defined
as

u = |{a : a ∈ A, µ(a) = a}| + |{b : b ∈ B, µ(b) = b}| . (2)

Definition 4 Given a better response dynamic matching µbrp and a deferred-
acceptance matching µda, the Price of Invisibility, with respect to metric f(.), is
defined as

PoIf =
f(µbrd)

f(µda)
. (3)

We currently cut-off the execution of the decentralised mechanism after 5000
steps. Ideally we would run the simulation until we reach a stable state, but the
random model does not find a stable solution in polynomial time [2]. Also when
we observe the details we see that already after 2500 steps the rate of change is
really slow - Figure 1.

Fig. 1: Convergence speed

0

20

40

60

0 2500 5000 7500 10000
Iteration

M
ed

ia
n

ra
nk

Median rank convergence

23

Fig. 2: Probability of a stable solution

0%

25%

50%

75%

100%

0.00 0.25 0.50 0.75 1.00
k (Limit)

P
ro

po
rt

io
n

of
 s

ta
bl

e

c (Correlation)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Decentralised matching stability (t=5000)

3.1 Stability

As mentioned the decentralised market takes exponential time to find a stable
match so we cut-off the execution at t = 5000 steps. Our selected random better
response decentralised matching model operates by satisfying blocking pairs with
each transaction. As these are not guaranteed to be the best blocking pairs that
are satisfied some blocking pairs containing one of the agents might still remain.

The results of probability of stability with different parameters is presented
on Figure 2. Similar results are reported in [4], where they look at k · n ≤ 8.

3.2 Median Rank

We select the median rank of a matching as a descriptive statistic for a matching.
Main reason is that the distribution of matched ranks is exponential, most receive
their first some their second and then the number of agents decays by rank, and
median is much better statistic for an exponential distribution than the mean
rank. Secondly median has a much better interpretation to it as half of the agents
received a better and half a worse rank then the median, but there is hard to
find an agent who received the average rank. Another alternative would be the
the rate parameter of the exponential distribution, but the parameter describes
more the skewness of the distribution than the outcome.

On Figure 31 we have plotted the median rank as a function of correlation
and length of preference lists, respectively c and k. Interesting observations are
that in a decentralised market both sides, A and B, have very similar median
ranks, which can be expected as neither side has a definite advantage over the
other. Also median rank from decentralised mechanism is really close to the
median rank for the accepting side of a centralised DA matching.

These observations are also confirmed by other papers - [8] and [10] show that
when the preference lists are short, even on one side, the set of stable matchings
is likely to be small, and the difference in ranks is also small, which we observe

1 Surfaces are smoothed with local regression

24

Fig. 3: Median rank dependence on k and c in centralised and decentralised
markets

0.2
0.4

0.6
0.8

1.0

0.0
0.2

0.4
0.6

0.8
1.0
0

10

20

30

40

50

kc

m
ed

ia
n

ra
c

0.2
0.4

0.6
0.8

1.0

0.0
0.2

0.4
0.6

0.8
1.0
0

10

20

30

40

50

kc

m
ed

ia
n

rb
c

0.2
0.4

0.6
0.8

1.0

0.0
0.2

0.4
0.6

0.8
1.0
0

10

20

30

40

50

kc

m
ed

ia
n

ra
d, rb

d

when k ≤ 0.4. In [14] it is also observed empirically that the size of the core is
small when preference lists are short.

Next we estimate the relationship to get the expected median rank in a
matching as a function of c and k. Looking at various multiplicative functional
forms, we arrive at the following form that has a reasonable trade-off between
accuracy and complexity. In a later section we also have an overview of residuals.
Fitting the parameters for decentralised matching we obtain (4).

rd ≈ e3.9−2·k+1.9·c·k · k . (4)

For the centralised (DA) matching expected median rank is different and
depends on the proposing side. We denote the proposing side with a and the
side b is the accepting/rejecting side as before. Similarly as before fitting the
parameters we obtain (5).

rc
a ≈ e4.1−3.9·k+3.8·c·k · k, rc

b ≈ e3.9−2.1·k+2.1·c·k · k . (5)

We can now approximately estimate the proportional difference in median
ranks in decentralised and centralised markets. Price of Invisibility on median
rank is defined as equation (6) where rd and rc are the median ranks from
decentralised and centralised models respectively. With this we can estimate
how much worse is expected median rank from a decentralised market compared
to a centralised one.

PoIr =
rd

rc
. (6)

For the proposing side a we obtain (7).

PoIra ≈ e−0.2+1.9·k−1.9·c·k . (7)

First we observe that when k = 1 and c = 1 we actually obtain ratio < 1,
which indicates that the decentralised matching might be better. Initially this

25

Fig. 4: Unassigned probability dependence on k and c in centralised and decen-
tralised markets

Centralised
Stable

Decentralised
Stable

Decentralised
Unstable

0%

25%

50%

75%

100%

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
c (Correlation)

U
na

ss
ig

ne
d

pr
ob

ab
ili

ty

k (Limit)

0.02

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Unassigned agents

seems counter-intuitive, but as we will observe in the next section there is a
hidden cost, the number of agents who are unmatched in this case tends to be
very large compared to a centralised match.

Also we observe that the greatest PoIra occurs when k is big and c is small.
For example when k = 1 and c = 0 then PoIra ≈ e1.7 ≈ 5.

For the receiving side we obtain (8).

PoIrb
≈ e−0.1·k−0.2·k·c ≤ 1 . (8)

The median rank does not differ much for side B in decentralised and cen-
tralised markets, the PoIrb

is very close to 1. But again we shall observe that
the difference in the number of unassigned agents is significant. The PoIra of
averages over 100 executions is on Figure 5a.

3.3 Unassigned agents

A critical metric of a matching market is the number of unassigned agents.
A centralised matching scheme guarantees that we have a minimal number of
unassigned agent. In a decentralised market this is not always the case, as agents
make choices using the better response dynamics, we are not usually guaranteed
to have a minimal number of unassigned agents because of the dynamics.

We start by fitting the relationship of unassigned agents as a function of k
and c in a centralised market. We observe on Figure 4 that the general form of
the relationship is sigmoidal for each k, with minimum unassigned value (lower
asymptote A) as c = 0 and maximum value (upper asymptote K) at c = 1.
Thus we fit the parameters (A, K, B, M) of a generalised logistic equation (9).
The asymptote parameters depend on k and logistic equation depends on c.

u ≈ A +
K − A

1 + e−B(c−M)
. (9)

We also obtain different fitting parameter values for stable and unstable
matchings on decentralised mechanism. For stable and centralised market we
obtain the following lower and upper asymptotes as in (10).

26

Ac = e5.5−10·k, Kc = 200(1− k) . (10)

As the length of the preference lists k grows the lower asymptote (c = 0)
decays exponentially and becomes effectively zero after k > 0.6. In the case
when agents have fully correlated preferences (c = 1) the decay in unassigned
agents is merely linear as does not reach zero until the preference lists contain
all the agents k = 1.

After the unassigned values are normalised using lower and upper asymptotes
to be between 0 and 1 we fit a logistic function. We obtain that Bc = 4+ 25 · k
and M c = 1+27·k

5+24·k . M is the position of maximum growth and B is the rate of
growth. When k is small say k = 0.1 we observe that M = 0.5, so when c ≤ M
the number of unassigned agents is closer to the lower asymptote and when
c ≥ M the number of unassigned agents is closer to upper asymptote. If the
growth rate B is large, it means that most of the growth happens near M . As k
increases the growth rate B also becomes more rapid as correlation c passes the
critical point M .

Next we look at the number of unassigned agents in a decentralised matching
market. The number of unassigned is rather different due to the dynamics of
the assignment process. We observe that the results are quite different when we
obtain a stable match and when not, so we fit two separate logistic models. When
we obtain a stable state we observe that the number of unassigned agents very
closely resembles that of a centralised matching. On the other hand in the case
of unstable matchings, approximately where k > 0.3, in decentralised matching
we obtain the asymptotes in (11).

Ad = 30, Kd = 160(1 − k) + 30 . (11)

We observe that we can expect to have at least about 30 (15%) of unassigned
agents as the lower asymptote indicates - even when we have full preference lists
k = 1. Interestingly the lower asymptote is constant, which is an evidence that
the number of unassigned agents is rather caused by the market mechanism than
the inherent preference structure.

Similarly for unstable states in decentralised matching we obtain the position
of maximum growth as Md = −4+55·k

54·k and growth rate Bd = 54 · k.

Finally we estimate the average Price of Invisibility on number of unassigned

agents as PoIu = ud

uc . First we obtain lower and upper bounds based on previ-
ously obtained asymptotes where c = 0 and c = 1 respectively in (12).

PoIu ≈
{
1 if stable

∈ (30
e5.5−10·k , 160(1−k)+30

200(1−k)) if unstable
. (12)

The PoIu of averages over 100 executions is on Figure 5b. Since the number
of unassigned agents in a centralised market can be zero in many circumstances

the figure is plotting P̂ oIu = ûd+1
ûc+1

.

27

Fig. 5: Price of Invisibility

(a) PoI on rank

0.2
0.4

0.6
0.8

1.0

0.0

0.2

0.4
0.6

0.8
1.0

1.0

1.5

2.0

2.5

3.0

3.5

k
c

P
oI

r a

(b) PoI on unassigned

0.2
0.4

0.6
0.8

1.0

0.0

0.2

0.4
0.6

0.8
1.0

5

10

15

20

25

30

35

k
c

P
oI

u

3.4 Error analysis

The fitted functional forms of the relationships between matching metrics should
be considered as approximations of the actual relationships. The error in the
predictions tends to vary with the parameters. We define two error metrics:

Definition 5 Root mean square error is defined as

RMSE =

√∑n
1 (ŷ − y)2

n
. (13)

Definition 6 Normalised root-mean-square error is defined as

NRMSE =
RMSE

ymax − ymin
. (14)

In Table 2 we observe that the overall errors are small for ra and u.

Table 2: Error levels

Mechanism Function RMSE Normalised RMSE

Centralised
ra 1.9 4.0 %
rb 3.1 6.3 %
u 4.7 2.3 %

Decentralised
ra 2.6 5.6 %
rb 2.6 5.8 %
u 6.3 3.3 %

28

4 Conclusion and further research

Main conclusions

– the critical value to have a stable match with better response dynamic is to
list less than 20 alternatives

– in a decentralised market there is always a significant number of unassigned
agents - about 15%

– the median rank in the decentralised matching process produces very similar
results as a centralised matching for the receiving side in DA

This research could be further extended by adding

– additional parameters for the size and balancedness of the market
– spatial properties like population density on a grid

References

1. Abdulkadirolu, A., Sönmez, T.: School Choice: A Mechanism Design Approach.
American Economic Review 93(3), 729–747 (2003)

2. Ackermann, H., Goldberg, P.W., Mirrokni, V.S., Röglin, H., Vöcking, B.: Uncoor-
dinated two-sided matching markets. In: Proceedings of the 9th ACM conference
on Electronic commerce. pp. 256–263. ACM Press, New York, USA (2008)

3. Ashlagi, I., Kanoria, Y., Leshno, J.D.: Unbalanced Random Matching Markets :
The Stark Effect of Competition (2013)

4. Biró, P., Norman, G.: Analysis of stochastic matching markets. International Jour-
nal of Game Theory 42(4), 1021–1040 (2012)

5. Boudreau, J.W., Knoblauch, V.: Marriage Matching and Intercorrelation of Pref-
erences. Journal of Public Economic Theory 12(3), 587–602 (2010)

6. Caldarelli, G., Capocci, A.: Beauty and distance in the stable marriage problem.
Physica A: Statistical Mechanics and its Applications 300(1-2), 325–331 (2001)

7. Gale, D., Shapley, L.S.: College Admissions and the Stability of Marriage. The
American Mathematical Monthly 69(1), 9–15 (1962)

8. Immorlica, N., Mahdian, M.: Marriage, Honesty, and Stability. In: Proceedings of
the 16th annual ACM-SIAM symposium on Discrete algorithms. pp. 53–62 (2005)

9. Knuth, D.E.: Seminumerical Algorithms. Addison-Wesley, Reading, MA, 3rd edn.
(1997)

10. Kojima, F., Pathak, P.A.: Incentives and Stability in Large Two-Sided Matching
Markets. American Economic Review 99(3), 608–627 (2009)

11. Laureti, P., Zhang, Y.C.: Matching games with partial information. Physica A:
Statistical Mechanics and its Applications 324(1-2), 49–65 (2003)

12. Pathak, P., Sönmez, T.: School Admissions Reform in Chicago and England: Com-
paring Mechanisms by Their Vulnerability to Manipulation. Tech. Rep. 16783,
National Bureau of Economic Research, Cambridge, MA (2011)

13. Roth, A.E.: Deferred acceptance algorithms: history, theory, practice, and open
questions. International Journal of Game Theory 36(3-4), 537–569 (2008)

14. Roth, A.E., Peranson, E.: The Redesign of the Matching Market for American
Physicians: Some Engineering Aspects of Economic Design. American Economic
Review 89(4), 748–780 (1999)

15. Wilensky, U.: NetLogo (1999), http://ccl.northwestern.edu/netlogo/
16. Zhang, Y.C.: Happier world with more information. Physica A: Statistical Mechan-

ics and its Applications 299(1-2), 104–120 (2001)

29

C Publication 3

Veski, A. and Põder, K. (2017). Zero-intelligence agents looking for a job.
Journal of Economic Interaction and Coordination

211

J Econ Interact Coord
DOI 10.1007/s11403-017-0198-z

REGULAR ARTICLE

Zero-intelligence agents looking for a job

André Veski1 · Kaire Põder2

Received: 25 May 2016 / Accepted: 1 June 2017
© Springer-Verlag GmbH Germany 2017

Abstract We study a simple agent-based model of a decentralized matching market
game in which agents (workers or job seekers) make proposals to other agents (firms)
in order to be matched to a position within the firm. The aggregate result of agents
interactions can be summarised in the form of a Beveridge curve, which determines
the relationship between unmatched agents, unemployed job seekers and vacancies
in firms. We open the black box of matching technology, by modelling how agents
behave (make proposals) according to their information perception. We observe more
efficient results—in the form of a downward shift of the Beverage curve in the case of
simple zero-intelligent agents. Our comparative statics indicate thatmarket conditions,
such as the heterogeneity of agents’ preferences, will also shift the Beveridge curve
downwards. Moreover, market thickness affects movement along the Beverage curve.
Movement right-down along the curve if there is an increasing number of agents com-
pared to positions within firms. Furthermore, we show that frictions in re-matching,
such as commitment to a match, could be another factor shifting the Beveridge curve
toward the origin.

Keywords Matching market · Computational experiment · Decentralised matching ·
Job search · Beveridge curve

B André Veski
andre.veski@ttu.ee

Kaire Põder
kaire.poder@ebs.ee

1 Tallinn University of Technology, Tallinn, Estonia

2 Estonian Business School, Tallinn, Estonia

123

A. Veski, K. Põder

1 Introduction

Market economies in general experience large employment fluctuations and aver-
age unemployment rates differ between countries. The underlying job search and
matching theory (the Diamond–Mortensen–Pissarides canonical framework) provides
a conceptual explanation for some aspects of the relationship between vacancies
and unemployment known as the Beveridge curve. The core of job-search and
matching models is built on the assumption that the external rate of job creation
and destruction, but also worker reallocation, determine the steady-state equilib-
rium of number of unmatched workers and jobs (unassigned agents in our model)
(Mortensen and Pissarides 1999). Because of search and recruiting costs, hiring
and firing costs and other forms of matching-specific costs, decentralised markets
create inefficiencies. This matching technology is implicitly characterised by its
matching function, which summarises the trading technology between agents, their
actions and choices that eventually bring them together into productive matches
(Petrongolo and Pissarides 2001). In the relevant “matching function literature”,
it is stressed that such a theoretical tool is useful because it allows to reduce the
complexity of information imperfection, heterogeneous agents and congestion into
a tool-kit similar to the production function or money demand function. How-
ever, the interactions or matching technology are still rather treated as a black
box.

We open this black box by providing a simple agent-based model of a decentralized
market game in which agents (workers or job seekers) make proposals to the agents
on the other side of the market (firms) in order to be matched to available positions. In
our computational experiments, a market game is identified by three components: the
preference structure of agents, market conditions, i.e. the relative number of positions
and workers, and the behaviour of agents (workers or firms) based on the information
they have about their own preferences and options in the market.

Searchmodels in labour economics rely on three pillars: the decision ofworkers, the
decision of firms and wage setting mechanism. We concentrate on the first two pillars.
Thus, our model belongs to the literature on agent-based partial labour market models
(e.g. Neugart and Richiardi 2012) which use microsimulation to explain stylised facts
about the labourmarket. These agent based “micro-to-macro”models give insights into
labour markets in the form of partial or general models. In the latter labour markets are
embedded into larger economic models. We are mainly interested in literature aiming
to reproduce the Beveridge curve with search and coordination in a partial agent-based
model. Thus, models (Richiardi 2004, 2006; Riccetti et al. 2015) aimed at explaining
the job search on the basis of wages or more general market models that interact with
the embedded labour market (Dawid et al. 2014; Deissenberg et al. 2008), that lie
outside of our scope.

The partial agent-based models have been developed for replicating stylised
facts from real labour markets, such as the negative-sloped Beveridge curve in the
unemployment-vacancy (u, v)-space. Fagiolo et al. (2004), followed later by Silva
et al. (2012), reproduce a Beveridge curve in a partial agent-based model and come
up with a standard explanation that frictions and the institutional setting affect the
position of the curve.

123

Zero-intelligence agents looking for a job

Moreover, giving up the assumption of rational expectations about the behaviour
of agents has produced fruitful insights. Tassier and Menczer (2008) investigate job-
hunting via social networks. They find that random social networks spread vacancy
information better and thus achieve lower unemployment. Neugart (2004) uses an
urn-ball matching model on a small scale (30–50 agents) and endogenous match-
ing function workers send applications randomly, however the Beveridge curve is
closer to origin than one would expect in large markets. Similarly Richiardi (2004)
employs a similar model with wages and produces a Beveridge curve further from the
origin. While Richiardi (2006) models labour supply in a general setting by a non-
equilibrium, adaptive agent-based model of heterogeneous workers and firms, with
on-the-job searching, endogenous entrepreneurial decisions and endogenous wage
and income determination. The latter is able to reproduce a number of stylized facts
generally accepted in labour economics and industrial organization, including the
negative-sloped Beveridge curve. Also, in this set-up, the matching process is based
on random applications from job seekers for vacancies in the single labour market.
Furthermore, this model allows for on-the-job searching, meaning that assigned agents
can get job offers as well.

There are some other search-and-match models (e.g. Gabriele 2002; Deissenberg
et al. 2008; Boudreau 2010). Some of them also produce a Beveridge curve, but usually
investigate different aspect of matching. Often their aim is to study some other aspects,
like stratification and use different underlying assumptions (e.g. centralised matching
or perfect information).

Our modelled agents can be considered myopic—they make proposals and only
accept better proposals without additional strategic thinking. In our basemodel, agents
apply for a random position and a matching occurs only when both sides find their
new partner preferable to their current match. This is similar to the Zero-Intelligence
(ZI) model from financial markets (Gode and Sunder 1993; Chen and Tai 2010). Our
behavioural models are an extended version of the better response dynamic proposed
by Knuth (1997b) and further analysed by Roth and Vate (1990) and Ackermann et al.
(2008).

Nevertheless, the agentswill not be able to find an equilibrium (stable)matching in a
micro sense. It is rather a steady-state equilibrium in amacro sense, as the size (number
of matched agent-pairs) of the matching converges. In general, we show how the
assumptions about the information available to agents, the structure of their preferences
andmarket thickness determine the shape and placement of the Beveridge curve. Thus,
our approach not only differs from the framework of Diamond-Mortensen-Pissarides,
but also from recent discussions on job search and matching efficiency (Veracierto
2011; Shimer 2013; Sahin et al. 2014) where the persistent empirically observed
adverse shifts (outward shifts of the Beveridge curve) have been explained mostly
by the deterioration in the efficiency of the matching technology. We use a partial
agent-based model as classified by Neugart and Richiardi (2012) to develop aggregate
regularities from the micro-behaviour of individual agents in order to illustrate the
position of the Beveridge curve in the (u, v)-space. Our model is able to reproduce
some well-known stylised facts from labour market literature like the negative sloped
Beveridge curve. Moreover, we explain the shift of the Beveridge curve not only as
related to information available to players, but also including a level of heterogeneity

123

A. Veski, K. Põder

of the agents’ preferences. We model the latter on the basis of the correlation between
the preference lists of agents to indicate their similarity (or common understanding
of a good job position). In addition, we allow for different lengths of the preference
lists. We show that short lists and high correlation shift the curve to the upper-right,
further from the origin. In addition, we include a parameter for market thickness—the
balance between market sides—indicating the ratio of positions to workers. Market
thickness models the effect of interactions with other markets through job creation
and destruction rates, i.e. the out-of-equilibrium state of a general market model. We
see that this determines the position on the Beveridge curve.

The comparative statics, unexpectedly, show that the noise behaviour producesBev-
eridge curves closest to the origin, compared to the more informed behaviours. This
appears to be the effect of lower number of acceptable re-matches from random pro-
posals. With more informed behaviours agents make proposals to acceptable matches,
thus they have a higher re-matching rate. As each re-match creates one and potentially
breaks two existing matches, this leads the Beveridge curve away from the origin. To
elaborate this, we conduct additional experiments with frictions and find that greater
obstacles to re-matching produce Beveridge curves closer to the origin.

In addition, we view our decentralised market game as an abstract model which
in addition to studying agent-based interactions in job search and matching markets
can be used in alternative settings, e.g. decentralised school or university choice. In
all these cases, an institution or a central authority—a clearing house or similar—
is missing and agents on both sides constantly have to react to new proposals and
responses.

We continue as follows. First, we introduce the set-up of our model, concentrating
on matching behaviour which includes search and commitment costs as well as the
assumptions behind preference formation. Second, we analyse the convergence of
the matching procedures and check if the resulting matching distributions correspond
with the expectation. Third, we show our results by indicating how a Beveridge curve
depends on the search behaviour and the structure of preferences. Additionally we
show how introducing frictions could improve the size of the matching, albeit at cost,
in terms of less preferred matched, for the agents. Finally, we conclude by discussing
our contribution to the discourse in search and matching literature.

2 Models

2.1 Behaviours

In order to translate the neoclassical matching function into an agent-based version,
we employ the framework offered by Guerrero and Axtell (2011). This relies on
three orders of assumptions, which include rationality, agent homogeneity and “non-
interactivness” in an agent-basedmodel. The categorisation of the features is presented
in Table 1.

Beginning with the first order assumptions about the nature of the interactionmech-
anism, we can see that the literature about the matching function often treats this
procedure as a black box. In an agent-based model, the interaction is a central ques-

123

Zero-intelligence agents looking for a job

Table 1 Matching model assumptions

Matching function Our agent-based model

First order assumptions

Interaction mechanism Implicit (black box) Explicit (decentralised or
centralised matching)

Second order assumptions

Rationality No explicit reference. Functional
form captures information
imperfections

Explicit, exact notion of how
proposals are made and
accepted

Equilibrium Equilibrium is inefficient due to
negative externalities (e.g.
congestion). Imbalance
indicates skill mismatch and
locational differences

Equilibrium is inefficient because
of assumptions about behaviour
and information

Agent types Representative (homogeneous)
agent(s), heterogeneous sectors

Heterogeneous (different
preferences)

Third order assumptions

Technological advances
through time

Technological advances in
matching shift “Beveridge
curve” (search is less costly)

No technological advances.
Preferences are static, do not
adapt

Supply shocks or business
cycles

Affect job creation and
destruction rates, but are
generally treated as an
empirical question

No explicit job creation and
destruction, but the market
thickness, having more jobs
than workers or vice versa, is of
central interest

Contracts A rate of matching and
unmatching

A relationship can be broken
whenever a better match is
found (and the contract has
expired)

Transaction costs A limitation on matching rate Once a better match is found for
both parties, there is no
additional cost for changing the
match

tion for the investigation. In financial double-auction markets, Zero-Intelligence (ZI)
interaction models have been fruitful in investigating aggregate market phenomena
(e.g. Gode and Sunder 1993; Farmer et al. 2005; Ladley 2012). We employ a similar
approach for modelling search in the labour market.

ZI model (Ladley 2012; Chen and Tai 2010) is useful because it allows us to decou-
ple the behaviour of an agent from the market structure. Moreover, we are interested
in whether similarly to non-strategic agents (e.g. Farmer et al. 2005; Gode and Sun-
der 1993), interesting market phenomena can be produced in the current context. To
our knowledge, these types of models have not been studied for job search. There
are macro-level studies that concentrate on modelling unemployment and vacancies
(e.g. Petrongolo and Pissarides 2001; Mortensen and Pissarides 1999). There also
exist agent-based models of wage equilibrium (e.g. Guerrero and Axtell 2011) and
job search on social networks Guerrero and Axtell (2013); Zhou et al. (2014a); Hoefer
and Wagner (2012), but there is no simple model for job search.

123

A. Veski, K. Põder

Table 2 Explored behaviour models

Rationality (2nd order) Interaction, proposer (1st order)

Random side A-proposing

Noise proposal Noise proposal Noise proposal A

Better proposal Better proposal Better proposal A

Blocking proposal Blocking proposal Blocking proposal A

The labour market consists of two sets of agents workers and firms (or positions
within a firm). The main behavioural aspect is how the match is initiated, i.e. the
worker-position pair selection. We study models where the proposing power is either
only on one side of the market (A-proposing models) or where it is proportionally
shared (random agent proposing). In other words, either workers always make propos-
als, proposals are made interchangeably, or firms always make proposals, depending
on who is considered side A.We call the non-proposing agent the responding agent. In
the centralised Deferred-Acceptance markets (Gale and Shapley 1962), the matching
is always optimal and stable for the proposing side, while it is the worst possible level
for the responding side (e.g. Knuth 1976; Roth and Sotomayor 1990). However, in
many practical (Roth and Peranson 1999) and large markets (Immorlica and Mahdian
2015), the difference seems to be small and the effect of market thickness is much
greater (Ashlagi et al. 2013b). The matched rank structure may also affect the size of
the matching as proposing probabilities are different under random agent proposing.

In fact, we investigate several models (Table 2), where a second-order assumption
of ZI is characteristic of the base model. The ZI model is called the Noise proposal
model wherein two random agents, one from each side, are selected, but a matching
transaction occurs only when the new match is an improvement over their current
matches. Similarly, in financial markets a deal is only accepted when the offered price
is above the reserve price for both sides, i.e. the buyer and the seller, otherwise the price
is offered at random. Thus, in our mechanism, there are only pairwise interactions and
a transaction occurs when the reserve offer is met on both sides.

For comparative purposes, we include behaviours, where agents know more than
in the ZI model, but less than in the better response dynamic. In our Better proposal
model, we assume that agents, e.g. workers, know of a better match or a position that
would also be suitable for them and thus do not make proposals in a wholly random
manner. This can be considered similar to the Zero-Intelligence Plus model (Chen
and Tai 2010). Agents only make proposals to a better match, i.e. a position higher
on their preference list than their current (reserve) match. Thus, the proposing side
does not even consider non-acceptable matches. In contrast, in the Noise proposal
model an offer is made to a random agent on the preference list, and might actually
not be acceptable to the proposer. This is learned in the transaction. In other words,
in the Better proposal model, even agents with a current high ranking match have a
high probability of a new match, which only depends on the responding side finding it
acceptable. On the other hand, in the Noise proposal model a transaction probability
would also be lower for proposing agents, if their current match is high on their
preference list.

123

Zero-intelligence agents looking for a job

In order to further extend the information pool available to the agent, we use the
Blocking proposal model, where agents make proposals to their random blocking
partner,which is equivalent to the better response dynamic proposed byKnuth (1997b).
A blocking pair is formed by two agents from the opposite sides of the market who, if
theymet,would prefer to bematched to each other.Here agents onlymake a proposal to
other agents when they know it would be accepted by the other party, i.e. the blocking
pair, in the current state of the market. The match can still be broken in the future if
either of the agents finds a more preferred partner.

Although we investigate multiple behaviour models of the proposing agents, we
always assume that the responder is a ZI agent. He only and always accepts proposals
made by agents higher than the current match on his preference list. In addition, the
existence of an information aggregating institution is implicitly assumed in Better and
Blocking proposal behaviour. For example finding a potential blocking pair in the
Blocking proposal model can be thought of as being supported by an institution.

We are only interested in studying the aggregate results of the search behaviour,
therefore we simplify most of the third-order assumptions. The preferences of the
agents are fixed, so they do not adapt to market conditions during the search. There
is also no creation or destruction rate of new agents or positions, nor any external
shocks that might trigger such destructions or creations. We do, however, explicitly
model market thickness. Themarket is considered thick when there is exactly the same
number of agents on both sides, so all the agents can potentially be matched. If there
are more agents on one side, the market will not be thick and there will always be
some agents unassigned. In addition, thickness has an impact on the search outcome,
as agents from the smaller side have more options to choose from. Thickness is also
an indicator of disequilibrium, as the number of jobs is not equal to the number of
workers, characterising exogenous dynamics of job creation, destruction, etc.

Finally, in our main experiments there are no limitations on matching with a more
preferred partner, i.e. no commitments to contracts or any transaction costs for chang-
ing amatch. However, in Sect. 3.5 we show the effect of frictions of enforcing different
types of obstacles, including contractual ones, on re-matching.

More formally, we employ a model similar to that used in modelling centralised
two-sided matching markets (e.g. Roth 2008). There is a set A = {a1, . . . , anA } of
agents on one side and a setB = {b1, . . . , bnB } of agents on the other side. The number
of agents on both sides can differ (nA �= nB) depending on market thickness. Each
agent ai fromA has a strict preference relation �ai over agents in B, and similarly for
b j ∈ B there is a preference relation�b j over agents inA. A matchingμ is a mapping
fromA∪B to itself, so that every ai ∈ A, is matched toμ(ai) ∈ B∪{ai }, and similarly
for b j ∈ B, μ(b j) ∈ A ∪ {b j }. When an agent is matched to itself, μ(ai) = ai or
μ(b j) = b j respectively indicates that they are in fact unmatched. Being matched to
oneself is the least preferred option for all the agents. Agents would still find only
the acceptable positions in their preference list, which might not contain all positions.
Similarly for the position, only some agents might be acceptable. In addition, for every
ai , b j ∈ A ∪ B, μ(ai) = b j implies μ(b j) = ai .

