
THESIS ON INFORMATICS AND SYSTEM ENGINEERING C42

Simulation-Based Hardware Verification
with High-Level Decision Diagrams

MAKSIM JENIHHIN

TALLINN UNIVERSITY OF TECHNOLOGY
Faculty of Information Technology
Department of Computer Engineering
Chair of Computer Engineering and Diagnostics

This dissertation was accepted for the defence of the degree of Doctor of
Philosophy in Computer and Systems Engineering on November 5, 2008

Supervisors: Dr. Jaan Raik
 Prof. Raimund Ubar

Opponents: Prof. Franco Fummi, University of Verona, Italy

Dr. Rainer Dorsch, IBM, Böblingen, Germany

Defence: December 8, 2008

Declaration:
Hereby I declare that this doctoral thesis, my original investigation and
achievement, submitted for the doctoral degree at Tallinn University of Technology
has not been submitted before for any degree or examination.

/Maksim Jenihhin/

Copyright: Maksim Jenihhin, 2008

ISSN 1406-4731
ISBN 978-9985-59-863-4

INFORMAATIKA JA SÜSTEEMITEHNIKA C42

Simuleerimisel põhinev riistvara
verifitseerimine

kõrgtaseme otsustusdiagrammidel

MAKSIM JENIHHIN

To my parents Vyacheslav and Olga

Abstract

This thesis addresses the main simulation-based hardware verification issues
that are speed and accuracy of the verification process. In particular we target
aspects of assertion checking and coverage measurement by exploiting advantages
of High-Level Decision Diagrams (HLDD) design representation model.

First, we present a novel method for assertion checking based on HLDD model.
The presented approach proposes a temporal extension for the existing HLDD
model aimed at supporting temporal properties expressed in Property Specification
Language (PSL). Other contributions of this method are methodology for direct
conversion of PSL properties to HLDD and HLDD-based simulator modification
for assertions checking support.

Second, we present a novel method for verification structural coverage analysis
based on HLDD model. The main contributions of this method include approaches
for mapping traditional code coverage metrics such as statement, branch and data
flow coverage to HLDD constructs. Another contribution is an approach for
condition coverage metric analysis. It employs a hierarchical decision diagrams
model consisting of HLDDs and BDD-based representations of the conditional
statements. The method also implies HLDD model manipulations targeting
different aspects of verification coverage analysis.

The proposed methods rely on homogeneous hardware verification flow based
on HLDD model. Previous research works have shown that HLDDs are an
efficient model for simulation and convenient for diagnosis and debug. The
performed experiments demonstrate feasibility and efficiency of the proposed
approaches.

vii

viii

Kokkuvõte

Antud töö on suunatud simuleerimisel-põhineva digitaalriistvara
verifitseerimise kiiruse ja täpsuse tõstmisele. Töös on pakutud lähenemised väidete
kontrolli ja verifitseerimise katte mõõtmise jaoks, mis rakendavad kõrgtaseme
otsustusdiagrammide (KTOD) eeliseid skeemide esitamisel.

Esiteks on esitatud uudne meetod väidete kontrolliks, mis põhineb KTOD
mudelil. Esitatud lähenemine pakub välja temporaalse laienduse olemasolevale
KTOD mudelile, mis on mõeldud Property Specification Language (PSL) keeles
esitatud omaduste toetamiseks. Lisaks on töös esitatud metodoloogia PSL
omaduste vahetuks konverteerimiseks KTOD mudelisse ja KTOD simulaatori
edasiarendus väidete kontrolli toetamiseks.

Teiseks on dissertatsioonis välja töötatud meetod verifitseerimise struktuurse
katte KTOD mudelil põhinevaks analüüsiks. Meetodi peamiseks panuseks on
traditsiooniliste kattemõõtude, nagu lausete, harude ja andmevoo katete sidumine
KTOD struktuuriga. Lisatulemuseks on lähenemine tingimuste katte analüüsiks.
Vimmane kasutab hierarhilist otsustusdiagrammide mudelit, mis koosneb KTOD-
dest ja tingimuslike lausete binaarsetel otsustusdiagrammidel põhinevast esitusest.
Samuti sisaldab pakutud meetod KTOD mudeli teisendusi, mis on suunatud
verifitseerimise katte analüüsi erinevatele tasemetele.

Pakutud meetodid toetuvad homogeensele KTOD-l põhinevale riistvara
verifitseerimise voole. Eelnev uurimistöö on näidanud, et KTOD on efektiivne
mudel simuleerimise läbiviimiseks ning sobilik digitaalsüsteemide diagnostikat ja
silumist silmas pidades. Dissertatsioonis teostatud katsed tõestavad pakutud
lähenemiste rakendatavust ja efektiivsust.

ix

x

Acknowledgements

I would like to express my sincere gratitude to everybody who has either
directly or indirectly contributed to my PhD studies and this thesis.

In particular, I would like to thank my supervisors. I very much appreciate the
support and advice of Dr. Jaan Raik. He has been guiding me through my PhD
studies and has been not only an excellent teacher but also a friend. I am very much
thankful to Prof. Raimund Ubar for bringing me to the exiting world of science and
research. I was always getting a wise advice from him just at the time when it was
needed.

I would also like to thank all my colleagues from Tallinn University of
Technology and especially from Dept. of Computer Engineering who contributed
to my work with discussions and ideas. In particular I would like to mention here in
alphabetical order: Anton Chepurov, Sergei Devadze, Prof. Peeter Ellervee, Dr.
Gert Jervan, Dr. Artur Jutman, Uljana Reinsalu and Assoc.Prof. Aleksander
Sudnitsõn.

A special thank should go to the director of Dept. of Computer Engineering Dr.
Margus Kruus for his support with many practical and administrative issues.

I would like to acknowledge several organizations that have supported my PhD
studies, including the research presented in this thesis. They are Tallinn University
of Technology, Enterprise Estonia funded ELIKO Development Centre, European
Commission FP6 research project VERTIGO, National Graduate School in
Information and Communication Technologies (IKTDK) and Estonian Information
Technology Foundation (EITSA).

Finally, I would like to thank my family for all the patience and support. In
particular I would like to mention my parents Vyacheslav and Olga, sister
Anastasia and my beloved fiancée Anna. Thank you!

Maksim Jenihhin,
 Tallinn, October 2008

xi

xii

Table of Contents

Chapter 1 INTRODUCTION .. 1
1.1 Motivation ... 1
1.2 Problem formulation ... 3
1.3 Contributions... 4
1.4 Thesis organization ... 4

1.4.1 Formatting remarks .. 5
Chapter 2 BACKGROUND ... 7

2.1 Design representation by decision diagrams ... 7
2.1.1 Binary decision diagrams .. 8
2.1.2 High-level decision diagrams .. 10

2.1.2.1 HLDD model definition ... 10
2.1.2.2 Basic simulation on HLDDs ... 11
2.1.2.3 Pure RTL designs representation by HLDDs 12
2.1.2.4 Behavioural RTL designs representation by HLDDs 15
2.1.2.5 HLDD vs. ADD representations comparison 18
2.1.2.6 HLDD model advantages for debug in verification 20

2.2 Property specification language .. 21
2.2.1 PSL organization ... 22

2.2.1.1 Flavors .. 23
2.2.1.2 Modes ... 23
2.2.1.3 Layers ... 24
2.2.1.4 Styles .. 25

2.2.2 PSL properties ... 25
2.2.2.1 Operators .. 26
2.2.2.2 Strong vs. weak operators ... 28
2.2.2.3 Vacuous pass .. 28

xiii

2.2.2.4 PSL flexibility and common equivalences 28
2.2.3 PSL simple subset .. 30

2.3 Chapter summary .. 31
Chapter 3 ASSERTION-BASED VERIFICATION .. 33

3.1 Overview ... 34
3.1.1 Design flow .. 34
3.1.2 Design verification... 35
3.1.3 Assertion-based verification .. 36

3.1.3.1 Diversity of assertion checking .. 38
3.1.4 State of the art .. 38

3.1.4.1 An experience with FoCs ... 40
3.1.5 APRICOT .. 42

3.2 Temporal extension for the HLDD model .. 44
3.2.1 THLDD model definition .. 45
3.2.2 THLDD interface ... 46
3.2.3 THLDD temporal relationships ... 47

3.3 PSL to THLDD conversion method .. 48
3.3.1 Primitive Property Graphs ... 48

3.3.1.1 PPG Library .. 49
3.3.2 Parser ... 50
3.3.3 Constructor .. 51
3.3.4 Representation types of THLDD properties .. 55

3.4 The method for assertions checking with HLDDsim 58
3.4.1 HLDDsim algorithm .. 58
3.4.2 HLDDsim modification for assertions checking 59
3.4.3 THLDD assertions checking timing issues .. 61

3.5 Experimental results .. 63
3.6 Verification assertions reuse for manufacturing testing 65

3.6.1 Assumption-based test generation ... 66
3.6.2 Assertion-based BIST .. 68
3.6.3 Assertion-based DfT by test points insertion 69

3.7 Chapter summary .. 70
Chapter 4 VERIFICATION COVERAGE ANALYSIS 71

4.1 Verification coverage overview .. 71
4.1.1 Verification coverage classification... 73
4.1.2 Sufficiency of verification coverage .. 74
4.1.3 Assertion coverage... 75

4.2 HLDD-based analysis of code coverage ... 76

xiv

4.2.1 Statement coverage mapping ... 77
4.2.2 Branch coverage mapping ... 78
4.2.3 Toggle coverage mapping .. 80
4.2.4 State coverage mapping ... 80
4.2.5 Data flow coverage mapping ... 81
4.2.6 Condition coverage mapping ... 81

4.3 A hierarchical approach for HLDD-based condition coverage analysis 82
4.4 HLDD model reduction manipulations for code coverage analysis 85
4.5 Experimental results .. 89
4.6 Chapter summary .. 91

Chapter 5 CONCLUSIONS AND FUTURE WORK .. 93
5.1 Conclusions ... 93

5.1.1 Contributions ... 93
5.1.2 Advantages .. 94

5.2 Future work ... 95
References .. 97
Appendix A PPG LIBRARY .. 107
Appendix B AGM FORMAT ... 123

xv

xvi

List of Publications

HLDD-based functional verification flow

 Maksim Jenihhin, Jaan Raik, Anton Chepurov, Raimund Ubar “Temporally
Extended High-Level Decision Diagrams for PSL Assertions Simulation”,
Proc. of 13th IEEE European Test Symposium (ETS’08), Verbania, Italy, May
25-29, 2008, pp. 61-68

 Maksim Jenihhin, Jaan Raik, Anton Chepurov, Raimund Ubar, “PSL
Assertion Checking with Temporally Extended High-Level Decision
Diagrams”, Proc. of 9th IEEE Latin American Test Workshop (LATW’08),
Puebla, Mexico, February 17-20, 2008, pp. 49-54

 Maksim Jenihhin, Jaan Raik, Anton Chepurov, Raimund Ubar, “Assertion
Checking with PSL and High-Level Decision Diagrams”, Digest of the IEEE
8th Workshop on RTL and High Level Testing (WRTLT'07), Beijing, China
October 12-13, 2007, pp. 105-110

 Maksim Jenihhin, Jaan Raik, Anton Chepurov, Raimund Ubar, “PSL
Assertion Checking Using Temporally Extended High-Level Decision
Diagrams”, Journal of Electronic Testing: Theory and Applications (JETTA)
[submitted on September 30, 2008]

 Jaan Raik, Maksim Jenihhin, Anton Chepurov, Uljana Reinsalu, Raimund
Ubar, “APRICOT: a Framework for Teaching Digital Systems Verification”,
Proc. of 19th EAEEIE Annual Conference, IEEE, Tallinn, Estonia, June 29 -
July 2, 2008, pp. 1-6

 Jaan Raik, Uljana Reinsalu, Raimund Ubar, Maksim Jenihhin, Peeter Ellervee,
“Code Coverage Analysis using High-Level Decision Diagrams”, Proc. of the
11th IEEE Workshop on Design and Diagnostics of Electronic Systems
(DDECS’08), April, 2008, pp. 201-206

 Karina Minakova, Uljana Reinsalu, Anton Chepurov, Jaan Raik, Maksim
Jenihhin, Raimund Ubar, Peeter Ellervee, “High-Level Decision Diagram

xvii

Manipulations for Code Coverage Analysis”, Proc of the 11th IEEE Biennial
Baltic Electronics Conference (BEC'08), Tallinn, Estonia, October 2008, pp.
207 - 210

 Jenihhin, Maksim, “PSL Assertions based Verification with HLDD Tools”,
Proc. of the 2nd IKTDK Conference, Viinistu, Estonia, May 11-12, 2007, pp.
17 - 20

 Maksim Jenihhin, “Assertion-based verification and testing with Decision
Diagrams”, PhD Forum (abstract + poster), Design, Automation and Test in
Europe (DATE’08), Munich, Germany, March 10-14, 2008

Assertion-based manufacturing test

 Maksim Jenihhin, Jaan Raik, Raimund Ubar, Anton Chepurov, “On
reusability of verification assertions for testing”, Proc. of 11th IEEE Biennial
Baltic Electronics Conference (BEC’08), Tallinn, Estonia, October 2008, pp.
151 - 154

 Knut Hermann, Jaan Raik, Maksim Jenihhin “TTBist: a DfT Tool for
Enhancing Functional Test for SoC”, Proc. of the Baltic Electronics
Conference, Laulasmaa, Estonia, 2006, pp. 191-194

 Jaan Raik, Maksim Jenihhin, Rain Adelbert, “Sequential Circuits BIST
Synthesis from Signal Specifications”, Proc. of IEEE Norchip Conference,
Oulu, Finland, November 21-22, 2005, pp.196 - 199

 Jenihhin, Maksim, “On reusability of verification assertions for testing”, Proc.
of the 3rd IKTDK Conference, Voore, Estonia, April 25-26, 2008, pp. 43-46

High-level and hierarchical manufacturing test

 Jaan Raik, Raimund Ubar, Taavi Viilukas, Maksim Jenihhin, “Mixed
Hierarchical-Functional Fault Models for Targeting Sequential Cores”,
Journal of Systems Architecture, 54(3-4), Elsevier, 2008, pp. 465 - 477

 Giuseppe Di Guglielmo, Franco Fummi, Maksim Jenihhin, Graziano
Pravadelli, Jaan Raik, Raimund Ubar, “On the Combined Use of HLDDs and
EFSMs for Functional ATPG”, Proc. of IEEE East-West Design and Test
Symposium,Yerevan, Armenia, September 7-10, 2007, pp. 503 - 508

 Raimund Ubar, Jaan Raik, Artur Jutman, Maksim Jenihhin, Marina Brik,
Martin Instenberg, Heinz-Dieter Wuttke, “Diagnostic Modeling of
Microprocessors with High-Level Decision Diagrams”, Proc. of 11th IEEE
Biennial Baltic Electronics Conference (BEC’08), Tallinn, Estonia, October
2008, pp. 147 - 150

xviii

 Raimund Ubar, Jaan Raik, Artur Jutman, Maksim Jenihhin, Martin Instenberg,
Heinz-Dieter Wuttke, “Modeling Microprocessor Faults on High-Level
Decision Diagrams”, Proc. of 2nd Workshop on Dependable and Secure
Nanocomputing (WDSN’08), Anchorage Hilton Hotel, AK, USA, June 2008,
pp. 1 - 6

 Raimund Ubar, Sergei Devadze, Maksim Jenihhin, Jaan Raik, Gert Jervan,
Peeter Ellervee, “Hierarchical Calculation of Malicious Faults for Evaluating
the Fault-Tolerance”, Proc. of IEEE International Symposium on Electronic
Design, Test and Applications (DELTA’08), Hong Kong, January 23 - 25,
2008, pp. 222-227

 Raimund Ubar, Gert Jervan, Jaan Raik, Maksim Jenihhin, Peeter Ellervee,
“Dependability Evaluation in Fault-Tolerant Systems with High-Level
Decision Diagrams”, Proc. of the Computer Science meets Automation: 52.
IWK - Internationales Wissenschaftliches Kolloquium, Ilmenau, Germany, 10-
13 September, 2007, pp. 147 - 152

Manufacturing test targeting physical defects

 Maksim Jenihhin, Jaan Raik, Raimund Ubar, Witold Pleskacz, Michal
Rakowski, “Layout to Logic Defect Analysis for Hierarchical Test
Generation”, Proc. of 10th IEEE Workshop on Design and Diagnostics of
Electronic Circuits and Systems(DDECS’07), Kraków, Poland, April 11-13,
2007, pp. 35-40

 Witold Pleskacz, Maksim Jenihhin, Jaan Raik, Michal Rakowski, Raimund
Ubar, Wieslaw Kuzmicz, “Hierarchical Analysis of Short Defects between
Metal Lines in CMOS IC”, Proc. of the 11th Euromicro Conference on
Digital System Design (DSD) Architectures, Methods and Tools, Parma, Italy,
September 2008, pp 729 - 734