A matching is unstable if there are at least two agents ai and b j from opposite sides
of the market so that b j �ai μ(ai) and ai �b j μ(b j)—a blocking pair. A matching is
stable, if it is not unstable. In Table 3 we have listed the notation for quick reference.

123

A. Veski, K. Põder

Table 3 Notation Symbol Description

A Preferences of agents on side A

B Preferences of agents on side B

ai Preference profile for agent i , ai ∈ A
b j Preference profile for agent j , b j ∈ B
nA Number of agents on side A

nB Number of agents on side B

θ Market thickness θ = nB
nA

k Length of preference lists

c Correlation of preferences

τ Re-matching friction length

μ Matching

s Size of matching, counted in pairs of agents

u Unassigned percentage on side A, u = 1 − s
nA

v Unassigned percentage on side B, v = 1 − s
nB

r(μ(i)) Matched rank of agent i in matching μ

r̃a Median matched rank of agents in A
r̃b Median matched rank of agents in B
ρi Number of blocking pairs for agent i

ρ̄i Number of blocking pairs with unmatched agents
for agent i

ρ̃i Number of blocking pairs with matched agents for
agent i

Algorithm 1 General Proposal Dynamic
Require: A, B, μ
Ensure: μ is a matching
p ← Select Proposer(A,B)

mp ← μ(p)
r ← Select Responder(p)
mr ← μ(r)
if p �r mr and r �p m p then

μ(mp) ← mp , μ(mr) ← mr
μ(r) ← p, μ(p) ← r

end if
return μ

With the notation in Table 3 we can present a General Proposal Dynamic in Algo-
rithm 1. The SelectProposer() and SelectResponder() procedures are distinct for each
of the described models in Table 2. The SelectProposer() selects a random agent
from set A ∪ B or A depending on whether the behaviour model is Random side
or A-proposing. The SelectResponder() selects an agent from the preferences of the
proposer, and the actual selection depends on whether the behavioural model is the
Random, Better or Blocking proposal.

123

Zero-intelligence agents looking for a job

We study the macro-level convergence properties of the search behaviour. On an
individual agent level, the market needs not to be in equilibrium. There have been
studies on the equilibrium of decentralised matching processes. Niederle and Yariv
(2009) study such applications where firms and workers have aligned preferences
and show the conditions for having a stable matching in equilibrium. Haeringer
and Wooders (2011) examine equilibrium behaviour with slightly different models,
where agents cannot be re-matched to a previously rejected partner, but their model
is otherwise similar to ours as agents have to respond immediately. Diamantoudi
et al. (2015) look at stability when agents make a commitment to a partner, which
can either be only for a certain period, or an infinite commitment so that partici-
pants exit the market, or only a one-sided commitment. They show that having a
requirement for firms to commit to an employee can result in unstable matchings in
equilibrium. In our models we mostly concentrate at the no-commitment scenario,
except in the frictions scenario. Pais (2008) analyses the equilibrium with limited
information about preferences. Eriksson and Häggström (2007) also study decen-
tralised matching, but they do not make any underlying assumptions about how the
matching is reached. Instead, they measure the degree of instability in some ran-
dom matchings. However, if some decentralised matching model is assumed, the
resulting matching would not be a uniform selection of all the possible match-
ings.

In addition there have been experimental studies (Echenique and Wilson 2009;
Echenique and Yariv 2013) about decentralised matching markets with human sub-
jects which show that stability tends to be a prevalent outcome, but is not always
guaranteed. The interesting aspect in those cases is human behaviour, which usually
also restricts the size of the experiments, which tend to be small—10–20 participants.
Zhou et al. (2014b) use real-world data from small and large on-line matching markets
and study the statistical regularities of those matchings, mainly how the size of the
markets relates to the size of the matching. This is also what we are interested in.
Unfortunately they do not count the size of the two sides of the markets, but only the
overall size.

2.2 Preferences

Nevertheless, we look at heterogeneous agents with various degrees of correlation
in their preferences and the availability of matches. We model a situation where the
preferences of the agents are all idiosyncratic (effectively random) and agents find
all partners acceptable. Yet, we also look at some structural constraints. Firstly, we
introduce limited preference lists indicating that an agent finds only a fraction of the
partners acceptable. Second, preference lists are somewhat correlated, or in extreme
cases, preferences are exactly the same, indicating common tastes.

In the real world, correlated preferences show “popular tastes”, e.g. all agents have
similar preferences for high paying jobs or are interested in simple assignments, etc.
The length of the preference list, however, indicates the probability of an agent being
found unacceptable, even if a certain agent would be the only candidate. So a person
without a pilot’s licence would never be employed as a pilot. Thus, shorter preference
lists imply that not all agents are acceptable to a particular position.

123

A. Veski, K. Põder

Algorithm 2 Correlated permutation
Require: n, k ∈ [0, 1], c ∈ [0, 1]
Ensure: p is a permutation of unique numbers
p ← 1, 2, 3, . . . , n, j ← 0, l ← k · n
while j < l do
r ← [0.0, 1.0] uniform random number between 0 and 1
q ← �n − (n − j) · r1−c�
t ← pq , pq ← p j , p j ← t
j ← j + 1

end while
return {p1, p2, . . . , pl }

We assume that agents have strict preferences for agents (workers or positions)
from the opposite side of the market. In the simplest case preferences are random, i.e.
each agent has a totally idiosyncratic preference ordering. In general we can think of
more structured preferences in a society, parametrised by the length of the preference
list (k) and the correlation between the preference lists (c). In our experiments, the
preference list limit k is set to be the same for all agents. Correlated preferences are
from a global preference ordering. The degree of correlation is also the same for all
agents, but the preference ordering is not necessarily the same when comparing two
agents.

We generate the preferences using Algorithm 2 with parameters k, c and n. This
algorithm is amodifiedversion of a randompermutation algorithm fromKnuth (1997a)
to generate correlated preferences with parameter c. The algorithm starts with amaster
list of n numbers (agents). Then it iterates the list from beginning to end, each time at
position j randomly selecting a position q ∈ [j + 1, n] to exchange values with. The
correlation parameter c states how biased the randomly selected position is, higher
values indicate that the exchange position is selected closer to the current position j .
With c = 0.0 the selection is uniformly probable over all positions, until finally at
c = 1 the exchange position is always the active position and all the generated lists are
exactly the same. There is one global ordering of agents for each side of the market
that is used for generating correlated preferences.

The power of uniform distribution U1−c used to randomly select the exchange
positions while generating the correlated preference list is proportional to the Beta
distribution with parameters Beta(1

1−c , 1) ∼ U1−c. In Fig. 1, we see the probabilities
of having a particular value at some position in a list of 10 values between 0 and 9.
Each box is a position in a list and displays the probability of having a certain value in
that position. We see that when c = 1.0 then all positions have a 100% probability of
having the same value and when c = 0.0 then all values in any position are uniformly
probable.

In Fig. 2, we compute for comparison the mean Spearman ρ and Kendall τ corre-
lation coefficients over all the preference lists. We compute two types of means over
the correlation coefficients, first compared to the initial global ordering and then a
mean over pairwise correlations among a random sample of preference lists. We see
that the pairwise means are always below when compared to the correlation with the
global ordering. This is because although all the preferences are a similar distance

123

Zero-intelligence agents looking for a job

0 1 2 3 4 5 6 7 8 9

0%

25%

50%

75%

100%

0.0 2.5 5.0 7.5 0.0 2.5 5.0 7.5 0.0 2.5 5.0 7.5 0.0 2.5 5.0 7.5 0.0 2.5 5.0 7.5 0.0 2.5 5.0 7.5 0.0 2.5 5.0 7.5 0.0 2.5 5.0 7.5 0.0 2.5 5.0 7.5 0.0 2.5 5.0 7.5
Value in position

Pr
ob

ab
ilit

y
Correlation (c)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Position value probabilities

Fig. 1 Preference probabilities with degrees of correlation

●

●

●

●

●

●

●

●

●

●

●

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Correlaction (c)

M
ea

n
m

et
ric

 v
al

ue

Metric
●●●● Kendall

Kendall pairwise

Spearman

Spearman pairwise

Correlation metrics comparison

Fig. 2 Spearman ρ and Kendall τ of generated preferences

from the global list, the generated lists might still be far from each other, i.e. have a
lower correlation. That is the case with small degrees of correlation. Still, when the
correlation c = 1.0 all the lists are exactly the same and the ρ and τ values are also
1.0.

In reality, the limit of the preference list might be due to skill mismatch in position
requirements and for agents based on utility. Similar limitations on the length of
preferences have been studied in Zhang (2001) and Laureti and Zhang (2003). We
consider the preferences to be “known” to the agents only in terms of the behaviour
model employed. So, for example, in the Better proposal model, agents would select
a random proposal that is an improvement over their current match, but it might not
be their most preferred match.

123

A. Veski, K. Põder

We do not study societies where, in general, positions and workers might have
aligned preferences as in Niederle and Yariv (2009). High correlations between prefer-
ence lists are usually driven by people receiving similar information about alternatives
and also due to similar value systems. It is observed by Roth and Peranson (1999) that
high correlations limit the size of the core of stablematchings. Certain aspects of corre-
lation have been investigated by Biró and Norman (2012) that looks at fully correlated
preference lists by varying the length of preference lists and its effect on convergence
to stability.

There have been additional studies on the effect of correlation. Generally, correla-
tion is defined as the agent’s utility function in the form uai (b j) = β · ξ(b j)+ ξai (b j)

(Ashlagi et al. 2013a; Caldarelli and Capocci 2001; Boudreau and Knoblauch 2010)
and then sorted to obtain a preference ordering. The parameter β is the correlation
parameter and in case of β = 0 we would recover the uncorrelated preferences. The
ξ(n j) is the global popularity of the agent b j and ξai (b j) is the specific utility of agent
ai for agent b j . It should be noted that β can be arbitrarily large, thus it is hard to have
fully correlated preference lists. (Boudreau and Knoblauch (2010)) define a similarity
measure for preference lists after generation, but usually the results are still far from
fully correlated (c = 1.0) preferences.

3 Results

3.1 Computational experiments and convergence

All our experiments are carried out with nA = |A| = 1000 agents. We vary the market
thickness θ = nB

nA
∈ [0.5, 2.0], which varies in the number of agents on side B nB =

|A| ∈ [500, 2000]. We do 300,000matches. Figure 3 shows that with all the behaviour
models and various values ofmarket thickness, thematching size converges to a steady-
state equilibrium. This does not mean that there are no changes in the matching.
Individual agents still change their matches whenever their behavioural mechanism
conditions are met. In the experiments, the result was never a stable matching without

0

250

500

750

1000

0 100 200 300
Iteration (1000)

s

Mechanism
Better Proposal

Better Proposal A

Blocking Proposal

Blocking Proposal A

Noise Proposal

Noise Proposal A

Thickness (θ)
0.5

1

2

Fig. 3 Convergence over time

123

Zero-intelligence agents looking for a job

blocking pairs. Therefore, small fluctuations always occur in the matching, but Fig. 3
demonstrates that this does not have a significant effect on themacro-level ofmatching.

To begin with, in Sects. 3.2 and 3.3, only the effect of market thickness is explored,
with full (k = 1.0) and uncorrelated (c = 0.0) preference lists. In Sect. 3.4 we study
more structured (k ∈ [0.02, 1.0] and c ∈ [0.0, 1.0]) preferences and their impact on
the Beveridge curve. Further in Sect. 3.5 we study the effect of some frictions on the
matching.

3.2 Analysis of convergence conditions

Our probabilistic analysis considers the simpler situation where the market is thick
(θ = 1.0), all agents have full (k = 1.0) and uncorrelated preference lists (c =
0.0). With limited preference lists, the analysis would not hold and would need to be
augmented with probabilities of having certain agents on a preference list. Similarly,
with correlation, we would need to assume some probability of having certain agents
higher on the preference lists. Calculations are much more simplified, when we can
assume this to be of uniform probability for all the relevant agents.

There are four types of events that can occur in all of the decentralised matching
behaviour models:

e1 Two previously unmatched agents are matched. The size of the matched pop-
ulation increases by one on both sides and nobody becomes unmatched. The
net change in the size of the matching will be one.

e2, e3 One unmatched agent (either from A or B) is matched to another matched
agent. The matched population increases by one, but one previously matched
agent nowbecomes unmatched due to the divorce of the alreadymatched agent.
The net change in the matching size will be zero.

e4 Two already matched agents are matched to each other and consequently two
divorces occur. The net change in the size of the matching will be minus one.

We are interested in understanding the convergence of the size of the matching.
Since for events e2 and e3 the net change in the matching is zero, we are not interested
in those events. The size of thematching changes onlywith the events e1 and e4 and has
converged whenΔs = P(e1)− P(e4) → 0.We analyse the probabilities of the events
e1 and e4 for all of the six decentralisedbehaviourmodels. This is similar to themodel in
(Mortensen and Pissarides 1999, p. 1185). However, Mortensen and Pissarides (1999)
analyse the model on a macroscopic level with transition probabilities on a Markov
chain. Yet, we analyse the model on an agent level, where the transition probabilities
depend on the states of the agents.

Noise proposal and noise proposal A Whenever two unmatched agents meet, they
always prefer to be matched rather than unmatched, given our assumptions about
preferences. Hence, the probability for event e1 is the probability for two unmatched
agents to meet as in (1).

P̂(e1) =
(
1 − s

nA

) (
1 − s

nB

)
(1)

123

A. Veski, K. Põder

The probability of event e4 is selecting twomatched agents that prefer to bematched.
This firstly depends on selecting twomatched agents, one fromA and the other fromB.
Secondly, the selected agents would both have to be higher on each other’s preference
lists than their current match. The latter is an average over all the matched agents. This
is summarised in (2).

P̂(e4) =
(

s

nA

) (
s

nB

) ⎛
⎝1

s

∑
i∈s,i∈B

P (r(μ(i)) > x) P(X = x)

⎞
⎠

·
⎛
⎝1

s

∑
i∈s,i∈A

P (r(μ(i)) > x) P(X = x)

⎞
⎠ (2)

Since the probability of selecting an agent in a particular position is uniform, P(X =
x) = 1

n , and the number of agents n is either nA or nB , depending on which side we
are looking at, we can simplify (2), which results in (3).

P̂(e4) =
(

s

n2A

)(
s

n2B

)⎛
⎝1

s

∑
i∈s,i∈B

P (r(μ(i)) > x)

⎞
⎠

·
⎛
⎝1

s

∑
i∈s,i∈A

P (r(μ(i)) > x)

⎞
⎠ (3)

Better proposal A The probability of event e1 is the same aswithNoise behaviour. The
probability that an unmatched agent ai is selected fromA and then the probability that
the agent will select an unmatched agent is bi ∈ B. Since agent ai has a full preference
list, the selection is made from the entire set B. This results in the probability of two
unmatched agents being selected, as expressed in Eq. (4).

P̂(e1) =
(
1 − s

nA

) (
1 − s

nB

)
(4)

To find the probability of event e4 of Better proposal A, we first have to take the
probability of selecting a matched agent from A. Then the selected agent ai will
randomly select an agent from the set of better matches on its preference list. The
matching is successful only if the selected agent from B side finds ai acceptable as
well. This means, by definition, that the two agents have to form a blocking pair. With
ρ̃i we count the number of blocking pairs with another matched agent fromB for agent
ai . This results in probability for event e4 as in Eq. 5.

P̂(e4) =
(

s

nA

)⎛
⎝1

s

∑
i∈μ,i∈A

ρ̃i

r(μ(i))

⎞
⎠ (5)

123

Zero-intelligence agents looking for a job

Better proposal When an agent from either side can act as a proposer, we only need
to weigh the proposers selection probabilities by the size of the respective agent-sets.
For the probability of event e1, this would result in Eq. (6), which simplifies to the
same result as (4).

P̂(e1) =
(

nA

nA + nB
+ nB

nA + nB

)(
1 − s

nA

)(
1 − s

nB

)

=
(
1 − s

nA

)(
1 − s

nB

)
(6)

The probability of event e4 for Better proposal behaviour is again similar to the
Better proposal A. We first take the probability of selecting a matched agent from
either from A or B. If the proposing agent is selected, then selecting an accepting
responder has the same probability as (5), but over all of the agents in A ∪ B, which
results in total probability as in Eq. (7).

P̂(e4) = nA

nA + nB

(
s

nA

)⎛
⎝1

s

∑
i∈μ,i∈A

ρ̃i

r(μ(i))

⎞
⎠

+ nB

nA + nB

(
s

nB

) ⎛
⎝1

s

∑
i∈μ,i∈B

ρ̃i

r(μ(i))

⎞
⎠

= 1

nA + nB

∑
i∈μ

ρ̃i

r(μ(i))
(7)

Blocking proposal A The probability of event e1 depends on selecting an unmatched
agent ai from A and then agent ai selecting an unmatched agent from among its
blocking pairs. On average, this results in probability as in Eq. (8). When all agents
have full preference lists, we could simplify even further with ρ̄i = nB − s as all
unmatched B agents would be blocking pairs for any unmatched A agent.

P̂(e1) =
(
1 − s

nA

) ⎛
⎝ 1

nA − s

∑
i /∈μ,i∈A

ρ̄i

ρi

⎞
⎠ = 1

nA

∑
i /∈μ,i∈A

ρ̄i

ρi
(8)

Similarly the probability of event e4 depends on selecting a matched agent ai ∈ A
and this agent ai selecting a blocking pair with a matched agent from among all
blockingpairs, including the oneswith andunmatched agent. This results in probability
as in Eq. (9).

P̂(e4) =
(

s

nA

) ⎛
⎝1

s

∑
i∈μ,i∈A

ρ̃i

ρi

⎞
⎠ = 1

nA

∑
i∈μ,i∈A

ρ̃i

ρi
(9)

Blocking proposal Similarly to the Better proposal behaviour, we need to weigh the
probabilities in Eqs. (8) and (9) against the probabilities of selecting an agent either
from A or B. This results in probabilities as in Eqs. (10) and (11) for e1 and e4
respectively.

123

A. Veski, K. Põder

●

●

●

●
●

●

−0.001

0.000

0.001

Better Proposal Better Proposal A Blocking ProposalBlocking Proposal A Noise Proposal Noise Proposal A
Rationality

P(
e 1

)−
P(

e 1
)

Theoretical and simulation difference

Fig. 4 Comparison of expected and experimental probabilities of event e1

P̂(e1) = nA

nA + nB

(
1 − s

nA

)
1

nA − s

∑
i /∈μ,i∈A

ρ̄i

ρi

+ nB

nA + nB

(
1 − s

nB

)
1

nB − s

∑
i /∈μ,i∈B

ρ̄i

ρi

= 1

nA + nB

∑
i /∈μ

ρ̄i

ρi
(10)

P̂(e4) = nA

nA + nB

s

nA

1

s

∑
i∈μ,i∈A

ρ̃i

ρi
+ nB

nA + nB

s

nB

1

s

∑
i∈μ,i∈B

ρ̃i

ρi

= 1

nA + nB

∑
i∈μ

ρ̃i

ρi
(11)

In Figs. 4 and 5, we compare the results of the probabilistic matching estimations
from the structural properties of the matchings P̂(·) from the specified equations and
actual observed probabilities P(·) from computational experiments. The figures show
the average difference in these probabilities with 99% confidence bounds on normal
distributions. We see that with all the behaviours, the statistical difference between
the estimated and observed probabilities is close to zero and is always within the 99%
bound (Figs. 4, 5). This indicates that the structural properties of the matchings are as
expected.

In Fig. 6 we investigate the convergence of the matching process. The process con-
verges when Δs = P(e1) − P(e4) → 0. This figure demonstrates that the difference
P(e1)− P(e4) ≈ 0 is statistically within the 99% confidence bound. This is not to say
that the matching freezes. There are still new matches made as well as broken. Rather
the statistical properties of thematching, in terms of size, distribution of obtained rank,
and the distributions of blocking pairs, converge and become stationary.

123

Zero-intelligence agents looking for a job

●

●

●

●

●

●

−0.001

0.000

0.001

Better Proposal Better Proposal A Blocking Proposal Blocking Proposal A Noise Proposal Noise Proposal A
Rationality

P(
e 4

)−
P(

e 4
)

Theoretical and simulation difference

Fig. 5 Comparison of expected and experimental probabilities of event e4

●

●

●

●

●
●

−0.001

0.000

0.001

Better Proposal Better Proposal A Blocking ProposalBlocking Proposal A Noise Proposal Noise Proposal A
Rationality

P(
e 1

) −
P(

e 4
)

Simulation convergence

Fig. 6 Statistical difference in P(e1) and P(e4)

3.3 Beveridge curve and the movement along the curve

We look at the Beveridge curve without any structure in preferences, that is c = 0.0
and k = 1.0. Figure 7 contains data points for all six of the behaviours.

The thickness (θ) of the market sides determines where on the Beveridge curve the
steady-state of the matching is situated. In Fig. 7 the lines represent some examples
of market thickness. When the market is thick, i.e. we have equal number of agents
on both sides (θ = 1.00), the result will lie on the 45 degree line. When the market is
biased toward one or the other side, we move along the Beveridge curve to the upper
left or lower right. Different values for thickness can be considered the effects of
outside influences, e.g. economic state that influence the job destruction and creation
rates. So the curve is the result of out-of-equilibrium state of the wider marker.

123

A. Veski, K. Põder

Fig. 7 Beveridge curves

Contrary to intuition, in Fig. 7, we see that the noise behaviour produces Beveridge
curves closest to the origin, compared to the more informed behaviours. The largest,
closest to the origin, matching outcome is obtained when agents behave randomly
in the market, as in the two Noise proposal behaviours. Moreover, it is not relevant
how the proposing power is distributed, shared by both sides or concentrated on one
side, however, the results are the same on average. It has to be stressed that the size
of the matching is much smaller when agents exhibit more informed behaviours.
By proposing to more preferred agents (Better proposing behaviours) or to agents
proposers know will accept (Blocking proposing behaviours) lead to more re-matches
and breaking existing ties. This is the result of a matching transaction being much
more likely in the latter two cases than with noisy proposals. Furthermore, each time
a re-matching occurs potentially two existing matches are broken, which results in
a lower overall size of the matching. In all behaviours, when two unmatched agents
meet they would be matched thus increasing the overall matching, however, better
informed agents make many more swaps of their partner and reach a steady-state with
a smaller size.

It is also clear that in any of themechanisms, which side proposes selection does not
affect the size of thematch. Thismight be an indication of the fact that being a proposer
is not that relevant in large markets, as has been also discovered in large centralised
matching markets (Roth and Peranson 1999; Immorlica and Mahdian 2015).

Depending on market thickness, the ratio of free agents is higher on the larger side
on the market. In case of Better and Blocking response behaviours, the change in free
agents depends linearly on market thickness. In the case of the zero-intelligence Noise
proposing behaviour, the relation of the number of free agents with thickness is not

123

Zero-intelligence agents looking for a job

Fig. 8 Beveridge curve and correlation in preferences c

Fig. 9 Beveridge curve and length of preferences k

linear, but is akin to a square root function. So the size of the matching increases faster
with Noise proposing behaviour when the market is becoming thicker (θ → 1.00)
compared to other behaviours.

3.4 Shifts in the Beveridge curve

TheBeveridge curve is concernedwith the size of thematching.Most empirical curves
show a relationship between unemployment and vacancies, and it is never the case
that neither of them is zero. This is usually attributed to the structural properties of
preferences—someworkers are not suitable for some jobs.We observe a similar effect
of having structure in preferences. In addition, we show that the shift can also be the
effect of search behaviour.

It has been long assumed that shifts of the Beveridge curve are due to the structure
of preferences in the labour market (Abraham and Katz 1986; Blanchard et al. 1989;
Mortensen and Pissarides 1999; Sahin et al. 2014): namely, where workers can and
would like to work, and similarly who the employers would like to hire. If agents are
low on the preference lists for every position or not on the list at all, it is very hard for
them to find a match.

Wemodel the preferences of the agents in terms of correlation c in a society and the
length k of the preference lists. Both these factors play a significant role in how good,
large, the match is. In the experiments in Figs. 8 and 9, we vary c and k simultaneously
to understand their interaction effects. If preference lists are very correlated (Fig. 8),
the matching tends to be small, which is also the case when the lists are short (Fig. 9).
However, it also appears that either of these features can determine the location of
the Beveridge curve on its own. Conversely to the trend even when the lists are short,
but with low correlation, large matches can result. This can also occur when the lists

123

A. Veski, K. Põder

Fig. 10 Beveridge curve and maximum potential matching

are long and correlation is high. Naturally, with long lists and low correlation, the
matching is the largest. So the relationship in preference list parameters (c and k) and
the size of the matching is not straightforward.

To simplify thinking about the structural properties of the preferences of agents,
we use the maximum potential matching to determine the effect of correlations
and limited lists on a matching. The maximum potential matching is computed
using the Hopcroft-Karp algorithm (e.g. Cormen et al. 2004, p. 696) in networkX
library (Hagberg et al. 2008). This matching is then compared to the maximum
matching with no correlations or limits on preferences and this comes down to the
number of agents in the smaller side of the market. Thus, when nA = 1000 and
nB = 500, the maximum matching can be sm = 500. However, this can never be
obtained because the preferences are somewhat structured. The maximum matching
returns the size that can be obtained given the preference structure—the potential
size pm . Figure 10 looks at the effect of ϕ = pm

sm
on the Beveridge curve. We

see that ϕ is close to 1 when we find a large matching with ZI and close to 0
when the matching with ZI is small. The latter may reflect certain skill mismatches
in the market similarly to the established stylised facts in macroeconomic litera-
ture.

3.5 Effect of a re-matching friction

The main effect of the behaviours on the size of the matching originates from the
differences in probabilities that a transaction ends with a successful re-matching. In
the Noise proposal behaviour, a pair of agents is randomly selected, whereas in Better
and Blocking proposal behaviours, only the agent on one side is randomly selected.
In the latter two, the randomly selected agent only makes proposals that they already
find acceptable. ZI-agents make proposals to random agents from the other side of the
market and learn its ranking during the transaction. Thus, they might eventually reject
the match.

Therefore, to disentangle the effect of theNoise proposal behaviour in a comparative
context, we tweak our model slightly by adding an friction timer τ to an individual
match. This would lower the probability of a transaction to result in a successful
rematch. We investigate the friction effect with preferences, where c = 0.0 and k =
100%. A newmatching is only accepted, when the timer condition is satisfied for both
agents forming a match. We implement three types of friction timers:

123

Zero-intelligence agents looking for a job

Fig. 11 Beveridge curve of lazy agents

Fig. 12 Beveridge curve of patient agents

Fig. 13 Beveridge curve of greedy agents

1. After making a new match lazy agents wait for τ iterations before accepting a new
offer;

2. After making a new match patient agents wait for τ proposals before accepting a
new offer;

3. After making a new match greedy agents accept only matches that are τ positions
higher than their current match.

In Figs. 11, 12 and 13 we show the results of lazy, patient and greedy agents
respectively. In our experiments the friction is fixed for all agents. We see that by
introducing frictions to agents before allowing them to be re-matched, the resulting
match becomes larger and the Beveridge curve shifts closer to the origin. This is true
for all our modelled behaviours. However, the effect is significantly greater for Better
and Blocking proposal behaviours with lazy and patient agents (Figs. 11, 12). This is
caused by the initial lower re-matching probability already present in frictionlessNoise
proposal behaviour.Moreover, the types of frictions cause some overlap. In frictionless
Better and Blocking proposal behaviour, once a pair of agents was selected, the re-
matching probability was higher compared to the Noise proposal, so the effect of the
friction is also greater.

123

A. Veski, K. Põder

Fig. 14 Median rank for A-side lazy agents

For lazy and patient agents, the effects of the friction are similar. For a patient agent
to re-match, they would have to be selected on τ occasions, whereas a lazy agent
would have to wait for τ iterations. If the selection probabilities of an agent are the
same in both cases, it should be straightforward to scale the results of lazy agents to
the matching size of patient agents.

Furthermore, regarding patient (Fig. 12) and greedy (Fig. 13) agents with large
τ ≈ 100, the resulting Beveridge curve is close to the origin for all behaviours. With
a slightly unbalanced market, the number of free agents on the smaller side becomes
effectively zero.

The greedy agent type of friction with smaller values for τ does not significantly
improve the size of the matching (Fig. 13). Greedy agents accept a re-match only
when it improves their position by at least τ ranks. They would still accept any match
if they were unmatched. Similarly to behaviours without the frictions, the Better and
Blocking proposal behaviours still result in more unmatched agents than the Noise
proposal, as agents would tend to accept proposals more often. Also, the probability
of selecting a match for a greedy agent that is a τ -improvement over their current
match appears high for the selected τ as the size of the matching does not increase
significantly (Fig. 13).

However, the effect of these frictions is not all positive. The re-matching friction
increases the size of the matching, but decreases the rank of the matched agents. In
Fig. 14 we show the results of the median rank (r̃a) over matched agents from the lazy
agent experiments, weighted by the length of the preference list (nb). So we see the
relative matched median rank as a percentage over the agents’ entire preference list,
where a lower value indicates that the median agent has a more preferred match. First,
we observe that with the Noise Proposal behaviour and minimal friction the median
rank is in about top 20% position. And surprisingly slightly higher with Blocking
Proposal. However, when only A-side has proposing power this side achieves better
median rank. When we increase the waiting time the median rank always worsens and
the effect is more pronounced in the Blocking Proposal A behaviour.

The re-matching friction also has significant interaction effectwithmarket thickness
(θ). With noisy behaviour the agents on the smaller side have the power to get matched
to more preferred agents, regardless of the friction. However, with Blocking Proposal
behaviour the effect depends on who is on which side. For agents on the larger side,
the friction has an adverse effect, i.e. the median agent has a less preferred match.
Conversely, for agents on the smaller side (θ > 1.0), the longer waiting time will
result in more preferred matches.

123

Zero-intelligence agents looking for a job

As friction waiting times decrease the expected matched rank of an agent, it might
not be rational for agents to participate in such a market. So market participants would
advocate for lowering friction, for the reward of being better matched. However, they
would also taking an additional risk of being left unmatched.

4 Conclusion and discussion

Recent contributions to the economists’ understanding of the micro-foundations of the
Beveridge curve have enriched the early work of Blanchard et al. (1989). However,
substantial gaps remain in our understanding of both the impact of the matching
technology as well as the process of including mechanisms which affect the Beveridge
curve. Thus, we contribute to this research gap by studying the micro-foundations
underlying the Beveridge curve.

We translated the framework of Diamond-Mortensen-Pissarides to an agent-based
model, with the intention of explaining both the movements along the Beveridge
curve and the shifts (location) of the curve itself. Our simple model shows a two-sided
decentralized market game with three key determinants—preferences, information
and market conditions. Thus, it may be argued that instead of explicitly modelling
labour market institutions, we implicitly include features of institutions by modelling
the various behaviours of agents. Our agents can have degrees of heterogeneous or
completely homogeneous preferences. The structure of the preferences indicates a
notion associated with the possible mismatch of the skills of workers across jobs.
There might be high demand for the same jobs and same workers, which form the
source of the mismatch. We have multiple approaches to model preferences. Firstly,
agents can be heterogeneous with random preferences and full-length preference lists.
Secondly, preferences can be correlated to some degree which is common to all agents.
Thirdly, the length of the preference list of the agents can vary, which indicates that
not all positions are acceptable or not all agents are suitable for certain positions. This
allows us to model the limitations of structural unemployment.

The cornerstone of our analysis is our assumption about information. Information
determines how the market game is played. Generally our agents are myopic—at each
stage of the game, they make random decisions and accept better proposals without
any alternative strategic thinking. Agents do not learn. However, we studied different
behavioural models. In our initial Noise proposal (zero-intelligence) model, agents
make random proposals. For comparative purposes, we constructed two alternative
decision models—the Better proposal and the Blocking proposal model. In the Better
proposal model, agents randomly make proposals only to a more preferred agent than
their current match. In the Blocking proposal model, agents only make proposals to a
random blocking pair, indicating that the proposal is always accepted.

Through the computational experiments, we found the aggregate number of vacan-
cies and unmatched agents which constitute the Beveridge curve. We have three
relevant agent related dimensions that explain the position of the curve and/or the
current position along the curve—the correlation of preferences, the length of the pref-
erence lists, and the assumptions about the decision-makingmechanisms of the agents.
For comparative statics, we first showed that low correlation (heterogeneous agents)

123

A. Veski, K. Põder

will shift the Beveridge curve downward and long lists of preferences have a similar
effect. We also observed that the assumptions about the decision-making behaviour
affect the location of Beveridge curve considerably. Noise proposing models shift
the Beveridge curve toward the origin compared to the Better or Blocking proposal
models. This insight can be interpreted in light of the search and wait unemploy-
ment concept—zero-intelligence agents make random proposals that are not always
accepted, whilemore advanced playersmake better proposals, thus resulting in a better
match for the agent, but smaller matching overall.

In addition, wewere interested in the effect ofmarket thickness. This is the indicator
for measuring the balance between market sides, i.e. equal number of jobs (agents)
and worker agents indicates a thicker market. We demonstrated that thickness affects
movement along the Beveridge curve. For instance, in the case of random preferences,
we move right-down along the curve if there is an decreasing number of positions (job
offerors) compared to agents (job seekers). This shows that the Beveridge curve is
mostly the result of out-of-equilibrium dynamics in interrelated markets, affecting
job creation and destruction rates. It appeared that regarding the Better and Blocking
proposal mechanisms, changing market thickness simply means shifting the number
of free agents or positions from one side of the market to the other. On the other hand,
when agents make proposals randomly and market thickness becomes closer to one,
the decrease in the rate of free agents is not linear, but a square root of free agents
from the other side. Therefore, each additional position has a larger effect than one
additional match, meaning that it creates opportunities for more agents to be matched.
As the Better and Blocking proposals implicitly model search institutions, e.g. job
hunters, it seems that these have a decreasing effect on employment.

The investigation of Noise behaviour revealed that the decreasing effect on unem-
ployment and vacancies is related to limiting the probability of re-matches. Additional
experiments showed that by enforcing some obstacle, friction, on the termination of
the contract brings the Beveridge curve closer to the origin. These frictions might also
have a basis from human psychology, as a sense of duty might limit an agent’s will-
ingness to terminate an existing contract. The longer the obstacle lasts, the closer to
the origin the Beveridge curve locates. However, we also saw that frictions affect the
matched rankings, i.e. with stronger friction the expected matched rankings decrease.
Balancing the number of matched agents and their matched rank remains for further
research.

Our approach had several simplifying assumptions: no transaction costs, no search
and matching costs, no agency, homogeneous behaviour, and no dynamics (behaviour
learning, new agents or change in preferences). Despite this, we open a path of research
in agent-based modelling in order to contribute to the search and matching literature.
Modelling matching technology by including some kind of a job board or alternative
agency to the agent-based model remains a challenge for the future research.

Acknowledgements We thank Péter Biró for helpful comments during the early stages of this work and
also the participants of the Santa Fe InstituteComplex SystemsSummer School 2015 for fruitful discussions.
We are also grateful of constructive feedback from two anonymous referees, based on which the paper was
significantly improved.

123

Zero-intelligence agents looking for a job

References

AbrahamK, Katz LF (1986) Cyclical unemployment: sectoral shifts or aggregate disturbances? J Polit Econ
94(3):507–522

AckermannH,Goldberg PW,MirrokniVS, RöglinH,VöckingB (2008)Uncoordinated two-sidedmatching
markets. In: Proceedings of the 9th ACM conference on Electronic commerce. ACMPress, NewYork,
pp 256–263

Ashlagi I, Kanoria Y, Leshno JD (2013a) Unbalanced random matching markets. In: Proceedings of the
fourteenth ACM conference on Electronic commerce. ACM Press, New York, pp 27–28

Ashlagi I, Kanoria Y, Leshno JD (2013b) Unbalanced random matching markets: the stark effect of com-
petition. http://web.mit.edu/iashlagi/www/papers/UnbalancedMatchingAKL.pdf. Accessed 14 Sept
2016

Biró P, Norman G (2012) Analysis of stochastic matching markets. Int J Game Theory 42(4):1021–1040
BlanchardOJ,Diamond P,Hall RE,Yellen J (1989) TheBeveridge curve. Brook PapEconAct 1(1989):1–76
Boudreau JW (2010) Stratification and growth in agent-based matching markets. J Econ Behav Organ

75(2):168–179
Boudreau JW, Knoblauch V (2010) Marriage matching and intercorrelation of preferences. J Public Econ

Theory 12(3):587–602
Caldarelli G, Capocci A (2001) Beauty and distance in the stable marriage problem. Phys A 300(1–2):325–

331
Chen SH, Tai CC (2010) The agent-based double auction markets: 15 years on. In: Takadama K, Cioffi-

Revilla C, Deffuant G (eds) Simulating interacting agents and social phenomena, chap 9. Springer,
Tokyo, pp 119–136

Cormen TH, Leiserson CE, Rivest RL, Stein C (2004) Introduction to algorithms, 2nd edn. MIT Press,
Boston

Dawid H, Gemkow S, Harting P, Hoog SVD, Neugart M (2014) An agent-based nacroeconomic nodel for
economic policy analysis: the Eurace@ unibi model. Working papers in economics and management
01-2014

Deissenberg C, van der Hoog S, Dawid H (2008) EURACE: a massively parallel agent-based model of the
European economy. Appl Math Comput 204(2):541–552

Diamantoudi E, Miyagawa E, Xue L (2015) Decentralized matching: the role of commitment. Games Econ
Behav 92:1–17

Echenique F, Wilson AJ (2009) Clearinghouses for two-sided matching: an experimental study. Social
science working paper 1315. California Institute of Technology

Echenique F, Yariv L (2013) An experimental study of decentralized matching. http://people.hss.caltech.
edu/%7Elyariv/papers/ExpDecentralizedMatching.pdf. Accessed 25 May 2016

Eriksson K, Häggström O (2007) Instability of matchings in decentralized markets with various preference
structures. Int J Game Theory 36(3–4):409–420

Fagiolo G, Dosi G, Gabriele R (2004) Matching, bargaining, and wage setting in an evolutionary model of
labor market and output dynamics. Adv Complex Syst 07(02):157–186

Farmer JD, Patelli P, Zovko II (2005) The predictive power of zero intelligence in financial markets. Proc
Natl Acad Sci 102(6):2254–2259

Gabriele R (2002) Labor market dynamics and institutions: an evolutionary approach. LEM working paper
series 2002/07

Gale D, Shapley LS (1962) College admissions and the stability of marriage. Am Math Mon 69(1):9–15
Gode DK, Sunder S (1993) Allocative efficiency of markets with zero-intelligence traders: market as a

partial substitute for individual rationality. J Polit Econ 101(1):119–137
Guerrero OA, Axtell RL (2011) Using agentization for rxploring firm and labor dynamics. In: Emergent

results of artificial economics. Springer, Berlin, chap 12, pp 139–150
Guerrero OA, Axtell RL (2013) Employment growth through labor flow networks. PLoS ONE 8(5):e60808
Haeringer G, Wooders M (2011) Decentralized job matching. Int J Game Theory 40(1):1–28
Hagberg AA, Schult DA, Swart PJ (2008) Exploring network structure, dynamics, and function using

networkX. In: Varoquaux G, Vaught T, Millman J (eds) Proceedings of the 7th python in science
conference, Pasadena, pp 11–15

Hoefer M, Wagner L (2012) Locally stable matching with general preferences. http://arxiv.org/abs/1207.
1265. Accessed 22 Aug 2016

123

A. Veski, K. Põder

Immorlica N, Mahdian M (2015) Incentives in large random two-sided markets. ACM Trans Econ Comput
3(3):1–25

Knuth DE (1976) Mariages stables. Les Presses de l’Université de Montréal, Montréal
Knuth DE (1997a) Seminumerical algorithms, 3rd edn. Addison-Wesley, Reading
KnuthDE (1997b) Stablemarriage and its relation to other combinatorial problems.AmericanMathematical

Society, Providence
Ladley D (2012) Zero intelligence in economics and finance. Knowl Eng Rev 27(02):273–286
Laureti P, Zhang YC (2003) Matching games with partial information. Phys A 324(1–2):49–65
Mortensen DT, Pissarides CA (1999) Job reallocation, employment fluctuations and unemployment. In:

Taylor JB, Woodford M (eds) Handbook of macroeconomics, vol 1. North Holland, Amsterdam, chap
18, pp 1171–1228

Neugart M (2004) Endogeneous matching functions: and agent-based computational approach. Adv Com-
plex Syst 07(02):187–201

Neugart M, Richiardi M (2012) Agent-based models of the labor market. Laboratorio Riccardo Revelli
working paper no. 125

Niederle M, Yariv L (2009) Decentralized matching with aligned preferences. NBER working paper series
14840

Pais J (2008) Incentives in decentralized random matching markets. Games Econ Behav 64(2):632–649
Petrongolo B, Pissarides CA (2001) Looking into the black box: a survey of the matching function. J Econ

Lit 39(2):390–431
Riccetti L, Russo A, Gallegati M (2015) An agent based decentralized matching macroeconomic model. J

Econ Interact Coord 10(2):305–332
Richiardi M (2004) A search model of unemployment and firm dynamics. Adv Complex Syst 07(02):203–

221
Richiardi M (2006) Toward a non-equilibrium unemployment theory. Comput Econ 27(1):135–160
Roth AE (2008) Deferred acceptance algorithms: history, theory, practice, and open questions. Int J Game

Theory 36(3–4):537–569
Roth AE, Peranson E (1999) The redesign of the matching market for American physicians: some engi-

neering aspects of economic design. Am Econ Rev 89(4):748–780
Roth AE, Sotomayor MAO (1990) Two-sided matching: a study in game-theoretic modeling and analysis.

Cambridge University Press, Cambridge
Roth AE, Vate JHV (1990) Random paths to stability in two-sided matching. Econometrica 58(6):1475–

1480
Sahin A, Song J, Topa G, Violante GL (2014)Mismatch unemployment. Am Econ Rev 104(11):3529–3564
Shimer R (2013) Job search, labour force participation, and wage rigidities. In: Acemoglu D, Arellano

M, Dekel E (eds) Advances in economics and econometrics: theory and applications: tenth world
congress, chap 5. Cambridge University Press, New York, pp 197–234

Silva ST, Valente JMS, Teixeira AAC (2012) An evolutionary model of industry dynamics and firms’
institutional behavior with job search, bargaining and matching. J Econ Interact Coord 7(1):23–61

Tassier T, Menczer F (2008) Social network structure, segregation, and equality in a labor market with
referral hiring. J Econ Behav Organ 66(3–4):514–528

Veracierto M (2011) Worker flows and matching efficiency. Econ Perspect 35(4):147–169
Zhang YC (2001) Happier world with more information. Phys A 299(1–2):104–120
Zhou B, He Z, Jiang LL, Wang NX, Wang BH (2014a) Bidirectional selection between two classes in

complex social networks. Sci Rep 4:7577
Zhou B, Qin S, Han XP, He Z, Xie JR, Wang BH (2014b) A model of two-way selection system for human

behavior. PLoS ONE 9(1):e81424

123

D Publication 4

Veski, A. and Põder, K. (2016). Strategies in Tallinn school choice mecha-
nism. Research in Economics and Business: Central and Eastern Europe,
8(1):5–24

239

6

REB 2016
Vol. 8, No. 1 RESEARCH IN ECONOMICS AND BUSINESS: CENTRAL AND EASTERN EUROPE

Abstract

In the first 20 years of the market economy in Estonia, the public school market was
decentralised in Tallinn. Recently, a hybrid market was established by centralising the
school allocations to comprehensive schools and also allowing some selective schools to
autonomously select students for some groups. We contribute to mechanism design literature
by studying the centralised clearing-house used in Tallinn – the Tallinn mechanism. By
using genetic algorithms, we show that, the Tallinn mechanism incentivises families to
manipulate their preference revelation by reporting only a few schools and not always from
the top of their preference list. Also we see that the expected utility in the Tallinn mechanism
is higher compared to the widely used Deferred-Acceptance mechanism, although the
number of unassigned students is also higher.

JEL codes: D02, D04, D47, D82
Keywords: market design, school choice, preference revelation, stability

Strategies in the Tallinn School Choice Mechanism

Andre Veski
Tallinn University of Technology, Estonia
Address: Akadeemia tee 3, 12618 Tallinn, Estonia
E-mail: andre.veski@ttu.ee

Kaire Põder
Estonian Business School, Estonia
Address: Lauteri 3, 10114 Tallinn, Estonia
E-mail: kaire.poder@ebs.ee

VESKI • PÕDER

7

REB 2016
Vol. 8, No. 1

1. Introduction

In recent years, economists have gained significant experience (and fame) in practical
market design. The applications of the theoretical principles of market design demonstrate
that institutions matter at a level of details that economists have not often had to deal with.
Much of this research is based on the seminal papers by Gale and Shapley (1962) that were
initially used for entry-level job markets, such as the National-Resident Matching Program
and others (Roth, 2008). The core of the curriculum is to apply a central mechanism that
collects information from a market participant as ordered preferences and finds the
allocation that has some merits. This approach has recently been very fruitful in many real-
life resource allocation problems in public good provision (Milgrom, 2000; McAfee, Preston
and Mcmillan, 1996) and also high school (college) allocation problems (Abdulkadiroğlu et
al., 2005a, b; Abdulkadiroğlu and Sönmez, 2003; Balinski and Sönmez, 1999; Romero-
Medina, 1998). Moreover, significant research has recently been carried out to explore the
allocation of school seats to students in primary (e.g. Abdulkadiroğlu et al., 2006, 2011; Dur
et al., 2013), secondary (Dur et al., 2013) as well as upper-secondary schools (Abdulkadiroğlu
et al., 2015, 2009). In this agenda, two-sided matching markets are used as in the “marriage
problem” to solve “the college admission problem” and some striking results concerning
agent incentive schemes have recently been obtained (Abdulkadiroğlu et al., 2011;
Abdulkadiroğlu and Sönmez, 2003; Pathak and Sönmez, 2013, 2008; Erdil and Kumano,
2013; Erdil and Ergin, 2008). In the case of two-sided markets it has been shown (Roth,
1982) that only a limited number of stable matching procedures exists to form a dominant
strategy for families to reveal their true ordered preferences.
 The existing matching mechanism literature is growing, not only in terms of new cases
and designs, but also by adding new problematic design areas; that is, encouraging diversity
with the use of quotas or priority classes that in many cases can fail to enforce social justice
(Dur et al., 2013; Kominers and Sönmez, 2013; Fragiadakis and Troyan, 2013; Erdil and
Kumano, 2013). However, to the best of our knowledge, there is no literature dealing with
post-communist school allocation mechanisms. Our experience indicates that in the Soviet
era, mechanisms were widely in use in many spheres; for example, the allocation of university
graduates or university choice. One common characteristic of the communist mechanisms
was the school-proposing nature while the submitted preferences were marginally
considered. The latter has not diminished its prevalence – many applications in two sided
markets are still initiated by the “stronger side” and have no welfare considerations.
 We are contributing to the matching research agenda by studying the Tallinn school
choice mechanism (Tallinn mechanism hereinafter). Notably, Soviet-style central matching
was abandoned in the Tallinn school market during the liberal reforms after the 90s and
substituted by decentralised or semi-centralised designs. Over the last few years, central
matching has been reintroduced in the Tallinn school market for allocating children to
primary schools. Through trial and error, local policy-designers established the Tallinn
mechanism as a central marketplace in 2012. This mechanism has specific characteristics in
addition to the school proposing nature. First, students are prioritised according to distance
from the school. Second, families can submit three unordered preferences. Third, the
mechanism uses immediate acceptance (Boston).
 As with the shortcomings of the Boston mechanism, which has created a rule of thumb
for submitting the preferences strategically (Ergin and Sönmez, 2006; Pathak and Sönmez,

8

VESKI • PÕDER
REB 2016

Vol. 8, No. 1

2008; Pathak and Shi, 2013; Abdulkadiroğlu et al., 2011), we show there are similar rules of
thumb for manipulation under the Tallinn mechanism. In the Boston mechanism there are
different levels of sophistication among families who participate in the mechanism; that is,
one strategy was to avoid ranking two over-demanded schools as their top choices or an
unsubscribed school or popular school was recommended to be put as the first choice plus a
“safe” second choice. Hence, as Pathak and Sönmez (2008) showed that the Boston
mechanism is a coordination game among sophisticated families. Thereby “levelling the
playing field” by diminishing the harm done to families, who do not strategise or do not
strategise well, is emphasised as a condition for designing the new mechanism. Similarly, we
introduce the Tallinn mechanism as a sophisticated game. We ask how many preferences it
is rational to report under such a mechanism and whether families reveal their true top
preferences or manipulate in both dimensions – report only a limited number of preferences
which might not be at the top of their preference lists. In addition, we ask whether this
behaviour is dependent on their preference structure – the functional form of their estimated
cardinal utility function. The latter allows us to show whether the strategy of revealing
preferences is dependent on the relative cardinal measure of utility from first, second etc.
preference – which can be considered a measure of marginal utility. Moreover, we are
interested in social inefficiencies defined as the difference between individual allocated
ranks and unassigned families under the Tallinn mechanism compared to the Deferred-
Acceptance mechanism.
 Our research design is based on computational experiments. For descriptive analysis, we
use data from the centralised database, e-school. The e-school database is an electronic
register, where approximately 4000 7-year-old children with a known home address annually
list their school preferences. The rest of our data is synthetic. Our research strategy is the
following. After descriptive stylised facts, we use genetic algorithms to find the best strategies
for revealing the preferences of families. We illustrate the results by indicating the extreme
cases of utility function – utility over preferences might be uniform or extreme; in other
words, might all be concentrated on the first preference. We use genetic algorithms to find
good strategies for maximising utility for the families. Family agents optimise strategies by
observing their allocation and the obtained utility.
 We continue as follows. First, we describe the broader Tallinn school market, then the
concrete mechanism used by the Tallinn education administration – the Tallinn mechanism.
In section 3, we describe the preference generation, the utility function and genetic
algorithms. In section 4, we describe the results of the parental strategies and the obtained
allocation after revealing what and how much to report to the central marketplace. Finally,
we conclude by highlighting the policy implications for Estonia and for other decentralised
and centralised markets.

2. Background: Tallinn School Market

Over the years, some schools in Tallinn have become over-subscribed. These selective
schools have inter-district admissions to primary school and have all introduced aptitude
entrance tests (hereinafter exam schools). For intra-district comprehensive schools
(hereinafter regular schools), the tradition has been a central or semi-central catchment-
based allocation based on an application (single preference or multiple preferences) from the

VESKI • PÕDER

9

REB 2016
Vol. 8, No. 1

family. Rejected offers were not treated centrally – each school and student should find the
match independently.
 The admission process for the exam schools takes place between January and March. We
note that it has been shifting from March (in 2012) to February (in 2013) and even to January
(in 2014). The second stage (in the Tallinn mechanism) in regular schools starts on 1st of March
with the submission of an electronic application to the e-school register. Central but manual
entries are made by 25 May. By 10 June, parents must either accept or decline offers. There is a
later decentralised round of applications for additional vacant positions after 15 June.
 To make the entire school choice procedure more transparent, we highlight the following steps:
1. Students are assigned to exam schools based on the proposing Deferred-Acceptance (DA)

mechanism of decentralised schools
2. The remaining students are centrally assigned to regular schools based on the Tallinn

mechanism
3. Unassigned students are assigned to the closest schools potentially rejecting an already

assigned student. Some students might be assigned to a school they did not apply to. This
continues until all students are assigned.

4. Students can reject their assigned position. Once the rejection/acceptance deadline has
passed, schools can autonomously accept students for any available positions.

 Therefore, the hybrid structure of the Tallinn school market consists of exam schools
(decentralised matching), the Tallinn mechanism (central matching) and the final
decentralised round. We are only interested in the Tallinn mechanism.

2.1. Tallinn Mechanism

The Tallinn mechanism governs only the central admission procedure to all municipal
primary schools. These schools rely on the following procedural steps. First, families submit
an application where they list up to three schools. Then the seats are allocated based on the
following procedure:

0. Look at the schools in a random order. Each student is only considered for the school to
which the family applied.

1. Allocate students to the first school for which they have high (siblings and distance- based)
priority until the quota is full.

2. Allocate students that were not allocated before to the second school for which they have
high priority until the quota is full.

 ...
k. Allocate students that were not allocated before to the k-th school for which they have high

priority until the quota is full.

 It is important to stress that regular school applications are limited to three options; in
other words, the parent has the right to list three schools, but these are not considered in any
particular order. The application can also contain information about siblings and the
school(s) they attend. Centralised school priorities are considered based on the student’s
distance from the school (in metres) from the officially registered address.

10

VESKI • PÕDER
REB 2016

Vol. 8, No. 1

Table 1: Number of Reported Preferences under the Tallinn Mechanism

of prefs 2011 2012 2013

1 52 % 74 % 76 %

2 18 % 15 % 14 %

3 11 % 11 % 9 %

> 3 18 % 0 % 0 %

Mean 2.2 1.4 1.3

Source: Authors’ calculation

 We use descriptive statistics to illustrate the micro-mechanism in Tallinn over three
consecutive years – from 2011 to 2013. In 2011, the market was decentralised. However,
applications were centrally collected without any upper limit on the submitted preferences.
The Tallinn mechanism has been in use since 2012, limiting the amount of unordered
preferences submitted to three (see Table 1).
 This stylised fact illustrates the tendency to report a limited list. Most families submit
only a single preference. However, there is no clear indication that parents do not manipulate
as in the Boston mechanism and decide to reveal strategically lower preferences or “safe”
choices. Therefore, we are interested in whether it is rational to report less than three
preferences and what the rationality is of reporting truthful preferences.

2.2. Example of Deciding What to Report

We illustrate the choice set for parents using a simple extensive form game (Figure 1). In
such a game, the parents in the starting node have three strategies – to report either 1, 2 or 3
preferences. In the following subgames, the designer randomly allocates the student to the
reported school or an outside option. In the final nodes, the utilities are reported by
indicating the preference – 1 stands for first preference and Ø indicates the utility of the
outside option. In the illustration below, we assume risk neutral agents.

Figure 1: Extensive Form Reporting Game

Source: Authors’ illustration

 Assume that we have two utility functions, where k indicates a position in a preference list:
• u1(k) = 0.358 − 0.025(k − 1)
• u2(k) = 0.658 − 0.325(k − 1)

 r

 1 2 3

 .5 .5 .33 .33 .33 .25 .25 25 .25

 1 Ø 1 2 Ø 1 2 3 Ø

VESKI • PÕDER

11

REB 2016
Vol. 8, No. 1

Then we obtain cardinal utilities for k ∈ {1, 2, 3} as in Table 2.

Table 2: Utilities

k u1(k) u2(k)

1 0.358 0.658

2 0.333 0.333

3 0.309 0.009

Source: Authors’ calculation

Assuming the uniform probabilities of being unassigned or assigned to one of their
preferences, as in Figure 1, we can compute the expected utilities for both utility functions
and all cases of reported preferences. Notably, we do not take into account the demand for a
school or the overall availability of places. Moreover, it is preferable to always report schools
higher in the preference list, so we do not investigate cases where, for instance, only the
second or third choice is reported, because the expected utility will definitely be lower. This
might not be the case when the probabilities of being assigned to a particular school are not
uniform.
 We see that the probability of being left unassigned decreases as more preferences are
reported, but so does the probability of getting a place in the most preferred school. The
expected utilities for u1(k) are:
• for reporting one school E1[u1(k)] =1–

2
(0.358 + 0) = .179

• for reporting the first two schools E2[u1(k)] =1–
3
(0.358 + 0.333) = .230

• for reporting the first three schools E3[u1(k)] =1–
4
(0.358 + 0.333 + 0.309) = .250

 We see that reporting all three preferences maximised utility. With utility function u2(k)
the expected utilities are:
• for reporting one school E1[u1(k)] =1–

2
(0.658 + 0) = .329

• for reporting the first two schools E2[u1(k)] =1–
3(0.658 + 0.333) = .330

• for reporting the first three schools E3[u1(k)] =1–
4
(0.658 + 0.333 + 0.009) = .250

 As Figure 1 illustrates the game, where under the expected utility maximisation
assumptions, parents obtain higher utility by reporting only one or two schools with u2(k).
 We are interested in finding near-optimal strategies in large markets, where agents might
have similar preferences or there are popular and over demanded schools. Additionally, the
revealed demand also depends on the strategies of the agents and the revelation strategies
depend on the revealed demand.

2.3. Deferred-Acceptance Mechanism

A widely used mechanism for school choice is the Deferred-Acceptance (DA) mechanism
(Abdulkadiroğlu and Sönmez, 2003; Pathak and Sönmez, 2013). First introduced by Gale
and Shapley (1962) it has been confirmed to be useful in many applications in matching
residents to hospitals (Mullin and Stalnaker, 1952; Roth, 1984) and other labour market
applications (e.g. Roth, 2008), students to schools (Abdulkadiroğlu et al., 2005a; Pathak and

12

VESKI • PÕDER
REB 2016

Vol. 8, No. 1

Sönmez, 2013) and colleges (Abdulkadiroğlu et al., 2005a; Pathak and Sönmez, 2013) and
probably more.
 The DA mechanism has become so popular mainly due to two good properties it has:
strategy-proofness and no justified envy (e.g. Abdulkadiroğlu and Sönmez, 2003). Strategy-
proof mechanisms always make it safe and in the families’ best interests to report their true
preferences. In an allocation with no justified envy, families never have an option to a more
preferred school, because another family with a higher priority has already been assigned to
that school. When there is no justified envy, the allocation is also called stable. While there
can be multiple stable matchings, we usually aim to obtain student-optimal stable-matching
(e.g. Abdulkadiroğlu and Sönmez, 2003), as that is the only way to guarantee strategy-
proofness. While there are other strategy-proof mechanisms, such as the Top Trading Cycles,
this does not ensure that the final allocation is stable (e.g. Abdulkadiroğlu and Sönmez, 2003).
 In general the Deferred-Acceptance works as follows:
1. All students are tentatively assigned to their first preference. If schools have more

students assigned than places, they reject some students with lower priority.
2. All rejected students are tentatively assigned to their second preference. Again if schools

have more students assigned than places, they reject some students with lower priority.
Note that the school may reject students tentatively assigned in the previous round, if
they have a lower priority than some new applicants.

 ...
k. In general, rejected students are tentatively assigned to their next preference. If a school

has more students assigned than places then students with lower priority are rejected.
The process continues until all students are assigned a place, or all preferences have been
explored.

 Due to its good properties, the DA is a good “ideal” model for our comparative welfare
analysis. It allows us to show how final allocations differ under the Tallinn and DA mechanism.

3. Model

3.1. Environment

We are interested in understanding strategies in multiple environments. We characterise the
environment with societal parameters (Tables 3 and 4) and the parameters of an individual.
Societal parameters describe the number of schools, the number of exam (popular) schools,
the correlation between ordered preferences, and so on. Exam schools exist because they are
popular overall, so we consider them as a metaphor for globally popular schools. Moreover,
in Tallinn, these schools are still allocated the most groups through the Tallinn mechanism.
 We fix the number of schools, the number of places in a school and the number of
students for all our experiments (Table 3). In addition, the maximum number of ordered
preferences for each agent is fixed. We model families as agents. They are willing to apply to
or can rank up to 15 schools at the most, although the utility from lower preferences is
relatively small. This is partly driven by case specificities, as 15 was the maximum number
of schools listed in the decentralised market in Tallinn in 2011. From those 15 ordered
preferences, agents have to select three to report in the Tallinn mechanism.

VESKI • PÕDER

13

REB 2016
Vol. 8, No. 1

 We investigate societies, where agents can have random or spatially correlated preferences –
the latter indicates that schools nearby are more desired (Table 4). We also look at the effect
of having the same set of popular schools – exam schools. In these societies, all agents would
prefer exam schools, even if they are further away than the nearest regular schools. In the
case of spatial preferences among exam schools, agents would still prefer schools nearby, and
no other criteria matters. In each computational experiment, all these parameters are fixed.
The priorities for schools are always spatial, distance based. Agents closer to a school have a
higher priority in that school.