 Jenihhin, Maksim, “Case Study: Defect-Oriented Testing of a Combinational
Circuit”, Proc. of the 1st IKTDK Conference, Jäneda, Estonia, May 12-13,
2006, pp. 78 - 81

Built-in self test optimization

 Gert Jervan, Petru Eles, Zebo Peng, Raimund Ubar, Maksim Jenihhin “Test
Time Minimization for Hybrid BIST of Core-Based Systems”, Journal of
Computer Science and Technology, 21(6), 2006, pp. 907 - 912

 Raimund Ubar, Maksim Jenihhin, Gert Jervan, Zebo Peng “Hybrid BIST
Optimization for Core-based Systems with Test Pattern Broadcasting”, Proc.
of the IEEE International Workshop on Electronic Design, Test and
Applications (DELTA 2004), Perth, Australia, January 28-30, 2004, pp. 3 - 8

xix

 Raimund Ubar, Maksim Jenihhin, Gert Jervan, Zebo Peng “An Iterative
Approach to Test Time Minimization for Parallel Hybrid BIST Architecture”
Proc. of 5th IEEE Latin-American Test Workshop (LATW’04), Cartagena,
Colombia, March 8-10, 2004, pp. 98 - 103

 Gert Jervan, Petru Eles, Zebo Peng, Raimund Ubar, Maksim Jenihhin “Hybrid
BIST time minimization for core-based systems with STUMPS architecture”,
Proc. of the 18th IEEE International Symposium on Defect and Fault
Tolerance in VLSI Systems (DFT 2003), Boston, MA, USA, November 3-5,
2003, pp. 225 - 232

 Gert Jervan, Petru Eles, Zebo Peng, Raimund Ubar, Maksim Jenihhin “Test
Time Minimization for Hybrid BIST of Core-Based Systems”, Proc. of the
12th IEEE Asian Test Symposium (ATS03), Xian, China, November 17-19,
2003, pp. 318 - 323

 Raimund Ubar, Maksim Jenihhin, Gert Jervan, Zebo Peng “Test Time
Minimization for Hybrid BIST with Test Pattern Broadcasting”, Proc. of the
21st NORCHIP Conference, Riga, Latvia, November 10-11, 2003, pp. 112 -
116

 Maksim Jenihhin, “Test Time Minimization for Parallel Hybrid BIST
Architectures”, Master thesis, Tallinn University of Technology, Tallinn, June
2004

 Maksim Jenihhin, “Test Time Minimization for Hybrid BIST of Systems-on-
Chip”, Bachelor thesis, Tallinn University of Technology, Linköping, June
2003

xx

List of Abbreviations

ABV Assertion-Based Verification

AGM Alternative Graph Model

APRICOT Assertions, PRopertIes, Coverage and Test

ASIC Application Specific Integrated Circuit

ATPG Automatic Test Pattern Generator

BDD Binary Decision Diagram

BIST Built-In Self-Test

CAD Computer Aided Design

CTL Computation Tree Logic

DD Decision Diagram

DfT Design for Testability

DfV Design for Verifiability

DUV Design Under Verification

EDIF Electronic Design Interchange Format

FL Foundation Language

FoCs Formal Checkers

FPGA Field Programmable Gate Array

GCD Greatest Common Devisor

GDL General Description Language

GUI Graphical User Interface

HDL Hardware Description Language

xxi

xxii

HIF HDL Intermediate Format

HLDD High-Level Decision Diagrams

IEEE Institute of Electrical and Electronics Engineers

LTL Linear Time temporal Logic

OBE Optional Branching Extension

PC Personal Computer

PPG Primitive Property Graph

PSL Property Specification Language

RTL Register Transfer Level

SERE Sequential Extended Regular Expressions

SSBDD Structurally Synthesized Binary Decision Diagrams

THLDD Temporally extended High-Level Decision Diagrams

TLM Transaction Level Modelling

TPG Test Pattern Generation

TUT Tallinn University of Technology

VHDL VHSIC (Very-High-Speed Integrated Circuit) Hardware
Description Language

WG Working Group

Latin and English abbreviations:

aka - also known as
e.g. - for example
et al. - and other co-authors
etc. - and the rest
i.a. - among others
i.e. - that is
vs. - versus

Chapter 1
INTRODUCTION

This thesis addresses several simulation-based hardware verification issues. The
main emphasis is put on assertion checking and structural coverage measurement
exploiting advantages of High-Level Decision Diagrams (HLDD) design
representation model.

This introductory chapter first presents the motivation behind the presented
work, followed by more detailed problem formulation. This is followed by a
summary of the main contributions and an overview of the thesis structure.

1.1 Motivation

Nowadays, it is not easy to realize that mobile phones, so ordinary today, have
got a wide spread only ten years ago as well as consumer digital cameras just five
years ago. Not to mention the times (slightly more than 15 years ago) when usual
people lived without the Internet. The technology advances very rapidly and today
we are surrounded by complex electronic devices and embedded systems that have
become a common part of our lives. We rely on them and accept their correct
behaviour as granted. At the same time we are becoming more and more dependent
on them. Minor failures may annoy us while a major one may have a serious
catastrophic effect and even cost human lives.

There are known famous cases of a fault occurrence in electronic devices. One
of them is the flight tragedy of the European Space Agency’s first Ariane 5
launcher on June4, 1996. Its first flight, known as Flight 501, has failed with the
rocket self-destructing 37 seconds after launch. This case is sometimes called one
of the most expensive “computer bugs” in history. The tragedy was caused purely
by the system design error. Further, the official investigation report on this case
[87] has concluded: “The extensive reviews and tests carried out during the Ariane
5 Development Programme did not include adequate analysis and testing ..., which
could have detected the potential failure”.

1

Another well known case is the “Pentium FDIV bug” in several Intel's original
Pentium processors’ families [88]. Because of this fault, some particular floating
point division operations performed with these processors could produce incorrect
results. This fault was also one of the most expensive “computer bugs” and cost
Intel Corp. $475 million.

The rapid development of the digital systems requires a huge increase of efforts
to verify the functionality, i.e. ascertain that the implemented design meets the
intended specification. It is obvious that, an exhaustive functional verification of an
average digital hardware design requires exercising an extremely large amount of
possible input combinations. For example (the example is from [5]), let us consider
a digital hardware design that has 10 inputs and 100 flip-flops (i.e. a bit more than
three 32-bit registers). This design would require in the worst case (210)100, i.e.
21000, test vectors to try. If we simulate 1000 test vectors per second, it would take
us: (21000/(602*24*365.25))/1000 = 339,540,588,380,062,907,492,466,172,668,391,
072,376,037,725,208,993,588,689,808,600,264,389,893,757,743,339,953,988,382,
771,724,040,525,133,303,203,524,078,771,892,395,266,335,942,544,299,458,056,
845,215,567,848,460,205,301,551,163,124,606,262,994,092,425,972,759,467,835,
103,001,336,717,048,865,167,147,297,613,428,902,897,465,679,093,821,978,784,
398,755,534,655,038,141,450,059,156,501 years to execute. Therefore, methods to
overcome the complexity, yet provide acceptable results, are vital.

The cause of an electronic system’s failure observable by its final user can hide
behind a wide set of the system’s aspects. They include correctness of its software
part, physical implementation, analog hardware part, the system timing issues etc.
In this thesis we address digital hardware design verification against incorrect
implementation of its intended functionality. This is type of design verification is
usually referred to as hardware design functional verification. Several other design
verification types as well as classification of hardware design functional
verification are discussed in more detail in the introduction to Chapter 3.

The growing complexity of the state-of-the-art hardware designs has made their
verification a very important phase in the complete development process. As it was
estimated in the last International Technology Roadmap for Semiconductors report
[102], verification takes roughly 70% of design time, and therefore demands a huge
amount of expensive resources such as man- or CPU-hours. This part of complete
system development is often the most expensive phase. According to [102], the
problem is caused by a pair of recent processes. They are, first, rapid design
complexity increase and, second, the historically greater emphasis on other aspects
of the design process that has produced significant progress in this area (e.g.
automated tools for logic synthesis) leaving verification as the bottleneck.

Hardware verification is usually divided into two types. They are, first, formal,
which assumes theorem proving and other formal methods of mathematics and,
second, simulation-based, which relies on design simulation with the provided set
of test vectors (aka stimuli). In this thesis we focus on the second type. Simulation-

2

based hardware verification usually assumes comparison of one implementation
against specification or another implementation (alternative or simplified, e.g. at a
higher abstraction level). The other way is not to compare against a reference but to
narrowly aim at specific design properties. The second approach is usually referred
as Assertion-Based Verification (ABV). This thesis considers both of the
possibilities but in different order.

ABV can be considered as one of the Design-for-Verifiability (DfV) techniques.
They assume application of complementary parts of Hardware Description
Language (HDL) code introduced especially for design verification assistance. In
case of ABV this complementary code is assertions. ABV allows discovering
design’s misbehaviour (causing assertions violation) earlier and more effective.

On the other hand comprehensive verification coverage metrics help to estimate
the verification progress and more effectively manage verification efforts.
Coverage measurement addresses an important question of “when the design is
verified enough”.

1.2 Problem formulation

Traditional design representation models are based on HDLs (e.g. VHDL or
Verilog). However, there are known a number of drawbacks related to application
of HDLs-based models in verification.

The awkwardness and usually even inability of HDLs to represent complex
temporal assertions has caused introduction of languages especially dedicated for
this purpose such as Property Specification Language (PSL). The latter one in turn
is not always supported by design simulation tools or this support may be
expensive. The attempts to unify design implementation and its properties’
representations normally result in creation of large hardware checkers that assume
significant restrictions on the initial assertion functionality. At the same time a
comprehensive verification coverage measurement based on HDL model may
require complicated HDL code manipulations resulting in inefficient resource
consumption.

In this thesis we address the main simulation-based hardware verification issues
that are speed and accuracy of the verification process. In particular we target
aspects of assertion checking and coverage measurement by exploiting decision
diagrams based model advantages. The proposed approaches use a homogeneous
hardware verification flow based on high-level decision diagrams design
representation model. Previous research works, including [44],[45], have shown
that HLDDs are an efficient model for design simulation and convenient for
diagnosis and debug.

3

1.3 Contributions

The main contributions of this thesis are summarised as follows:

A new approach for HLDD-based assertions checking

• A temporal extension for the existing HLDD model. The new extended model
is aimed at temporal properties expression and named Temporally extended
High-Level Decision Diagrams (THLDD). The extension supports a set of
commonly used temporal constructs that can be used to express a wide set of
possible complex temporal relationships.

• A methodology for direct conversion of assertions expressed in Property
Specification Language (PSL) to THLDD. The proposed hierarchical
approach introduces an extendable library of Primitive Property Graphs (PPG
Library). The components of this library serve as building blocks for a
complex THLDD property construction.

• An approach for HLDD-based assertion checking. A modification of the
existing HLDD-based simulator (HLDDsim) is proposed to support THLDDs
and assertion checking. This part is supported by explanations of temporal
issues and different varieties of THLDD properties.

A minor contribution includes discussions of verification assertions reuse for
manufacturing testing.

A new approach for HLDD-based coverage analysis

• An approach for mapping traditional verification structural coverage metrics
to HLDD-based coverage. In addition to the base code coverage metrics such
as statement and branch coverage, the approach considers also more
sophisticated ones, including FSM and data flow coverage metrics.

• An approach for condition coverage analysis. The approach employs a
hierarchical decision diagrams model consisting of HLDDs and BDD-based
representations of the conditional statements.

• An approach for HLDD model manipulations targeted to different aspects of
verification coverage analysis.

1.4 Thesis organization

This thesis consists of 5 main chapters. The rest of it is organized as follows.

Chapter 2 provides background information required for discussion of the
further proposed approaches. First, design representation by decision diagrams is
presented. It includes a brief introduction to Binary Decision Diagrams (BDD) and

4

description of High-Level Decision Diagrams (HLDD) model. Further Property
Specification Language (PSL) is discussed with respect to its application for the
proposed approaches.

Chapter 3 starts with an overview of hardware functional verification, focusing
on assertion-based verification. This section also includes the discussion of the
related works and a brief presentation of Tallinn University of Technology
verification framework APRICOT. Further, the approach for HLDD-based
assertion checking is presented in the following sections. The sections are temporal
extension to HLDD model, PSL to HLDD conversion method and the method for
assertion checking with HLDDsim simulator for HLDD. The following section
presents the experimental results proving the feasibility and efficiency of the
proposed approach. A discussion of verification assertions reuse ideas is provided
at the end of the chapter.

Chapter 4 starts with discussion of verification coverage metrics basic
classification and the main aspects related to their measurement while keeping the
main focus on structural coverage. It is followed by proposal of an approach for
mapping traditional verification coverage metrics to HLDD coverage. Further, an
approach employing a hierarchical decision diagrams’ model for the condition
coverage measurement is presented. Finally, HLDD model manipulations for the
verification coverage analysis are discussed. The chapter is concluded with
experimental results which demonstrate the feasibility and efficiency of HLDD-
based coverage analysis approach.

 Chapter 5 draws conclusions for this thesis and discusses possible directions
for future work.

Two appendix sections are also included at the end of the thesis. The first one
presents library of Primitive Properties’ Graphs (PPG library) as one of the HLDD-
based assertion checking approach contributions. The library is used for THLDD
properties construction. The second appendix provides syntax for an internal file
format AGM used for HLDD and THLDD models representation.

1.4.1 Formatting remarks

The text of the thesis has the following hierarchy of division:

• 1 Chapter
• 1.1 Section
• 1.1.1 Subsection
• 1.1.1.1 Clause

All co-authored references are emphasized in the work by a superscript suffix as
follows: [ref.]co-auth..

5

6

Chapter 2
BACKGROUND

The approaches for hardware verification presented in this work take the
advantage of design representation by High-Level Decision Diagrams (HLDDs)
developed in Tallinn University of Technology. The purpose of this chapter is to
introduce this model. Traditional Binary Decision Diagrams (BDDs) are also
described in this chapter. BDD and HLDD themselves are not contributions of this
thesis. However, most of the contributions rely on these models or are their
extensions.

This chapter introduces also IEEE standard Property Specification Language
(PSL) applied for expressing assertions. Within this work PSL is not just a choice
among available properties’ expression languages, but also serves in frames of this
work as a reference for the supported set of assertions and their classification.

2.1 Design representation by decision diagrams

The history [9] of decision diagrams based design representation model
development goes back to seventies when the basic concept of Binary Decision
Diagrams (BDD) was introduced. It was done by two authors, Raimund J. Ubar
and Sheldon B. Akers, independently from each other in 1976 [36] and 1978 [37]
respectively. In [36] decision diagrams were originally referred to as alternative
graphs. During the following years a number of works about using decision
diagrams for test and simulation purposes were published, including [38] and [39].
However, it was not until the efficient Boolean manipulation method was presented
by Randal E. Bryant in [40] when this type of representations became widely
accepted by the research community.

Further, a number of special classes of binary decision diagrams have been
proposed. They include popular Reduced Ordered BDDs (ROBDD) [40], multi-
terminal BDDs [49], edge-valued BDDs [50], binary moment diagrams [51], multi-

7

valued decision diagrams [52], zero-suppressed BDDs [53], functional decision
diagrams (FDD) [54], Kronecker FDDs [55] and others.

Structurally Synthesized BDDs (SSBDDs), formerly structural alternative
graphs, are a class of BDD that have been proposed by Raimund Ubar in [36], [41].
This model is used for design representation at gate level and supported by a set of
testing tools developed in Tallinn University of Technology and known as Turbo
Tester ([58] and [90]).

There is a number of word-level Decision Diagrams based models used for
design representation at Register-Transfer and higher levels. High-Level Decision
Diagrams (HLDDs) were proposed by Raimund Ubar in [41] and further
developed by Jaan Raik in [9] and [42], [19]co-auth.. The other examples are
multiterminal DDs (MTDDs) [49], K*BMDs [56] and Assignment DDs (ADDs)
[57] are some of them. However, in MTDDs the nonterminal nodes hold Boolean
variables only. K*BMDs, where additive and multiplicative weights label the edges
are useful for compact canonical representation of functions on integers (especially
wide integers). However, the main goal of HLDD representations is not canonicity
but simulation and implications. The principal difference between HLDDs and
ADDs lies in the fact that ADDs’ edges are not labelled by activating values. They
are rather used as connecting signals to represent structure. In HLDDs, the
selection of a node activates a path through the diagram, which derives the needed
value assignments for variables. Furthermore, ADD model includes four types of
nodes (read, write, operator, assignment decision). In HLDD the nodes are divided
into non-terminal (control) and terminal (data) ones. There is a comparison
example of HLDD vs. ADD representation of the same design provided in Clause
2.1.2.5.

The following two subsections provide a brief introduction to BDD and a more
comprehensive one to HLDD models correspondingly.