Table 3: Fixed Societal Parameters

Parameter Description

k = 15 Length of preference lists

n = 3000 Number of family agents

m = 50 Number of schools

qj = 60 Number of places in school j

Table 4: Variable Societal Parameters

Parameter Description

c ∈ 0,1 Spatial correlation in preferences

me ∈ {0, 10} Number of exam schools

For each agent looking for a place at the school, we only have one parameter: the functional
form of the utility function described by the parameter (α). The latter indicates the slope of
the utility function. In each experiment, our agents are heterogeneous, so they have different
values for the slope of the utility function.

3.2. Preferences

We assume that agents have strict preferences for schools. In the simplest case, preferences are
random; in other words, each agent has a totally idiosyncratic preference ordering. In general,
we can think of more structured preferences in a society, parametrised by the length of the
preference list (k) and the correlation between the preference lists (c). In our experiments, the
preference lists are limited to k = 15. Correlated preferences stem from a spatial preference
ordering, and can also be considered 2D-Euclidean preferences (Bogomolnaia and Laslier,
2007). The degree of correlation is also the same for all agents, but the preference ordering is
not necessarily identical when comparing two agents due to the spatial nature of preferences.
 We generate the preferences using the Algorithm 1 with parameters k, c and m. This
algorithm is a modified version of a random permutation algorithm (Knuth, 1997, p. 145) to
generate correlated preferences with parameter c. The algorithm starts with a master list of
n numbers (agents). Then it iterates the list from beginning to end, each time at position j
randomly selecting a position q ∈ [j + 1, n] to exchange values with. The correlation parameter
c illustrates how biased the randomly selected position is; higher values indicate that the

14

VESKI • PÕDER
REB 2016

Vol. 8, No. 1

exchange position is selected closer to the current position j. With c = 0.0 the selection is
uniformly probable over all positions, until finally at c = 1 the exchange position is always
the active position and all the generated lists are exactly the same. There is one global
ordering of agents for each side of the market that is used for generating correlated
preferences.

3.3. Utility Function

While agents have a preference ordering for schools, their behaviour might also be influenced
by the cardinal utility they gain from assignment to the particular preference. A similar
notion was illustrated by the reporting game in Section 2.2. In order to understand the
behaviour with different cardinal valuations, we use exponentially declining utility over
alternatives. When compared to consecutive schools i and i + 1, we assume that u(i+1)––––––

u(i) = 1− α.
Furthermore, we need to normalise the utility function such that Σk

i = 1u(i) = 1. The resulting
form of the utility function is in (1), where i ∈ {1, ..., k} is a position in the preference ordering.

Algorithm 1 Correlated permutation

Require: m,k = 15, c ∈ [0,1]
Ensure: p is a permutation of unique numbers
 p 1, 2, 3, ..., n, j 0
 while j < k do
 r [0.0, 1.0] uniform random number between 0and 1
 q [m – (m–j) • r1-c]
 t pq, pq pj, pj t
 j j + 1
 end while
 return {p1, p2, ..., pk}

 α(1–α)i–1

 u(i) = – ––––––––––– (1)
 1 – (1– α)k

 When α → 0, then cardinal utilities for all alternatives are exactly the same u(i) = 1––k

Ai.
When α = 1, then all utility is concentrated in the first preference, that is u(1) = 1. In Figure 2,
we show the utility values using some examples of α.

VESKI • PÕDER

15

REB 2016
Vol. 8, No. 1

Figure 2: Exponential Utility Function

Source: Authors’ illustration

The utility function can be compared to a linear utility function over perfect substitutes u(x1,
..., xn) = β1x1 + ... + βnxn, where the consumer is allocated at most one good xi. The βi is the
value of the allocated good xi to the consumer (e.g. Varian, 2006, p. 61). Our utility function
(1) states the shape of the decline in value βi of the goods to consumers. We assume that
agents are risk-neutral, i.e. they maximise their expected utility E[u].
 Using utility ratios u(i+1) ––––––

u(i)
to measure on preferences is also popular in decision theory,

Saaty scale, and is supported by some psychological observations (e.g. Franek and Kresta,
2014, and references therein). Another reason is that differences are greater in geometrically
declining function than linearly. So the effects we are investigating are more evident.

3.4. Genetic Algorithm Optimisation

We use genetic algorithms to find a near-optimal strategy for reporting in the Tallinn
mechanism. The genetic algorithms adapt existing strategies to find better ones that would
result in an increased utility. The result of a genetic algorithm after optimising is a steady
state (e.g. Riechmann, 2001). While a steady state is also by definition a Nash equilibrium in
a game, it could simply be one among many in multiple equilibria games. Our experiments
are carried out with agents, not populations, as each individual might find a better strategy
in every iteration, but for populations, a certain strategy would remain roughly constant.
 There has been extensive use of genetic algorithms and programming in finance (e.g.
Chen, 2002; Chen et al., 2011; Chen and Tai, 2010) and economics in general (e.g. Riechmann,
2001). Agents learn better trading strategies by observing the market. The main difference
compared to our model is that agents do not have much to observe about the school market.
Players do now know either the overall demand for schools or the preferences of other agents
in the market. The only information source is their own allocation and the utility they gain
from the market. With genetic algorithms, our approach is to find strategies that would
maximise the utility of the agents.
 Here we do not assume that the manner of genetic algorithms is in reality how humans
learn. We only employ it for computational tractability, as exploring the entire strategy-space

1.00

0.75

0.50

0.25

0.00

Preference

U
til

it
y

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0.001

0.1

0.2

0.4

0.7

1.0

α

16

VESKI • PÕDER
REB 2016

Vol. 8, No. 1

for 3,000 agents is resource consuming. However, there are studies that use a form of genetic
algorithm as a model for learning (see e.g. Unver, 2001; Roth, 2002; Unver, 2005) and is also
observed as exhibiting features with human subjects (e.g. Arifovic, 1994, 1996; Duffy, 2006).

Algorithm 2 Simple Genetic Algorithm – single iteration

Require: Α set of agents, u agents utilities
Ensure: Α is a set of agents
 n |Α|
 s Σα∈ΑUα

 p { Uα––s , Aα ∈ Α} {selection probablities}
 i 0
 for all r1, r2 ∈ Select (Α, p, n) do
 {select with probability p, with replacement n pais of strategies}
 αi CrossOver(r1, r2) {assign new strategy to agent αi
 if RandomNumber () < 0.05 then
 Mutate(αi)
 end if
 i i +1
 end for
 return Α

 Genetic algorithms have two basic operations for finding an improved strategy (e.g.
Simon, 2013): mutation and crossover. Mutation slightly tweaks an existing strategy and
cross-over merges two successful strategies to find a better one. Finally, selection indicates
an operation that eliminates the least successful strategies. Since agents in our model can
have various utility functions, as specified by the α parameter, the strategy elimination and
cross-over operations are contained in the α-population. Additionally, strategies for different
α values might not be the same.
 A strategy in the case of the Tallinn mechanism is simply a bit-string. A bit-string is a
series of 1-s and 0-s, which respectively stand for reported and not reported preference.
Since we limit our agent’s preferences to k = 15, the length of the bit-string is 15 bits. Since
the Tallinn mechanism is limited to just three preferences, the bit-string can contain at most
three bits set to one. For example, a possible strategy for agent i might be ai = 100110000000000;
that is, the agents with this strategy would report their first, fourth and fifth preference.
 We run our genetic algorithms for a fixed (2000) number of steps. In each step, an
allocation is made based on the Tallinn mechanism and we get the utilities for each agent.
Then based on the rules of the genetic algorithm the strategies evolve. In Algorithm 2, we
present a simple genetic algorithm (e.g. Riechmann, 2001; Simon, 2013). It consists of three
operations: selection, crossover and mutation. The selection operator selects strategies with
replacement and probability proportional to the gained utility. The cross-over operation
randomly selects the value from either strategy for each position. Finally, with a small 0.05
probability we mutate the new strategy.
 We evaluate four versions of genetic algorithms:simple genetic algorithm; genetic algorithm
with election; genetic algorithm with stud selection; and genetic algorithm with elitism. The
last three are slight modifications of the simple genetic algorithm. In the election modification,

VESKI • PÕDER

17

REB 2016
Vol. 8, No. 1

the agents remember their previous strategy and the corresponding utility. Before the selection
operation in the next allocation, each agent picks the strategy with a higher utility from the
previously remembered and the newly evaluated strategies (e.g. Riechmann, 2001). In the stud
selection, we pick the top 20% of strategies with higher utility and always set one of the
strategies in the cross-over operator to be in the top 20% (Simon, 2013). In addition, we ignore
the bottom 10% of strategies. In elitism, we keep the top 20% of strategies fixed and only use
the remaining strategies in the crossover (Simon, 2013).

Figure 3: Mean Utility

Source: Authors’ calculation

Figures 3 and 4 show the results from the four variations of genetic algorithms. We see that
the stud selection usually performs the worst, has the lowest utility and highest variation in
utilities compared to the other variations. If preferences are spatially correlated and there is
a large number of exam schools (me = 10), we can see that the simple genetic algorithm does
slightly better with large values of α than with alternatives. For lower values of α, the simple
model is statistically equivalent to the election and in some cases to elite selection. As the
simple model does as good as others we further analyse the results from the simple
optimisation method.

Figure 4: Ratio of Variance and Mean Utility

Source: Authors’ calculation

0.8

0.6

0.4

0.2

0.0

0.25

0.20

0.15

0.10

0.05

0.00

α α
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

Genetic algorithm
Election

Elite

Simple

Stud

Genetic algorithm
Election

Elite

Simple

Stud

Spatial (c=1) and with exam schools (m
e
=10)

Uncorrelated (c=0) and no exam schools (m
e
=0)

U U

1.00

0.75

0.50

0.25

0.00

1.00

0.75

0.50

0.25

0.00

α α
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

Genetic algorithm
Election

Elite

Simple

Stud

Genetic algorithm
Election

Elite

Simple

Stud

Spatial (c=1) and with exam schools (m
e
=10)

Uncorrelated (c=0) and no exam schools (m
e
=0)

Va
r(

u
)

u

Va
r(

u
)

u

VESKI • PÕDER
REB 2016

Vol. 8, No. 1

4. Results

4.1. Expected Utility Maximising Strategies

The reported results are divided into four cases. In all of the figures illustrating the results,
in the upper left corner the results with no correlation (random) preferences and no exam
schools are indicated; in the upper right corner, the results with spatial (2D Euclidean)
preferences and no exam schools; in the lower left corner, random preferences and ten exam
schools; and in the lower right corner, correlated preference lists and 10 exam schools.
Figures 5, 6 and 7 show a plot with the average and the standard deviation over multiple
experiments. The standard deviation is often small so it is not always visible on the charts.

Figure 5: Reported Strategy Length

Source: Authors’ calculation

Figure 6: Reported Preference by Utility Coefficient α

Source: Authors’ calculation

100%

75%

50%

25%

0%
0 1 2 3

Uncorrelated (c=0)

Number of reported schools

Spatial (c=1)

W
ith

 e
xa

m
 s

ch
oo

ls
 (

m
e=

1
0

)
N

o
ex

am
 s

ch
oo

ls
 (

m
e=

0
)

Strategy length

100%

75%

50%

25%

0%
0 1 2 3

100%

75%

50%

25%

0%
0 1 2 3

100%

75%

50%

25%

0%
0 1 2 3

α 0.1 0.70.001 0.40.2 1.0

100%

75%

50%

25%

0%

Uncorrelated (c=0)

Reported preference

Spatial (c=1)

W
ith

 e
xa

m
 s

ch
oo

ls
 (

m
e=

1
0

)
N

o
ex

am
 s

ch
oo

ls
 (

m
e=

0
)

Reported preference

Pr
op

or
tio

n
of

 r
ep

or
te

d

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

100%

75%

50%

25%

0%
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

100%

75%

50%

25%

0%
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

100%

75%

50%

25%

0%
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

α 0.1 0.70.001 0.40.2 1.0

18

VESKI • PÕDER

19

REB 2016
Vol. 8, No. 1

Firstly, we are interested in the strategy length – the number of schools to be reported. In
Figure 5, we show the strategy length by a proportion of the respective α-population. In
general, it is elucidated that the decay in the utility function is a significant determinant of a
good strategy. When α ≈ 0.0, it is best to randomly select the number of schools to report
with roughly uniform probability. When α ≥ 0.4 and there are no exam schools, it would
almost always be best to report only one school. With random preferences, when α ≈ 0.2,
there is a phase transition in the number of schools to report, as the variation at this point is
largest. Therefore, it is really difficult to pick a good strategy for how to report.
 General trends show an increase in standard deviation in the strategy length when moving
from spatial preferences to random preferences, or from having no exam schools to having 10
exam schools. Spatial preferences are aligned with school priorities, resulting is more predictable
matches; therefore, the resulting strategies have a lower standard deviation. Standard deviation
can also be interpreted as the uncertainty of the resulting match, when playing a certain strategy.
In regard to exam schools, the uncertainty is greater than in the case of no exam schools, and
even greater when the preferences are random in addition to exam schools.
 Secondly, we are interested in how the mixed nature of the market – exam schools which
are always preferred to regular neighbourhood schools – affect good strategies. We see that
in the case of random preferences for high α, it is still often optimal to only report a single
school. For medium α, the best strategy is to report 2 or 3, and only with low α (i.e. marginal
utility is almost constant) is it best to randomly select the number of schools. If we assume
that parents do not have a preference between the top three exam schools, they report the
maximum number of preferences.

Figure 7: Reported Preference by Strategy Length

Source: Authors’ calculation

We are also concerned with what to report. Figures 6 and 7 show the preferences reported by
the agents’ α and the strategy length. We see that without exam schools it is almost always (≈
90%) optimal for α ≥ 0.4 to report from the top of the preference list, namely just their first
preference. In regard to exam schools and random preferences, optimal reporting depends
more on α, but generally the top three schools are reported. Figure 6 illustrates that in the case

100%

75%

50%

25%

0%

Uncorrelated (c=0)

Reported preference

Spatial (c=1)

W
ith

 e
xa

m
 s

ch
oo

ls
 (

m
e=

1
0

)
N

o
ex

am
 s

ch
oo

ls
 (

m
e=

0
)

Reported preference

Strategy length 3

Pr
op

or
tio

n
of

 r
ep

or
te

d

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

100%

75%

50%

25%

0%
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

100%

75%

50%

25%

0%
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

100%

75%

50%

25%

0%
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 2

20

VESKI • PÕDER
REB 2016

Vol. 8, No. 1

of exam schools and spatial preferences with high α, it would be better to report something
from the higher and lower ends of exam schools, skipping the middle. Reporting schools lower
on the preferences lists probably indicates that those agents would be otherwise unassigned,
due to high demand, so they gain at least some utility. For medium α, the first three preferences
are almost equally good. For indifferent agents, α ≈ 0.0, it would be best to randomly pick some
schools from the list of regular schools. Also for agents with α = 0.1, it would be beneficial to
specify their most preferred exam school and most preferred regular school.
 In Figure 7 the preferences are reported with different strategy lengths. The results show
that it is always best to at least report one’s most preferred school, as one might get lucky. If
reporting more schools, it is useful to add the second most preferred school or with a small
probability select something from even lower on the preference list. However, when reporting
three choices, the selection of schools depends on the state of the school market. When
preferences on the market in general are random with 50% probability, the first two
preferences should be reported and the remaining options uniformly from the remainder of
the preferences. In the case of spatially correlated lists or exam schools, the most preferred
school should be almost always given. And when preferences are generally spatial, select the
remaining options randomly. On the other hand, with exam schools and uncorrelated
preferences when it is best to report three schools, it is usually best to report the top three.

4.2. Social Welfare

Previously we investigated the individual behaviour of agents, but now we consider how
these behaviours influence the outcome for the entire society. For this, we compare the
results of the Tallinn mechanism to the widely used Deferred-Acceptance (DA) mechanism
(Gale and Shapley, 1962; Abdulkadiroğlu and Sönmez, 2003) as described in Section 2.3.
Similar to the Tallinn mechanism, the priorities in the Deferred-Acceptance mechanism are
also only based on distance.

Figure 8: Unassigned Agents

Source: Authors’ calculation

80%

60%

40%

20%

0

α

0.00 0.25 0.50 0.75 1.00

Uncorrelated (c=0)

Mechanism Deferred acceptance Tallinn mechanism

Unassigned by allocation mechanism

80%

60%

40%

20%

0
0.00 0.25 0.50 0.75 1.00

Spatial (c=1)

80%

60%

40%

20%

0
0.00 0.25 0.50 0.75 1.00

80%

60%

40%

20%

0
0.00 0.25 0.50 0.75 1.00

Pr
op

os
tio

n
un

as
si

g
ne

d
on

 a
ve

ra
g

e

W
ith

 e
xa

m
 s

ch
oo

ls
 (

m
e=

1
0

)
N

o
ex

am
 s

ch
oo

ls
 (

m
e=

0
)

VESKI • PÕDER

21

REB 2016
Vol. 8, No. 1

We look at two measures of social welfare. First, the proportion of unassigned agents (Figure
8) and second the mean utility in the allocation (Figure 9). Usually, the measure used in
matching problems are the allocated preferences, but this is mostly due to not having access
to the utility. Since in our experiments, we know the agent’s utility, we measure the mean
utility over all the agents.
 Figure 8 illustrates assignment probability based on the agents’ α. We see that by using
the DA mechanism and assuming random preferences (c = 0.0) and no exam schools (me =
0), there are no unassigned agents. When preferences are spatially correlated (c = 1.0), we can
see that about 10% of students are unassigned, and this probability does not depend on agent
type.

Figure 9: Mean Utility Comparison: Deferred-Acceptance and Tallinn Mechanism

Source: Authors’ calculation

As described in section 3.2., we have me = 10 exam schools that are always first on the agents’
preference lists. Under such circumstances, only a small fraction of students receive a position
in the top ten schools of their preference. Since there are fifty schools, exam schools account for
20% of places, so 20% of students receive a place in one of their top ten schools. Again, with
uncorrelated preferences, DA can guarantee a place for all the students. Naturally, the students
might receive a less preferred school. In the case of spatial preferences (c = 1.0, me = 10), even
with DA, a significant number of students - about 10% - would be left unassigned. With the
Tallinn mechanism, the number of unassigned students would be even higher – about 70% of
students who have α > 0.2 would be unassigned. This is mainly due to agents maximising their
expected utility and do not have a negative utility by being left unassigned.
 In Figure 9 we show the expected utility under the two mechanisms. Expected utility is
higher in the Tallinn mechanism compared to the DA results. This is because the strategies
of the agents maximise their expected utility, which is greater under the Tallinn mechanism
than under DA. A similar result was discovered in the manipulable Boston mechanism
(Abdulkadiroğlu et al. 2011). This leads to the conjecture that manipulable mechanisms

0.75

0.50

0.25

0.00

0.75

0.50

0.25

0.00

0.75

0.50

0.25

0.00

0.75

0.50

0.25

0.00

α

0.00 0.25 0.50 0.75 1.00

Uncorrelated (c=0)

Mechanism Deferred acceptance Tallinn mechanism

Mean utility by allocation mechanism

0.00 0.25 0.50 0.75 1.00

Spatial (c=1)

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

W
ith

 e
xa

m
 s

ch
oo

ls
 (

m
e=

1
0

)
N

o
ex

am
 s

ch
oo

ls
 (

m
e=

0
)

u

22

VESKI • PÕDER
REB 2016

Vol. 8, No. 1

provide the option to maximise an agent’s expected utility at the risk of being unassigned or
assigned to a low ranked preference. Yet, as a result, a large number of agents are unassigned
in the Tallinn mechanism.
 We observe that agents with α = 0.999 would maximise their expected utility by only
reporting their first preference (Figure 5 and 6). This is due to the high utility value of their
first preference, but because only a few preferences are reported, there is also a large
probability of being unassigned under the Tallinn mechanism (Figure 8).
 When agents are not particularly concerned with the school they are allocated to (α is
small), the best strategy is to report randomly (see Figure 6). This also guarantees that students
will not be unassigned, which is demonstrated in Figure 8. Other agents trade the probability
of being unassigned with being assigned to a more preferred school. We see that for agents who
have α ≥ 0.3, there is a high probability of being unassigned. However, there must be a
considerable number of agents who are assigned to their top preferences on the condition of
there being no exam schools, which increases the average utility from the allocation.

5. Conclusion and Discussion

Our aim was to contribute to the mechanism design literature about school choice by adding
a description of the Tallinn mechanism, which is a centralised school-selecting assignment
based on the student’s distance from the school. Moreover, we wanted to indicate what the
manipulative behaviour of agents is under such a mechanism; that is, how many preferences
they report and how truthful their preference revelation is.
 We used computational experiments to show the near-optimal strategies of the agents. For
optimisation, we used a simple genetic algorithm, which outperformed the alternatives. Our
model setup was the following: 50 schools (10 exam schools), 60 seats in each school and 3,000
agents. The agents (families) were heterogeneous, but their spatial preferences could have been
correlated. Therefore, our emphasis in comparative static analysis has been on three parameters
– the shape of the utility function of the agents, the number of exam schools and the correlation
in the preferences of the agents. The first parameter space (α) illustrates the decreasing utility
over alternatives and makes it possible to study cardinal preferences. The second parameter
makes it possible to study case specificity – exam schools are popular schools at the centre of
the city that are preferred by most families due to public information from league tables or
from their reputation according to “hot knowledge”. The third parameter makes it possible to
indicate the effect of the homogeneity-heterogeneity of the agents. Homogeneity of agents can
be interpreted as a post-Soviet tendency towards non-diversity of “good taste” – correlated
preferences show that agents have similar preferences for schools. However, we used spatial
preferences and we always put exam schools at the top of the list. This action is justified by
empirical evidence (Põder and Lauri, 2014).
 Our results show that in many circumstances under the Tallinn mechanism it is often
best to report only one school, even if there is an option to report multiple schools. It is rarely
beneficial to report three options (the maximum number). Nevertheless, it would benefit
agents to report a school from the top of their preference lists. When reporting three schools,
it is not always best to report the top schools and it seems to be advantageous to select the
third option uniformly randomly from the remaining preferences. For agents with near-
zero marginal utility, if they exist, it is best to report schools randomly. Additionally, the

VESKI • PÕDER

23

REB 2016
Vol. 8, No. 1

Tallinn mechanism maximises the expected utility of the agents, if the agents learn what
and how to report, but also runs a large risk of agents not being assigned to schools. The
maximisation of expected utility seems similar to a similar phenomenon in the Boston
mechanism (Abdulkadiroğlu et al., 2011) given that families know how to manipulate and
might be a more general property of manipulable mechanisms.
 Finally, we were interested in whether the Tallinn mechanism hurts families compared
to a strategy-proof stable mechanism such as the Deferred-Acceptance mechanism. We saw
that the number of unassigned students is much higher under the Tallinn mechanism. This
can partially be interpreted as an inefficiency of behaviour due to the mechanism. However,
there is no considerable mean welfare effect – agents optimise their utility maximising
strategies under the Tallinn mechanism.
 We see that we manage to find beneficial strategies under the Tallinn mechanism;
however, due to the non-repetitive nature of the game, real-life learning can be relatively
limited for most of the families. Nevertheless, as a stylised fact about the reporting of
preferences indicated, agents learn not to report the maximum number of preferences,
rather they limit their reported lists. In addition, in the case of exam schools, they tend to
report schools from the top of the list, yet there remains a high probability of local regular
schools also being reported. This could be the “learning effect” – the Tallinn mechanism
prioritises neighbourhood kids by using the cardinal measure of distance.
 In conclusion, it was demonstrated that post-Soviet school-proposing mechanisms use
some properties of the central marketplace that are open to manipulation – such mechanisms
force families to learn strategic behaviour by reporting non-truthful preferences. In this
respect, the Tallinn mechanism is similar to the infamous Boston mechanism. Moreover, it
was shown that both would result in a higher expected utility for the agents compared to the
optimal, stable and strategy-proof Deferred-Acceptance mechanism, which might be the
property of generally manipulable mechanisms.

References

Abdulkadiroğlu, A., Agarwal, N., and Pathak, P.A. 2015. The Welfare Effects of Coordi-
nated Assignment: Evidence from the NYC HS Match. Technical Report May, National
Bureau of Economic Research, Cambridge, MA.

Abdulkadiroğlu, A., Che, Y.-K., and Yasuda, Y. 2011. Resolving Conflicting Preferences in
School Choice: The Boston Mechanism Reconsidered. American Economic Review,
Vol. 101, No. 1, pp. 399–410.

Abdulkadiroğlu, A., Pathak, P. A., and Roth, A. E. 2005a. The New York City High School
Match. American Economic Review, Vol. 95, No. 2, pp. 364–367.

Abdulkadiroğlu, A., Pathak, P. A., and Roth, A. E. 2009. Strategy-proofness versus Effi- ciency
in Matching with Indifferences: Redesigning the NYC High School Match. American
Economic Review, Vol. 99, No. 5, pp. 1954–1978.

Abdulkadiroğlu, A., Pathak, P. A., Roth, A. E., and Sönmez, T. 2005b. The Boston Public
School Match. American Economic Review, Vol. 95, No. 2, pp. 368–371.

Abdulkadiroğlu, A., Pathak, P. A., Roth, A. E., and Sönmez, T. 2006. Changing the Boston
School Choice Mechanism. National Bureau of Economic Research, Working Paper Series,
11965.

24

VESKI • PÕDER
REB 2016

Vol. 8, No. 1

Abdulkadiroğlu, A. and Sönmez, T. 2003. School Choice: A Mechanism Design Approach.
American Economic Review, Vol. 93, No. 3, pp. 729–747.

Arifovic, J. 1994. Genetic Algorithm Learning and the Cobweb Model. Journal of Economic
Dynamics and Control, Vol. 18, No. 1, pp. 3–28.

Arifovic, J. 1996. The Behavior of the Exchange Rate in the Genetic Algorithm and
Experimental Economies. Journal of Political Economy, Vol. 104, No. 3, pp. 510–541.

Aygün, O. and Bo, I. 2013. College Admission with Multidimensional Reserves: The Brazilian
Affirmative Action Case. Available at: https://www2.bc.edu/inacio-bo/AygunBo2013.pdf
(Accessed 02.08.2016).

Balinski, M. and Sönmez, T. 1999. A Tale of Two Mechanisms: Student Placement. Journal
of Economic Theory, Vol. 84, No. 1, pp. 73–94.

Bogomolnaia, A. and Laslier, J.-F. 2007. Euclidean Preferences. Journal of Mathematical
Economics, Vol. 43, No. 2, pp. 87–98.

Chen, S.-H. (Ed.). 2002. Genetic Algorithms and Genetic Programming in Computational
Finance. Springer US, Boston, MA.

Chen, S.-H., Kampouridis, M. and Tsang, E. 2011. Microstructure Dynamics and Agent-
Based Financial Markets. In: Bosse, T., Geller, A., and Jonker, C. M. (Eds.). Multi- Agent-
Based Simulation XI, pp. 121–135. Springer: Berlin Heidelberg.

Chen, S.-H. and Tai, C.-C. 2010. The Agent-Based Double Auction Markets: 15 Years On. In:
Takadama, K., Cioffi-Revilla, C., and Deffuant, G. (Eds.). Simulating Interacting Agents
and Social Phenomena, pp. 119–136. Springer: Japan, Tokyo.

Duffy, J. 2006. Agent-Based Models and Human Subject Experiments. In: Tesfatsion, L.
and Judd, K. L. (Eds.). Handbook of Computational Economics Volume 2 - Agent-Based
Computational Economics, ch.19, pp. 948–1012. North-Holland.

Dur, U.M., Kominers, S.D., Pathak, P.A., and Sönmez, T. 2013. The Demise of Walk Zones
in Boston: Priorities vs. Precedence in School Choice. NBER Working Paper Series
18981.

Erdil, A. and Ergin, H. 2008. What’s the Matter with Tie-Breaking? Improving Efficiency in
School Choice. American Economic Review, Vol. 98, No. 3, pp. 669–689.

Erdil, A. and Kumano, T. 2013. Prioritizing Diversity in School Choice. Available at:
http://www. matching-in-practice.eu/wp-content/uploads/2013/09/Erdil-Prioritizing_
Diversity.pdf (Accessed 02.08.2016).

Ergin, H. and Sönmez, T. 2006. Games of School Choice under Boston Mechanism. Journal
of Public Economics, Vol. 90, pp. 215–237.

Fragiadakis, D. and Troyan, P. 2013. Market Design under Distributional Constraints: Di-
versity in School Choice and Other Applications. Available at: http://tippie.uiowa.edu/
economics/ tow/papers/troyan-spring2014.pdf (Accessed 02.08.2016).

Franek, J. and Kresta, A. 2014. Judgment Scales and Consistency Measure in AHP. Procedia
Economics and Finance, Vol. 12, pp. 164–173.

Gale, D. and Shapley, L.S. 1962. College Admissions and the Stability of Marriage. The
American Mathematical Monthly, Vol. 69, No. 1, pp. 9–15.

Knuth, D.E. 1997. Seminumerical Algorithms. Addison-Wesley, Reading, MA, 3rd edition.
Kominers, S. D. and Sönmez, T. 2013. Designing for Diversity in Matching. Boston College

Working Papers in Economics 806.
McAfee, Preston, R. and Mcmillan, J. 1996. Analyzing Airwaves Auction. The Journal of

Economic Perspectives, Vol. 10, No. 1, pp. 159–175.

VESKI • PÕDER

25

REB 2016
Vol. 8, No. 1

Milgrom, P.R. 2000. Putting Auction Theory to Work: The Simultaneous Ascending
Auction. Journal of Political Economy, Vol. 108, No. 2, pp. 245–272.

Mullin, F.J. and Stalnaker, J.M. 1952. The Matching Plan for Internship Placement: A Report
of the First Year’s Experience. Journal of Medical Education, Vol. 27, No. 3, pp. 193–200.

Pathak, P.A. and Shi, P. 2013. Simulating Alternative School Choice Options in Boston.
Technical report, MIT School Effectiveness and Inequality Initiative.

Pathak, P.A. and Sönmez, T. 2008. Leveling the Playing Field: Sincere and Sophisticated
Players in the Boston Mechanism. American Economic Review, Vol. 98, No. 4, pp. 1636–
1652.

Pathak, P.A. and Sönmez, T. 2013. School Admissions Reform in Chicago and England:
Comparing Mechanisms by their Vulnerability to Manipulation. American Economic
Review, Vol. 103, No. 1, pp. 80–106.

Põder, K. and Lauri, T. 2014. When Public Acts like Private: The Failure of Estonia’s School
Choice Mechanism. European Educational Research Journal, Vol. 13, No. 2, pp. 220–234.

Riechmann, T. 2001. Learning in Economics. Springer-Verlag: New York.
Romero-Medina, A. 1998. Implementation of Stable Solutions in a Restricted Matching

Market. Review of Economic Design, Vol. 3, No. 2, pp. 137–147.
Roth, A.E. 1982. The Economics of Matching: Stability and Incentives. Mathematics of

Operations Research, Vol. 7, No. 4, pp. 617–628.
Roth, A.E. 1984. The Evolution of the Labor Market for Medical Interns and Residents: A Case

Study in Game Theory. The Journal of Political Economy, Vol. 92, No. 6, pp. 991–1016.
Roth, A.E. 2002. The Economist as Engineer: Game Theory, Experimentation, and

Computation as Tools for Design Economics. Econometrica, Vol. 70, No. 4, pp. 1341–1378.
Roth, A.E. 2008. Deferred Acceptance Algorithms: History, Theory, Practice, and Open

Questions. International Journal of Game Theory, Vol. 36, No. 3-4, pp. 537–569.
Simon, D. 2013. Evolutionary Optimization Algorithms: Biologically-inspired and Population-

based Approaches to Computer Intelligence. Wiley.
Ünver, M.U. 2001. Backward Unraveling Over Time: The Evolution of Strategic Behavior

in the Entry Level British Medical Labor Markets. Journal of Economic Dynamics and
Control, Vol. 25, No. 6-7, pp.1039–1080.

Ünver, M.U. 2005. On the Survival of some Unstable Two-Sided Matching Mechanisms.
International Journal of Game Theory, Vol. 33, No. 2, pp. 239–254.

Varian, H. 2006. Intermediate Microeconomics. W. W. Norton & Company, New York,
seventh edition.

Veskioja, T. 2005. Stable Marriage Problem and College Admission. PhD thesis, Tallinn
University of Technology.

Zhu, M. 2014. College Admissions in China: A Mechanism Design Perspective. China
Economic Review, Vol. 30, pp. 618–631.

E Publication 5

Veski, A., Biro, P., Põder, K., and Lauri, T. (2017). (forthcoming) Effi-
ciency and fair access in kindergarten allocation policy design. Journal of
Mechanism and Institution Design

261

Efficiency and fair access in kindergarten allocation
policy design

André Veski
Tallinn University of Technology, andre.veski@ttu.ee

Péter Biró
Hungarian Academy of Sciences, biro.peter@krtk.mta.hu

Kaire Põder
Estonian Business School, kaire.poder@ebs.ee

Triin Lauri
Tallinn University, triin.lauri@tlu.ee

Acknowledgements

This work was partially supported by Norway Grants V653. André Veski acknowledges
support from European Cooperation in Science and Technology (COST) action IC1205 and
Estonian IT Academy scholarship for PhD students. Péter Biró acknowledges support from
the Hungarian Academy of Sciences under its Momentum Programme (LP2016-3/2016) and
the Hungarian Scientific Research Fund, OTKA, Grant No. K108673. We are thankful for
the comment of two anonymous reviewers, especially for the recommendation to include
results with TTC algorithm.

1

Efficiency and fair access in kindergarten allocation
policy design

Abstract

We study kindergarten allocation practices in an Estonian municipality, Harku.
Based on our recommendations, the allocation practices in Harku were redesigned in
2016. The new mechanism provides a child-optimal stable matching, with priorities
primarily based on siblings and distance. We evaluate seven policy designs based on
the 2016 admission data in order to understand efficiency and fairness trade-offs. In ad-
dition to the descriptive data analysis, we conduct a counter-factual policy comparison
and sensitivity analysis using computational experiments with generated preferences.
We fix the allocation mechanism to be the child-oriented Deferred-Acceptance algo-
rithm, but we vary how the priorities are created by the sibling and distance factors.
Different lotteries are included for breaking ties. We find that different ways of consid-
ering the same priority factors can have a significant aggregate effect on the allocation.
Additionally, we survey a dozen special features that can create significant challenges
(both theoretical and practical) in redesigning the allocation mechanism in Estonian
kindergartens, and potentially elsewhere as well.

Introduction

Families have become a much-debated issue in all developed countries and they form the
focal point of debates about “new risks” and the much needed “new policies” for Western
welfare states. The questions of who should care for children, to what extent and for how
long, lie at the centre of conflicts about the values that shape not only policies and strug-
gles around policies, but also individual and family choices (Saraceno, 2011). Moreover, in
Eastern Europe, the Soviet legacy has paved the way for the dominance of publicly provided
care, but in many countries, including the case examined here, there is a shortage of early
childhood care places for children aged 18 months to three years. This shortage of places has
forced municipalities, who are the main providers, to set priorities for the allocation of these
places. Priorities are aimed not only at solving the problem of oversubscription, but also
at implementing social goals. Thus, we conceptualise the process of implementing priorities
accompanied with allocation principles (matching design) as policy design.

2

Policy design entails taking the approach of a matching mechanism design in order to pro-
pose a good way to allocate children to kindergartens. There are process descriptions about
the (re-)design of school choice mechanisms, e.g. in various cities in the US (Pathak and
Sönmez, 2013; Pathak and Shi, 2013; Ergin and Sönmez, 2006) and in Amsterdam (de Haan
et al., 2015). Nevertheless, to the best of our knowledge, our paper is the first to report
such a redesign of a kindergarten allocation mechanism. However, our theoretical founding
relies on the mechanism design literature motivated by related applications, such as school
choice (Abdulkadiroğlu and Sönmez, 2003; Abdulkadiroğlu et al., 2005a), college admissions
(Biró et al., 2010b; Chen et al., 2012) and job assignments (Roth, 2008). Mechanism design
provides methods for allocation under given welfare criteria and selection priorities, but it
does not prescribe the way in which these priorities should be applied. The general pol-
icy considerations for school choice are the allocation of siblings to the same school and
the proximity of the school. Some countries also use some affirmative action measures, e.g.
prioritising children of low socio-economic status. Similar principles are applicable to our
kindergarten policy design case study while aiming for the clear-cut implementation and
operationalisation of policies. The latter not only concerns a clear definition of proximity as
a priority (i.e. defined as a walk-zone (Shi, 2015) or a continuous cardinal measure (West
et al., 2004)) or the ordering of priority classes but also allows for the implementation of
welfare considerations in policy evaluation.

Our welfare considerations aim at two social goals: efficiency and fairness. We define
efficiency as the ability of a policy to meet predefined goals, the utility of families (high rank
in their preferences and siblings in the same kindergarten) accompanied with social goals
such as minimising the travel distance or time to kindergartens. Defining fairness is more
problematic and entails more uncertainty. Our definition of fairness is based on the idea of
equal access. It is operationalised by the probability that the child is assigned to her first
preference.

Our case is a local municipality Harku, in Estonia. Instead of implementing certain
social goals by policy design, the most commonly used priority in Estonian municipalities
is the date of application, while in limited cases, catchment areas are applied to ensure
proximity. Children are ordered on the basis of the application date in a manner similar
to a serial dictatorship mechanism, thus forcing one-sided matchings without enabling the
implementation of affirmative action policies or social goals, such as fairness. In addition,
parental preferences are not considered or these are limited. In the Harku case, the number of
preferences was bounded by three until 2015. The latter restriction implies that preferences
are not revealed truthfully and moreover, the matching has been done manually.

Between 2014 and 2016 as part of an Estonian project we collaborated with the represen-
tatives of the Harku municipality. We monitored their 2015 allocation practice and suggested
a revision which led to a transitory system in 2016. In the 2016 allocation, the standard
student-proposing Deferred-Acceptance mechanism was used under a special priority setting
which is described in detail in Section 1.2. This mechanism is known to be strategy-proof,
and the parents were encourage to submit full preference lists, so we can expect the sub-
mitted applications to be truthful. We made a comparative assessment of policies using the
2016 data. As an input we used preference data collected from 152 families who have the
right to a kindergarten place.

In the assessment, we proposed seven different policies which consist of different metrics

3

of indicating distance (as absolute, relative or binary measures), siblings, quotas; and their
priority order. Ties are broken by assigning random numbers either with a single or with
multiple lotteries. Our research methods are partially inspired by Shi (2015), but we inves-
tigated some novel policies as well. Perhaps the most interesting aspect of these policies is
the way the distance is used in the priorities.

The classical way of creating proximity priorities is the catchment area system, where
the city is partitioned into areas and the students living in an area have the highest priority
in all schools in that area. This simple method can be seen as unfair, as one student can
have a higher priority than another student, even though the actual distance of her location
to the school is greater than for the other child. Therefore instead of catchment areas, most
applications have switched to absolute or relative distance based priorities. The simplest
absolute distance based policy is the walk-zone priority scheme, used in many US cities (e.g.
New York (Abdulkadiroğlu et al., 2005a)), where the children living within a well-defined
walking distance are in the high distance priority group for that school and the ties are
broken by lottery. Strict priorities based on absolute distances are used in Sweden as well
(Andersson, 2017). However, there were also discussions and court cases about the fairness
of such absolute distance based priorities1.

The absolute distance based priority schemes can be unfair for those living far from all
(or most) of the (good) schools, therefore the so-called relative distance based methods are
also commonly used in many applications (e.g. Calsamiglia and Güell (2014); Shi (2015)).
The relative distance priority means that we give the highest priority to all children for their
closest kindergarten, no matter how far that is, and the children will be in the second priority
group in their second closest kindergarten, and so on. A rough version of this rule is to give
high priority for all children in a given number of closest schools.

Barcelona changed its catchment area systems to a relative distance system in 2007. After
the change, students have priority in at least six of their closest schools (Calsamiglia and
Güell, 2014, Section 5.1)2. In Boston, another relative distance policy was proposed recently
by Shi (2015), mainly in order to reach the goal of the city to cut down busing costs.

Note that there are also applications where the distance based priorities are considered
unfair, as they can limit equal access to good schools. The Amsterdam school choice system
(de Haan et al., 2015) does not use any distance based priority, only a pure lottery. In the
Harku case, where kindergartens are of more or less the same quality, the authority was in
favour of using the distance based priorities in order to decrease the overall commuting costs
and also to satisfy the preferences of the parents that were typically for nearby kindergartens.

1In the city of Lund parents have challenged allocation decisions in court based on an alternative option
distance argument. The city used the absolute distance priority in their allocation, but some parents have
found this policy unfair, as they would have to travel 1000m more to their second choice school than to their
first choice school, whilst there was another student who would only need to travel 650m more if allocated
to their second choice school rather than their first choice school. The court accepted this argument and
gave a seat to the appealing student in their first choice school.

2“Before 2007, the city was divided into fixed neighbourhoods. The neighbourhoods varied in size for
semi-public and public schools, but were conceptually the same. For semi-public schools, the neighbourhood
coincided with the administrative district. For public schools, the neighbourhoods were smaller areas within
the administrative district. The new neighbourhoods are based on distance between schools and family
residences. An area (specifically, a minimum convex polygon) around every block of houses in the city was
established to include at least the six closest schools (three public and three semi-public).”

4

Based on the unfairness of the catchment area system described above, we only considered
absolute and relative distance based priority approaches. We explain the distance based
priorities that we studied in more detail in Section 2 with examples.

Besides the distance we also investigated different ways of taking the sibling priorities
into account and also the way the lotteries are conducted in case of ties. The way the
distance and sibling factors are considered has already been studied in the literature (Dur
et al., 2013). The particular solution chosen for the 2016 transitory system is an interesting
rotation priority scheme, which can lead to a well-balanced solution with respect to the
two factors. Regarding the lotteries, we analysed the effects of using a single lottery for all
kindergartens compared to using multiple lotteries (one at each kindergarten), and we have
seen results similar to other research papers (Ashlagi and Nikzad, 2015).

As the second main contribution of our paper, we present a sensitivity analysis of various
metrics of fairness and efficiency of policy designs based on counter-factual preference pro-
files. The policies that provide the best solutions for the current Harku data may not be ideal
for other applications or robust for Harku, where the preferences of the parents are different.
This can be the case in cities, or in other countries with different kindergarten/school qual-
ities, or for applications at different education levels (e.g. primary and secondary schools).
Therefore, we found it important to investigate the effects of the changes in priorities in
the performance of different policies (i.e. different priority structures for the student-optimal
Deferred-Acceptance mechanism). As a novel approach, we studied the fairness (or equal
access) of the allocations measured in the probabilities of getting placed in the first choice
schools.

In general our results indicate that preference structures, more precisely their endogeneity
on proximity, influence the policy design. However, we advocate for a relatively simple policy
that prioritises siblings first and relative distance second. Relative distance gives all children
priority in the closest kindergarten independently of absolute distance from it. This policy
dominates others by our fairness criteria, especially when preferences of the families are
aligned with policy priorities.

We structure our paper as follows. In Section 1 we review the practices and processes of
kindergarten choice of an Estonian municipality, Harku, before the process was redesigned on
the basis of our recommendations in 2016. In Section 2 we define seven alternative policies
and descriptive statistics of our data, including our results from computational experiments.
Finally, we discuss additional mechanism design challenges with some policy recommenda-
tions in Section 3 and give conclusions in Section 4.

1 Matching mechanism design

The design of an allocation mechanism is usually based on a two-sided matching market
model, in this case between 1) families and 2) kindergartens. Participants on both sides
have linear orderings over the participants on the other side. Families have preferences
over kindergartens and they seek to get allocated to their most preferred kindergartens.
Kindergartens have a priority ranking over children. Priorities become important if there are
fewer places available in a particular kindergarten than the number of families who would like
to be allocated to that kindergarten. In those circumstances, kindergartens accept children

5

who are higher on their priority list, which in practice usually means children who live closer
and/or who have a sibling in the kindergarten. Kindergartens do not seek to admit higher
priority children, which is different from some applications of two-sided markets. In college
admissions for example (Gale and Shapley, 1962), both students and colleges seek to get
more preferred matches, therefore they might act strategically in the allocation mechanism.

There are two prominent strategy-proof mechanisms for solving matching problems, the
Deferred-Acceptance (DA) and the Top-Trading Cycles (TTC) mechanisms (Abdulkadiroğlu
and Sönmez, 2003). The DA mechanism guarantees that no preferences and priorities (poli-
cies in our case) are violated, and there is no child who could get a place in a more preferred
kindergarten by priority, so there are no blocking pairs. A matching with no blocking pairs
is called stable. A blocking pair can also be seen as a child having justified envy, since there
is a family that would prefer a kindergarten that either has free places or has accepted a
child with lower priority. These kinds of justified envy situations are not tolerated in most
applications (Pathak and Sönmez, 2013), and are sometimes even prohibited by law. Thus,
stability is a crucial property for most applications.

While there is potentially a number of stable allocations (Knuth, 1997), the child-
proposing DA mechanism that is usually implemented results in the best possible preference
for all families among the stable solutions, and this option also makes it safe for the families
to reveal their true preferences.

The theoretical properties and disadvantages of DA were studied by Haeringer and Klijn
(2009), backed by evidence from laboratory experiments (Calsamiglia et al., 2010) and by
practical applications across the world (Pathak and Sönmez, 2013). In addition to advocating
for DA, the main policy implications of these studies indicate that for efficiency gain, it is
advised to increase the bounds on the number of collected preferences or to abolish the limit
on the number of submitted preferences.

Before its redesign, the application process of the Harku municipality had many design
features, but it was not a transparent system. Families could submit up to three ordered
choices. The application date and the home address were also collected. The application
date was relevant for the allocation, as families with an earlier application date had higher
priority. Therefore, families tended to submit their applications as early as possible, usually
a few weeks after child-birth. The application data typically remained unchanged until the
actual allocation occurred, which could make the originally true preferences out of date (e.g.
it was possible that the family moved to a different place or their older sibling has received a
place in a different kindergarten during the waiting period). The address could be a factor,
as some heads of kindergartens considered it when assigning places. Secondly, a qualifying
condition for a kindergarten place is that the parents have to be registered residents in Harku,
and residency is based on where the local taxes are collected.

Moreover, the matching was done manually using the following procedural rules. First,
the number of vacant places was settled by January of each year, when the allocation process
started. Place offers were made to families by the heads of kindergartens if their kindergarten
was the first choice of the family. Second, if there were more families than places, then
priority was given to the applications with earlier registration dates, although proximity or
siblings could also be occasionally relevant. Third, if an offer was accepted, the child became
assigned to the kindergarten, otherwise that place was offered to the subsequent family on
the waiting list.

6

Table 1: Redesign of Harku mechanism

2015 2016
Application procedure

Applications are collected after the
birth of the child due to prioritising ac-
cording to application dates

Applications are collected from 1 Jan-
uary until 1 February for allocating
places from 1 September of the same
year

Limited preference lists

Limited to three kindergartens
List all kindergartens they are willing
to attend (no limit)

Priorities (policies)

Not clearly defined
See Section 2.2 for policy design alter-
natives

Matching mechanism
Decentralised mechanism which has
some properties of Serial dictatorship
and Boston (Immediate-Acceptance)

Deferred-Acceptance

In the case of unassigned children, the procedural rules where complicated and discre-
tionary. Generally the heads of the kindergarten communicated with each other to find a
place for the children who remained unassigned. In the case of families who ordered popular
kindergarten on the top of their list and remained unassigned in the first round, second or
third choice was considered, although these could already be full. If that was the case, the
families with an earlier application date would be rejected from their second choice because
the children already assigned there had listed that kindergarten as their first preference,
irrespective of their application dates. Thus, some children were allocated to a less preferred
kindergarten, simply because of how the family ordered their preferences. This is a well-
known property of the Immediate-Acceptance mechanism (e.g. Abdulkadiroğlu and Sönmez,
2003) and the procedure that had been used in Harku until 2015 was very similar to this.

1.1 Building a mechanism for kindergarten seat allocation

Our redesign of Harku kindergarten allocation mechanism inspired by literature has four
main areas as described in Table 1. The application procedure before 2016 which was
initiated by collecting preferences had several drawbacks. First, since parents could get
higher priority if they applied earlier, they tended to apply soon after the birth of the
child. However, during the subsequent three years, the preferences of the families could have
changed. That was usually not reflected in the application data, thus resulting in a high
number of cancellations. Second, families could only list their top three choices. Limited
preference not only created a large number of unassigned children, but also manipulation
with the revelation of preferences.

Our design changed the data collection procedure and the number of preferences collected.

7

Families make application in the matching platform3 during monthly period six months
before the service delivery (1. September) and list all their preferences. Giving up application
date as a priority will be an imminent result of the procedural amendments.

Finally, the central allocation mechanism applied until 2016 was not transparent, the
priorities were not clearly defined or adhered to by the heads of the kindergartens. The
first priority of the application date was sometimes violated. Children with siblings were
usually considered to have higher priority, but not always. Our design introduced clearly
defined priority metrics and a centralised allocation system that ensures that the criteria
are always followed. Moreover, instead of unstable and manipulable Immediate-Acceptance
mechanism we proposed the child-proposing DA. This is a standard method for school choice
(Abdulkadiroğlu and Sönmez, 2003), which eliminates justified envy, and gives incentive for
the families to state their true preferences.

1.2 Particularities of the 2016 system

Before the final implementation of our platform-based matching design, there was a transi-
tory system in place in Harku in 2016 that partially applied our design recommendations,
but experimented with priorities. Families were asked to rank all seven kindergartens. Addi-
tionally, the home address, application date, status of siblings and the child’s birth date were
collected. The allocation process was designed on the basis of the DA mechanism with slots
(Dur et al., 2013) while policy transformation regarding fixing priorities was more complex.
There were four types of priorities that are defined per position as follows, in the order of
precedence:

1. siblings, distance, age, application date

2. distance, age, application date, siblings

3. application date, siblings, distance, age

4. age, application date, siblings, distance

5. siblings, distance, age, application date

6. distance, age, application date, siblings

...

The positions are considered in order, with families first applying to the first position,
then the second position, etc. This can also be thought of as each kindergarten being split
into a number of seats, with each seat potentially having a unique priority criteria. Then,
the preferences of the families are modified so that within each kindergarten, they rank
the position with the higher precedence higher. If the number of available places is not
exactly divisible by four, then some type of priorities might have more positions available
than others.

3https://www.haldo.ee/

8

The main reason for the complicated policy design or for considering the four types
of priorities rotationally was backed by the argument of equal treatment. Granting equal
opportunity to all ”types of families” (the ones that have siblings; those living nearby; early
applicants; and families with an older child) was the preference of the local municipality. In
future allocations, the application date will not be used anymore. It was used here as some
families still had the expectation of being allocated by the application date.

The precedence order of priority classes matters in the allocation procedure, as shown by
Dur et al. (2013) by demonstrating that a simple priority scheme might be discriminating
for some groups. For instance, let us assume there are five seats with siblings and distance
priority and a further five seats with only distance priority. There are more than five children
with a sibling and in total more than ten children. If for the first five positions we would
consider children with siblings and then by distance, this would be disadvantageous for
children with siblings compared to first only considering distance and then siblings as well
as distance. In the latter case, some children with siblings might already be allocated by
distance alone, so other children with siblings have lower competition and a better chance of
getting a desired place. On the other hand, it might occur that some children living closer
have an unfair disadvantage. The aim of the rotating scheme is to balance these two effects.
That leads us to the equal treatment issues related to policy design.

2 Policy design

2.1 Efficiency and fairness

In mechanism design the goals are usually related to designing an allocation method that
maximises a form of efficiency, while not violating some constraint(s). In the matching
domain, the usual criterion is selecting a Pareto optimal matching among a set of stable
matchings. In a public resource two-sided matching setting, e.g. school seats, usually in fact
two selections are made: first, the priorities of applicants and second, the mechanism. In a
school choice setting, the priorities are often based on siblings and distance, although there
are other alternatives (Matching in Practice, 2016). However, in designing the allocation
mechanism these priorities are usually treated as a given.

When evaluating the allocation methods we concentrate on two main criteria: efficiency
and fairness. Efficiency characterises the level at which we, as a designer, can satisfy the
preferences of the applicants. Thus, we look at the average allocated preference. We also
include the percentage of applicants receiving their first preference as this is often the case
and the average might not always be a good indicator.

In addition to efficiency and stability (lack of envy), our policy design is driven by equality
concerns. In the literature on distributive justice, discussion on fairness (fair access in our
case) is often accompanied by discussion on the principles of affirmative action, i.e. the
Rawlsian difference principle (Rawls, 1971). In our case, fair access is defined as the chance
for the family to access their most preferred kindergarten. Moreover, we include in our
design some positive discrimination, or controlled choice, through policies such as prioritising
siblings.

Fair access is essentially different from the efficiency metrics for the priorities of local

9

municipalities and the preferences of families. The goal of fair access is to provide an oppor-
tunity for everyone to get into their most preferred kindergarten. As some families might live
far away from all kindergartens (see Appendix C), they would always be low on the priority
list for any kindergarten. We measure fair access as the proportion of families placed in
their most preferred kindergarten on two levels, at least 10% chance and 50% chance. This
is similar to access to quality in (Shi, 2015) where quality, in addition to being ranked high,
contains an objective quality metric. Since there is no quality ranking for a kindergarten
in our case and only a small number of kindergartens we look at the probability of being
allocated to the first choice. Since not all policy designs use lotteries, some will be inherently
unfair in terms of fair access.

The mechanism also allows the local authorities to have social objectives, which are
usually, but not always aligned with the preferences of the parents. The two most prominent
goals are

• having siblings in the same kindergarten, and

• placing children in a kindergarten near their home.

Prioritisation of proximity and siblings is also recommended by the regulations responsi-
ble for the allocation of kindergarten places (Preschool Child Care Institutions Act, 2014).
While proximity and siblings are common practice in the case of school and kindergarten
choice design, often favoured as the means to sustain community cohesively and avoid un-
reasonable transportation costs (see Shi, 2015, for instance), this practice may cause various
concerns. The proximity principle may lead to problems in segregated areas, where it may
result in the concentration of children from a similar socio-economic background into the
same kindergartens. Further social objectives could be the prioritisation of disadvantaged
families or children with special needs, but there was no access to this kind of information
in the data, so those goals were disregarded in this study. However, the main goal is still to
provide families with a place in their most preferred kindergartens.

2.2 Operationalisation of policy designs

A short list of social objectives indicated in the previous section does not mean that policy
designs are limited to two alternatives, as the priority structures for siblings and proximity
have many variants. Children with siblings might always have priority over others, or might
only be prioritised over families living further away. Proximity can also be considered in
multiple different ways, such as a walk-zone or a catchment area or a geographical distance.

A simple way to consider geographic aspects is to define catchment areas for each kinder-
garten, and prioritise the children living in the catchment area where the kindergarten is
located. The drawback of this method is that these priorities may not reflect the personalised
distances, as a kindergarten might be relatively far from an address in the same area, whilst
another kindergarten in a different area can actually be nearby. Therefore, it may be more
appropriate to use personalised distances. We can use continuous (real) distances or discre-
tise them somehow, for instance giving priority to a kindergarten within a 10-minute walking
distance, or giving priority to the closest, or several closest kindergartens. Another option
is to give high priority to a child in a number of nearby kindergartens. A special version of

10

the latter so-called menu system has been evaluated and used in Boston school choice (Shi,
2015). Below we specify the distance-based priorities that we used in our policies.

• absolute: Strict priorities based on the personalised absolute distances between the
child’s location and the school, measured in walk time or kilometres.

• walk-zone: Coarse priorities based on the above-described absolute distance. A child is
in the high priority group for a school if she lives within a 10-minute walking distance
to this school.

• relative: Every child is in the highest distance-based priority group in her closest school,
she is in the second highest priority group in the second closest school, and so on.

• 3 closest: A binary variant of the above-defined relative distance policy, where every
child is in the high priority group of a school, if this school is among the three closest
schools for this child.

When we consider the children in walk-zones to have a higher priority, followed by children
with siblings, the following priority groups are obtained: 1. siblings in walk-zones, 2. children
in walk-zones, 3. siblings, 4. the rest. Siblings could also be considered to have a higher
priority, which would result in the priority groups: 1. siblings in walk-zones, 2. siblings,
3. children in walk-zones, 4. the rest. This simple classification is used in many US cities,
such as New York (Abdulkadiroğlu et al., 2005a) and Boston (Abdulkadiroğlu et al., 2005b),
together with a randomised lottery for breaking ties. The lottery can also be conducted in
two ways, either as a single lottery which is used in all kindergartens, or as multiple lotteries,
one for each kindergarten. The typical choice, used in most US school choice programmes
and also in Irish higher education admissions (Chen, 2012), is the single lottery. We will
investigate both in our computational experiments. This question is discussed further by
Ashlagi and Nikzad (2015) and Pathak and Sethuraman (2011).

If it is considered undesirable that a high proportion of children get admitted by sibling
priority, then one option is to set a quota for siblings, for example 50% of the places. In this
case, there is high priority for siblings for only some proportion of the places available, and
the remaining places are prioritised by distance only. In such a setting, how the allocation
is implemented is crucial. It can be done by allocating the places for siblings first and then
the remaining seats or in reverse. Dur et al. (2013) showed that the reverse approach can
benefit children with siblings, and Hafalir et al. (2013) showed that reserving places for a
certain minority results in a better allocation for the minority than limiting the quota for
the majority does. Under the latter policy, both groups (minority and majority) could be
worse off. We evaluate policy design by the reservation of places for siblings or for families
living nearby. In Harku, only about 20% of children have a sibling, so 20% of the places
were set to have a sibling priority.

The Deferred-Acceptance algorithm can be slightly modified to accommodate for reserves
and quotas. The priority quotas can be considered as separate kindergartens. In this variant,
the child is first placed in a quota group high in the precedence order, and if rejected, the child
is then placed lower, etc. Thus, each child will be placed in the highest possible precedence
quota group.

11

Table 2: Summary of policies (priority order in parentheses)

Policy Distance (D) Siblings (S) Lottery Quotas (Precedence)

DA1 absolute (2) (1) no no
DA2 walk-zone (2) (1) (3) no
DA3 walk-zone (1) (2) (3) no
DA4 3 closest (2) (1) (3) no
DA5 absolute (2) (1) no [80%, 20%] ([D, S+D])
DA6 absolute (2) (1) no [20%, 80%] ([S+D, D])
DA7 relative (2) (1) (3) no

In this study, in order to explore the described aspects, we settled on seven priority
policies (summarised in Table 2) for evaluation:

DA1. Children with siblings always have the highest priority and children living closer have
higher priority. Priority classes would be considered in the order: 1) siblings; 2) walking
distance.

DA2. Children with siblings always have the highest priority, then children in the walk-zone
have higher priority. The walk-zone is defined as a 10-minute walking distance from
home. Additional ties are ordered by a random lottery for all kindergartens. The
order of priority classes is: 1) siblings + walk-zone; 2) siblings; 3) walk-zone; 4) the
remainder.

DA3. Children in the walk-zone always have the highest priority, then children with siblings
have higher priority. Additional ties are ordered by a random lottery for all kinder-
gartens. The order of priority classes is: 1) siblings + walk-zone; 2) walk-zone; 3)
siblings; 4) the remainder.

DA4. Children with siblings always have the highest priority, and children have higher prior-
ity for the three closest kindergartens. Additional ties are ordered by a random lottery
for all kindergartens. Priority precedence order: 1) siblings + one-of-three-closest; 2)
siblings; 3) one-of-three-closest; 4) the remainder.

DA5. Children with siblings have the highest priority for the reserved 20% of places, otherwise
priority is by distance. Precedence order: 1) by distance up to 80%; 2) children with
siblings + distance up to 20%; 3) remaining places, if any, by distance.

DA6. Children with siblings have the highest priority for the reserved 20% of places, otherwise
priority is by distance. Precedence order: 1) children with siblings + distance up to
20%; 2) remaining places, if any, by distance.

DA7. Children with siblings always have the highest priority, and children have higher pri-
ority in the closest kindergarten, second highest in the second-closest, etc. Additional
ties are ordered by a random lottery for all kindergartens. Priority precedence order:
1) siblings; 2) closest-number.