2.1.1 Binary decision diagrams

BDD is a common representation for Boolean functions. A BDD is defined [9]
as a directed acyclic graph with two terminal nodes, which are the 0-terminal and
1-terminal nodes. Each non-terminal node is labelled by an input variable of the
Boolean function, and has two outgoing edges, called 0-edge and 1-edge.

Ordered BDD (OBDD) is a BDD, where the input variables appear in a fixed
order on all the paths of the graph and no variable appears more than once in a
path. Figure 2.1 shows 3 different representations for a BDD corresponding to a
Boolean function f= (x1 · x2) v ¬x3. Figure 2.1a shows a full tree BDD, Figure 2.1b
shows an OBDD and Figure 2.1c shows the same OBDD from Figure 2.1b but in
alternative description style.

8

Alternative description style differs from the traditional BDD description style

by the following. Logic ‘1’ and ‘0’ constants holding terminals are omitted.
Instead of them, a convention exists, that the right-hand edge of a node corresponds
to 1-edge and the lower-hand edge to 0-edge. Exiting the BDD rightwards
corresponds to the solution y = ‘1’, while exiting downwards corresponds to y =
‘0’. In this type of description style the nodes can be labelled by both, variables and
their inversions (see ¬x3 in Figure 2.1c).

Reduced Ordered BDD (ROBDD) is created by applying the following

reduction rules to OBDD [40]:

Reduction rule1: Eliminate all the redundant nodes where both edges point to
the same node (Figure 2.2a).

Reduction rule2: Share all the equivalent sub-graphs (Figure 2.2b).

x1

x2

x3

0 1

0

1

0

0

1

1

y

x1

x2

x3

1 0

1

0

1

y

0

y

1

x2 x1 x2

x3

0

x3

0

x3

1 1 1 1

0 0 1

0 1 0 1 0 1
x3

a) b) c)

Figure 2.1. Different BDD representations for a Boolean function y = (x1·x2) V¬ x3

...

Figure 2.2. BDD reduction rules

a) b)

x

1

...

sG

0

sG

x
1

...

sG0

...

0

x

1

sG1

0
x

1

...

0

...

sG0 sG1

9

The important feature of ROBDDs is that they provide for canonical forms of
Boolean functions. This allows us to check the equivalence of two Boolean
functions by merely checking isomorphism of their ROBDDs. This is a widely
used technique in formal verification.

The mentioned above Structurally Synthesized BDDs (SSBDDs) model is not
directly used in frames of this thesis and therefore it is not discussed in detail.
However, for the approaches where a hierarchical design representation is
convenient, SSBDD model can complement HLDDs by representing the design’s
modules at the gate level. As it will be shown in the next subsection HLDDs are
applied for design representation at RTL and higher abstraction levels.

2.1.2 High-level decision diagrams

The HLDD model description provided in this subsection is mostly based on the
description provided in [9] and considers minor refinements made in ([19] and
[13]) co-auth..

Figure 2.3. A high-level decision diagram representing a function y= f(x1,x2,x3,x4)

Gy=(M,E,Z,Γ),
M={m0, m1, m2, m3, m4};

2.1.2.1 HLDD model definition
A High-Level Decision Diagram (HLDD) is a graph representation of a discrete

function. A discrete function y = f(x), where y = (y1, …, yn) and x = (x1, …, xm) are
vectors is defined on X = X1×…×Xm with values y ∈ Y = Y1×…×Yn, and both, the
domain X and the range Y are finite sets of values. The values of variables may be
Boolean, Boolean vectors, integers. Figure 2.3 presents an example of a graphical
interpretation of a HLDD.

Definition 1: A high-level decision diagram is a directed non-cyclic labelled
graph that can be defined as a quadruple G=(M,E,Z,Γ), where M is a finite set of
vertices (referred to as nodes), E is a finite set of edges, Z is a function which
defines the variables labelling the nodes, and Γ is a function on E.

E={e1, e2, e3, e4, e5}, e1=(m0, m1),
e2=(m0, m3), e3=(m0, m4), e4=(m1, m2),
e5=(m1, m3);
Z(m0)=Z(m4)=x2, Z(m1)=x3, Z(m2)=x4,
Z(m3)=x1;
Γ(e1)={0}, Γ(e2)={1,2,3}, Γ(e3)={4,5,6,7},
Γ(e4)={2}, Γ(e5)={0,1,3}.

x2
m0

x3
m1

x4
m2

x1
m3

x2

y 0 2

m4

0,1,3

4-7

1-3

e1 e4

e2

e5

e3

10

The function Z(mi) returns the variable xk, which is labelling node mi. Each node
of a HLDD is labelled by a variable. In special cases, nodes can be labelled by
constants or algebraic expressions. An edge e∈E of a HLDD is an ordered pair
e=(mpc,msc)∈E2, where E2 is the set of all the possible ordered pairs in set E.
Graphical interpretation of e is an edge leading from node mpc to node msc. It is
said that mpc is a predecessor node of msc, and msc is a successor node of the node
mpc, respectively. Γ is a function on E representing the activating conditions of the
edges for the simulating procedures. The value of Γ(e) is a subset of the domain Xk
of the variable xk, where e=(mi,mj) and Z(mi)=xk. It is required that Pmi ={ Γ(e) | e =
(mi,mj)∈E} is a partition of the set Xk.

Figure 2.3 presents a HLDD for a discrete function y=f(x1,x2,x3,x4). HLDD has
only one starting node (root node) m0, for which there are no preceding nodes. The
nodes that have no successor nodes are referred to as terminal nodes Mterm ∈ M
(nodes m2, m3 and m4 in Figure 2.3). Design representation by high-level decision
diagrams, in general case, is a system of HLDDs rather than a single HLDD.
During the simulation in HLDD systems, the values of some variables labelling the
nodes of a HLDD are calculated by other HLDDs of the system.

In this thesis we propose to emphasize the connection between HLDD label (i.e.
the graph name, bold y for the example in Figure 2.3) and the root node of the
graph by a double arrow to distinguish it from the edges connecting the HLDD’s
nodes. In case of design representation by a system of HLDDs the notations of
variables labelling the terminal nodes Mterm are proposed to be underlined or
remain normal for the explicit variables (i.e. input signals) and set off in italics for
implicit variables (the ones referring to another HLDD graph in a system of
HLDDs). An example of a system of HLDDs can be found in Figure 2.7.

2.1.2.2 Basic simulation on HLDDs
Simulation on decision diagrams takes place as follows. Consider a situation,

where all the node variables are fixed to some value. For each non-terminal node
mi ∉ Mterm according to the value vk of the variable xk=Z(mi) certain output edge e =
(mi,mj), vk∈Γ(e) will be chosen, which enters into its corresponding successor node
mj. Let us call such connections activated edges under the given values and denote
them by . Succeeding each other, activated edges form in turn activated paths.
For each combination of values of all the node variables there exists always a
corresponding activated path from the root node to some terminal node. We refer to
this path as the main activated path. The simulated value of variable represented by
the HLDD will be the value of the variable labelling the terminal node of the main
activated path.

kv
im

11

In Figure 2.4 simulation on the high-level decision diagram presented in Figure

2.3 is shown. Assuming that variable x2 is equal to 2, a path (marked by bold
arrows) is activated from node m0 (the root node) to a terminal node m3 labelled by
x1. Let the value of variable x1 be 4, thus, y=x1=4. Note, that this type of simulation
is event-driven since we have to simulate only those nodes that are traversed by the
main activated path (marked by grey colour in Figure 2.4).

When representing systems by decision diagram models, in general case, a
network of HLDDs rather than a single DD is required. During the simulation in
HLDD systems, the values of some variables labelling the nodes of a HLDD are
calculated by other HLDDs of the system. The detailed algorithm for HLDD based
systems simulation is provided in Subsection 3.4.1.

2.1.2.3 Pure RTL designs representation by HLDDs
Let us consider a design represented in a HDL at the Register-Transfer Level

(RTL) of abstraction. We distinguish 2 styles of RTL description - pure RTL and
behavioural RTL. While the first one more precisely targets the desired
architecture, the second one describes the design in a more natural way. This and
the following clauses introduce RTL design representations by HLDDs for these
two description styles correspondingly.

A deign described in the pure RTL style is assumed to be partitioned into a
datapath and a control part. Figure 2.5 shows this type of architecture. Here, the
control part is a Finite State Machine (FSM) with a state register (represented by
variable xS in the corresponding HLDD model), next state logic and output logic.
As input signals to the FSM are the primary inputs of the design (variables xI),
conditional signals originating from the datapath (variables xN) and current value of
the state variable xS. Outputs of the FSM are the primary outputs of the design
(variables xO), control signals (variables xC) and the next value of xS. The signals’
variables notations introduced for Figure 2.5 are used throughout this clause.

Figure 2.4. Design simulation on high-level decision diagrams

x1 = 4
x2 = 2
x3 = -
x4 = -

x2 x3 x4

x1

x2

y 0 2

4-7

1-3
m3

0,1,3

m0

y = 4

12

The datapath can be viewed as a network consisting of modules or blocks.

These include registers, multiplexers and functional units (for implementing
operations).

All the registers and some internal lines of the datapath can be represented by

variables in the RTL HLDD model (variables xR and xL, respectively). Inputs for
the datapath are the primary inputs xI and control signals xC (e.g. multiplexer

Figure 2.6. A datapath fragment (a) and its HLDD representation (b)

reg2_ena
reg2’

mux1_addr
1

reg2

0

reg1+’1’
0

in1
1

+
>

mux1_add

reg2_ena

reg2

in1

=0

=1
‘1’

>

...

reg1...

a)

b)

Figure 2.5. RLT view of a digital design

primary
inputs
 xI

Control part

RTL design

primary

Datapath

outputs
xO

next
state
logic

output

state register xS

control signals xC

logic

conditions xN

=

internal line xL

multiplexer register
xR

+ comparison
operations

etc.

13

addresses and register enable signals). Outputs are the primary outputs xO as well
as conditional signals xN (e.g. from comparison operators) leading to the control
part FSM.

In HLDDs representing the datapath, the non-terminal nodes correspond to
control signals (labelled by variables xC). The terminal nodes represent operations
(functional units). Register transfers and constant assignments are treated as special
cases of operations. Figure 2.6 shows a simple example of a HLDD representation
(Figure 2.6b) for the given datapath fragment (Figure 2.6a). In this example and
further in this clause we use a notation where the prime symbol “ ' ” after diagram’s
variable denotes one clock cycle delay, i.e. next state of the variable (e.g reg3' vs.
reg3).

Usually, a datapath is represented by a system of HLDDs. Here, different

partitioning strategies are possible. The most commonly used partitioning is the
one, where for each primary output, fanout signal and register a HLDD

=0

=1

×

+
=0

=1
>

mux1_addr

mux2_addr
mult1

mux1

reg3_ena

reg1
...

reg3

...
reg2

reg3

reg3_ena
reg3’

mux2_addr
1

reg3

0

mult1
0

mult1+mux1
1

mux1_addr reg1
0

reg2
1

mux1

reg1×reg2
mult1

reg3_ena
reg3’

mux1_addr
1

reg3

0

(reg1×reg2)+reg1
0

(reg1×reg2)+reg2
1

0

reg1×reg2

mux2_addr
1

b)

c)

a)

Figure 2.7. Datapath representing HLDD partitioning types

14

corresponds. In addition, multiplexers that are connected to inputs of a functional
unit are represented by a separate HLDD. Figure 2.7b shows this type of HLDD
system partitioning for the datapath given in Figure 2.7a. However, it is possible to
use alternative partitioning. For example, Figure 2.7c shows an approach, where
for each register of the datapath exactly one decision diagram corresponds. This
type of partitioning is sometimes referred as register-oriented HLDD. Other types
of HLDD partitioning can be used depending on the target model application.

A simple RTL design control part is usually represented by a single HLDD,

however in case of complex or multiple FSMs different partitioning are possible
here as well.

The control part HLDD calculates the values for a vector consisting of the state
variable and control signals. In the HLDD, the non-terminal nodes correspond to
current state (labelled by variable xS) and conditional signals originating from the
datapath (variables xN). Terminal nodes hold vectors with the values of next state
and control signals xC.

Figure 2.8 shows an FSM state table and its corresponding HLDD repre-
sentation. In the HLDD, state' denotes the next state and state denotes the current
state value. Variables A_enable, B_enable, mux_12 and mux_34 are FSM outputs
and belong to the control signals xC. Variables RESET, LT and NEQ are FSM
inputs and belong to xN. The dashed circles and arrows in Figure 2.10 depict setting
up the edges and the terminal node corresponding to the fourth row of the state
table.

2.1.2.4 Behavioural RTL designs representation by HLDDs
Behavioural RTL HDL description style represents the design as an FSM

structure nested with data assignments. It includes clocking information and is

Figure 2.8. Converting FSM state table into HLDD

fsm_vec =
(state’, A_enable,
B_enable,
mux_12, mux_34)

reset state
1

NEQ
S0

LT
S1

S1,0,0,X,X

S0,0,0,X,X

S2,0,0,X,X

0 1

S3,0,0,X,X

S0,0,1,1,1
S2

S0,1,0,1,0
S3

0
S0,1,1,0,X

1
state state’

(next) RESET LT NEQ A_enable B_enable mux_12 mux_34

1 X X X S0 1 1 X X
0 X 1 S0 S1 0 0 X X
0 X 0 S0 S0 0 0 X X

0 1

0

X S1 S2 0 0 X X
0 0 X S1 S3 0 0 X X
0 X X S2 S0 0 1 1 1
0 X X S3 S0 1 0 1 0

15

therefore cycle-accurate. The control state is mapped to a case statement and
conditions to if or case statements respectively. Each branch of the control state
case statement corresponds to a certain control state and describes the datapath
operations at the corresponding state and also the next state transitions.

This style is also synthesizable as well as pure RTL, but it is less target
architecture specific. The behavioural RTL style is more commonly used in
practical design HDL-based implementation than pure RTL style, where the design
is strictly partitioned to datapath and control part. For example, ITC’99 benchmark
circuits [76],[102] that are widely used in research community and partially
represent real industrial designs, are described in behavioural RTL style.

A separate HLDD diagram is generated for each internal signal and output port
of the behavioural RTL description. For each such signal v we generate a diagram
by parsing the behavioural RTL code as follows:

1. From the nested if/case structure generate a diagram where nodes correspond
to conditions in respective if/case statements and edges correspond to decisions
and are marked by the activation values of the respective decisions.

2. The terminal nodes are labelled by the right-hand side of assignments to a
signal v. If there is no assignment to the signal v in the corresponding decision
branch then the respective terminal node will be labelled by v.

... s1 a) T

Figure 2.9 shows HLDD generation for the common behavioural RTL HDL (we

consider VHDL) constructs. Figures 2.9a and 2.9b show simple if and case

Figure 2.9. HLDD representation for the common constructs
of the behavioural RTL VHDL

if c1 then s1<= s1val1; c1
 else s1<= s1val2;
endif;

s1val2

s1val1

F

s2
c2

...

s2val2

s2val1

c2val2

s2valN
c2valN

c2val1 ... b)
case c2
 when c2val1 => s2<= s2val1;
 when c2val2 => s2<= s2val2;
...
 when c2valN => s2<= s2valN;
end case;

...

...

...

s3
c3 and c4

T

s3val2

s3val1

F

s3
c3

T

F

c4
T

s3val2

s3val1

F

c4
T

s3val2

s3val2

F

if (c3 and c4) then s3<= s3val1;
 else s3<= s3val2;
endif;
...

Expanded conditional statements:

Compact
conditional

c)

statements:

16

conditional statements. Figure 2.9c shows a complex if construct, which consists of
two conditions c3 and c4 joint by the logical and operator. For a complex
conditional statement consisting of a set of conditions 2 HLDD variants are
possible. Normally, the conditional statement evaluated as a whole and therefore
can be represented by a HLDD with compact conditional statements (the bottom-
left part of Figure 2.9c). However, in case if we are interested in several particular
simulation coverage metrics (e.g. condition coverage) measurement, we may be
interested in a HLDD representation with expanded conditional statements (the
right-hand-side part of Figure 2.9c). This topic is discussed in detail in Chapter 4
(Section 4.3). Please note, that depending on the application we may be interested
in a non-reduced HLDD. For example, c4 is analyzed even after the false-edge of
c3 node in Figure 2.9c, however here the reduction rule 1 from the Subsection
2.1.1 (Figure 2.2a) would be applicable.

Note, that since we do not support asynchronous latches in our approach the
synthesizable RTL style must always include else and default branches of the if and
case statements, respectively. Alternatively, default value assignments of signal v
must be given.

Figure 2.10 shows an implementation GCD1 of a greatest common devisor
design, which is actually a benchmark gcd from the HLSynth’92 benchmarks
family [103]) in behavioural RTL VHDL and its corresponding HLDD. The
comparison benchmark from the next clause (Figure 2.11) is an alternative pure
RTL description implementation of the Greatest Common Devisor design (GCD2).

state
res

0
state

s0,s3,s4

s5

s1

a=b

s5

s1
s0

a
state

s0

a-b

in1

s5

a
ε

b
state

s0

b-a

in2

s4

b
ε

ready
state

s0

1

0

s5

ready
ε

s2

T

F

a>b
F

s2

s4

T
s3

1

...
IF res = 1 THEN state:=s0;
ELSE
 CASE state
 WHEN s0 =>
 a:=in1; b:=in2;
ready:=0;
 state:=s1;
 WHEN s1 =>
 IF a/=b THEN state:=s2;
 ELSE state:=s5; ENDIF;
 WHEN s2 =>
 IF a>b THEN state:=s3;
 ELSE state:=s4; ENDIF;
 WHEN s3 =>
 a:=a-b; state:=s1;
 WHEN s4 =>
 b:=b-a; state:=s1;
 WHEN s5 =>
 ready:=1;
 state:=s5;
 END CASE
END IF
...

Figure 2.10. Behavioural RTL VHDL and HLDD representations
for a design GCD1

17

2.1.2.5 HLDD vs. ADD representations comparison
This clause provides an example (proposed in [43]) of HLDD model

comparison with a commonly used Assignment Decision Diagram (ADD)
approach.

Figure 2.11 presents the schematic RTL description of a Greatest Common
Divisor benchmark GCD2. Figures 2.12 and 2.13 show its corresponding HLDD
and ADD representations respectively.

Apart from the fact that HLDD description contains less nodes, there are the

following fundamental differences:

• ADDs structure closely matches the RTL design. Edges of ADD correspond to
connecting nets in datapath. ADD for FSM is equivalent to its gate-level
implementation. In contrast, HLDDs do not strictly follow the circuit
structure. Here, a synthesis to extract data and control relationships from the
circuit functionality has been carried out.

• ADD model includes four types of nodes (read, write, operator, assignment
decision). In HLDD the nodes are treated uniformly and can be divided into
nonterminal nodes (control) and terminal nodes (data).

Figure 2.11. A RTL design GCD2

RESET LT NEQ state state’
(next) A_enable B_enable mux_12 mux_34

1 X X X S0 1 1 0 X
0 X 1 S0 S1 0 0 X X
0 X 0 S0 S0 0 0 X X
0 1 X S1 S2 0 0 X X
0 0 X S1 S3 0 0 X X
0 X X S2 S0 0 1 1 1
0 X X S3 S0 1 0 1 0

LT

OUT

=0

=1

mux_12

=0

=1

mux_12

>

>

reg_A

≠

<
IN1

IN2
=0

=1

mux_34

=0

=1

mux_34

−

NEQ

mux3

A_enable

B_enable

subtr
mux4 reg_B

18

• While ADDs do not support decision-making implicitly in the model, in
HLDDs, the selection of a node activates a path through the diagram, which
derives the needed value assignments for variables. Note, that the edges in
ADD model have no labels. This is the most significant difference between
the two models.

Figure 2.12. HLDD representation for the GCD2 design

fsm_vec =

(state’, A_enable,
B_enable,
mux_12, mux_34)

reset state
1

NEQ
S0

LT
S1

S1,0,0,X,X

S0,0,0,X,X

S2,0,0,X,X

0 1

S3,0,0,X,X

S0,0,1,1,1
S2

S0,1,0,1,0
S3

0
S0,1,1,0,X

1

0

OUT
(reg_A’) A_enable mux_12

0

IN1
0

reg_A

1

subtr
1

regB’
B_enable mux_12

0

IN2
0

reg_B

1

subtr
1

mux3
mux_34

reg_B
1

reg_A
0

LT
reg_A < reg_B

mux4
mux_34

reg_A
1

reg_B
0

subtr
mux3 - mux4

NEQ
reg_A ≠ reg_B

Figure 2.13. ADD representation for the GCD2 design

19

2.1.2.6 HLDD model advantages for debug in verification
High-level decision diagrams model has a set of advantages compared to HDL

and other DD based design representation models. A comparison with ADD has
been provided in the previous clause. This clause describes by example some
advantages of HLDD model for debug process in verification.

As an example, consider a datapath of a design depicted in Figure 2.14a and its
corresponding HLDD representation shown in Figure 2.14b. Here, R1 and R2 are
registers (R2 is also output), MUX1, MUX2 and MUX3 are multiplexers, + and *
denote adder and multiplier, IN is and input bus, y1, y2, y3 and y4 serve as input
control variables, and a, b, c, d and e denote internal buses, respectively. In the
HLDD, the control variables y1, y2, y3 and y4 are labelling internal decision nodes of
the HLDD with their values shown at edges. The terminal nodes are labelled by a
constant #0 (reset of R2), by word variables R1 and R2 (data transfers to R2), and by
expressions related to data manipulation operations of the network. By bold lines
and grey nodes, a full activated path in the HLDD is shown from Z(m0)= y4 to
Z(mT∈MT)=R1*R2, which corresponds to the pattern y4=2, y3=3, and y2=0. The
activated part of the network at this pattern is denoted by grey boxes.

The main advantage and motivation of using HLDD model, compared to other

design representation models relying on netlists of primitive functions, is the
increased efficiency of simulation and diagnostic modelling. The efficiency is
caused by direct and compact representation of cause-effect relationships. For

Figure 2.14. HLDD model advantages for debug

R2

*

+
IN

>

y4

>

y3

=0
=1

M
U

X
3

=2
=3

y1

=0

=1

e

R2
y4

0
#0

R2

M
U

X
1

y2

=0

=1 M
U

X
2

R1

b d

c
a

y3
0

IN

y1
0

R1 + R2

IN + R2

y2
0

R1 * R2

IN * R2

R1

1

2 b)

1

1

2

3

1

a)

20

example, instead of simulating the control word y1, y2, y3, y4 = 0032 by computing
the functions a = R1, b = R1, c = a + R2, d = b * R2, e = d, and R2 = e, we only need
to trace the nodes y4, y3 and y2 on the HLDD and compute a single operation R2 =
R1 * R2. In case of detecting an error in R2 the possible causes can be defined
immediately along the simulated path through y4, y3 and y2 without any diagnostic
analysis inside the corresponding RTL netlist. As a result of such a quick reasoning
the debugging of a system can be considerably simplified. A detailed analysis
inside the RTL netlist is needed only if all the values of y4, y3 and y2 are correct. In
such a way, a very efficient hierarchical debugging procedure can be carried out
with HLDDs: first, by a quick trace of faulty nodes in HLDDs, and then after
locating the erroneous RTL region, by exactly locating the cause of error in this
region.

The advantages for debug and proven [44],[45] faster design HLDD-based
simulation are a strong motivation for HLDD application for simulation-based
functional verification.

The first section of this background chapter has presented discussed the
advantages of the design representation model called high level decision diagrams.
This model is used for the approaches proposed in Chapters 3 and 4.

2.2 Property specification language

This section provides introductory information about a language for assertions
expression Property Specification Language (PSL). Within this work PSL is not
just a choice among available assertions expression languages like System Verilog
Assertions, Open Vera Assertions, e, Open Verification Library, SystemC
Assertions, etc. Based on the number of factors, discussed further, PSL serves in
frames of this work as a reference for the supported set of properties and their
classification.

Assertion-based verification popularity has encouraged a common property
specification language development by the Functional Verification Technical
Committee of Accellera. After a process in which donations from a number of
companies were evaluated, the Sugar language [99] from IBM was chosen as the
basis for PSL. The latest Language Reference Manual (LRM) for PSL version 1.1
was released in 2004 [91]. The language became an IEEE 1850 Standard in 2005
[92] and later IEC 62531 Standard [61] in 2007. The both above mentioned
standards are based upon Accellera’s LRM [91] with minor modifications (e.g.
SystemC flavor introduction). This LRM together with the web resources listed on
the PSL/Sugar Consortium webpage [94] can be considered for comprehensive
PSL definition and explanation source. The information about PLS provided in this
Chapter focuses on the parts of the language required for implementation and
understanding of the approaches described in Chapter 3.

21

Figure 2.15. An example of PSL assertion with its structure explained
and possible DUV’s behavior timing diagrams

The asserted PSL property a1 states that after signal s_req assignment signal s_ack
must be assigned at the next evaluation cycle.

a1: assert always (s_req −> next s_ack);

assertion
label

c) not activated

s_req

s_ack

s_req

s_ack

b) FAIL

s_req

s_ack

a) PASS

verification
directive invariance

operator
the main part of

the property

the
property

An example of a PSL assertion is shown in Figure 2.15. The assertion in the
example consists of an optional label, the verification directive and the property to
be checked. The last one is composed of the signals of interest and PSL operators.
The timing diagrams in the bottom demonstrate 3 of many possible variants of the
DUV’s behaviour. In case of behaviour (a) the assertion is satisfied. However, the
assertion will be violated in case of (b) and not activated (or vacuously passed) in
case of behaviour (c).

2.2.1 PSL organization

As it was mentioned, PSL is primarily based on IBM’s Sugar language. The
latter one was, in turn, originally based on Computation Tree Logic (CTL) (first
introduced in 1977 [62]), initially just providing “sugaring” to the CTL’s
complicated syntax for IBM tools users’ convenience in early ’90-ies (as it is stated
in [4] and [2]). The main application of Sugar was Formal Verification. Later,
before PSL standardization, Sugar has employed Linear-Time (temporal) Logic
(LTL) (first introduced in 1981 [63]) capabilities. At present, PSL consists of 2
parts:

• Foundation Language (FL), that is based on LTL and applied for both
simulation-based and formal verification

• Optional Branching Extension (OBE), that is based on CTL and finds its
application in formal verification

22

The main emphasis of this thesis is put on simulation-based verification,
therefore from now on we will consider mostly FL part of PSL.

2.2.1.1 Flavors
For convenience of the language users, PSL supports 5 flavors1, each of them

corresponding to one HDL. The main difference between the flavors is seen for
Boolean expressions. At present the flavors are:

• SystemVerilog (IEEE Std 1800)
• Verilog (IEEE Std 1364)
• VHDL (IEEE Std 1076)
• SystemC (IEEE Std 1666)
• GDL (General Description Language [98]), which is known also as a

placeholder for the future HDL from IBM

VHDL flavor: Verilog flavor:
-- psl property p1 is
-- always (sig1 ->

// psl property p1 =
// always (sig1 ->

-- ((sig2(0 to 4)= “1010”) or // ((sig2[0:4]== 4b’1010) ||
// (sig2[0:4]== 4b’0101)))
// @(posedge clk);

-- (sig2(0 to 4)= “0101”)))
-- @(clk’event and clk=’1’);
-- psl assert p1; // psl assert p1;

Figure 2.16. The same PSL property expression in Verilog and VHDL flavors

An example of the same PSL property expression in Verilog and VHDL flavor
is given in Figure 2.16. It is not allowed to mix flavors within one property
(otherwise it could not be parsed).

2.2.1.2 Modes
In practice PSL properties related to a design under verification (DUV) may be

expressed in one of the two modes [2].

• The stand-alone mode means that all properties related to a DUV are grouped
into a separate file or files, and also usually organised within the files into
verification units. This approach is preferred by verification engineers,
because of the convenience for complex verification plan organization.

• The second mode is the embedded mode. In this mode, usually preferred by
designers, the DUV’s properties are written directly into its HDL files.

1 In the frames of PSL specification this term is normally used in the US transcription

23

Normally, special directives for HDL compilators with PSL support hidden
into comments are used in this mode (e.g. like “-- psl” for VHDL flavor in
Figure 2.16).

The embedded mode properties should be of the same PSL flavor as DUV’s
HDL. On the contrary, stand-alone properties can be of flavor B different from
DUV’s HDL A. However, it is necessary to check if the applied verification tool
(e.g. simulator) with PSL support has the support for HDL B (e.g. SystemC).

The approaches proposed in the Chapter 3 of this work generally assume the
VHDL flavor and the stand-alone mode for PSL properties expression.

2.2.1.3 Layers
PSL is a multi-layered language. The layers are:

• Boolean layer – the lowest one, it consists of Boolean expressions in HDL
(e.g. a and (b or c)). These expressions are used as building blocks in the
upper layer to compose complex properties. Boolean expression is an
expression that is evaluated in a single (clock) cycle and has the value true or
false. Boolean expressions may contain non-Boolean expressions.

• Temporal layer – it is the main part of the language. It builds temporal
properties of Boolean expressions which describe DUV’s (or its environment)
behaviour over time (e.g. a and (next[3]b or next_e[5 to 7]c)). The
main tools here are temporal operators that are introduced further. This layer
also adds the support for Sequential Extended Regular Expressions (SERE)
(e.g. {a;{[*3];b} or {[*5 to 7]; c}}).

• Verification layer - it provides directives that tell a verification tool what to do
with specified properties. For example the directive assert specifies that the
property is asserted (i.e. DUV’s behaviour described by the property should
hold) and makes an assertion out of it. The other directives are: assume
(widely used to model DUV’s environment), cover, restrict and others. It also
includes declaration of verification units vunit-s used for properties
organization, as it was mentioned in the previous subsection. Verification
units can inherit from other ones.

• Modelling layer - additional helper code to model auxiliary combinational
signals, state machines etc. that are not part of the DUV but are required to
express the property. Usually (except SystemC and GDL flavor) the modelling
layer instances are synthesizable.

The approaches provided in the Chapter 3 focus on the first two layers of PSL.

24

2.2.1.4 Styles
There are two styles in use for PSL properties expression.

• LTL style - is the approach when a PSL property is composed of
Boolean expressions as operands for PSL Boolean and temporal
operators, as well as pure HDL operators.

• SERE2 style - makes use of sequences of Boolean variables or simple
Boolean expressions. The sequences are enclosed curly braces and their
atoms are usually separated by semi-colons (e.g. {a;(b && c);d}).
As opposed to Regular Expressions (REs) from pattern matching,
SEREs are allowed to have not only variables but also expressions as
atoms for their sequences. A SERE may be an operand for some PSL
temporal operators, a part of another SERE and can contain special
SERE repetition operators. For example, the following sequence
{a;b[*5];{c;d}[=3]} means that fist a is assigned, followed by 5
consecutive assignments of b and, finally, followed by sub-sequence c
followed by d assignment for 3 non-consecutive times. Practically, in
SERE style, a property is expressed as SEREs connected by suffix
implication operators (“|−>” and “|=>”).

The most of the properties can be expressed in both LTL and SERE styles,
however with different levels of convenience. Usually it is more reasonable to
express a property or a part of a complex property in one of the styles and therefore
styles are normally mixed. According to [4], while every LTL style property can be
translated to SERE style, there are some SERE style properties (with a particular
form of counting, like “p holds on every even cycle”) that cannot be expressed by
LTL (nor is it expressible by pure CTL).

 The approaches from Chapter 3 include currently support for LTL style,
however they do not have any principal constraint for SERE style usage. The
support for SERE style PSL properties can be relatively easily added (as it will be
explained further) and is scheduled for the future work. The most of the simple
SERE style properties are known to have their formal equivalences in LTL style.
Figure 2.19 from the next subsection presents a table with such equivalences [4].

2.2.2 PSL properties

It is important to distinguish between the two notions often used
interchangeably: a property and an assertion. A property is some specified part of
behaviour (of the DUV, its environment or the whole system). The property itself

2 An interesting fact is that in Sugar before PSL standardization, SERE was acronym for Sugar Extended Regular
Expressions (as opposed to the present Sequential Extended Regular Expression) [99]

25

does not state if it is expected to fail or hold, whether the DUV should be checked
for it during simulation or it should be avoided during some actions. A property
with the verification directive (see 2.2.1.3) assert (added directly or separately in
the corresponding vunit) makes an assertion of the property. Assertions are the
most often usage of the properties in verification, however a property can serve as
an assumption, a restriction or other depending of it application. Figure 2.15 shows
clear separation of the property part in the assertion a1.

The properties are composed of combinations of operators with operands that
are variables, internal signals or primary inputs/outputs of interest. A property can
state single signal assignment without an explicit operator (e.g. p1: signal_a; or
a1: assert signal_a;).

2.2.2.1 Operators
This subsection discusses some commonly used PSL FL operators and their

attributes. The complete list of PSL operators [92] sorted by their precedence is
provided in Figure 2.17. The formal definitions for the operators are available in
[92]. More details on PSL operators are also available in Appendix A of this work,
which presents the Primitive Properties Graphs (PPG) library. PPG library is one
of the contributions of this thesis and proposes decision diagrams based
representation for a set of PSL operators.

Operator Operator class Associativity
and or not etc. HDL operators same as in HDL

union Union operator left

@ Clocking operator left

[*] [+] [=] [->] SERE repetition left

within SERE sequence within left

& && SERE sequence AND left

| SERE sequence OR left

: SERE sequence fusion left

; SERE seq. concatenation left

abort async_abort sync_abort FL termination left

next* next_event* eventually! FL occurrence right

until* before* FL bounding right

|−> |=> SERE seq. implication right

−> <−> Boolean implication right

always never FL invariance operators right

Figure 2.17. PSL FL operators (sorted by precedence from the highest on top)

26

In Figure 2.17 the asterisk at the end of a name (i.e. name*) denotes the whole
family of operators, which is a group of operators that are related. Operators of one
family usually share a common family name (prefix) that is followed by suffix (can
be empty). For example, next, next_a, next_e, next!, next_a!, next_e! are operators
from next* family.