12

To demonstrate the effect of policies we construct a simple example. Let us assume we
have four children C = {c1, c2, c3, c4} and four kindergartens K = {k1, k2, k3, k4}. In Table 3
we show the distances between homes and kindergartens. We have no children with siblings
in this example.

Table 3: Distances between homes and kindergartens (km-s)

km k1 k2 k3 k4

c1 .7 1.2 1.0 1.7
c2 .4 .6 .3 .7
c3 .9 .5 .4 .3
c4 .8 .3 .9 1.0

Assuming that walk-zone distance is ≤ .6 km, the resulting priorities are in Table 4. We
can observe that with absolute distance or walk-zone the child c1 would not have a high
priority in any kindergarten. However with the 3-closest policy, there is at least some chance
of having the highest priority in some kindergarten and with relative distance, each child has
the highest priority in at least one kindergarten. While this is not always guaranteed with
relative distance, the lottery has lower impact compared to the 3-closest policy.

Table 4: Distance priorities

absolute (DA1) walk-zone (DA2, DA3) 3-closest (DA4) relative (DA7)

k1 c2 ≺ c1 ≺ c4 ≺ c3 c2 ≺ {c1, c3, c4} {c1, c2, c4} ≺ c3 c1 ≺ {c2, c4} ≺ c3
k2 c4 ≺ c3 ≺ c2 ≺ c1 {c2, c3, c4} ≺ c1 {c1, c2, c3, c4} c4 ≺ {c1, c2, c3}
k3 c2 ≺ c3 ≺ c4 ≺ c1 {c2, c3} ≺ {c1, c4} {c1, c2, c3, c4} c2 ≺ {c1, c3} ≺ c4
k4 c3 ≺ c2 ≺ c4 ≺ c1 c3 ≺ {c1, c2, c3} c3 ≺ {c1, c2, c4} c3 ≺ {c1, c2, c4}

2.3 Data and initial policy design comparison

From a total of 152 families, 151 ranked all seven kindergartens and only one family submitted
a single kindergarten as their preference. Table 5 shows the number of available places in
each kindergarten. Also 37, about 24% of, children have a sibling in one of the kindergartens.

Table 6 compares the allocations over all the policies with the submitted preferences.
The listed Harku allocation does not exclude those few families who declined their assigned
place. However, many (115, i.e. 76%) of the families were allocated to their most preferred
kindergarten. Since most families ranked all kindergartens and there are more places than
children, no children remained unassigned.

For policies that included lotteries, we computed averages over 20 lotteries. In the paren-
theses we show the standard error over the lotteries. In addition, we compared policies using
a single (S) lottery for all kindergartens or multiple (M) lotteries, one for each kindergarten.

13

Table 5: Harku allocation

Kindergarten Number of places

A 20
B 20
C 34
D 18
E 20
F 38
G 5

Total 155

By using a simpler policy such as the DA1, we saw that there are fewer families receiving
a place in their first choice kindergarten4 than with the transitory Harku priority system.
Moreover, two children (about 5%) are not allocated to the same kindergarten as their
siblings with the transitory rule, but with most other policies all siblings end up in the same
kindergarten. The only exception to this is DA3, which has siblings as a second priority over
walk-zone, and on average also allocated 95% of siblings in the same kindergarten, but fewer
children to their first preferences.

It seems that the transitory policy of Harku invoked the so-called vacancy chains (Blum
et al., 1997), where at the expense of one child with a sibling several others could obtain
better places along an augmenting path. In particular, by denying places for two children in
the same kindergarten as their sibling, around seven more families could obtain their first
choices. This leads to an interesting trade-off between the goals of satisfying the sibling
priority or granting the first choice of slightly more parents.

In 2016, the allocations based on policies DA5 and DA6 were exactly the same. This
indicates that the gain in allocating more children to their first preference with Harku’s policy
is not due to allocating children to a closer kindergarten, but due to application date and age
priorities. Therefore, if these two criteria will not be used in future policies, we expect that
the rotation scheme based only on siblings and proximity will provide allocations similar to
DA1, DA5 and DA6, assuming that the proportion of children and seats is similar.

2.4 Policy sensitivity to preferences

When comparing policies, one may wonder how sensitive the results are to changes in the
preferences of parents. This can also be important when applying our policy recommenda-
tions in other applications. In kindergarten allocation, and sometimes also in school choice,
when the kindergartens are more or less of the same quality, the most important factor in-
fluencing the preferences of parents is the location. Therefore, we conducted a comparative
study wherein the intensities of this factor in the preferences of parents is varied. We evalu-
ated the efficiency and fairness of the alternative policies accordingly. For the generation of

4A more detailed allocated preference data is available in appendix B

14

Table 6: Year 2016 comparison of policies using reported preferences

Policy
Mean
prefer-
ence

First Unassigned
Mean

distance
(km)

With
siblings

Harku 1.68 115 0 4.24 95 %

DA 1 1.76 110 0 4.26 100 %

DA 2 (M)a
1.85

(0.01)
98.75
(0.61)

0
4.59

(0.02)
100 %

(0.0 %)

DA 2 (S)
1.72

(0.01)
108.05
(0.61)

0
4.44

(0.01)
100 %

(0.0 %)

DA 3 (M)
1.83

(0.01)
98.30
(0.79)

0
4.51

(0.02)
95 %

(0.25 %)

DA 3 (S)
1.72

(0.01)
107.75
(0.38)

0
4.45

(0.02)
96 %

(0.3 %)

DA 4 (M)
1.91

(0.01)
89.25
(1.06)

0
4.53

(0.02)
100 %

(0.0 %)

DA 4 (S)
1.75

(0.01)
104.85
(0.7)

0
4.49

(0.01)
100 %

(0.0 %)
DA 5 1.76 110 0 4.26 100 %
DA 6 1.76 110 0 4.26 100 %

DA 7 (M)
1.78

(0.01)
107.60
(0.47)

0
4.30

(0.01)
100 %

(0.0 %)

DA 7 (S)
1.76

(0.01)
107.75
(0.47)

0
4.31

(0.01)
100 %

(0.0 %)

aFor policies with lotteries, (M) indicates multiple tie-breaking lotteries and (S) single. The
standard errors over lotteries are in parentheses.

15

preferences, we use the locations and the information on the siblings from the 2016 prefer-
ence data. The detailed description of how we generated the preferences of parents can be
found in the Appendix A.

We characterise preference profiles by the conditional probability of a family ranking a
closer kindergarten higher (Pr(ri � rj | di < dj), i 6= j) and ranking a kindergarten with a
sibling higher (Pr(ri � rj | si > sj), i 6= j). Where ri is rank of kindergarten i, di is distance
to kindergarten i and si is one when there is a sibling and zero otherwise. In the collected
2016 preference data, the Pr(ri � rj | di < dj) = 0.81 and the Pr(ri � rj | si > sj) = 1.0,
i 6= j.

The main dimensions of the evaluation are the preference rank achieved in an allocation
as well as the effect of the average distance from kindergartens and the share of siblings in
the same kindergarten.

For statistical comparison, we generated twenty preference profiles of each of the param-
eter values. A total of 200 preference profiles were generated. For each policy that has a
lottery, we run twenty different randomised lotteries for each instance. As we saw in Table 6
the standard errors over the twenty lotteries are small. All the figures of the results show
the smoothed5 results of the ten allocations over policies with a 95% confidence bound. For
policies with lotteries, there are results with a single (S) and multiple (M) lotteries over
kindergartens.

Each year the number of available kindergarten positions varies. However, on average
about 20 places should be available in each kindergarten each year, as one group of children
leaves for school. Occasionally, there might be more or fewer places. In our experiments, we
set the number of available places to 20 in each kindergarten. However, this creates additional
competition and the resulting matched ranks will be lower (see Ashlagi et al., 2013a,b) in
these experiments than in the actual data in Table 6. Additionally, in our interpretations we
implicitly assume the effect of the competition will be similar for all the policies. We discuss
here only the Deferred-Acceptance based results6. In addition we removed policies DA5 and
DA6 from the chart, as these matchings were usually almost the same as DA1.

Figures 1a and 1b demonstrate the average preferences obtained and the proportion
of families getting their first choices for all policies. Policy DA7 is the most sensitive to
changes in the preferences of families. When preferences are strictly based on distance with
conditional probability of Pr(ri � rj | di < dj)→ 1.0, it produces one of the highest average
rank score, one similar to other policies such as DA1, DA5 and DA6. Surprisingly, when
the preferences of families are close to random, with conditional probability of Pr(ri � rj |
di < dj)→ 0.5, then DA7 (S) is the policy that has one of the lowest average ranks and the
lowest number of families with a first preference. Policies that do worse are the ones using
multiple lotteries, one per kindergarten. In addition, the difference of having a single or
multiple lotteries for kindergartens is not very significant for DA7, most likely due to lower
usage of tie-breaking in this policy compared to others with a lottery.

At face value, DA7 seems to be the most egalitarian policy as every family has the highest
priority in at least one of the kindergartens. However, it seems that families that do not

5smoothed with local polynomial regression
6In Appendix D we also provide for comparison results based on Top Trading Cycles algorithms, as

defined by Abdulkadiroğlu and Sönmez (2003).

16

prefer to be in the closest kindergarten tend to be rejected more often from their preferred
kindergartens further away where they have a lower priority. As the matched rank drops
more in DA7 than other policies, when Pr(ri � rj | di < dj) → 0.5. Since the preferences
and priorities are not aligned, the probability of the family being rejected in some round of
the process is higher. The probability of being rejected at a certain point seems to be smaller
for other policies.

M
ulitple T

B
S

ingle/N
o T

B

60% 70% 80% 90%

2.1

2.4

2.7

3.0

2.1

2.4

2.7

3.0

Conditional probability of distance in preferences (Pr(r1 < r2|d1 < d2))

A
ve

ra
ge

 p
re

fe
re

nc
e

Policy

DA 1

DA 2 (M)

DA 2 (S)

DA 3 (M)

DA 3 (S)

DA 4 (M)

DA 4 (S)

DA 7 (M)

DA 7 (S)

(a) Average preference

M
ulitple T

B
S

ingle/N
o T

B

60% 70% 80% 90%

30%

40%

50%

60%

30%

40%

50%

60%

Conditional probability of siblings in preferences (Pr(r1 < r2|s1 > s2))

C
hi

dr
en

 in
 fi

rs
t p

re
fe

re
nc

e

Policy

DA 1

DA 2 (M)

DA 2 (S)

DA 3 (M)

DA 3 (S)

DA 4 (M)

DA 4 (S)

DA 7 (M)

DA 7 (S)

(b) Proportion with first preference

Figure 1: Conditional probability of distance

In terms of average matched preference rank, the policies DA2 and DA3 are almost
indistinguishable from each other, most likely because there are too few siblings in this data.
Nevertheless, it is always better to use a single rather than multiple tie-breaking lotteries
for both of these policies. The average preference achieved is always better with a single
lottery and also there are more families with their first preference (Figure 1b). Policies with
a single lottery, such as DA2 (S), DA3 (S) and DA4 (S) – with the exception of DA7 (S) –
are significantly better for families in most situations. Only when Pr(ri � rj | di < dj) > 0.9,
did policies DA1, DA5 and DA6, which use absolute distance, turn out to be better than
the single lottery policies.

The policies DA1 and DA6 always produce exactly the same matching, DA5 is occasion-
ally slightly different (for about 2-6 children), but the aggregate results are still very similar.
This is most likely because the selected reserve of 20 % is close to the percentage of siblings
in the data.

Interestingly, most policies, with the exception of DA7, are quite robust to changes in
preferences. The same proportion of families almost always receive their first preferences,
about 50% to 60% with DA2, DA3 and DA4 and 60% to 70% with DA1, DA5 and DA6.
There is a slight increase in the average preference when preferences become determined by
distance. With DA7, the proportion varies widely between 40% and 70%, and families fare

17

better when preferences are aligned with distance.

M
ulitple T

B
S

ingle/N
o T

B

60% 70% 80% 90%

4

5

6

4

5

6

Conditional probability of distance in preferences (Pr(r1 < r2|d1 < d2))

A
ve

ra
ge

 d
is

ta
nc

e
fr

om
 k

in
de

rg
ar

te
n

(k
m

)

Policy

DA 1

DA 2 (M)

DA 2 (S)

DA 3 (M)

DA 3 (S)

DA 4 (M)

DA 4 (S)

DA 7 (M)

DA 7 (S)

(a)

M
ulitple T

B
S

ingle/N
o T

B

50% 60% 70% 80% 90%

40%

50%

60%

70%

80%

40%

50%

60%

70%

80%

Conditional probability of siblings in preferences (Pr(r1 < r2|s1 > s2))

S
am

e
ki

nd
er

ga
rt

en
 a

s
si

bl
in

g

Policy

DA 1

DA 2 (M)

DA 2 (S)

DA 3 (M)

DA 3 (S)

DA 4 (M)

DA 4 (S)

DA 7 (M)

DA 7 (S)

(b)

Figure 2: Average distance and conditional probability of distance in preferences

Figure 2a shows the average distance between families and kindergartens. The average
distance is smaller for all policies when the preferences of families are determined more by
distance. Expectedly, the smallest average distance is always with DA1 (including DA5 and
DA6), as these policies are aimed to minimise distance. The average distance is the largest
with DA2 and DA3, policies based on walk-zones, probably caused by the randomness in
the priorities of kindergartens. Furthermore, these policies have a slightly lower average
distance with a single tie-breaking lottery, when preferences are correlated with distance.
On the other hand often, if preferences are random, the multiple tie-breaking lotteries have
a lower average distance than single lotteries. A small improvement of average distance
in policies with lotteries is obtained by not using discretisation by walk-zones, and instead
having a higher priority for a fixed number of kindergartens, as in DA4.

With random preferences, there is a trade-off between achieved preference and average
distance in the results obtained by DA7 (M) and, DA2 (M) and DA3 (M), where DA4 (M)
is at the middle point among these policies in this aspect. Policy DA7 always achieves the
lowest average distance among the lottery policies, others produce better matched ranking.
When preferences are more correlated with distance, then DA7 is better by both average
preference and distance.

Figure 2b depicts the probability of children being in the same kindergarten as their
siblings. When the preferences of families are random with respect to siblings, most policies
place about 40% to 60% of siblings in the same kindergarten as their siblings. When fam-
ilies prefer closer kindergartens, then more siblings end up in the same place. This higher
percentage is most likely due to siblings already being in a nearby kindergarten. We have
also added the 45 degree line, indicating that policies that are below this have some children,

18

who would prefer a kindergarten with sibling, assigned to a different kindergarten. Multiple
lottery policies seem to be better at placing children in the same kindergarten with siblings.

M
ulitple T

B
S

ingle/N
o T

B

60% 70% 80% 90%

40%

60%

80%

100%

40%

60%

80%

100%

Conditional probability of distance in preferences (Pr(r1 < r2|d1 < d2))

Fa
ir

ne
ss

 o
f a

cc
es

s
(1

0%
 c

ha
nc

e
at

 fi
rs

t p
re

f.)

Policy

DA 1

DA 2 (M)

DA 2 (S)

DA 3 (M)

DA 3 (S)

DA 4 (M)

DA 4 (S)

DA 7 (M)

DA 7 (S)

(a)

M
ulitple T

B
S

ingle/N
o T

B

60% 70% 80% 90%

20%

40%

60%

20%

40%

60%

Conditional probability of distance in preferences (Pr(r1 < r2|d1 < d2))

Fa
ir

ne
ss

 o
f a

cc
es

s
(5

0%
 c

ha
nc

e
at

 fi
rs

t p
re

f.)

Policy

DA 1

DA 2 (M)

DA 2 (S)

DA 3 (M)

DA 3 (S)

DA 4 (M)

DA 4 (S)

DA 7 (M)

DA 7 (S)

(b)

Figure 3: Fairness of access

In Figures 3a and 3b, the probability of a child being matched to the family’s first
preference in at least one lottery is measured. This is a measure for fairness, or fair (equal)
access to kindergartens, which is similar to the measure of access to quality used by Shi
(2015). We have plotted the fairness of access for policies DA1, DA5 and DA6, even though
there is no sensible interpretation, since there are no lotteries. However, these policies are
still useful for comparison.

With the lottery policies DA2, DA3 and DA4, with both single and multiple lotteries,
about 60% to 95% of families have about a 10% chance of a place in a kindergarten that is
their first preference. The DA4 (S) is the best performer when preferences are aligned with
distance and DA2 (S) and DA3 (S) when preferences only have a kindergarten effect. Policy
DA7 (S) comes close to DA4 (S) only when preferences are almost perfectly aligned with
distance.

However, when we make our fairness notion slightly stronger, i.e. there has to be at
least a 50% chance of a place in the family’s first choice kindergarten, the proportion of
families achieving this drops to only about 40%. This is even lower than with deterministic
policies like DA1. Therefore, it seems that with lotteries we can give some families a small
10%, chance of getting their first preference, but as a result, some families lose their first
preferences. With a larger chance, 50%, there are more families losing their first preference
than those gaining.

In terms of trade-offs, the policy DA4 (S) is better on fairness and average matched
preference, but worse on average matched distance. DA1 and similar policies do better
on average matched rank and distance, however they fare worse on fairness, i.e. families

19

living far away from all kindergartens have a smaller chance of a preferred match. When
preferences are not entirely determined by distance, then these two (DA1 and DA4) are the
best options to choose from. However, with distance-based preferences, DA7 can prove to be
an improvement. In this case with DA7, the fairness is almost as good as with DA4, average
distance was a significant improvement over DA4, and average allocated rank very close to
DA1.

3 Further issues

We identify a dozen additional special features that should be further considered in the
(re-)design of the mechanism in Harku. However, many of these features may pose significant
challenges and require additional research. We describe these issues and give recommenda-
tions for possible adjustments in the allocation mechanism.

Children with special needs. In larger cities, there are schools for children with special
needs, but in smaller municipalities these pupils are mixed with others. The standard prac-
tice is for kindergartens to reserve places for children with special needs who require more
attention and are thus considered to take up the space of three children. Usually, it is not
known beforehand if there will be any such cases and the special needs may only become
evident later. However, in most cases the extra places remain free and can be subsequently
allocated to other children. Obviously, this has some effect on the fairness of the allocation.

A possible solution would be to have this data available before allocation and to take it
into account in the allocation process. However, evaluating all of the applicants in advance
could be very costly compared to the extra efforts needed for the reallocation process and
the potential issues arising from the extended solution. It would be helpful if the parents of
children that are likely to need special treatment were to register for evaluation. It should
then be guaranteed that their chances of admission to their preferred kindergartens would
not be worsened, perhaps by giving priority for a number of places in each kindergarten to
such children.

Allocation in multiple rounds. Harku currently allocates students in multiple rounds,
since two extra places could arise in each kindergarten to which no student with special
needs is admitted. The proportion of disadvantaged families is about 10% (Ministry of
Social Affairs, 2015) and children with special needs make up about 3% (Paat et al., 2011).
This question is similar to the question of the design of two-stage allocation mechanisms (Dur
and Kesten, 2014) and also to the design of appeal processes (Dur and Kesten, 2015). The
first option is to allocate the extra places exclusively among the unmatched children. This is
a simple method with no reallocation of children, but it can be seen as unfair to families who
are allocated seats in the main round and would prefer an extra place in a kindergarten where
they have higher priority than the unallocated children who get those extra places in the
second round. The final solution could cause justified envy for the families. In addition, the
parents might also act strategically in the main round, perhaps by not accepting an offer from
the kindergarten listed second, especially if they have information that they are first in the
waiting list and the creation of extra places is very likely. Therefore, it appears reasonable to

20

let everyone apply for the extra places, as is currently done in Harku. However, if the process
is not centralised, then those who were assigned a place in the first round but now get a better
match, would consequently create new available places. Even if this decentralised process
could be continued until a stable solution was reached, this proposal-rejection chain would
result in a stable matching that is the worst possible stable matching for the reallocated
children, as proved by Blum et al. (1997). Therefore, this process would not be strategy-
proof for the parents either. Hence, the only possible solution that is strategy-proof for
the parents and avoids justified envy is a centralised second round, where parents can re-
apply to all kindergartens with the option of keeping their assignment if they wish to do so
(technically this is achieved by putting the children already assigned to the kindergarten at
the top of the kindergartens’ rankings). Yet, this solution may affect a significant number
of children, and in theory possibly all of them, which could result in high reallocation costs.
These costs would be accepted by the parents, since they would always have the option of
not changing their assignment, but could be seen as undesired by the local council and the
kindergartens.

Children with existing places. The parents of some children may request a transfer.
This is especially relevant for children attending a class for 2-3-year olds who would like to
go to a different kindergarten for the 3-6-year period, since the classes for children aged 2-3
may not be available in the kindergartens preferred by the families. It is therefore a question
of whether the reallocation of these children should be conducted as part of the yearly
matching round. If so, these children should be guaranteed to get at least as good a seat
in the reallocation, i.e. they should have the highest priority in their current kindergarten.
This question has been studied in the context of Danish daycare allocation (Kennes et al.,
2014), and also for the reallocation of French teachers (Combe et al., 2015).

Overlapping admission processes. Some parents may be registered in more than one
municipality, so they are able to apply for a place for their child in two systems, for example
in Harku and in neighbouring Tallinn. This can lead to inefficiencies due to cancellations.
Similar problems arise in some US cities where state schools and charter schools hold their
admissions separately. Furthermore, the same phenomenon has also appeared in European
college admission programmes, where an increasing number of students are applying for
programmes in several countries, and this disturbs the national matching schemes.

Outside options with subsidies. Somewhat related to the previous issue is the fact
that private kindergartens operate in Estonia, and some parents also consider the option of
home schooling. However, if a municipality cannot provide enough kindergarten places for
its resident population, in some cases it may subsidise parents who choose an alternative
option. In Harku, the local council financially supports parents who do not receive a place
in a kindergarten, but the council may withdraw their support if the parents do not accept
a place that is offered. This conditional support can lead to strategic considerations, since
some parents may find an alternative home or private option preferable to a local school, if
and only if they receive the financial support, but this cannot be stated in the application.
This special case can be modelled with the matching with contracts framework. A similar

21

special feature is found in the Hungarian higher education matching scheme, where students
can study on the same course under two different contracts, either for free or with a tuition
fee. Furthermore, US cadets (Sönmez and Switzer, 2013) also face such a situation when
they decide whether or not they are willing to take on some extra years of service in order
to increase their chances of admission. The recommended solution is to let the parents list
the option of not having a place in the kindergarten but receiving financial support instead,
when they give their applications to kindergartens. Thus, all the listed options are considered
preferable to the outside option with no financial support. In such a case, it is crucial that
the parents-optimal stable solution is implemented so as to make the parents reveal their
true preferences for these outside options.

Lower quotas, opening of new groups. Sometimes kindergartens are able to cancel
groups or open new ones to fit with the applications. In particular, there are regulations
over the minimum number of children needed to start a new group. This feature is similar
to the lower quotas used in the Hungarian higher education matching scheme (Biró et al.,
2010a), where programmes may be cancelled if there is a lack of students. This is a natural
requirement that makes the education service economical, but the theoretical model for
college admissions with lower quotas is not always solvable. This means that a fair solution
does not always exist and the problem of finding a fair solution is NP-hard. The problem
becomes even more complicated if new groups can be created, since both the closures and
the openings in a kindergarten affect the number of students admitted elsewhere. However,
clever heuristics and robust optimisation techniques, such as integer programming (Biró
et al., 2014) can be used to tackle these generalised problems.

Homogeneous age groups and mixed groups. In Estonia, there are both homogeneous
age groups and mixed groups. Having only same age groups can vary the number of groups
opened in a kindergarten, as a kindergarten with five groups could open only one group
every three years. This would be unsatisfactory for the local children in the years when no
groups are opened. When mixed groups are created, the number of children admitted can
be relatively stable if the available places are always filled. However, if there are some free
places left in a year, then the age distribution of the children can be distorted.

Sharing places. In some kindergartens, it is possible that some children only attend part
of the week and the rest of the time is taken up by other children. This possibility again
makes the underlying problem challenging to solve. Specifically, when there is a large number
of part-time students then one might face the same problem as when allocating doctors and
couples to hospitals, which is an NP-hard problem (McDermid and Manlove, 2010).

Historic dependence of preferences. In Harku, the applications of registered parents
are listed on a public website. In Tallinn, the number of applications already submitted to
the kindergartens is also published. If the registration date is a criterion for priority and
the parents can see the applications or the number of applications made before their turn,
then this can affect their true as well as their submitted preferences. Potentially, if there
are more applications than places, then parents will find it risky to apply. This can depend

22

on the birth date of the child, because if a child was born soon after 1 October, then the
parents could have a good chance of obtaining a place everywhere, and so be more truthful.
We did not find much evidence of significant changes in the preferences over time in the
Harku data. However, in a similar study for Tallinn or other places where the registration
date is important, attention should be paid to the potentially biased preferences caused by
the published information about past applications.

Smooth transition to a new system. When designing the new mechanism, it may be
important to consider how to smoothly transition between the old and the final systems. This
process is especially challenging in Harku, since the old priorities were based on registration
date, and those parents who registered early may see it as unfair if this priority that they
earned in the past is suddenly neglected. Therefore, in the 2016 transitory system, the
priority of those who have already registered in the old regime is partly kept, as described
above. Regarding the future years, it is still debated how long these priorities should be
kept, or whether they should be replaced with some age priority which is in correlation with
the registration dates.

The role of the heads of the kindergartens. The heads of the kindergartens were ac-
tively involved in the allocation system until 2015. The discussions among the heads and the
personal communication with the parents were crucial in eliciting the true preferences of the
parents and finding relatively good solutions through informal negotiations. In the centrally
coordinated system, the head may fear losing their chance to influence the allocations, and
the same could be true for the employees of the local municipality. It should be considered
whether the heads of the kindergartens could still have some power to adjust the priorities,
or to make other decisions about their kindergartens, for instance whether to open a new
group or to create mixed groups.

The fairness of using proximity as a priority. Whether the use of proximity is fair
may depend on the ease and/or cost of registering: a) it is almost costless (as in Hungary);
b) there are some significant costs such as renting or having a flat in the area; or c) the family
truly has to live there, as for example in Barcelona, where somebody who is proved not to
live at the stated address can lose their place. When it is easy to register at an address,
then the parents may play a strategic game in which the first stage is to choose an address.
When ownership and actual residency are required, and the priorities are important for the
parents, this can affect the housing choices of the families, and influence house prices as well
as the socio-economic distribution of the population.

Restricting the choice of the parents. A simple restriction is to allow families to only
apply to nearby kindergartens. A more sophisticated method is to provide personalised choice
menus, such as the system proposed in the Boston school choice mechanism (Shi, 2015). This
would potentially provide parents with a choice of schools close to them where they already
have attending siblings, with a limited number of further options. The advantage of this
method over restricting the number of applications is that the mechanism remains strategy-
proof, and the parents have a simpler task of ranking the available options. However, the

23

disadvantage is the difficulty of estimating the preferences of the parents and therefore, there
is a risk that some highly preferred kindergartens could be missed out from some menus.
In general, this type of restrictive policy can improve the overall quality of the allocation
from the point of view of the municipality, perhaps by reducing the total travel distance.
That was the main motivation in the Boston school choice redesign, as the bus costs had
to be limited. However, the overall welfare of the children could be badly affected. We do
not recommend this policy for Harku, due to the small size of the municipality, but it is
suggested for consideration in larger cities, like Tallinn.

4 Conclusion and discussion

We have reviewed the kindergarten matching practices in one Estonian municipality, Harku.
Until 2015, the collected preferences were unlikely to reflect the true preferences of the par-
ents, since the data were out-of-date by the time of the allocation, the number of applications
were limited and the allocation mechanism was not incentive-proof either. Therefore, the
resulting allocation could create justified envy and it was also lacking transparency. In 2016,
the municipality changed its allocation system mostly based on our recommendations.

In our study, we first listed well-known practices from matching mechanism design that
present solutions to some of the problems and also provide policy tools for the local munici-
palities. These practices consist of:

• getting complete rather than limited preferences from families,

• using child-proposing stable matching for allocating places,

• defining clear policies for the local municipality based on a transparent priority system.

In assisting in the redesign of the allocation mechanism, it emerged that although the
policy goals might be clear, the choice of exactly which implementation method to use can
create significant differences in the results. In most cases, the goals of the local municipal-
ities are to have siblings in the same kindergarten and to provide a place in a kindergarten
close to home, in addition to the main consideration of providing a place in the most pre-
ferred kindergartens of the families. We evaluated seven different policies for implementing
the policy goals, first based on data from 2016, and then based on generated data. The
2016 transitory system that follows our main recommendations provides a child-optimal sta-
ble allocation under a rotational priority structure based on four factors, such as location,
siblings, registration and birth dates. The limit on the number of applications was also
removed, so the preferences of the families can be considered truthful. Our main findings
regarding the seven policies evaluated on the real data and in the computational experiments
are summarised below.

The simplest policy is to give higher priority to children with siblings and to families
living nearby, which is policy DA1. This was also demonstrated to be one of the most
effective policies. The resulting allocation had, on average, matched a lot of families with
their most preferred kindergarten, while also having one of the smallest average distances.
This remained true when the preferences of families were agnostic about distance.

24

Policy DA1 might occasionally seem unfair, as small differences in distance might affect
whether families are placed in their first preference or a lower one. Policies DA2, DA3 and
DA4 group kindergartens by distance within equal priority classes, DA2 and DA3 by defining
a walk-zone and DA4 by having high priority in the three closest kindergartens. Families in
the walk-zone are treated equally and priorities are defined by lottery. It appeared that the
multiple tie-breaking rule might create a more egalitarian access to kindergartens, however
it is not without its cost. The average number of children who are placed in their most
preferred kindergarten is usually significantly lower and the average distance is greater.
However, with a single tie-breaker over kindergartens, families are on average allocated to
their more preferred kindergarten, even when compared to deterministic policies like DA1.
Nevertheless, an allocation based on randomness might prove hard to justify to families. If
having more egalitarian access is important, policy DA4 with a single tie-breaker would be
the best of the three. The level of fair access is the same, satisfaction with average preferences
is the best, and distance is the lowest.