Only particular operators can have their dedicated suffixes or particular a
combination of them. Normally the suffixes have the following meaning:

• “_a” - the property should hold within all the time range of the operator (e.g.
p1: next_a[3 to 5](signal_1);)

• “_e” - there should exist a time moment when the property holds within the
time range of the operator (e.g. p1: next_e[3 to 5](signal_1);)

• “_” - it means the overlapping version of the operator (e.g. p1: (x) until_
(y);)

• “!” - it means the strong version of the operator (e.g. p1: (x) until!_
(y);)

Along with the set of operators, PSL has a number of built-it functions. Some of
the functions are:

prev() - returns the previous value of the expression in the argument
next() - returns the value at the signal in the argument at the next smallest

evaluation cycle
rose() - returns ‘true’ if the signal in the argument has changed to ‘1’ from ‘0’

in the previous evaluation cycle, otherwise ‘false’
fell() - returns ‘true’ if the signal in the argument has changed to ‘0’ from ‘1’

in the previous evaluation cycle, otherwise ‘false’
stable() - returns ‘true’ if the signal in the argument has not been changed

since the previous evaluation cycle, otherwise ‘false’

There are 7 more less frequently used PSL built-in functions. The formal
definitions of the functions are available in [92].

It is important to notice that PSL clearly defines when each of the properties
should be evaluated by adding @ clocking operator at the end of each property
(e.g. @(clk’event and clk=’1’); like in Figure 2.16 for VHDL flavor). The
other option if the same evaluation cycle is valid for all the properties to declare in
vunit one default clock (e.g. default clock is clk’event and clk=’1’;). The
examples given in this work and the approaches from Chapter 3 assume the latter
case and the properties evaluation clock to be the same with DUV’s one, if it is not
stated otherwise.

27

2.2.2.2 Strong vs. weak operators
In the PSL the notion of strength is applicable to the properties as such and to

PSL temporal operators. A property holds strongly if it holds on a finite path
(simulation-based verification) and will hold on any extension of the path (e.g. p1:
eventually!(not a and b);).

As it is mentioned above the strong version of an operator is distinguished by
“!” at the end of it. Temporal operators may come in both strong and weak forms
or only in one of them. For example, always has only weak version, eventually!
is available only in the strong one, while until can have the both.

The strong operators require that the terminating condition eventually occurs,
while the weak ones do not. Let’s consider two properties (busy until done;)
and (busy until! done;). The first one will be satisfied even if done is never
asserted and busy stayed asserted forever, while the second one requires done to
finally occur.

2.2.2.3 Vacuous pass
The notion of vacuity is not PSL specific, however it is important for

understanding the concept of assertion satisfaction and violation.

Vacuous pass occurs if a passing property contains Boolean expression that, in
frames of the given simulation trace, has no effect on the property evaluation.

Let’s consider a simple property (p1: always (req −> next ack);). p1 will
pass on the simulation trace where signal req is never asserted without
consideration when and if at all signal ack was asserted. It will be a vacuous pass
because the property has passed not because of meeting all the specified behaviour
but only because of non-fullfilment of logical implication activation conditions.

It is verification (simulation) tool dependant decision whether to treat vacuous
passes as actual satisfactions of properties. The approaches presented in Chapter 3
separate vacuous passes from normal passes of a property.

2.2.2.4 PSL flexibility and common equivalences
Besides the convenience of 5 different flavors and different modes and styles,

PSL gives the flexibility to express the same property in several possible ways. The
most common equivalences for some simple properties expressed by means of
different FL operators are provided in Figure 2.18. A set of commonly used
equivalences between SERE and LTL style is provided in Figure 2.19. The other
required equivalences can be written out as well or just used on-the-fly.

28

Property An equivalent property
p or q not((not p) and (not q))

p and q not((not p) or (not q))

p −> q (not p) or q

always p not(eventually! (not p))

always p never(not p)

eventually! p not(always (not p))

eventually! p “true” until! p

next p not(next!(not p))

next! p not(next(not p))

p until q (p until! q) or (always p)

p until q not((not q) until! ((not p) and (not q)))

p until! q not((not q) until ((not p) and (not q)))

p until_ q p until (p and q)

p until!_ q p until! (p and q)

p before q (not q) until (p and (not q))

p before! q (not q) until! (p and (not q))

p before_ q (not q) until p

p before!_ q (not q) until! p

next_event(b)(q) (not b) until (b and q)

next_event!(b)(q) (not b) until! (b and q)

Figure 2.18. Some common equivalences between PSL FL operators

This flexibility allows avoiding particular parts of the language (e.g. undesired
operators or their special order, or even the whole style). The reason for this may
be requirement to follow some specific rules dictated by software tools or method.
In some cases, however, satisfaction of the rules forbids usage of some expressible
by PSL properties in any form.

The most widely known set of such rules is the one defining the simple subset
of PSL (Figure 2.21). It is a set of PSL supported by most of the available
commercial hardware simulation tools with the ability to evaluate PSL assertions.
The approaches described in Chapter 3 of this work have limited support for PSL
as well. Some of the limitations were mentioned within this Chapter and will be
discussed further.

The flexibility of the PSL gives the possibility to express a very wide set of
possible properties within the frames of the method or software tool constraints.

29

LTL style property An equivalent SERE style property
eventually! b {[*] ; b}!

eventually! s! {[*] ; s}!

b until c {b[*] ; c}

b until s! {b[*] ; s}

b until! c {b[*] ; c}!

b until! s! {b[*] ; s}!

b and next c {b ; c}

b and next s {b ; s}

b and next! c {b ; c}!

b and next! s! {b ; s}!

next[i](b) {[*i] ; b}

next[i](s) {[*i] ; s}

next![i](b) {[*i] ; b}!

next![i](s!) {[*i] ; s}!

next_a[i to j](b) {[*i] ; b[*j-i+1]}

next_a[i to j](s) for k in {i to j}: & {[*k] ; s}

next_a![i to j](b) {[*i] ; b[*j-i+1]}!

next_a![i to j](s!) for k in {i to j}: & {[*k] ; s}!

next_e[i to j](b) {[*i to j] ; b}

next_e[i to j](s) {[*i to j] ; s}

next_e![i to j](b) {[*i to j] ; b}!

next_e![i to j](s!) {[*i to j] ; s}!

always{s} |−> p {[*] ; s}! |−> p

always{s} |=> p {[*] ; s}! |=> p

Figure 2.19. Some common equivalences between SERE and LTL style

2.2.3 PSL simple subset

PSL provides very wide spectrum of applications, including complete design
formal specification. As it was mentioned in section 2.2.1, only FL part of it is
applicable for simulation-based hardware designs verification. However, not the
whole FL part but usually only its subset known as PSL simple subset is supported
by currently available commercial dynamic verification and simulation tools.

p1: always ((next sig_ack) −> sig_req);

p2: always (sig_ack −> next sig_ack);

Figure 2.20. p1 does not belong to the PSL simple subset, while p2 does

Loosely speaking the simple subset has a requirement for time to advance
monotonically within the property expression. An example of two properties p1

30

PSL operator Restriction
not the operand is a Boolean
never the operand is a Boolean or a sequence
eventually! the operand is a Boolean or a sequence
or at most one operand is a non-Boolean
−> the left-hand side operand is a Boolean
<−> both operands are Boolean
until until! the right-hand side operand is a Boolean

until_ until!_ both operands are Boolean
before* both operands are Boolean
next_e* the operand is Boolean
next_event_e* the FL Property operand is Boolean

Figure 2.21. PSL simple subset rules

and p2 is provided in Figure 2.20. Here, p1 does not belong to the PSL simple
subset, while p2 does.

 The simple subset is explicitly defined in [92] by the set of rules stating
restrictions for several PSL operators operands types. The rules are provided in
Figure 2.21. IBM, the authors of PSL’s predecessor Sugar, have published in [60]
formal proof for the PSL simple subset specification.

The aim of the simulation-based verification part of the approaches from
Chapter 3 is the support for the complete PSL simple subset (not fully implemented
yet and scheduled for the future work).

2.3 Chapter summary

This chapter has provided background information required for understanding
of the main part of this thesis, where the work contributions are presented. The
approaches proposed further rely on the design representation model based on
high-level decision diagrams, proposed and developed in TUT. The first part of this
chapter has discussed this model and emphasized its main advantages for
application in simulation-based verification.

The second part of the Chapter has presented PSL, as the source and reference
language for assertions used in assertion-based verification methods described
further in this work. The language description presented was oriented towards the
approaches from this thesis.

31

32

Chapter 3
ASSERTION-BASED

VERIFICATION

“Functional verification is hard. Period. No disagreement here,”-

Harry Foster3

Hardware design verification phase is known to take even more computational
and human resources than the design phase itself. This chapter proposes an
approach of HLDD-based assertion checking aimed to assist with this problem.

The main scope of this chapter is simulation-based verification aided by
assertions. The three main contributions of this chapter are the following. The first
one is a temporal extension for the existing HLDD model, described in the
previous chapter. The second one is a methodology for direct conversion of
assertions expressed in PSL to temporally extended high-level decision diagrams
(THLDD). The third contribution is HLDD-based simulator HLDDsim
modification to support THLDDs and assertions checking.

A set of experimental results demonstrating the feasibility and effectiveness of
the proposed concept is provided at the end of the chapter. Here the proposed
approach is compared against a commercial simulator with PSL assertions support
from a major CAD vendor.

Finally, the reusability of verification assertions for manufacturing testing
development is briefly discussed.

3 Harry Foster is the chair of IEEE-1850 WG, the chair of Accellera Formal Verification Technical Committee,

principal engineer in Mentor Graphics, the author of several books about verification (i.a. [3] and [7]).
(The citation is the first clause in the foreword to [4]).

33

3.1 Overview

3.1.1 Design flow

Figure 3.1. Design development flow (simplified)

Specification

Design phase Verification

Assertions

Testing

DfT

Manufacturing

Product
Maintenance

The flowchart in the Figure 3.1 shows the typical flow of a design (e.g. ASIC,

i.e. Application Specific Integrated Circuit) development process. The process
starts from the specification phase which normally results in formal or partially-
formal list of functionality and requirements for the future product. At the design
phase the product implementation begins and usually goes through several levels
of abstraction. The abstraction levels may include behavioural, TLM, RTL, gate
and finally physical layout, required for the actual manufacturing and normally
obtained by the synthesis tools. The design phase closely interacts with verification
phase which checks the design’s partial and complete implementations for their
functional correctness. Further the verified design is manufactured (manufacturing
phase) at the factory and passed to the customer. At this point product maintenance
phase begins, which concludes the product development process. However, in
order to ensure the physical manufacturing correctness of the product instances
(chips), each one of them should pass the testing phase against physical defect. The

34

last one is a complex task itself and can be assisted by Design for Testability (DfT)
phase.

At this stage it is a good time to distinguish between three important notions in
the hardware design development process. The terms are sometimes used
interchangeably in literature and some scientific publications. However, we would
like to emphasize clear difference in their definitions (rephrased from [1] and [2])
used frames of this work.

• Verification is meant to ensure that design fulfils the specified functionality.
Verification is performed in software using models (i.a. HDL-based)
evaluated in PC environment.

• Validation aims at the same target as verification. However, here the object is
real physical hardware prototype as opposed to model in verification.

• Testing aims at physical defects in each produced instance of the product.

While validation allows theoretically more accurate results, compared to
verification, it is obviously more expensive to implement. In practice a validation
phase can be added to the ASIC development flow after the design and verification
phases in the simplified flowchart shown in Figure 3.1. Moreover, practically,
validation often complements verification and used to check different more precise
aspects of the implementation’s functional correctness. While validation is not
considered in the reminder of this thesis, manufacturing testing will be discussed in
more detail in the Section 3.6.

3.1.2 Design verification

Functional design verification usually assumes comparison of one
implementation against specification or another implementation (alternative or
simplified, i.a. at a higher abstraction level). The other way is not to compare
against a reference but to narrowly aim at specific design properties. The second
approach is usually referred as Assertion-Based Verification (ABV).

The two main types of the hardware design verification approaches are formal
(its alternative term is static) and simulation-based (alternative term is dynamic)
ones. However, particular designs verification strategies (plans) may benefit from
semiformal or other words mixed-type verification approaches.

Informal definitions of the verification types are the following:

• Formal verification assumes formal mathematical prove of the design
correctness or its property validity. The formally proven aspect stays valid for
any stimuli, if it is not stated otherwise.

• Simulation-based verification relies on design simulation by a set of
predetermined or random stimuli. The simulation results (waveforms) are
further analyzed for similarity with the reference simulation results (e.g. of an

35

alternative implementation) or checked for a particular behaviour specified by
the DUV’s property.

In the industry the simulation-based verification approaches find much wider
application due to their lower requirements to computational resources. The pure
formal verification methods are not practically applicable to real life large designs
and normally used only for designs smaller parts of a particular functionality.

The decision diagrams based methods proposed in this chapter are dedicated to
simulation-based verification. However, some of the contributions can be adapted
to formal verification as well.

3.1.3 Assertion-based verification

A way to cope with the verification complexity is Design-for-Verifiability
(DfV) techniques. They serve for the same purpose as widely used and well known
DfT techniques for manufacturing testing. Assertion-Based Verification (ABV) can
be classified as one of the DfV techniques. The main idea of DfV is application of
complementary parts of HDL code introduced especially for design verification
assistance. In case of ABV this complementary code is assertions.

ABV is meant to assist both formal methods and simulation-based verification
and allow discovering Design under Verification (DUV) misbehaviour (causing an
assertion violation) earlier and more effective. Another important advantage of
ABV is its aid to debug process.

As it has been specified in Subsection 2.2.2, formally, assertions are asserted
properties. Speaking loosely, assertions are formal representations of desired
intents of the specification engineer or the designer. In the case of simulation-based
verification they provide better observability on the design what allows detecting
bugs earlier and closer to their origin. At the same time in the case of formal
verification with model checking, the assertions increase the controllability of the
design and direct verification to the area of interest. Each assertion violation
discovered by model checking is reported as a counter-example.

ABV was initially separately aimed at the main drawbacks of simulation-based
and formal verification approaches. For the first one it is known that the
performance of simulation is low at the system level and the design coverage is
inversely proportional to the complexity of the system. For the second it is the fact
that formal verification can achieve very high coverage but it has very limited
scalability that usually cannot go above the module level.

The question of the origin of assertions can be formulated as a separate topic for
research itself. An important aspect here is the problem of completeness. Usually
assertions do not describe all the possible properties of a design what would mean
translation of the complete design specification to an appropriate formal
specification language (e.g. PSL). Instead of this only design areas of concern,

36

sometimes referred as verification hot spots, are targeted. In practice they are often
provided by design engineer and require deep knowledge of the DUV behaviour.
Verification hot spot, as defined by [64], typically:

 contains a great number of sequential states

 deeply hidden in the design, making it difficult to control from the inputs

 has many interactions with other state machines and external agents

 has a combination of these properties

As it has been already mentioned in the Clause 2.2.1.2, in practice there are two
modes [2] of assertions description indirectly implicitly related to the two origins
of assertions. The first mode is named embedded and assumes that the assertions
are written directly to the design’s HDL files. It is preferred by design engineers
who are the first group of assertions creators. The second mode is named stand-
alone, which means that all assertions related to the design or its part (e.g.
separated by a different HDL file) are grouped into a separate file. This mode
allows more complex organization of assertions and normally preferred by
verification engineers who form the second group of assertions creators.

Figure 3.2. An example of assertion checking by a commercial tool

Figure 3.2 shows example of assertion checking by a commercial tool. The
screenshot in the figure is waveform, transcript and assertion expression windows
of QuestaSim environment from Mentor Graphics Corp. Here the asserted property
prop_lpc_lad_TRAL is activated at 165 ns of simulation time and fails at 465 ns

37

(marked by reversed triangle), because signal lpc_lad of the DUV has taken value
x‘F’ instead of the awaited x‘B’. The simulator has reported an error to the
transcript window. In the described simulation-based verification case, the
application of this assertion has helped to detect DUV’s functional misbehaviour.
The preconditions for this detection are an appropriate assertion and stimuli
capable to cover the assertion.

3.1.3.1 Diversity of assertion checking
The notion of assertion checking may refer to different processes depending on

the type of verification approach and other factors.

In case of simulation-based verification, assertion checking means monitoring
simulation results of the DUV for particular combinations notifying about
satisfaction or violation of the property of interest. Such application of assertion
checking has given assertions pseudonym monitors [6]. The properties with
verification directives assume or restrict (for details, see Clause 2.2.1.3 and
Subsection 2.2.2) instead of assert are sometimes named generators [6] and can
serve for stimuli filtering or generation (this topic is discussed in more details in
Subsection 3.6).

As it was mentioned above assertion checking in formal verification may result
in creation of a counter-example in case if the assertion fails. The assertions to be
checked in formal verification are often referred to as checkers.

At the same time there is a subset of assertions that can be expressed in the
synthesizable form. The synthesizable form of assertions cannot be expressed in
PSL and should be converted to constructs represented by another appropriate
model (e.g. one of the HDLs, i.a. VHDL). These constructs are also referred to as
(hardware) checkers. They are usually embedded to the version of DUV ready for
synthesis and can be physically implemented as a single design on a chip, its
prototype or in FPGA. These checkers can serve for many purposes including
design validation and online test patterns generation for manufacturing testing (see
Subsection 3.6). Usage of hardware checkers can lead to huge area overhead due to
complex temporal relationships in the property implemented by the checker.

 The main part of this chapter focuses on assertion checking in simulation-
based hardware verification. Using alternative terminology it is possible to say that
it is focused on hardware assertions monitoring in software.

3.1.4 State of the art

To the best of our knowledge this thesis, supported by the series of publications
([12],[11],[10],[13] and [14])co-auth., is the first attempt of PSL assertions conversion
to and checking with decision diagrams based design representation model. Here

38

by decision diagrams we consider acyclic graphs, but not cyclic automata-based
structures.

The research topic of PSL properties conversion to design representation
models is gaining its popularity. There are several approaches published in recent
time ([65] - [75]). The target application of the converted properties varies and
includes among others software monitors and hardware checkers.

Yael Abarbanel et al. in [65] have proposed a tool called Formal Checkers
(FoCs) [95] that has become very popular today and is widely used as a reference.
It is capable of converting PSL properties of different flavors to synthesizable
VHDL. This tool is discussed further in Clause 3.1.4.1.

Oddos, Morin-Allory et al. in [66],[73] have proposed a modular approach
where sub-modules for each PSL property operator are built and interconnected
according to the expression being implemented, so that they produce a RTL
synthesizable design. Assertions produce a pair of signals that indicate the status of
the assertion. Such generator can be connected to the design under test for
verification by simulation or emulation.

Gheorghita et al. in [67] propose a competitor to FoCs, producing automata. It
considers e and Verilog as output checkers HDLs. The time to produce the
checkers is larger than in FoCs.

Bustan, Fisman et al. in [68] provide automata construction for the core logic of
PSL defined by them and named as LTL-WR, which is an extension of LTL with
regular expressions. In their work they show that for every LTL-WR formula there
exists a non-deterministic Bäuchi automaton whose size is exponential in the size
of the formula.

Pidan et al. in [69] proposed an algorithm with similar to [68] complexity for
designing dynamic verifiers for PSL formulas. Firstly, they transformed a PSL
formula to a non-deterministic finite automaton. Then they implemented the NFA
with a discrete transition system, which, in turn, was translated into HDL codes.

Kotasek et al. in [70] propose a methodology for generating VHDL descriptions
of hardware checkers for such components as communication protocols, counters,
decoders, registers and comparators. The proposed application of the approach is
the design of fault tolerant systems.

Boule, Zilic et al. in [71],[72] present a technique for automata-based checker
generation of PSL properties oriented on dynamic verification and post-fabrication
silicon debug. Their full automata-based approach (the tool’s name is MBAC)
allows an entire assertion to be represented by a single automaton, as opposed to
modular approaches (e.g. [73]) where sub-circuits are created only for individual
operators. For this purpose, automata algorithms are developed for the base cases,
and a complete set of rewrite rules is developed and applied for all other operators.
The checkers produce a single result signal for each assertion, as opposed to the
paired signal result (e.g [73]).

39

Riazati, Navabi et al. in [74],[75] propose an approach for hardware checkers
creation by synthesizing OVL assertions. The intended application area is online
manufacturing test and fault tolerant systems. First, based on the ATPG results and
fault simulation, they select a set of assertions with a good ratio of fault coverage
over hardware area. Second, they merge similar assertions together and make a
unified hardware checker in order to attain minimized resource usage for assertion
circuits and reduce hardware overhead.

Direct PSL assertion checking in simulation-based verification is supported by a
large number of commercial CAD tools and includes among others QuestaSim
from Mentor Graphics Corp [77]. A list of more than 40 of such tools available by
March 2006 was gathered by IBM in [100]. By current date the list should be
significantly longer, considering that PSL has been approved as an IEEE standard
in 2005.

The main difference of the approach proposed in this chapter from the listed
above ones are:

• It allows avoidance of the synthesizable HDL descriptions related constraints.
The approach aims verification by simulation in software, as opposed to
validation by hardware emulation and post-silicon test/debug. This topic is
discussed in more details in Clause 3.1.4.1.

• At the same time the PSL properties are converted in straightforward way to
acyclic decision diagrams without any loose of information. No automata-like
structures constructions are involved in the conversion process.

• The approach exploits a proven efficient for simulation high-level decisions
diagrams design representation model.

3.1.4.1 An experience with FoCs
Our first attempt ([12],[24])co-auth. of PSL properties translation to HLDD was

implying the generation of VHDL checkers by IBM’s FoCs [65],[95] as an
intermediate step. However this experience has revealed particular limitations and
inefficiency for HLDD-based assertions creation. Moreover, checkers synthesis
from PSL properties are efficient mainly for the case where checkers are to be used
in hardware emulation. The application of the same checker constructs for
simulation in software may lack efficiency due to target language concurrency and
poor means for temporal expressions.

The details of the FoCs-based approach for PSL assertions conversion to HLDD
model can be demonstrated by the example from [12]co-auth.. The object for this
example is a simple SERE style PSL assertion fe_seq (Figure 3.3).

fe_seq: assert always ({a; [*2]; b} |=> {c});

Figure 3.3. The fe_seq assertion for FoCs-based approach experience

40

The precondition of fe_seq assertion is the sequence of system behaviour when
signal a is set to ‘1’, followed by a don’t-care sequence 2 clock cycles long and
then signal b set to ‘1’. This precondition activates the main part of the assertion
and requires c to be set to ‘1’ just after it (non-overlapping implication).

PROCES
BEGIN
 IF ((clk = '1')) THEN
 focs_ok <=
 (focs_vout(4) OR NOT(c)) ;
 ELSE
 focs_ok <= '1' ;
 END IF;
END PROCESS;

PROCESS
...

LE focs_vout : std_logic_vector(4 DOWNTO 0); VARIAB
BEGIN
 WAIT UNTIL (clk'EVENT AND clk = '1');
 ...
 focs_vout(4 DOWNTO 0) := reverse(((((((focs_v(0) AND a))
 & ((focs_v(1) AND '1'))) & ((focs_v(2) AND '1'))) &
 ((focs_v(3) AND b))) & ((focs_v(4) AND NOT(c)))));
 ...
END PROCESS;

S (clk)

Figure 3.4. VHDL checker generated by FoCs for assertion fe_seq

Figure 3.4 shows a shortened form of the resulting VHDL code generated by
FoCs from the fe_seq expressed in PSL. The VHDL checker can be converted to
HLDD graphs by means of the standard VHDL to HLDD interface tool [59].

A possible system of HLDD graphs representing the checker is provided in
Figure 3.5. In the figure we use a notation where the prime symbol “ ' ” after
diagram variable denotes one clock cycle delay.

a1’ reset

1

a
0

‘0’

a2’ reset

1

a1
0

‘0’

a3’ reset

1

a2
0

‘0’

a4’ reset

1

a3
0

‘0’

b1’ reset

1

b
0

‘0’

fe_seq
a4

1

‘pass’
0

b1

1

c

1

‘fail’

0

0

Figure 3.5. HLDD representation of the VHDL checker from Figure 3.4.

 As it can be seen from the Figure 3.5, the FoCs-based approach result in very
ineffective system of HLDD graphs, which can be unreasonably large in case of

41

simple but long-time temporal properties. Here a separate graph is required for
every variable’s evaluation cycle delay. Signals a and c are located in 4 cycles time
distance and therefore caused 4 intermediate variables a1-a4. In case of physical
hardware the intermediate variables may have to be substituted by memory
elements (registers).

Figure 3.6. An example of NFA and DFA for a pure LTL property !p→G((a|b)*)

s2 s1

s3 s4

s5

A solution to the inefficient for our task approach of checkers representation can

lay in an explicit automata construction (FoCs may also in some cases implicitly
construct automata-based structures). An example of such solution (among many
others partially mentioned in Subsection 3.1.4) is provided in [6]. The approach
requires a construction of NFA (Nondeterministic Finite Automation) followed by
its defeminisation to DFA (Deterministic Finite-state Automaton). An example of
NFA and DFA for a property expressed by original LTL with Regular Expressions
is shown in Figure 3.6a and Figure 3.6b correspondingly (the semantics
explanation is provided in [6]). However, this complicated solution does not suit
for our target application which is verification by design simulation in software.

Therefore a different solution for PSL assertions conversion to the target HLDD
model was required. It should use all the advantages of model simulation in
software without involving unnecessary restrictions (e.g. the ones came with FoCs
application as an intermediate step). Later, we have proposed the solution as idea in
[11]co-auth. and more detailed in [10]co-auth. and [13]co-auth.. The approach is one of the
main contributions of this thesis and described in details further in this chapter.

3.1.5 APRICOT

APRICOT is an acronym for Assertions checking (monitoring), formal PRoperty
checkIng, verification COverage measurement and Test pattern generation. This is
the name [14]co-auth. for a hardware verification framework developed by Tallinn
University of Technology. As it follows from its name decryption, the framework
supports a wide range of verification tasks. The novelty of APRICOT lies in the
usage of the HLDD design representation model (see Subsection 2.1.2) advantages
for the mentioned above verification tasks.

 s1

s2 s3

T

b

a

a b

p(a|b) !p!a!b

!a!b
a|b

T a|b

!a!b!p(a|b)p!a!b
T

b)

T

a)

42

The direct APRICOT development has started during participation of TUT in
Framework Program 6 European project VERTIGO [89]. The partners of the
project besides TUT are ST Microelectronics (co-ordinator), Aerielogic, TransEDA
and three other universities: LIU (Linköping, Sweden), SOTON (Southampton,
UK) and UNIV (Verona, Italy).

The framework is aimed at both education and research. It has interfaces to
commonly used design formats such as VHDL, SystemC, PSL and EDIF, as well
as an intermediate format HIF (HDL Intermediate Format), developed by UNIV.
The internal format for SSBDD, HLDD and THLDD models representation is
AGM (Alternative Graph Model format). Figure 3.7 shows the APRICOT
verification flow.

VHDL to HIF and SystemC to HIF interfaces are developed at UNIV and

integrated to the flow as intermediate steps. HIF to HLDD interface is developed in
cooperation [89] between TUT and UNIV, and the direct VHDL to HLDD
interface is developed in TUT [59].

 The formal methods implemented in the APRICOT framework include high-
level Automated Test Pattern Generation (ATPG) and formal property checking.
The former is based on DECIDER engine [19]co-auth.. The property checking
constituent is currently reduced to using the modified DECIDER ATPG with
constraint solving support (DECIDERverification) [46] as a model-checking engine.

The basis for verification coverage analysis and assertion monitoring is fast
HLDD-based simulator (HLDDsim) with the corresponding modifications. The
following parts (marked my grey) of the APRICOT are contributions of this thesis
and will be discussed further in more details:

Figure 3.7. APRICOT verification flow

Stimuli
(and Testbench)

HLDD Coverage
Measurement

(HLDDsimcoverage)

HLDD-based
Assertions Checking
(HLDDsimassertions)

ATPG and Formal
Property Checking
(DECIDERverification)

HLDD
Model

 HIF
TLM (SystemC)
RTL (VHDL)

Properties (PSL)

PSL to THLDD
Interface

THLDD
Model

VHDL to HLDD
Interface

HLDD Simulation

HIF
Interfaces

(UNIV)

(HLDDsim)

Validation patterns

Design model

Assertions, properties

Internal
system
representation

Interm.
format

Internal
properties
representation

43

• HLDD-based assertions checking (HLDDsimassertions)

• HLDD-based verification coverage analysis (HLDDsimcoverage)

• PSL to THLDD interface

• THLDD model for properties representation

The APRICOT verification framework is easy to use because of the variety of
the available interfaces to the common design formats. It supports a wide range of
verification tasks that alternatively would require a set of different commercial
CAD tools. All the tools of APRICOT are based on the efficient high-level
decision diagrams design representation model and allow homogeneous
verification flow. The experimental results (partially presented in Sections 3.5 and
4.5) show the advantages of HLDD-based verification tools compared to the tools
from the major CAD vendors.

The mentioned above contributions of this thesis to the APRICOT are described
in details in the current and the following chapters.

3.2 Temporal extension for the HLDD model

The first attempts of assertions application in hardware verification have
revealed inefficiency and sometimes inability of the traditional hardware
description languages to express complex temporal relationships in the properties.
This fact has encouraged development of PSL (Section 2.2), with its powerful
temporal instruments, and several other assertions-oriented languages mentioned in
the introduction to Section 2.2. In the last years these languages have found a wide
application in ABV projects and proven their efficiency.

In the same way as PSL adds temporal instruments to assertion-based
verification of the DUVs represented by HDL a temporal extension to HLDD
model is required for a successful assertions application in HLDD-based
verification flow.

One of the principles of HLDD-based verification is homogeneous verification
flow. It means that all objects of the flow should be represented by the same or a
compliant design representation model, i.e. HLDD or HLDD compliant. While
HLDDs are proven [44],[45],[19]co-auth. to be efficient for design representation,
representation of temporal PSL properties by pure HLDDs has revealed
inefficiency of this approach. This fact is discussed in details in Clause 3.1.4.1. The
solution developed in ([11],[10],[13])co-auth. and provided in this chapter is a
temporal extension to HLDD model. The model with this extension support is
named as Temporally extended High-Level Decision Diagrams (THLDD).

Further in this section the definition of THLDDs is presented and the interface
of the novel model is discussed.

44

3.2.1 THLDD model definition

Unlike the traditional HLDD described in the Subsection 2.1.2, the temporally
extended high-level decision diagrams are aimed at representing temporal logic
properties.

A temporal logic property P at the time-step th ∈ T denoted by Pth = f(x,T),
where x = (x1, …, xm) is a vector defined on a finite domain X = X1×…×Xm and T
= {t1, …, ts} is a finite set of time-steps. In order to represent the temporal logic
assertion Pth = f(x,T), a temporally extended high-level decision diagram GP can be
used.

Definition 2: A Temporally extended High-Level Decision Diagram (THLDD)
is a non-cyclic directed labelled graph that can be defined as a sextuple
GP=(M,E,T,Z,Γ,Φ), where M is a finite set of nodes, E is a finite set of edges, T is a
finite set of time-steps, Z is a function which defines the variables labelling the
nodes, Γ is a function on E representing the activating conditions for the edges, and
Φ is a function on M and T defining temporal relationships for the labelling
variables.

 The graph GP has exactly three terminal nodes Mterm ∈ M labelled by
constants, whose semantics is explained below:

• FAIL — the assertion P has been simulated and does not hold;
• PASS — the assertion P has been simulated and holds;
• CHECKING — the assertion P has been simulated and it does not fail, nor

does it pass non-vacuously (See Clause 2.2.2.3 and Subsection 3.3.1 for
discussions of vacuity).

The function Φ(mi,t) represents the relationship indicating at which time-steps
t∈T the node labelling variable xl=Z(mi) should be evaluated. More exactly, the
function returns the range of time-steps relative to current time tcurr where the value
of variable xk must be read. We denote the relative time range by Δt and calculus of
variable xl using the time-range Φ(mi,t)= Δt by xl

Δt. We distinguish three cases:

• Δt=∀{j,...,k}, meaning that xl
Δtj ∧ ... ∧ xl

Δtk is true, i.e. variable xl is true at
every time-step between tcurr+j and tcurr+k.

• Δt=∃{j,...,k}, meaning that xl
Δtj ∨ ... ∨ xl

Δtk is true, i.e. variable xl is true at least
at one of the time-steps between tcurr+j and tcurr+k.

• Δt=k, where k is a constant. In other words, the variable xl has to be true k
time-steps from the current time-step tcurr. In fact, Δt=k is equivalent to and
may be represented by Δt=∀{k,...,k}, or alternatively by Δt=∃{k,...,k}.

Notation event(xc) is a special case of the upper bound of the time range denoted
above by k and means the first time-step when xc becomes true. This notation can
be used in the three listed above THLDD temporal relationship functions Φ(mi,t),

45

which creates the listed below variations of them. For xl
Δt, where xl and xc are node

labelling variables:

• Δt=∀{0,...,event(xc)}, which means that variable xl is true at every time-step
between tcurr and the first time-step when variable xc becomes true, inclusive.
This is equivalent to the PSL expression xl until_ xc. The PSL expression xl
until xc can be represented by Δt=∀{0,...,event(xc)-1}.