Siblings always being given higher priority might prove another source of seemingly unfair
treatment. If a family already has a child in a particular kindergarten, they are almost
guaranteed to get a place in the same kindergarten for a sibling, even when there is another
family living closer than them. We considered two policies, DA5 and DA6, which limit the
number of places in a kindergarten that consider having a sibling a priority at up to 20%.
Even though the number of places reserved for siblings was low, most families still received
a place in that kindergarten if they preferred it. There is almost no difference from policy
DA1 on any measure, nor between DA5 and DA6, although theoretically DA6 should provide
more opportunity to nearby families, and DA5 to children with siblings.

A clear oddity is policy DA7, which was initially designed to deliver more equal access
to kindergartens for families who live far away from all kindergartens. While policy DA1
would give such families low priority everywhere, DA7 would still give them the highest
priority in their closest kindergarten. When most families have a high preference for nearby
kindergartens and for those where their siblings are, the result of DA7 is one of the best
policy designs in all aspects. DA7 gives many families their first preference, it has the
shortest average distance and even one of the best results for equality of access. However,
the result is radically different when family preferences are mostly idiosyncratic and are
almost independent from distance. In this case, DA7 is the worst policy of all for families.
On average less than 40% of children get matched to their first preferences, but the average
distance is the one of lowest. Thus the lesson from policy DA7 seems to be that the policy
designer needs to predict the preferences of the society fairly accurately to select a good
trade-off. When preferences and priorities are aligned, both of the main goals can be met. A
downside of this policy is that it is vulnerable when preferences and priorities are misaligned,
and then the price paid is significant in terms of efficiency and fairness. If a local municipality
aims to minimise the distances between homes and kindergartens, then DA1 is the best
option. The latter objective recently turned out to be crucial in Boston, where the local
authority became concerned about the busing costs (Shi, 2015).

Finally, there remain several unsolved issues that we have not tried to address in the
redesign. A dozen issues were listed along with a discussion about possible solutions. For
example, it would be reasonable to coordinate the allocation between neighbouring munic-
ipalities, but cooperation is usually hard to achieve. Similarly, it would be best to know

25

about children with special needs before the allocation, but this is often infeasible.
A potential way to manage the shortage of kindergarten places is to provide monetary

incentives for parents to stay at home with their children or to seek a place in private
childcare. The question of how to set this monetary compensation in an optimal manner
is also interesting in terms of future research. Here, optimality could mean minimising the
total cost of providing childcare services in the municipality.

A few interesting aspects of designing a more flexible mechanism might improve the
allocation for families. Making decisions on the size and the age composition of the groups
in kindergartens and determining this in an optimal way based on the application data could
give an additional boost to the number of families receiving a place in their most preferred
kindergarten. Some of this research has been done in terms of lower quotas for opening
groups (Biró et al., 2010a).

26

A Generating counter-factual preferences

We use the 2016 data for counter-factual policy evaluation. To generate the counter-factual
preferences only we use the distance between homes and kindergartens and sibling status in
a kindergarten. The collected preference data is used to understand which features to use
in the ranking function, the functional form of the utility function and the fixed effects of
kindergartens.

For each family and kindergarten we know the geographical location from address lookup
from google maps7 and Estonian Land Board (Maa-amet8) and distance calculations taken
from Google maps distance9. We have a rich dataset for distance, as for each family-
kindergarten pair we know the driving and walking distances in kilometres and minutes.
We also have the direct distance between the two points calculated with the haversine for-
mula. The features are described in Table 7.

We fit a multinomial rank-ordered logit model (Croissant, 2011), which is similar to the
model used by Shi (2015). The model assumes that families have an utility function of the
form,

uij = αj +
∑

k

βk · xkij + εij (1)

where αj are fixed effect of kindergartens, βk is the coefficient for feature k and εij is the
family’s personal unexplained preference. We further use the utilities to find a probability
if a ranking. In a ranked-order logit model the probability of a ranking is a multiple of
a kindergarten begin is a particular position, which in our case is Pr(ranking1, 2, ..., 7) =
Pr(ranking = 1) · Pr(ranking = 2) · ... · Pr(ranking = 7). The probability of family i
ranking kindergarten j at some position are,

Prij(ranking = 1) = euij∑7
r=1 e

uir

Prij(ranking = 2) = euij∑7
r=2 e

uir

...

P rij(ranking = 6) = euij∑7
r=6 e

uir

(2)

First our aim is to select one of the distance metrics from Table 7 to include in the
utility model (1). For this we do 100 bootstrap runs with each metric. In Figure 4 we plot
the resulting log-likelihood with its standard error. We see that the

√
driving distance sec

provides the best prediction on average. We also see that including the sibling status would
improve the prediction accuracy, however the statistical significance of the coefficient is low
(Table 8) in any combination of features. So we select the model (1) from Table 8 as our
final model.

For policy comparison we generate the ranking over all kindergartens. We do not model
the cut-off levels for outside options, when the family would rather keep the child at home.
We assume they would always rather have a place in any of Harku’s kindergartens.

7https://developers.google.com/maps/documentation/geocoding/intro
8http://inaadress.maaamet.ee/geocoder/bulk
9https://developers.google.com/maps/documentation/distance-matrix/intro

27

Table 7: Family’s kindergarten features

Feature Description

preference rank Families rank of the kindergarten, between
1-7

walking distance sec walking time between family’s home and
kindergarten, based on Google (2015)

walking distance m walking distance between family’s home and
kindergarten, based on Google (2015)

driving distance sec driving time between family’s home and
kindergarten, based on Google (2015)

driving distance m driving distance between family’s home and
kindergarten, based on Google (2015)

haversine distance m direct distance between family’s home and
kindergarten

walking distance rank kindergarten rank by walking distance
driving distance rank kindergarten rank by driving distance
haversine distance rank kindergarten rank by haversine distance
sibling 1 if kindergarten has a sibling already attend-

ing, 0 otherwise
log walking distance sec log(walking distance sec)
sqrt walking distance sec

√
walking distance sec

log walking distance m log(walking distance m)
sqrt walking distance m

√
walking distance m

log driving distance sec log(drivingdistancesec)
sqrt driving distance sec

√
driving distance sec

log driving distance m log(driving distance m)
sqrt driving distance m

√
driving distance m

log haversine distance m log(haversine distance m)

sqrt haversine distance m
√
haversine distance m

To obtain a full ranking of kindergarten we use the probabilities from (2). For counter-
factual preferences we vary the coefficient for distance. The parameter values are in (3).
For each combination of parameters we generate several (7) different preference profiles and
evaluate the policies on the average over all the preference profiles.

β1 ∈ {0.0, 0.05, 0.1, 0.23, 0.25, 0.5, 1, 2, 4, 10} (3)

To better interpret the results we look at the results by conditional probabilities of a
parameter set. We look at two conditional effects: (a) probability of ranking kindergarten
higher given it is closer; and (b)probability of ranking a kindergarten higher given a kinder-
garten has a sibling. Formally the conditional probability are defined in (4) and (5).

Pr(r1 < r2 | d1 < d2) =
Pr(d1 < d2, r1 < r2)

Pr(d1 < d2)
(4)

28

Table 8: Rank-ordered logit coefficients

preference rank
(1) (2) (3)

αB −0.690∗∗∗ −0.685∗∗∗ −0.560∗∗∗

(0.150) (0.150) (0.143)

αC −0.565∗∗∗ −0.540∗∗∗ 0.471∗∗∗

(0.173) (0.176) (0.145)

αD 0.157 0.185 1.479∗∗∗

(0.176) (0.182) (0.154)

αE 0.476∗∗∗ 0.500∗∗∗ 1.187∗∗∗

(0.156) (0.159) (0.146)

αF 0.275 0.351∗ 1.608∗∗∗

(0.176) (0.181) (0.153)

αG −1.769∗∗∗ −1.789∗∗∗ −1.580∗∗∗

(0.193) (0.195) (0.179)

β1 −0.229∗∗∗ −0.220∗∗∗
√
driving distance sec (0.015) (0.015)

β2 20.750 20.812
sibling (2,676.852) (1,651.629)

Observations 906 906 906
Log Likelihood −882.862 −840.256 −958.955

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

29

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

sqrt(haversine_distance_m)

walkng_distance_sec

walkng_distance_m

driving_distance_sec

driving_distance_m

haversine_distance_m

log(walkng_distance_sec)

log(walkng_distance_m)

log(driving_distance_sec)

log(driving_distance_m)

log(haversine_distance_m)

sqrt(walkng_distance_sec)

sqrt(walkng_distance_m)

sqrt(driving_distance_sec)

sqrt(driving_distance_m)

0.98 0.99 1.00 1.01 1.02 1.03

Mean Log−likelihood

P
re

di
ct

or

Figure 4: Predictive features

Pr(r1 < r2 | s1 > s2) =
Pr(s1 > s2, r1 < r2)

Pr(s1 > s2)
(5)

The mean conditional probability with fitted regression parameter, β = 0.25, is Pr(r1 <
r2 | d1 < d2) ≈ 0.79 ± 0.0210. This is similar to what we observe it the 2016 data, where
Pr(ri � rj | di < dj) = 0.81, i 6= j. In Figure 5a shows the relationship between the logistic
parameters and the conditional probabilities.

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●● ●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●● ●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●● ●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●● ●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●● ●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●● ●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●● ●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●● ●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●● ●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●● ●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●● ●●●●●●●●●●●
●●●●●●●●●●●

0.6

0.7

0.8

0.9

0.1 1.0 10.0

β1

P
r(

r 1
<

r 2
|d

1
<

d 2
)

(a) Conditional probability on dis-
tance

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●● ●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●● ●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●● ●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●● ●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●● ●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●● ●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●●

●●●●●●●●●●● ●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●● ●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●● ●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●● ●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●

0.4

0.5

0.6

0.7

0.8

0.9

0.1 1.0 10.0

β1

P
r(

r 1
<

r 2
|s

1
>

s 2
)

(b) Conditional probability on siblings

Figure 5: Coefficients and conditional probabilities

101.96 standard deviations, 95% probability

30

B Allocated preferences

31

Table 9: Year 2016 allocated preference comparison

Policy 1st 2nd 3rd 4th 5th 6th 7th

Harku 115 14 6 3 4 8 2

IA 1 122 8 2 5 8 3 4
DA 1 110 17 3 6 6 9 1

DA 2 (M)a
98.75
(0.61)

19.95
(0.61)

9.65
(0.49)

11.05
(0.78)

7.20
(0.43)

4.85
(0.36)

1.22
(0.15)

DA 2 (S)
108.05
(0.61)

19.90
(0.56)

4.65
(0.41)

4.95
(0.39)

7.70
(0.37)

5.85
(0.36)

1.20
(0.11)

DA 3 (M)
98.30
(0.79)

21.95
(1.09)

8.85
(0.6)

9.9
(0.49)

8.35
(0.3)

3.75
(0.24)

1.5
(0.29)

DA 3 (S)
107.75
(0.38)

20.65
(0.38)

4.79
(0.50)

4.95
(0.29)

6.60
(0.39)

6.2
(0.3)

1.86
(0.25)

DA 4 (M)
89.25
(1.06)

27.2
(0.84)

13.1
(0.88)

9.85
(0.76)

7.7
(0.53)

4.35
(0.43)

1.38
(0.26)

DA 4 (S)
104.85
(0.70)

19.15
(0.70)

7.05
(0.63)

8.15
(0.6)

8.05
(0.46)

4.10
(0.28)

1.63
(0.26)

DA 5 110 17 3 6 6 9 1
DA 6 110 17 3 6 6 9 1

DA 7 (M)
107.6
(0.47)

15.85
(0.52)

5.7
(0.36)

8.9
(0.42)

6.95
(0.33)

5.9
(0.32)

1.47
(0.17)

DA 7 (S)
107.75
(0.47)

16.90
(0.44)

5.20
(0.26)

7.40
(0.36)

8.40
(0.37)

5.15
(0.33)

1.33
(0.14)

TTC 1 112 16 1 5 9 8 1

TTC 2 (M)
110.25
(0.52)

17.85
(0.49)

4.00
(0.32)

6.55
(0.41)

7.75
(0.45)

4.70
(0.52)

1.38
(0.21)

TTC 2 (S)
110.10
(0.45)

17.50
(0.56)

3.85
(0.33)

6.40
(0.56)

7.95
(0.36)

4.80
(0.35)

2.00
(0.23)

TTC 3 (M)
109.50
(0.54)

18.95
(0.72)

4.55
(0.34)

5.75
(0.37)

7.00
(0.40)

5.20
(0.28)

1.50
(0.25)

TTC 3 (S)
110.55
(0.61)

17.05
(0.51)

4.65
(0.36)

6.20
(0.52)

7.05
(0.39)

5.75
(0.35)

1.25
(0.13)

TTC 4 (M)
109.25
(0.56)

18.65
(0.74)

3.78
(0.33)

7.40
(0.62)

8.80
(0.57)

3.60
(0.36)

1.80
(0.29)

TTC 4 (S)
109.35
(0.38)

18.75
(0.48)

4.47
(0.42)

7.30
(0.37)

7.45
(0.45)

4.05
(0.25)

1.31
(0.17)

TTC 7 (M)
109.40
(0.39)

15.45
(0.37)

3.75
(0.28)

7.45
(0.39)

8.55
(0.36)

5.70
(0.25)

1.89
(0.23)

TTC 7 (S)
109.25
(0.41)

16.00
(0.45)

3.63
(0.34)

7.25
(0.37)

9.15
(0.33)

5.60
(0.29)

1.53
(0.12)

aFor policies with lotteries in parenthesis are the standard errors

32

C Map of the municipality

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

● child

kindergarten

Figure 6: Locations of children and kindergartens (with walk-zones) in 2016

33

D Results with Top Trading Cycles (TTC)

M
ulitple T

B
S

ingle/N
o T

B

60% 70% 80% 90%

1.8

2.1

2.4

2.7

3.0

1.8

2.1

2.4

2.7

3.0

Conditional probability of distance in preferences (Pr(r1 < r2|d1 < d2))

A
ve

ra
ge

 p
re

fe
re

nc
e

Policy

DA 7 (M)

DA 7 (S)

TTC 1

TTC 2 (M)

TTC 2 (S)

TTC 3 (M)

TTC 3 (S)

TTC 4 (M)

TTC 4 (S)

TTC 7 (M)

TTC 7 (S)

(a) Average preference

M
ulitple T

B
S

ingle/N
o T

B

60% 70% 80% 90%

30%

40%

50%

60%

30%

40%

50%

60%

Conditional probability of distance in preferences (Pr(r1 < r2|d1 < d2))

C
hi

dr
en

 in
 fi

rs
t p

re
fe

re
nc

e

Policy

DA 7 (M)

DA 7 (S)

TTC 1

TTC 2 (M)

TTC 2 (S)

TTC 3 (M)

TTC 3 (S)

TTC 4 (M)

TTC 4 (S)

TTC 7 (M)

TTC 7 (S)

(b) Proportion with first preference

Figure 7: Conditional probability of distance (TTC)

M
ulitple T

B
S

ingle/N
o T

B

60% 70% 80% 90%

4

5

6

7

4

5

6

7

Conditional probability of distance in preferences (Pr(r1 < r2|d1 < d2))

A
ve

ra
ge

 d
is

ta
nc

e
fr

om
 k

in
de

rg
ar

te
n

(k
m

) Policy

DA 7 (M)

DA 7 (S)

TTC 1

TTC 2 (M)

TTC 2 (S)

TTC 3 (M)

TTC 3 (S)

TTC 4 (M)

TTC 4 (S)

TTC 7 (M)

TTC 7 (S)

(a)

M
ulitple T

B
S

ingle/N
o T

B

50% 60% 70% 80% 90%

20%

40%

60%

80%

20%

40%

60%

80%

Conditional probability of siblings in preferences (Pr(r1 < r2|s1 > s2))

S
am

e
ki

nd
er

ga
rt

en
 a

s
si

bl
in

g

Policy

DA 7 (M)

DA 7 (S)

TTC 1

TTC 2 (M)

TTC 2 (S)

TTC 3 (M)

TTC 3 (S)

TTC 4 (M)

TTC 4 (S)

TTC 7 (M)

TTC 7 (S)

(b)

Figure 8: Average distance and conditional probability of distance in preferences (TTC)

34

M
ulitple T

B
S

ingle/N
o T

B

60% 70% 80% 90%

40%

60%

80%

100%

40%

60%

80%

100%

Conditional probability of distance in preferences (Pr(r1 < r2|d1 < d2))

Fa
ir

ne
ss

 o
f a

cc
es

s
(1

0%
 c

ha
nc

e
at

 fi
rs

t p
re

f.)

Policy

DA 7 (M)

DA 7 (S)

TTC 1

TTC 2 (M)

TTC 2 (S)

TTC 3 (M)

TTC 3 (S)

TTC 4 (M)

TTC 4 (S)

TTC 7 (M)

TTC 7 (S)

(a)

M
ulitple T

B
S

ingle/N
o T

B

60% 70% 80% 90%

30%

40%

50%

60%

70%

30%

40%

50%

60%

70%

Conditional probability of distance in preferences (Pr(r1 < r2|d1 < d2))

Fa
ir

ne
ss

 o
f a

cc
es

s
(5

0%
 c

ha
nc

e
at

 fi
rs

t p
re

f.)

Policy

DA 7 (M)

DA 7 (S)

TTC 1

TTC 2 (M)

TTC 2 (S)

TTC 3 (M)

TTC 3 (S)

TTC 4 (M)

TTC 4 (S)

TTC 7 (M)

TTC 7 (S)

(b)

Figure 9: Fairness of access

M
ulitple T

B
S

ingle/N
o T

B

60% 70% 80% 90%

20%

25%

30%

35%

40%

45%

20%

25%

30%

35%

40%

45%

Conditional probability of distance in preferences (Pr(r1 < r2|d1 < d2))

Fr
ac

tio
n

of
 c

hi
ld

re
n

w
ith

 ju
st

ifi
ed

 e
nv

y

Policy

TTC 1

TTC 2 (M)

TTC 2 (S)

TTC 3 (M)

TTC 3 (S)

TTC 4 (M)

TTC 4 (S)

TTC 7 (M)

TTC 7 (S)

(a)

M
ulitple T

B
S

ingle/N
o T

B

60% 70% 80% 90%

2

3

2

3

Conditional probability of distance in preferences (Pr(r1 < r2|d1 < d2))

B
lo

ck
in

g
pa

irs
 p

er
 c

hi
ld

 w
ith

 ju
st

ifi
ed

 e
nv

y

Policy

TTC 1

TTC 2 (M)

TTC 2 (S)

TTC 3 (M)

TTC 3 (S)

TTC 4 (M)

TTC 4 (S)

TTC 7 (M)

TTC 7 (S)

(b)

Figure 10: Justified envy and blocking pairs (TTC)

35

Table 10: Year 2016 comparison of policies using reported preferences (DA and TTC)

Policy
Mean
prefer-
ence

First
Mean

distance
(km)

With
siblings

Frac.
children
with JEa

BP per
child

with JE

DA 1 1.76 110 4.26 100 %

DA 2 (M)b
1.85

(0.01)
98.75
(0.61)

4.59
(0.02)

100 %
(0.0 %)

DA 2 (S)
1.72

(0.01)
108.05
(0.61)

4.44
(0.01)

100 %
(0.0 %)

DA 3 (M)
1.83

(0.01)
98.30
(0.79)

4.51
(0.02)

95 %
(0.25 %)

DA 3 (S)
1.72

(0.01)
107.75
(0.38)

4.45
(0.02)

96 %
(0.3 %)

DA 4 (M)
1.91

(0.01)
89.25
(1.06)

4.53
(0.02)

100 %
(0.0 %)

DA 4 (S)
1.75

(0.01)
104.85
(0.7)

4.49
(0.01)

100 %
(0.0 %)

DA 7 (M)
1.78

(0.01)
107.60
(0.47)

4.30
(0.01)

100 %
(0.0 %)

DA 7 (S)
1.76

(0.01)
107.75
(0.47)

4.31
(0.01)

100 %
(0.0 %)

TTC 1 1.76 112 4.39 100 % 11 % 1.06

TTC 2 (S)
1.71

(0.01)
110.1
(0.45)

4.49
(0.02)

100 %
(0.0 %)

9 %
(1.28 %)

1.08
(0.03)

TTC 2 (M)
1.69

(0.01)
110.25
(0.52)

4.51
(0.03)

100 %
(0.0 %)

21 %
(0.82 %)

2.16
(0.03)

TTC 3 (S)
1.7

(0.01)
110.55
(0.61)

4.47
(0.02)

96 %
(0.37 %)

14 %
(1.24 %)

1.27
(0.06)

TTC 3 (M)
1.69

(0.01)
109.5
(0.54)

4.46
(0.02)

95 %
(0.33 %)

22 %
(0.71 %)

2.16
(0.04)

TTC 4 (S)
1.69

(0.01)
109.35
(0.38)

4.6
(0.02)

100 %
(0.0 %)

20 %
(1.08 %)

1.86
(0.05)

TTC 4 (M)
1.7

(0.01)
109.25
(0.56)

4.58
(0.02)

100 %
(0.0 %)

26 %
(0.52 %)

2.26
(0.04)

TTC 7 (S)
1.77

(0.01)
109.25
(0.41)

4.48
(0.01)

100 %
(0.0 %)

22 %
(0.82 %)

1.70
(0.06)

TTC 7 (M)
1.78

(0.01)
109.4
(0.39)

4.51
(0.02)

100 %
(0.0 %)

23 %
(0.83 %)

1.90
(0.07)

aJE - Justified Envy, BP - Blocking Pairs
bFor policies with lotteries, (M) indicates multiple tie-breaking lotteries and (S) single. The standard errors

over lotteries are in parentheses.

36

References

Abdulkadiroğlu, A., Pathak, P. A., and Roth, A. E. (2005a). The New York City High
School Match. American Economic Review, 95(2):364–367.

Abdulkadiroğlu, A., Pathak, P. A., Roth, A. E., and Sönmez, T. (2005b). The Boston Public
School Match. American Economic Review, 95(2):368–371.

Abdulkadiroğlu, A. and Sönmez, T. (2003). School Choice: A Mechanism Design Approach.
American Economic Review, 93(3):729–747.

Andersson, T. (2017). Matching Practices for Elementary Schools - Sweden. MiP Coun-
try Profile 24 http://www.matching-in-practice.eu/wp-content/uploads/2017/01/

MiP_-Profile_No.24.pdf.

Ashlagi, I., Kanoria, Y., and Leshno, J. D. (2013a). Unbalanced random matching markets.
In Proceedings of the fourteenth ACM conference on Electronic commerce, pages 27–28,
New York. ACM Press.

Ashlagi, I., Kanoria, Y., and Leshno, J. D. (2013b). Unbalanced random matching mar-
kets: the stark effect of competition. http://web.mit.edu/iashlagi/www/papers/

UnbalancedMatchingAKL.pdf (Accessed 14.09.2016).

Ashlagi, I. and Nikzad, A. (2015). What matters in tie-breaking rules? How competition
guides design. Unpublished working paper.

Biró, P., Fleiner, T., Irving, R. W., and Manlove, D. F. (2010a). The College Admissions
problem with lower and common quotas. Theoretical Computer Science, 411(34-36):3136–
3153.

Biró, P., Manlove, D. F., and McBride, I. (2014). The Hospitals / Residents Problem with
Couples: Complexity and Integer Programming Models. In Gudmundsson, J. and Kata-
jainen, J., editors, Experimental Algorithms, pages 10–21. Springer International Publish-
ing.

Biró, P., Manlove, D. F., and Mittal, S. (2010b). Size versus stability in the marriage
problem. Theoretical Computer Science, 411(16-18):1828–1841.

Blum, Y., Roth, A. E., and Rothblum, U. G. (1997). Vacancy Chains and Equilibration in
Senior-Level Labor Markets. Journal of Economic Theory, 76(2):362–411.

Calsamiglia, C. and Güell, M. (2014). The Illusion of School Choice: Empirical Evidence
from Barcelona. Federal Reserve Bank of Minneapolis Working Paper 712 https://www.

mpls.frb.org/research/wp/wp712.pdf (Accessed 22.12.2016).

Calsamiglia, C., Haeringer, G., and Klijn, F. (2010). Constrained School Choice: An Exper-
imental Study. American Economic Review, 100(4):1860–1874.

Chen, L. (2012). University admission practices – Ireland. http://www.

matching-in-practice.eu/higher-education-in-ireland/. accessed 2016-01-18.

37

Chen, S.-H., Chang, C.-L., and Du, Y.-R. (2012). Agent-based economic models and econo-
metrics. The Knowledge Engineering Review, 27(2):187–219.

Combe, J., Tercieux, O., and Terrier, C. (2015). The Design of Teacher Assign-
ment: Theory and Evidence. http://www.lse.ac.uk/economics/currentStudents/

researchStudents/EDPjamboree/Terrier_PSE_EDPpaper.pdf (Accessed 04.08.2016).

Croissant, Y. (2011). Estimation of multinomial logit models in R: The mlogit Pack-
ages. https://cran.r-project.org/web/packages/mlogit/vignettes/mlogit.pdf

(Accessed 12.12.2006).

de Haan, M., Gautier, P. A., Oosterbeek, H., and van der Klaauw, B. (2015). The perfor-
mance of school assignment mechanisms in practice. IZA Discussion Papers 9118.

Dur, U. M. and Kesten, O. (2014). Sequential versus Simultaneous Assignment Systems
and Two Applications. http://www.matching-in-practice.eu/wp-content/uploads/

2014/01/Dur-Kesten.pdf (Accessed 04.08.2016).

Dur, U. M. and Kesten, O. (2015). The Appeals Process in NYC High School Match.
Unpublished working paper.

Dur, U. M., Kominers, S. D., Pathak, P. A., and Sönmez, T. (2013). The Demise of Walk
Zones in Boston: Priorities vs. Precedence in School Choice. NBER Working Paper Series
18981.

Ergin, H. and Sönmez, T. (2006). Games of school choice under Boston Mechanism. Journal
of Public Economics, 90:215–237.

Gale, D. and Shapley, L. S. (1962). College admissions and the stability of marriage. The
American Mathematical Monthly, 69(1):9–15.

Google (2015). The Google Maps Distance Matrix API. https://maps.googleapis.com/

maps/api/distancematrix/. accessed 2015-12-31.

Haeringer, G. and Klijn, F. (2009). Constrained school choice. Journal of Economic Theory,
144(5):1921–1947.

Hafalir, I. E., Yenmez, M. B., and Yildirim, M. A. (2013). Effective affirmative action in
school choice. Theoretical Economics, 8(2):325–363.

Kennes, J., Monte, D., and Tumennasan, N. (2014). The Day Care Assignment: A Dynamic
Matching Problem. American Economic Journal: Microeconomics, 6(4):362–406.

Knuth, D. E. (1997). Stable marriage and its relation to other combinatorial problems.
American Mathematical Society, Providence.

Matching in Practice (2016). Matching Practices in Europe. http://www.

matching-in-practice.eu/ (Accessed 27.12.2016).

38

McDermid, E. J. and Manlove, D. F. (2010). Keeping partners together: algorithmic results
for the hospitals/residents problem with couples. Journal of Combinatorial Optimization,
19(3):279–303.

Ministry of Social Affairs (2015). Peretoetuste, teenuste ja vanemapuhkuste roheline raamat.
Technical report, Ministry of Social Affairs.

Paat, G., Kaarna, R., and Aaviksoo, A. (2011). Meditsiiniliste erivajadustega laste
üldhariduse korralduse analüüs. Technical report, Praxis Centre for Policy Studies, Tallinn.

Pathak, P. A. and Sethuraman, J. (2011). Lotteries in student assignment: An equivalence
result. Theoretical Economics, 6(1):1–17.

Pathak, P. A. and Shi, P. (2013). Simulating Alternative School Choice Options in Boston.
Technical report, MIT School Effectiveness and Inequality Initiative.

Pathak, P. A. and Sönmez, T. (2013). School Admissions Reform in Chicago and England:
Comparing Mechanisms by their Vulnerability to Manipulation. American Economic Re-
view, 103(1):80–106.

Preschool Child Care Institutions Act (2014). Riigikogu RT I, 13.03.2014, 4. https://www.
riigiteataja.ee/en/eli/517062014005 (Accessed 04.08.2016).

Rawls, J. (1971). A Theory of Justice. Harvard University Press, Cambridge.

Roth, A. E. (2008). Deferred acceptance algorithms: history, theory, practice, and open
questions. International Journal of Game Theory, 36(3-4):537–569.

Saraceno, C. (2011). Family policies. Concepts , goals and instruments. Carlo Alberto
Notebooks, (230).

Shi, P. (2015). Guiding School-Choice Reform through Novel Applications of Operations
Research. Interfaces, 45(2):117–132.

Sönmez, T. and Switzer, T. B. (2013). Matching With (Branch-of-Choice) Contracts at the
United States Military Academy. Econometrica, 81(2):451–488.

West, A., Hind, A., and Pennell, H. (2004). School admissions and ’selection’ in comprehen-
sive schools: policy and practice. Oxford Review of Education, 30(3):347–369.

39

Acknowledgements

I am grateful to my supervisor, Professor Emeritus Leo Võhandu, for intro-
ducing me to the topic of fair division in my bachelor studies, from which
grew out my wider interests for mechanism design and matching.

I also wish to thank my second supervisor, Professor Kaire Põder, for
including me into her projects on practical matching applications. Many
ideas covered in this thesis were inspired by challenges encountered in there
projects. Without these the thesis would not be what it is today.

I am especially thankful to Péter Biró for inspiring discussions and
encouragement throughout the years of I have been working on matching
markets. Without his advice it would had probably taken even longer for
me to finish. I am also thankful to the Head of Informatics Institute, Rein
Kuusik, for encouragement during the extended years of my studies.

I am also thankful for the participants of 2011 Lipari School on Compu-
tational Complex Systems and Santa Fe Institute 2015 Complex Systems
Summer School for inspiring ideas and critical discussions that helped be
better understand the interactions in markets and arising complexities.

I grateful to the language editor of this thesis and some of my papers,
Aylin Gayibli, for the countless hours it must have took to improve my text
and work with the LATEX source code. Obviously, all the remaining errors
are my own.

I am thankful for Estonian IT Academy scholarship for PhD students
and Estonian National Doctoral School in Information and Communica-
tion Technologies for funding. Parts of this work were supported by Nor-
way Grants V653 and European Cooperation in Science and Technology
(COST) action IC1205.