• Δt=∃{0,...,event(xc)}, which means that variable xl is true at least at one of the
time-steps between tcurr and the first time-step when variable xc becomes true,
inclusive. This is equivalent to the PSL expression xl before_ xc. The PSL
expression xl before xc can be represented by Δt=∃{0,...,event(xc)-1}.

• Δt=(k·event(xc)+1), which means that variable xl has to be true at the next
time-step after the one where xc is true for the kth time. This is equivalent to the
PSL expression next_event(xc)[k]xl. k is a positive integer greater or equal to 1.
If k=1, then Δt=(event(xc)+1) and its is equivalent to the PSL expression
next_event(xc) xl.

For Boolean, i.e. non-temporal variables Δt = 0.

The notion of event(xc) has been introduced in [13]co-auth..

3.2.2 THLDD interface

THLDD name
(property label)

[Δt]

As it is mentioned above each THLDD graph has one root node and exactly 3

terminal nodes (CHECKING, FAILED and PASSED), as opposed to HLDD graphs
that have an arbitrary number of terminal nodes. This constraint has been
introduced [11]co-auth. to allow strict hierarchy in complex THLDD graphs that
imply THLDD sub-graphs. It has also an optional relative time range Δt, which
shows when the assertion has to be checked. As it will be shown further, the
standard interface is a precondition to the efficient and easy method for complex
THLDD construction. The standard interface is shown in Figure 3.8.

Figure 3.8. Standard THLDD interface

FAIL PASS

A network of the THLDD
nodes and / or sub-THLDDs

CHK.

46

The meanings of the terminal nodes of the interface are as specified in
Definition 2. This interface is suitable for the subset of PSL properties with weak
versions of operators only. The support of strong versions of PSL operators
requires the fourth terminal node PENDING (and, as it will be discussed further,
modification of some PPGs, see Section 3.3). The support of strong versions of
PSL operators would not influence the principals of the approach described in this
chapter and is scheduled for the future work.

3.2.3 THLDD temporal relationships

One of the motivations for introduction of PSL was the poor ability of standard
HDL languages to express temporal relations between expressions in assertions.
The main instruments for this purpose used in PSL are temporal operators of its
own (LTL) and repetition operators of SERE. A powerful part of the temporal
operators are their auxiliary suffixes (see Clause 2.2.2.1).

In this thesis we propose a temporal extension for the HLDD model that
supports several temporal PSL constructs. The table in Figure 3.9 shows examples
on how temporal relationships in THLDDs map to PSL expressions. The first two
of the proposed in the table THLDD temporal relationship constructs are basic,
while the following four are derivative from them.

Class THLDD
construct Φ

Formal semantics Equivalent PSL
expression

B
as

ic
 xΔt=∀{j,...,k} x holds at all time-steps between tj and tk next_a[j to k] x

xΔt=∃{j,...,k} x holds at least once between tj and tk next_e[j to k] x

D
er

iv
at

iv
e

xΔt=k x holds at k time-steps from tcurr next[k] x

xΔt=∀{0,...,event(xc)} x holds at all time-steps between tcurr and
the first time-step from tcurr where xc holds x until_ xc

xΔt=∃{0,...,event(xc)} x holds at least once between tcurr and the
first time-step from tcurr where xc holds x before_ xc

xΔt= (k·event(xc)+1) x holds at the next time-step after the one
where xc holds for the kth time from tcurr

next_event(xc)[k] x

Figure 3.9. Table of temporal relationships in THLDDs

In addition, we introduce [11]co-auth. the notion of tend as a special value for the
upper bound of the time range denoted by above by k. tend is the final time-step that
occurs at the end of simulation and is determined by one of the following cases:

• Number of test vectors

47

• The amount of time provided for simulation
• Simulation interruption

The special values for the time range bounds (i.e. event(xc) and tend) are
supported by the HLDD-based assertion checking approach (please see Section 3.4
for the details). In the proposed approach design simulation, which calculates
simulation trace, precedes assertion checking process. In practice, tend is the final
time-step of the pre-stored simulation trace.

Note, that the main purpose of THLDD as the proposed temporal extension for
the existing HLDD model defined in Subsection 2.1.1 is transferring additional
information (i.a. temporal) to the modified HLDD simulator HLDDsimassertions that
will be used for assertions checking. Further minor not principal extensions of the
THLDD model would require, first, introduction of the new notation to the model
(primarily its description in the AGM format) and, second, the corresponding
“teaching” HLDDsim how to understand and process this extension.

3.3 PSL to THLDD conversion method

The idea of the proposed conversion method ([11],[10],[13])co-auth. relies on the
principle of “divide and conquer”. The method is based on partitioning of PSL
properties into elementary entities containing only one operator. There are two
main stages in the approach. The first one is preparatory and consists of Primitive
Property Graphs Library creation for elementary operators. The second stage is
PSL assertion expression parsing and recursive hierarchical construction of the
THLDD for a complex property using the PPG library elements.

3.3.1 Primitive Property Graphs

Prior to the THLDD property construction procedure a Primitive Property
Graph (PPG) should be created for every PSL operator supported by the proposed
approach. All the created PPGs are combined into one PPG library. The library is
extensible and should be created only once. It implicitly determines the supported
PSL subset. The method currently supports only weak versions of PSL operators.
However, by means of the supported operators a large set of properties expressed
in PSL can be derived, as it was discussed in Clause 2.2.2.4.

Primitive Property Graph is always a THLDD graph. That means it has the
standard interface with one root node and three terminal nodes (CHECKING, FAIL
and PASS) as it was described in Subsection 3.2.2. Some potential modifications of
the approach like strong PSL operators’ support, and consequently modification of
the interface, may lead to recreation of all PPGs.

48

Example PPGs created for 4 PSL operators are shown in Figure 3.10. The

complete set of PPGs from the current version of the PPG library with detailed
complementary information is presented in Appendix A.

Note, that the logic implication operator ‘->’ in Figure 3.10b exits to the
terminal node CHECKING when the precondition Pa fails. This is due to the fact
that in assertion checking the verification engineer is not interested in non-vacuous
passes of the property (see Clause 2.2.2.3). The terminal node CHECKING is
allowed to be eliminated from some graphs where it practically cannot be reached.
This permission does not interfere with the proposed general THLDD structure.
The PPGs, as well as complex THLDDs, without temporal relationships (e.g.
logical and and logical implication) are evaluated to one of the terminal nodes at
every time-step of the assertion checking. At the same time, the PPGs, as well as
complex THLDDs, with temporal relationships (e.g. logical always and next_e)
may evaluate to one of the terminal nodes at an arbitrary time-steps of the assertion
checking, according to their particular temporal relationship function. In the
following subsection an assertion checking algorithm is presented that is capable of
handling such functions.

3.3.1.1 PPG Library
Appendix A at the end of this thesis presents the extensible Library of Primitive

Property Graphs (PPG Library) in details. First, the format of ppg.lib file used for

Figure 3.10. Example PPGs for a set of PSL operators

a) invariance operator always

PPG2 ″Pa -> Pb ″

FAIL PASS CHK.

Pa Pb

PPG1 ″always(Pa) ″

[tmin = 0; tmax = tend]

FAIL PASS

Pa

CHK.

b) logic implication ->

c) temporal operator next_e

PPG3 ″next_e[j to k](Pa)″

[Δt = ∃{ j,...,k }]

FAIL PASSCHK.

Pa

PPG4 ″ Pa and Pb″

d) logical and

FAIL PASS

P Pb a

CHK.

49

THLDD properties constructor is given. Then PPGs for a set of supported PSL
operators are provided. Every clause describing a PPG consists of:

• PSL notation in correspondence with [92]
• THLDD graph in AGM format
• THLDD graph graphical portrayal
• PPG operator related notes.

PPG Library section is separated to a separate Appendix because of its size and
in order to keep the coherence of the PSL to THLDD properties conversion method
explanation flow.

3.3.2 Parser

The second stage of the proposed method is implemented [10]co-auth. as one tool
but has a logical division into two separate tasks. The first task is PSL property
expression parsing.

As it has been mentioned in Section 2.2 PSL is a very rich and powerful
language. None of the commercial or academic tools available at present have the
support for the whole language set, moreover such a support would be impractical.
In practice each of the tools with PSL support has a set of rules for the PSL-
expressed properties and assertions. At present, the proposed approach has the
following restrictions and assumptions for the PSL expressions. The most of them
are not principal and can be easily modified in future.

1. Stand-alone mode. As it has been specified in Clause 2.2.1.2 and Section
3.1.3, in this mode all the PSL properties related to the DUV are put into
separate files, as opposed to their embedment into the DUV’s HDL files.

2. Single clock. The present implementation of the approach assumes all the PSL
assertions under conversion are clocked and their clock is the same as the one
of the DUV. A consequent assumption is a single clock in the part of the DUV
set up for co-simulation with the assertions. In terms of PSL there should
present one default clock declaration for all the properties in the file (e.g.
default clock is clk’event and clk=’1’;).

3. Limited support for the verification and modelling layers of PSL. Currently
each property is supported and assumed to have only verification directive
assert (i.e. the approach supports only assertions). It can be adjoined directly
to the property body (Figure 3.11a) or stated separately with the support for
combination of properties (Figures 3.11b and 3.11c). The most of the
constructs of the verification and modelling layers are not supported directly;
however their meaning can be expressed by means of upper-layer THLDD
properties (discussed further in Subsection 3.3.4).

50

4. Subset of supported PSL operators.

a. The current implementation supports only LTL style and does not support
SERE style of PSL assertions expressions. This support can be easily
added by extension of PPG Library and minor extension of the parser.

b. Only weak versions of PSL operators are supported. The strong versions
would require modification of the THLDD standard interface and several
PPGs).

c. PPGs for some PSL FL operators (e.g. abort) are not developed yet.
However, this fact is not due to a principal constraint of the proposed
approach.

The subset of supported operators is implicitly defined by the PPG Library.

a)
 a1: assert always (a -> (b or c));

b)
 p2: always (a -> (b or c));
 a2: assert p2;

c)
 p3: (or); b c
 a3: assert always (a -> p3);

Figure 3.11. Possible combinations for the verification directive assert usage

In case if the above set of rule is satisfied the parser will partition the property
under conversion into entities containing one operator only. Further the
hierarchical set of the entities operators is passed to the constructor. The operands
of the operators can be:

• primary inputs and outputs
• internal signals (variables)
• other operators

The precedence of the operators in the hierarchy is kept in accordance with [92]
(see Figure 2.17) and their order of appearance. The order is passed to the parser
from the PPG Library file ppg.lib where it is explicitly specified for the supported
(described in this file) set of the operators. The details are described in Section A.1
of Appendix A.

3.3.3 Constructor

Complex properties are hierarchically constructed from elementary graphs in
PPG Library in the top-down manner. The process of construction starts from the
operators with the lowest precedence forming the top level. Then their operands
that are sub-operators with higher precedence recursively form lower levels of the

51

complex property. For example, always and never operators have the lowest level
of precedence and consequently their corresponding PPGs are put to the highest
level in the hierarchy. The sub-properties (operands) are step-by-step substituted by
lower level PPGs until the lowest level, where sub-properties are pure signals or
HDL operations.

As it was mentioned earlier, the verification directive assert is assumed for all
the properties in the current approach. Therefore, it does not have any reflection in
the final property under conversion graphical portrayal or its code in the AGM
format. Please note that this directive (as well as others e.g. assume) is not a PSL
operator and therefore it cannot have a PPG. In the future work different
verification directives can be represented as auxiliary suffixes to the properties
names to pass this information to the THLDD processing tool (e.g. HLDDsim).

Let us consider an example PSL assertion gcd_ready for the GCD1 design (see
Figure 2.10) provided in Figure 3.12.

gcd_ready: assert always((not ready) and (a=b) -> next_e[1 to 3](ready));

Figure 3.12. An example PSL assertion P for DUV GCD

The step-by-step construction of this complex property is presented in Figures
3.13 and 3.14 (in the intermediate steps the gcd_ready property is denoted by P).
The process consists of 6 steps starting from the lowest level precedence operator
always of the gcd_ready (denoted by P) property (Figure 3.13a). In this step the
remaining part of the PSL property under construction, put into the brackets of this
operator, is considered as its operand P1. The PPG corresponding to always is
taken from the PPG Library and put as the starting THLDD of the property. The
figure contains the portrayal of this THLDD for illustration, while the tool itself
“thinks” in terms of AGM format for THLDD representation. In the second step
(Figure 3.13b) the operand of always P1 in the THLDD is substituted by the PPG
for logical implication -> with two operands P2 and P3. The process continues until
the Step 6 (Figure 3.14c) where all the sub-properties P5, P6, P7 from Step 5
(Figure 3.14b) that are operands for the upper level operators are whether pure
signals (e.g. ready) or HDL expressions (e.g. a=b).

Please note that the Step 6 includes also elimination of a number of redundant
edges outgoing from terminal nodes CHECKING of P5, P6, P7 from Step 5. These
sub-properties have been considered as temporal (aka TOP in PPG Library
terminology, see Appendix A) in Step 5 and therefore had the third terminal node.
After their substitution by Boolean and bit type operands (aka BOP in PPG Library
terminology, Appendix A) their terminal nodes CHECKING are eliminated.

Figure 3.14c shows the final THLDD representation for the example complex
PSL property P given in Figure 3.12.

52

Figure 3.13. A THLDD property construction process
(continued in Figure 3.14)

Complete: P: assert always((not ready) and (a=b) -> next_e[1 to 3](ready));
Constructed: P: assert always(P1);

P1a) Step 1

P2

P
[tmin = 0; tmax = tend]

P3

Complete: P: assert always((not ready) and (a=b) -> next_e[1 to 3](ready));
Constructed: P: assert always(P2 -> P3);

b) Step 2

P4 P3

Complete: P: assert always((not ready) and (a=b) -> next_e[1 to 3](ready));
Constructed: P: assert always((P4 and P5)-> P3);

c) Step 3 P5

FAIL PASS

P1

CHK.

P
[tmin = 0; tmax = tend]

FAIL PASS

P2 P3

CHK.

P
[tmin = 0; tmax = tend]

FAIL PASSCHK.

P3P4 P5

53

a) Step 4

Figure 3.14. A THLDD property construction process
(continued from Figure 3.13)

P7 P6

Complete: P: assert always((not ready) and (a=b) -> next_e[1 to 3](ready));
Constructed: P: assert always(((not P7) and P5)-> next_e[1 to 3]P6);

b) Step 5 P5

P4 P6

Complete: P: assert always((not ready) and (a=b) -> next_e[1 to 3](ready));
Constructed: P: assert always((P4 and P5)-> next_e[1 to 3]P6);

P5

P7

P
[tmin = 0; tmax = tend]

P6

Complete: P: assert always((not ready) and (a=b) -> next_e[1 to 3](ready));
Constructed: P: assert always((not ready) and (a=b) -> next_e[1 to 3](ready));

c) Step 6 P5

FAIL PASS

P6
[Δt=∃{1,...,3}]P4 P5

CHK.

P
[tmin = 0; tmax = tend]

FAIL PASS

P6
[Δt=∃{1,...,3}]P7 P5

CHK.

1 T

ready a=b ready [Δt=∃{1,...,3}]

[tmin = 0; tmax = tend]

FAIL

0

F F

T

P (gcd_ready)

PASSCHK.

54

The presented PSL to THLDD conversion method supports PSL files with a set
of PSL assertions and pure properties. The properties are allowed to have
hierarchical dependencies and multi-layered properties for verification layer
expression assistance. This topic is discussed in more details in the next subsection.
The resulting THLDD properties are stored in AGM format file. This file serves as
an input for HLDD based assertions checking tool presented in the next section.

3.3.4 Representation types of THLDD properties

The THLDD properties may have the following three types of representation:

• Flattened
• Partially flattened
• System-based

The first type assumes the whole property to be represented by a single graph.
An example THLDD property given in Figure 3.14c is of this type. Flattened
representation is the most optimized for checking by HLDDsimassertions, because it
reduces the number of nested calls and therefore reduces the checking time.
However, not all the generally supported PSL properties can have this type of
THLDD representation. In case if a basic Boolean sub-property within the given
property of interest has a complex activity time window (i.a. not a single range),
then the property can have only partially flattened or system-based representations.

The second type of representation was introduced to overcome the constraints
of the first type. Partially flattened representation of a property is a system of
graphs, where several temporal sub-properties are detached to separate graphs in
order to keep all the sub-properties activity windows simple (describable by a
single continuous range). Optimal partially flattened representation of a property
has the minimal number of graphs capable to express the complex system of time
windows in THLDD. The number of separate graphs in the optimal partially
flattened representation is less than or equal to the number of temporal operators in
the property. An example of a PSL property that requires partially flattened (or
system-based) representation is given in Figure 3.15. The detailed discussion of the
complex and simple time windows is given in the next subsection.

complex_tw_1: assert always (A -> next_a[3 to 7](next_e[1 to 4](B)));

Figure 3.15. An example of a property with a complex activity time window

System-based representation of a property is the system of PPGs corresponding
to the property’s operators. The number of graphs in such representation is always
equal to the number of all operators (must be listed in PPG Library and not treated
as a HDL Boolean expression or otherwise) of the property. This type of
representation is maximal and may cause HLDDsimassertions non-optimal

55

performance in terms of checking time due to higher number of nested calls.
However, the main benefit of this type of representation is its flexibility and
reduction of principal constraints for an arbitrary property representation by
THLDD. System-based represented property is also more flexible in terms of
simple modifications for its reusability within verification plan. It means, a similar
property differing by a simple part (please consider the example in Figure 3.16) can
be derived from the original one by touching only one THLDD sub-graph in the
system leaving the rest of its sub-graphs and links as they were. An implicit
argument for system-based THLDD representation type usage is the design
representation model HLDD system-based nature.