Above all, I wish to thank Eve, for constant support and encouragement
during the seemingly never-ending writing. Most of all, Mirtel and Oskar,
for showing time and again me that all this is worth the effort.

303

Abstract

Two-sided markets have been extensively studied in many centralised situa-
tions, e.g. hospital-residence matching, school choice, kidney exchange, etc.
Matching problems in general are becoming increasingly relevant and even
more so in partially decentralised settings, e.g. allocating spare rooms to
guest and taxis to passenger. Motivated primarily by the matching market
cases in Estonia, i.e. school choice in Tallinn and kindergarten allocation in
Harku, we study decentralised matching markets, strategic behaviour and
the design of a centralised matching clearing-house.

In order to study decentralised matching, we propose three behavioural
agent-based models ranging from random to more informed actions. The
two more informed behaviours are previously known from the literature
as best and better response dynamics, while the randomised behaviour is
novel. We find that to coordinate a good match in a decentralised setting
can prove to be difficult. Usually, a significant amount of agents remain
unmatched and others are matched to a lower preference than they would
be in a deferred-acceptance based centralised matching. In some settings
with a small number of agents, short and correlated preferences, there is
a high likelihood of finding a stable matching, but it diminishes quickly
as preference lists become longer . Additionally, we find that noisy ran-
domised behaviour often has better aggregate outcomes, a lower number of
unassigned agents and median agent matched to a higher preference.

The school choice mechanism in Tallinn is partly centrally managed, but
incentivises families to misrepresent their preferences. We use genetic algo-
rithms to find a near-equilibrium distribution of strategies in this market.
For learning strategies we propose a model for preferences and a cardinal
utility function. We find that by using a multiplicative form for the utility
function, we manage to recreate some empirical observations, namely how
many preferred schools are reported to the central clearing-house. Addi-
tionally, we observe that the expected utility may be greater for some fam-
ilies under the manipulable Tallinn school choice mechanism compared to
a central allocation by the deferred-acceptance based mechanism. Similar
observations have been made in the literature for the manipulable Boston
immediate-acceptance mechanism. Therefore, we can conjecture that this
might be a property of a certain class of manipulable mechanisms.

305

Finally, we design an allocation mechanism for kindergartens in Harku.
There are three main goals for allocation: considering the allocation pref-
erence rank of families, proximity to home and having siblings in the same
kindergarten. We propose a design based on the deferred-acceptance algo-
rithm. However, we find that the goals can be considered using different
approaches. We propose seven policy designs that were evaluated on the
basis of the average allocated rank, distance, siblings in the same kinder-
garten and fairness, i.e. the chance of being allocated to kindergartens
ranked higher on the preference list. The evaluations are made based on
collected preferences and parametrised counter-factual preferences. We find
that with current preferences, the deterministic as well as some lottery-
based policies produce very similar results to each other in terms of the
allocated rank. Average distance is the lowest when policies are determin-
istic, while lotteries entail more fairness. However, when the preference
structure changes, some policies can have an increasing effect the allocated
preference rank, while still maintaining short distances between homes and
kindergartens.

In general, we observed that centralised allocations are superior to
decentralised mechanisms. If possible, it would be desirable to design a
clearing-house to be simple and strategy-proof for the participants. How-
ever, we also observed that some participant might benefit from a manipu-
lable clearing-house. Furthermore, we saw that certain behaviours in decen-
tralised matching produce larger matching and match higher-ranked agents.
As the sharing economy motivates more markets where goods are substi-
tutes and need to be individually evaluated, these decentralised matching
markets become increasingly important. Moreover, these markets are pri-
vately managed, as opposed to public markets. Therefore, considering how
to manage and balance those markets in terms of efficiency or revenue is a
significant challenge for further research.

306

Kokkuvõte

Kahepoolseid sobitusturgusid on põhjalikult uuritud mitmetes tsentrali-
seeritud rakendustes nagu haiglate-residentide sobitus, koolivalik, organi-
vahetus jms. Enamasti leiab neis olukordades rakendust optimaalne eda-
silükatud vastuvõtu mehhanism. Sobitusülesanded üldiselt muutuvad järjest
olulisemaks ja isegi rohkem osaliselt detsentraliseeritud jagamis- ja platvor-
mimajanduses. Peamiselt motiveeritud sobitusturgudest Eestis, nagu kooli-
valik Tallinnas ja lasteaiakohtade jagamine Harkus, uurime detsentralisee-
ritud sobitusturge, strateegilist käitumist ja lõpuks turudisaini võimalusi
tsentraliseeritud sobitamiseks.

Detsentraliseeritud sobituse uurimiseks pakume välja kolm agentide käi-
tumismudelit skaalal juhuslikust kuni informeeritud agendi käitumiseni. In-
formeeritud mudelid on kirjandusest varem tuntud kui parema ja parima
vastuse dünaa-mikad, kuid juhusliku käitumise mudel on uudne sobitustur-
gude kontekstis. Tulemused näitavad, et suurel hulgal agentidel on keeruline
detsentraliseeritud turul leida hea sobitus. Enamus olukordades jääb suur
hulk agente ilma sobituseta ja ülejäänud on sobitatud madalama eelistusega
kui seda oleks tsentraliseeritud turul. Samas, mõnes olukorras, kus on vähe
agente väheste eelistustega, on suur võimalus neil ka omavahel detsentrali-
seeritult leida stabiilne sobitus, kuid see võimalus kahaneb kiirelt agentide
arvu kasvades. Üllatusena selgub, et agentide juhuslik käitumine on turu
kui terviku mõttes isegi parem kui informeeritumad käitumised – suurem
arv agente on sobitatud ja seda ka eelistatuma agendiga. Lisaks leiame,
et see on põhjustatud tänu väiksemale uuesti sobituse võimalusele juhus-
liku käitumisega mudelis. Lisades takistuse uuesti sobituseks ka informee-
ritumates mudelites, saame tulemuseks sarnased tulemused nagu juhusliku
käitumisega mudelis.

Tallinnas on koolivaliku mehhanism osaliselt keskselt juhitud, kuid see
ei motiveeri siiski vanemaid esitama tõeseid koolieelistusi. Me kasutame
geneetilisi algoritme, et leida tasakaalupunkti lähedasi strateegiaid eelis-
tuste esitamiseks. Strateegiate õppimiseks pakume eelistuste ja kardinaal-
se heaolufunktsiooni mudeli. Kasutades multiplikatiivset heaolufunktsiooni
kuju, suudame taasluua mõned empiirilised tulemused, nagu mitu kooli
on kasulik esitada. Lisaks selgub, et paljudel peredel (agentidel) on ka-
sulikum Tallinna koolivaliku mehhanism, kui optimaalne edasilükatud vas-

307

tuvõtu mehhanism. Sarnane tulemus avaldub ka kirjandusest tuntud kohese
vastuvõtu ehk Bostoni mehhanismis, kus mõnel agendil strateegiliselt mani-
puleerides on võimalik saavutada parem tulemus kui optimaalses jagamises.
Siit tekib hüpotees, et ehk on see omadus mingil klassil manipuleeritava-
tel mehhanismidel. Viimases osas pakume võimaliku disaini Harkus vallas
lasteaiakohtade jagamiseks. Harkul on jagamisel kolm eesmärki: arvestada
perede eelistustega; pakkuda kodulähedane lasteaiakoht; ning õed-vennad
samas lasteaias. Hindame võimalikke prioriteetide seadmise viise, kasuta-
des jagamiseks edasilükatud vastuvõtu mehhanismi. Lisaks eeltoodud kri-
teeriumitele, hindame ka sobituse õiglust läbi pere (agendi) tõenäosusliku
võimaluse saada koht eelistatuimas lasteaias. Kasutame hindamiseks nii ko-
gutud eelistusi kui ka mudelipõhiseid eelistusi, et arvestada ka tundlikkust
eelistuste muutumisele. Kogutud eelistustega selgub, et suur osa prioriteeti-
de seadmise viise annavad sarnase määratud eelistuse positsiooni tulemuse.
Keskmine kaugus lasteaiast on madalaim deterministlike prioriteetidega sa-
mas kui, oodatult, on õiglus suurem loteriipõhiste prioriteetidega. Seevastu,
kui eelistuste struktuur peaks muutuma, siis mõned prioriteetide disainid
määravad rohkem lapsi eelistatud lasteaeda, samas säilitades väikest kau-
gust lasteaia ja kodu vahel.

Üldiselt kinnitasime kirjanduses varem esitatud väidet, et tsentraalsed
jagamised on mitmes mõttes paremad kui detsentraalsed turud. Tsentraal-
ne turg peaks olema osalistele lihtne, et strateegiliselt mõtlemata oleks
võimalik siiski saavutada kõigile parim tulemus. Vastasel juhul saavad ai-
nult mõned, osavamad, agendid endale parema tulemuse ning teistel tuleb
teine kord leppida kehvema tulemusega, kui optimaalsemalt käitumisega
õnnestuks saavutada. Siiski näeme ka, et detsentraalseid turgusid saab
mõningal määral juhtida, kas läbi parema info, tehislike tõkete või eelistuste
struktuuri haldamisega. Samas on nende juhtimismehhanismide mõju väga
sarnane ja reaalse maailma olukorras ei ole parima vahendi valimine üheselt
määratud, mis ka kinnitab põhilist komplekssüsteemide raskesti haldamise
omadust. Jagamismajanduse olukorras tekib rohkem turge, kus jagatavad
kaubad on väga erinevad ja vajavad eraldi hindamist. Seega muutuvad det-
sentraalsed sobitusturud veelgi olulisemaks. Lisaks on need turud enamasti
kasumit maksimeerivad eraettevõtted, mitte sotsiaalset heaolu maksimee-
rivad avalikud turud, mistõttu nende juhtimine ja tasakaalustamine on kee-
ruline väljakutse edasiseks uurimiseks.

308

Curriculum Vitae

Contact data

Name: Andre Veski
Email: andre.veski@ttu.ee

Education

2008 – 2017 Tallinn University of Technology (TUT),
PhD studies in computer science

2005 – 2008 TUT, MSc studies in computer science
2000 – 2005 TUT, BSc studies in computer science

Special courses

2015 Santa Fe Institute Complex Systems Summer School
2013 Summer School on Matching Problems, Markets, and

Mechanisms
2011 Lipari School on Computational Complex Systems,

Game Theoretic approach to Computational Complex
Systems

Professional employment

2014 – 2016 Tallinn University of Technology; junior researcher
2006 – 2014 Skype Technologies; data warehouse developer, data

analyst, researcher
2003 – 2005 Elisa Mobiilsideteenused AS, systems engineer

2000 – 2002 OÜ Jaotuskeskus, IT specialist

309

Research activity

Veski, A., Biro, P., Põder, K., and Lauri, T. (2017). (forthcoming)
Efficiency and fair access in kindergarten allocation policy design.
Journal of Mechanism and Institution Design

Veski, A. and Põder, K. (2017). Zero-intelligence agents looking for
a job. Journal of Economic Interaction and Coordination

Veski, A. and Põder, K. (2016). Strategies in Tallinn school choice
mechanism. Research in Economics and Business: Central and East-
ern Europe, 8(1):5–24

Põder, K., Lauri, T., and Veski, A. (2016). Does School Admission by
Zoning Affect Educational Inequality? A Study of Family Background
Effect in Estonia, Finland, and Sweden. Scandinavian Journal of
Educational Research, pages 1–21

Põder, K., Lauri, T., Karmo, K., Veski, A., Roosalu, T., and Simm,
K. (2015). Lasteaiakohtade jagamine Soovitused kohalikele omavalit-
sustele. Gutenbergi Pojad, Tallinn

Veski, A. and Põder, K. (2015). Primary School Choice in Tallinn:
Data and Simulations. TUTECON Working Paper No. WP-2015/1

Põder, K., Veski, A., and Lauri, T. (2014). Eesti põhikooli- ja gümnaa-
siumivõrgu analüüs aastaks 2020. Technical report, PRAXIS Poli-
itikauuringute keskus

Veski, A. (2014). Price of Invisibility: Statistics of centralised and de-
centralised matching markets. In MacKerrow, E., Terano, T., Squaz-
zon, F., and Sichman, J. S., editors, Proceedings of the 5th. World
Congress on Social Simulation, pages 18–29, Sao Paulo

Veski, A. (2012). Some issues in Multi-Agent Resource Allocation.
In Proceedings of the 6th Annual Conference of the Estonian Na-
tional Doctoral School in Information and Communication Technolo-
gies, pages 101–104, Tallinn. TUT Press

Veski, A. and Võhandu, L. (2011). Two Player Fair Division Problem
with Uncertainty. In Barzdins, J. and Kirikova, M., editors, Frontiers
in Artificial Intelligence and Applications, pages 394–407. IOS Press,
Amsterdam

310

Veski, A. and Võhandu, L. (2010). Another View on Territory Fair
Division. In Barzdins, J. and Kirikova, M., editors, Databases and
information systems : proceedings of the Ninth International Baltic
Conference, pages 261–276, Riga. University of Latvia Press

311

Elulookirjeldus

Kontaktandmed

Name: Andre Veski
Email: andre.veski@ttu.ee

Hariduskäik

2008 – 2017 Tallinn Tehnikaülikool (TTÜ),
doktoriõpingud informaatikas

2005 – 2008 TTÜ, magistriõpingud informaatikas

2000 – 2005 TTÜ, bakalaureuseõpingud informaatikas

Täiendkoolitus

2015 Santa Fe Institute Complex Systems Summer School
2013 Summer School on Matching Problems, Markets, and

Mechanisms
2011 Lipari School on Computational Complex Systems,

Game Theoretic approach to Computational Complex
Systems

Teenistuskäik

2014 – 2016 Tallinn Tehnikaülikool; nooremteadur
2006 – 2014 Skype Technologies; andmelao arendaja,

andmeanalüütik, teadur
2003 – 2005 Elisa Mobiilsideteenused AS, süsteemiinsener

2000 – 2002 OÜ Jaotuskeskus, IT spetsialist

313

Teadustegevus

Veski, A., Biro, P., Põder, K., and Lauri, T. (2017). (forthcoming)
Efficiency and fair access in kindergarten allocation policy design.
Journal of Mechanism and Institution Design

Veski, A. and Põder, K. (2017). Zero-intelligence agents looking for
a job. Journal of Economic Interaction and Coordination

Veski, A. and Põder, K. (2016). Strategies in Tallinn school choice
mechanism. Research in Economics and Business: Central and East-
ern Europe, 8(1):5–24

Põder, K., Lauri, T., and Veski, A. (2016). Does School Admission by
Zoning Affect Educational Inequality? A Study of Family Background
Effect in Estonia, Finland, and Sweden. Scandinavian Journal of
Educational Research, pages 1–21

Põder, K., Lauri, T., Karmo, K., Veski, A., Roosalu, T., and Simm,
K. (2015). Lasteaiakohtade jagamine Soovitused kohalikele omavalit-
sustele. Gutenbergi Pojad, Tallinn

Veski, A. and Põder, K. (2015). Primary School Choice in Tallinn:
Data and Simulations. TUTECON Working Paper No. WP-2015/1

Põder, K., Veski, A., and Lauri, T. (2014). Eesti põhikooli- ja gümnaa-
siumivõrgu analüüs aastaks 2020. Technical report, PRAXIS Poli-
itikauuringute keskus

Veski, A. (2014). Price of Invisibility: Statistics of centralised and de-
centralised matching markets. In MacKerrow, E., Terano, T., Squaz-
zon, F., and Sichman, J. S., editors, Proceedings of the 5th. World
Congress on Social Simulation, pages 18–29, Sao Paulo

Veski, A. (2012). Some issues in Multi-Agent Resource Allocation.
In Proceedings of the 6th Annual Conference of the Estonian Na-
tional Doctoral School in Information and Communication Technolo-
gies, pages 101–104, Tallinn. TUT Press

Veski, A. and Võhandu, L. (2011). Two Player Fair Division Problem
with Uncertainty. In Barzdins, J. and Kirikova, M., editors, Frontiers
in Artificial Intelligence and Applications, pages 394–407. IOS Press,
Amsterdam

314

Veski, A. and Võhandu, L. (2010). Another View on Territory Fair
Division. In Barzdins, J. and Kirikova, M., editors, Databases and
information systems : proceedings of the Ninth International Baltic
Conference, pages 261–276, Riga. University of Latvia Press

315

DISSERTATIONS DEFENDED AT
TALLINN UNIVERSITY OF TECHNOLOGY ON

INFORMATICS AND SYSTEM ENGINEERING

1. Lea Elmik. Informational Modelling of a Communication Office. 1992.

2. Kalle Tammemäe. Control Intensive Digital System Synthesis. 1997.

3. Eerik Lossmann. Complex Signal Classification Algorithms, Based on the
Third-Order Statistical Models. 1999.

4. Kaido Kikkas. Using the Internet in Rehabilitation of People with Mobility
Impairments – Case Studies and Views from Estonia. 1999.

5. Nazmun Nahar. Global Electronic Commerce Process: Business-to-Business.
1999.

6. Jevgeni Riipulk. Microwave Radiometry for Medical Applications. 2000.

7. Alar Kuusik. Compact Smart Home Systems: Design and Verification of Cost
Effective Hardware Solutions. 2001.

8. Jaan Raik. Hierarchical Test Generation for Digital Circuits Represented by
Decision Diagrams. 2001.

9. Andri Riid. Transparent Fuzzy Systems: Model and Control. 2002.

10. Marina Brik. Investigation and Development of Test Generation Methods for
Control Part of Digital Systems. 2002.

11. Raul Land. Synchronous Approximation and Processing of Sampled Data
Signals. 2002.

12. Ants Ronk. An Extended Block-Adaptive Fourier Analyser for Analysis and
Reproduction of Periodic Components of Band-Limited Discrete-Time Signals.
2002.

13. Toivo Paavle. System Level Modeling of the Phase Locked Loops: Behavioral
Analysis and Parameterization. 2003.

14. Irina Astrova. On Integration of Object-Oriented Applications with Relational
Databases. 2003.

15. Kuldar Taveter. A Multi-Perspective Methodology for Agent-Oriented
Business Modelling and Simulation. 2004.

16. Taivo Kangilaski. Eesti Energia käiduhaldussüsteem. 2004.

17. Artur Jutman. Selected Issues of Modeling, Verification and Testing of Digital
Systems. 2004.

18. Ander Tenno. Simulation and Estimation of Electro-Chemical Processes in
Maintenance-Free Batteries with Fixed Electrolyte. 2004.

316

19. Oleg Korolkov. Formation of Diffusion Welded Al Contacts to Semiconductor
Silicon. 2004.

20. Risto Vaarandi. Tools and Techniques for Event Log Analysis. 2005.

21. Marko Koort. Transmitter Power Control in Wireless Communication
Systems. 2005.

22. Raul Savimaa. Modelling Emergent Behaviour of Organizations. Time-Aware,
UML and Agent Based Approach. 2005.

23. Raido Kurel. Investigation of Electrical Characteristics of SiC Based
Complementary JBS Structures. 2005.

24. Rainer Taniloo. Ökonoomsete negatiivse diferentsiaaltakistusega astmete ja
elementide disainimine ja optimeerimine. 2005.

25. Pauli Lallo. Adaptive Secure Data Transmission Method for OSI Level I. 2005.

26. Deniss Kumlander. Some Practical Algorithms to Solve the Maximum Clique
Problem. 2005.

27. Tarmo Veskioja. Stable Marriage Problem and College Admission. 2005.

28. Elena Fomina. Low Power Finite State Machine Synthesis. 2005.

29. Eero Ivask. Digital Test in WEB-Based Environment 2006.

30. Виктор Войтович. Разработка технологий выращивания из жидкой фазы
эпитаксиальных структур арсенида галлия с высоковольтным p-n переходом и
изготовления диодов на их основе. 2006.

31. Tanel Alumäe. Methods for Estonian Large Vocabulary Speech Recognition.
2006.

32. Erki Eessaar. Relational and Object-Relational Database Management Systems
as Platforms for Managing Softwareengineering Artefacts. 2006.

33. Rauno Gordon. Modelling of Cardiac Dynamics and Intracardiac Bio-
impedance. 2007.

34. Madis Listak. A Task-Oriented Design of a Biologically Inspired Underwater
Robot. 2007.

35. Elmet Orasson. Hybrid Built-in Self-Test. Methods and Tools for Analysis and
Optimization of BIST. 2007.

36. Eduard Petlenkov. Neural Networks Based Identification and Control of
Nonlinear Systems: ANARX Model Based Approach. 2007.

37. Toomas Kirt. Concept Formation in Exploratory Data Analysis: Case Studies
of Linguistic and Banking Data. 2007.

38. Juhan-Peep Ernits. Two State Space Reduction Techniques for Explicit State
Model Checking. 2007.

317

39. Innar Liiv. Pattern Discovery Using Seriation and Matrix Reordering:
A Unified View, Extensions and an Application to Inventory Management. 2008.

40. Andrei Pokatilov. Development of National Standard for Voltage Unit Based
on Solid-State References. 2008.

41. Karin Lindroos. Mapping Social Structures by Formal Non-Linear Information
Processing Methods: Case Studies of Estonian Islands Environments. 2008.

42. Maksim Jenihhin. Simulation-Based Hardware Verification with High-Level
Decision Diagrams. 2008.

43. Ando Saabas. Logics for Low-Level Code and Proof-Preserving Program
Transformations. 2008.

44. Ilja Tšahhirov. Security Protocols Analysis in the Computational Model –
Dependency Flow Graphs-Based Approach. 2008.

45. Toomas Ruuben. Wideband Digital Beamforming in Sonar Systems. 2009.

46. Sergei Devadze. Fault Simulation of Digital Systems. 2009.

47. Andrei Krivošei. Model Based Method for Adaptive Decomposition of the
Thoracic Bio-Impedance Variations into Cardiac and Respiratory Components.
2009.

48. Vineeth Govind. DfT-Based External Test and Diagnosis of Mesh-like
Networks on Chips. 2009.

49. Andres Kull. Model-Based Testing of Reactive Systems. 2009.

50. Ants Torim. Formal Concepts in the Theory of Monotone Systems. 2009.

51. Erika Matsak. Discovering Logical Constructs from Estonian Children
Language. 2009.

52. Paul Annus. Multichannel Bioimpedance Spectroscopy: Instrumentation
Methods and Design Principles. 2009.

53. Maris Tõnso. Computer Algebra Tools for Modelling, Analysis and Synthesis
for Nonlinear Control Systems. 2010.

54. Aivo Jürgenson. Efficient Semantics of Parallel and Serial Models of Attack
Trees. 2010.

55. Erkki Joasoon. The Tactile Feedback Device for Multi-Touch User Interfaces.
2010.

56. Jürgo-Sören Preden. Enhancing Situation – Awareness Cognition and
Reasoning of Ad-Hoc Network Agents. 2010.

57. Pavel Grigorenko. Higher-Order Attribute Semantics of Flat Languages. 2010.

58. Anna Rannaste. Hierarcical Test Pattern Generation and Untestability
Identification Techniques for Synchronous Sequential Circuits. 2010.

318

59. Sergei Strik. Battery Charging and Full-Featured Battery Charger Integrated
Circuit for Portable Applications. 2011.

60. Rain Ottis. A Systematic Approach to Offensive Volunteer Cyber Militia.
2011.

61. Natalja Sleptšuk. Investigation of the Intermediate Layer in the Metal-Silicon
Carbide Contact Obtained by Diffusion Welding. 2011.

62. Martin Jaanus. The Interactive Learning Environment for Mobile
Laboratories. 2011.

63. Argo Kasemaa. Analog Front End Components for Bio-Impedance
Measurement: Current Source Design and Implementation. 2011.

64. Kenneth Geers. Strategic Cyber Security: Evaluating Nation-State Cyber
Attack Mitigation Strategies. 2011.

65. Riina Maigre. Composition of Web Services on Large Service Models. 2011.

66. Helena Kruus. Optimization of Built-in Self-Test in Digital Systems. 2011.

67. Gunnar Piho. Archetypes Based Techniques for Development of Domains,
Requirements and Sofware. 2011.

68. Juri Gavšin. Intrinsic Robot Safety Through Reversibility of Actions. 2011.

69. Dmitri Mihhailov. Hardware Implementation of Recursive Sorting Algorithms
Using Tree-like Structures and HFSM Models. 2012.

70. Anton Tšertov. System Modeling for Processor-Centric Test Automation.
2012.

71. Sergei Kostin. Self-Diagnosis in Digital Systems. 2012.

72. Mihkel Tagel. System-Level Design of Timing-Sensitive Network-on-Chip
Based Dependable Systems. 2012.

73. Juri Belikov. Polynomial Methods for Nonlinear Control Systems. 2012.

74. Kristina Vassiljeva. Restricted Connectivity Neural Networks based
Identification for Control. 2012.

75. Tarmo Robal. Towards Adaptive Web – Analysing and Recommending Web
Users` Behaviour. 2012.

76. Anton Karputkin. Formal Verification and Error Correction on High-Level
Decision Diagrams. 2012.

77. Vadim Kimlaychuk. Simulations in Multi-Agent Communication System.
2012.

78. Taavi Viilukas. Constraints Solving Based Hierarchical Test Generation for
Synchronous Sequential Circuits. 2012.

319

79. Marko Kääramees. A Symbolic Approach to Model-based Online Testing.
2012.

80. Enar Reilent. Whiteboard Architecture for the Multi-agent Sensor Systems.
2012.

81. Jaan Ojarand. Wideband Excitation Signals for Fast Impedance Spectroscopy
of Biological Objects. 2012.

82. Igor Aleksejev. FPGA-based Embedded Virtual Instrumentation. 2013.

83. Juri Mihhailov. Accurate Flexible Current Measurement Method and its
Realization in Power and Battery Management Integrated Circuits for Portable
Applications. 2013.

84. Tõnis Saar. The Piezo-Electric Impedance Spectroscopy: Solutions and
Applications. 2013.

85. Ermo Täks. An Automated Legal Content Capture and Visualisation Method.
2013.

86. Uljana Reinsalu. Fault Simulation and Code Coverage Analysis of RTL
Designs Using High-Level Decision Diagrams. 2013.

87. Anton Tšepurov. Hardware Modeling for Design Verification and Debug.
2013.

88. Ivo Müürsepp. Robust Detectors for Cognitive Radio. 2013.

89. Jaas Ježov. Pressure sensitive lateral line for underwater robot. 2013.

90. Vadim Kaparin. Transformation of Nonlinear State Equations into Observer
Form. 2013.

92. Reeno Reeder. Development and Optimisation of Modelling Methods and
Algorithms for Terahertz Range Radiation Sources Based on Quantum Well
Heterostructures. 2014.

93. Ants Koel. GaAs and SiC Semiconductor Materials Based Power Structures:
Static and Dynamic Behavior Analysis. 2014.

94. Jaan Übi. Methods for Coopetition and Retention Analysis: An Application to
University Management. 2014.

95. Innokenti Sobolev. Hyperspectral Data Processing and Interpretation in
Remote Sensing Based on Laser-Induced Fluorescence Method. 2014.

96. Jana Toompuu. Investigation of the Specific Deep Levels in p-, i- and n-
Regions of GaAs p+-pin-n+ Structures. 2014.

97. Taavi Salumäe. Flow-Sensitive Robotic Fish: From Concept to Experiments.
2015.

98. Yar Muhammad. A Parametric Framework for Modelling of Bioelectrical
Signals. 2015.

99. Ago Mõlder. Image Processing Solutions for Precise Road Profile
Measurement Systems. 2015.

320

100. Kairit Sirts. Non-Parametric Bayesian Models for Computational
Morphology. 2015.

101. Alina Gavrijaševa. Coin Validation by Electromagnetic, Acoustic and Visual
Features. 2015.

102. Emiliano Pastorelli. Analysis and 3D Visualisation of Microstructured
Materials on Custom-Built Virtual Reality Environment. 2015.

103. Asko Ristolainen. Phantom Organs and their Applications in Robotic Surgery
and Radiology Training. 2015.

104. Aleksei Tepljakov. Fractional-order Modeling and Control of Dynamic
Systems. 2015.

105. Ahti Lohk. A System of Test Patterns to Check and Validate the Semantic
Hierarchies of Wordnet-type Dictionaries. 2015.

106. Hanno Hantson. Mutation-Based Verification and Error Correction in High-
Level Designs. 2015.

107. Lin Li. Statistical Methods for Ultrasound Image Segmentation. 2015.

108. Aleksandr Lenin. Reliable and Efficient Determination of the Likelihood of
Rational Attacks. 2015.

109. Maksim Gorev. At-Speed Testing and Test Quality Evaluation for High-
Performance Pipelined Systems. 2016.

110. Mari-Anne Meister. Electromagnetic Environment and Propagation Factors
of Short-Wave Range in Estonia. 2016.

111. Syed Saif Abrar. Comprehensive Abstraction of VHDL RTL Cores to ESL
SystemC. 2016.

112. Arvo Kaldmäe. Advanced Design of Nonlinear Discrete-time and Delayed
Systems. 2016.

113. Mairo Leier. Scalable Open Platform for Reliable Medical Sensorics. 2016.

114. Georgios Giannoukos. Mathematical and Physical Modelling of Dynamic
Electrical Impedance. 2016.

115. Aivo Anier. Model Based Framework for Distributed Control and Testing of
Cyber-Physical Systems. 2016.

116. Denis Firsov. Certification of Context-Free Grammar Algorithms. 2016.

117. Sergei Astatpov. Distributed Signal Processing for Situation Assessment in
Cyber-Physical Systems. 2016.

118. Erkki Moorits. Embedded Software Solutions for Development of Marine
Navigation Light Systems. 2016.

119. Andres Ojamaa. Software Technology for Cyber Security Simulations. 2016.

120. Gert Toming. Fluid Body Interaction of Biomimetic Underwater Robots.
2016.

321

121. Kadri Umbleja. Competence Based Learning – Framework, Implementation,
Analysis and Management of Learning Process. 2017.

122. Andres Hunt. Application-Oriented Performance Characterization of the Ionic
Polymer Transducers (IPTs). 2017.

123. Niccolò Veltri. A Type-Theoretical Study of Nontermination. 2017.

124.Tauseef Ahmed. Radio Spectrum and Power Optimization Cognitive
Techniques for Wireless Body Area Networks. 2017.

322