P1: assert always (A -> (next_a[3 to 7](B)) or (next(C)));

P2: assert always (A -> (next_a[3 to 7](D)) or (next(C)));

P3: assert always (A -> (next_a[3 to 8](B)) or (next(C)));

P2 and P3 are similar to P1, and can be derived by modifying only one graph in the system.

Figure 3.16. Similarity in properties

The system-based structure is also used for multi-layered THLDD properties.
They are applied for the Verification and Modelling layers of PSL and can be
utilized for modelling of ABV plan or its parts. The upper-layer THLDD properties
are very useful for properties internal reuse management – an important part of a
real life verification process configuration.

low_prop1: assert always (A -> (next_a[3 to 7]()) or (next(C))); B

low_prop2: assert always (D -> ((E) until (F));

low_prop3: assert always (C -> (next[2](not (C))));

conf1: low_prop1 and low_prop2;

conf2: low_prop2 and low_prop3;

Figure 3.17. An example of upper-layer properties application

An example of upper-layer property usage is given in Figure 3.17. Here
assertions low_prop1, low_prop2, low_prop3 are used in two different
configurations of an ABV plan. The major shortcoming for the upper-layer
properties flexibility is the constraints of PSL simple subset (see Subsection 2.2.3).
For example, some of them are the restriction for the negation operator not operand
to be Boolean and the restriction for the logical or operator at least one of the
operands to be Boolean. These restrictions prohibit convenient combinations of
temporal lower-layer properties in upper-layer ones.

56

Figure 3.18 shows system-based representation of the property gcd_ready
(Figure 3.12) for GCD1 design (Figure 2.10).
gcd_ready: assert always((not ready) and (a=b) -> next_e[1 to 3](ready));

The THLDD flattened representation for this property was shown in Figure
3.14c.

The process of creation of a flattened type THLDD property was described in

details in this section. The process of creation of partially-flattened and system-
based types properties is very similar. The difference is (partial) replacement of,
the direct substitution of operands by lower-level sub-properties’ PPGs, by creation
of links (i.e. calls) between them. In frames of this thesis by default we consider
optimal partially flattened representation type for THLDD, if it is not stated
otherwise.

Figure 3.18. A system-based type representation of the property gcd_ready

FAIL PASS CHK.

P2 P3

P1 THLDD for (P2 -> P3)

P3 THLDD for (next_e[1 to 3] (ready)

[Δt = ∃{ 1,...,3 }]

FAIL PASS CHK.

(ready)

System of THLDDs for gcd_ready

PASS FAILCHK.

P4 THLDD for (not ready)

FAIL PASSCHK.

(ready)

P2 THLDD for (P4 and (a=b))

FAIL PASSCHK.

P4 (a=b)

gcd_ready THLDD for (always(P1))
[tmin = 0; tmax = tend]

FAIL PASS

P1

CHK.

57

3.4 The method for assertions checking with HLDDsim

This section presents a method for HLDD-based assertions checking. First the
existing HLDD design simulator HLDDsim is discussed. Further its
complementary modification for assertions checking support is presented. The
section also presents the general flow of HLDD-based assertion checking process
and discusses in details the THLDDs’ checking timing issues.

3.4.1 HLDDsim algorithm

The basis for assertion checking proposed in this thesis is the HLDD model
simulator (HLDDsim) engine. An algorithm for it (Algorithm 1) is presented in
Figure 3.19. It supports both behavioural and RTL (pure RTL and behavioural
RTL, see clauses 2.1.2.3 and 2.1.2.4) design abstraction levels and has been
proposed in [45]. This algorithm is briefly explained below and it is used for DUV
simulation. The following description uses HLDD model data structure notations
provided in Clause 2.1.2.1.

In the RTL style, the algorithm takes the previous time step value of variable xj
labelling a node mi if xj represents a clocked variable in the corresponding HDL.
Otherwise, the present value of xj will be used. In the case of behavioural HDL
coding style HLDDs are generated and ranked in a specific order to ensure
causality. For variables xj labelling HLDD nodes the previous time step value is
used if the HLDD diagram calculating xj is ranked after current decision diagram.
Otherwise, the present time step value will be used.

SimulateHLDD()
For each diagram G in the model

 mCurrent = m0
 Let xCurrent be the variable labeling mCurrent
 While mCurrent is not a terminal node
 If xCurrent is clocked or its DD is ranked after G then
 Value = previous time-step value of xCurrent
 Else
 Value = present time-step value of xCurrent
 End if
 For {Γ | Value ∈ Γ(eactive), eactive =(mCurrent, mNext)}
 mCurrent = mNext
 End if
 End while
 Assign xG = xCurrent

End for
End SimulateHLDD

Figure 3.19. Algorithm 1. RTL/behavioural simulation on HLDDs

58

3.4.2 HLDDsim modification for assertions checking

The support of assertion checking in HLDDsim implies an extra step added on
top of the existing functionality.

AssertionCheck()
 For each diagram G in the model
 For t=tmin...tmax
 mCurrent = m0 ; tnow = t
 xCurrent = Z(mCurrent)
 Repeat
 If tnow > tmax then
 Exit
 End if
 Value = xCurrent at Φ(mCurrent,tnow)
 mCurrent = mCurrent

Value

 tnow = tnow+Δt

 Until mCurrent ∉ Mterm
 Assign xG = xCurrent at time-step tnow
 End for /* t= tmin...tmax */
 End for
End AssertionCheck

Figure 3.20. Algorithm 2. Assertion checking based on THLDDs

This step is preceded by executing Algorithm 1 (Figure 3.19) from the previous
subsection which calculates the simulation trace (i.e. values of variables at the
HLDD nodes during the simulation time). This trace is a starting point for assertion
checking. This step is formally explained by Algorithm 2 in Figure 3.20. It takes
into account temporal information at the nodes and has an exit condition in order to
avoid eternal loops that are due to the cyclic nature of the general case of THLDDs.

tmax

time step

tj tk

Δt

tmin tcurr

Figure 3.21. THLDD time windows in assertion checking

Figure 3.21 shows an example of time windows for a THLDD graph converted
from a two-operator PSL assertion two_win: assert always(next_a(j to
k)(x)). Here the light-gray time window limited by tmin and tmax belongs to always.
The dark-gray time window belongs to next_a. It is dynamic (moving along the
time axe), denoted by Δt=∀{j,...,k}, with size tk-tj and relative to tcurr, which is the
current position in time. Normally, depending on its complexity, a THLDD has one

59

static and several dynamic time windows that can overlap. The next subsection
(Subsection 3.4.3) provides a discussion on time window dependencies and
possible transformations.

A general flow of the HLDD-based assertion checking process is given in
Figure 3.22. The input data for the first step (simulation) are HLDD model
representation of the design under verification and stimuli. This step results in
simulation trace stored in a text file. The second step (checking) uses this data as
well as the set of THLDD assertions as input. The output of the second step is the
assertions checking results that include both information about the assertions
coverage and validity.

Figure 3.22. HLDD-based assertion checking process flow

HLDDsimassertions

DUV (HLDD)
Stimuli

Simulation trace
(ASCII file)

Assertion Checking
Results:

• Coverage
• Validity

(occurrences of
Fails and Passes)

Assertion Checking
(Algorithm 2)

DUV Simulation
(Algorithm 1)

 state

The validity state (i.e. CHECKING or FAIL or PASS) of the monitored

assertions is stored for every time step. That allows further analyzing which
combinations of stimuli and DUV states have caused assertions violations and
passes. This data also implicitly contains information about the monitored
assertions coverage (i.e. assertion activity: active or inactive) by the given stimuli
(testbench). A lower than expected assertions coverage may warn about
insufficient stimuli.

The process of DUV assertions-based verification with the HLDD-based
approaches presented in this chapter is performed according to the common ABV
flow.

res
0

state
s0,s3,s4

s5

s1

a=b

s5

s1
s0

1

s2

T

F

a>b s3
T

F

s4

s2 ready
state

s0

1

0

s5

ready
ε

a
state

s0

a-b

in1

s5

a
ε

b
state

s0

b-a

in2

s4

ε
b

Assertions (THLDD)

1 T

ready a=b readyΔt=∃{1,...,3}

gcd_ready

[tmin = 0; tmax = tend]

FAIL PASS

0

F F

T

CHK.

60

3.4.3 THLDD assertions checking timing issues

As it was stated in Subsection 3.2.3 the temporal extension for HLDD model
proposed in this thesis supports 2 basic and a number of derivative temporal PSL
constructs (please refer to Subsections 3.2.1 and 3.2.3). A wide set of complex
temporal relationships is obtainable by means of this main constructs and special
values for the upper bounds of the time range (i.e. event(xc) and tend). In this
subsection we will discuss in more detail temporal relationships in THLDD graphs
and especially their treatment during assertions checking by HLDDsim.

PSL operator next_e has a constraint application determined by the rules of PSL
simple subset (see Subsection 2.2.3). Namely it is not allowed to have a temporal
operand. Operator next_a does not have such a constraint and can embrace both
next_a and next_e temporal operators as its operands.

Let us consider two possible cases of next_a and next_e combinations of

embracement depth equal to 2.

The first case when operator next_a embraces another instance of next_a is
shown in Figure 3.23a. Here a PSL property win_P1: next_a[k to l](next_a[m
to n](x)) (where (k:=4) < (l:=12) , (m:=2) < (n:=7) are integers and x is a
Boolean property) is considered. The first dynamic time window is relative to the
time step 0 (it does not float further because there is no PSL invariance operator
always), it starts at time step k and lasts till time step l. The second dynamic time
window is dynamically relative to the time steps in the range from k to l, starts at
the mth and lasts till the nth time step from the reference point. The gray rectangles
(A-H) in Figure 3.23a denote the set of these time windows. The property win_P1

Figure 3.23. Overlapping of time windows for next_a + next_a combination

A

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

tk tk+m tl+n tl+m tk+n tl

I

H

G

F

E

D

C

B

A

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

tk tk+m tl+n tl+m tk+n tl

a)

b)

61

will be satisfied only in case if the Boolean property x will hold at all time steps in
the range {tk+m, ... , tl+n}. Some of the time windows A-I overlap, for example at
time step tl the validity of sub-property x is checked 5 times, i.e. within time
windows B, C, D, E, F. The property P1 can be substituted by functionally
equivalent win_P2: next_a((k+m) to (l+n))(x). Figure 3.23b shows the
single time window of property win_P2. A set of dynamic time windows of
property win_P1 can be represented by a single time window and therefore this
property can have a flattened representation. However, the proposed substitution
may lead to a certain loose of potential debug information, i.e. the information
about in which of the overlapping time windows in particular the violation has
happened.

I

H

G

F

 E

 D

C

B

A

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

tk tk+m tl+n tl+m tk+n tl

Figure 3.24. Overlapping of time windows for next_a + next_e combination

The second case is when operator next_a embraces operator next_e is shown in
Figure 3.24. Here a PSL property win_P3: next_a[k to l](next_e[m to n](x))
(where (k:=4) < (l:=12) , (m:=2) < (n:=7) are integers and x is a Boolean
property) is considered. This property also has 9 final time windows A-I, however,
they cannot be substituted by a single time window or at least a less number of time
windows. In case if the sub-property x holds at two time steps 10th and 18th marked
by bold lines in figure, then win_P3 will hold only for the time windows A-D, H-I
and violate for 3 time windows E, F, G. win_P3 cannot have a flattened
representation, because it has more than one dynamic time window. Therefore its
minimal representation is a system of 2 THLDD graphs (optimal partially
flattened). If the Boolean sub-property x (which is an operand in the considered
above properties) is complex, then it can cause additional THLDD graphs for
system-based representation.

 PSL temporal operator always can be considered as a special case of the first
basic temporal construct from Figure 3.9 temporal operator next_a. Namely, if we
use the notion of tend from Subsection 3.2.3, then for a Boolean property x:

always(x) ≡ next_a(0 to ‘end’)(x)

62

Therefore, a static time window of a TLHLDD property [tmin ... tmax] defined by
always can also be considered as a special case of a dynamic window
Δt=∀{0,...,tend} relative to the starting point of the simulation trace t0.

In practice, the majority of PSL assertions start with the invariance operator
always. The external window was introduced for the practical simplification
purposes. In some sense, PSL can be considered as a “sugaring” for the formal
logics LTL and CTL. An optimal THLDD-based temporal property representation
would require initially their optimal formal representation in LTL. However, the
proposed in this thesis approach is PSL oriented.

The examples from this subsection demonstrate the necessity of THLDD
properties with complex temporal relationships to be represented by more than one
graph.

3.5 Experimental results

This section provides experimental results [10]co-auth. of assertion checking
execution times comparison between the proposed HLDDsimassertions simulator and
a state-of-the-art commercial tool from a major CAD vendor.

The experiments were performed with 4 experimental benchmarks. The first
one is gcd design from the HLSynth92 benchmarks family [103]. Its VHDL and
HLDD representations were provided in Figure 2.10 (Clause 2.1.2.4). The
remaining designs are two from ITC’99 benchmarks family [76],[102],[105] and
one created in University of Verona.

Design
Characteristic, number

VHDL lines inputs outputs signals HLDD nodes

gcd 75 4 1 8 25

b00 76 4 2 7 37

b04 84 6 1 14 58

b09 102 4 1 9 44

Figure 3.25. Benchmark characteristics table

The characteristics of the benchmarks are provided in Figure 3.25 and their
functionality is described below:

• gcd is a design implementing functionality of a greatest common divisor.
• b04 is a design implementing functionality to compute minimum and

maximum.
• b09 is a design implementing functionality of serial to serial converter.

63

• b00 is a benchmark created in University of Verona. It is specially
designed to contain hard-to-test branches and addresses their testability /
verifiability analysis problems. The design contains conditional statements
where one branch has probability (1 − 1/ 232)of being satisfied, while the
other has probability (1/ 232).

A set of 5 realistic assertions has been created for each benchmark. The
assertions selected for GCD1 are the following:
p1: assert always(((not ready) and (a = b)) -> next_e[1 to 3](ready));

p2: assert always (reset -> next next((not ready) until (a = b)));

p3: assert never ((a /= b) and ready);

p4: assert never ((a /= b) and (not ready));

p5: assert always(reset -> next_a[2 to 5](not ready));

The assertion p1 has been discussed in the previous sections as gcd_ready. Its
THLDD representations of different types were provided in Figures 3.14c and 3.22.
THLDD properties of the optimal partially flattened representation type were
considered in the current experimental setup.

Design Stimuli Length
(clocks)

The proposed approach (HLDDsim) Commercial tool

Simulation
Time

(seconds)

Checking
Time

Total
Time

(seconds)

Total
Time

(seconds) (seconds)

Figure 3.26 shows the results of the experiments. Both simulators were supplied

with the same sequences of realistic stimuli providing a good coverage for the
assertions. (The stimuli were pre-generated by the appropriate testbenches of the
DUVs). The test lengths are shown in the second column of the table. The third
and fourth columns show the simulation (Algorithm 1, see Section 3.4.1) and
assertion checking (Algorithm 2, see Section 3.4.2) execution times required for
the HLDDsimassertions. The fifth (highlighted) and the sixth columns are the total
execution time taken by the proposed approach and the commercial tool,

gcd2
10,000

100,000
1,000,000

0.02
0.20
2.07

0.04
0.40
4.87

0.06
0.60
6.94

0.67
1.71

13.52

0.06
0.60

0.79
1.83

10,000
100,000

0.03
0.30

0.03
0.30 b00

1,000,000 3.43 2.95 6.38 13.84

0.08 10,000 0.05 0.03 0.84
b04 100,000

1,000,000
0.54
5.47

0.28
3.61

0.82
9.08

2.21
19.23

b09
10,000

100,000
1,000,000

0.02
0.22
2.21

0.04
0.39
4.55

0.06
0.61
6.76

0.72
1.74
12.4

Figure 3.26. Table of assertion checking execution time comparison

64

respectively. The values in the sixth column include approximately 0.5 sec of
simulation initialization time for the commercial tool that was impossible to
exclude from the measurement.

The both tools have shown the identical responses about the assertion
satisfactions and violations. Though minor differences in the PSL assertions
interpretations are possible for different tools, the compared tools interpret PSL in
identical way. (An example of such difference was provided in [78]).

The experimental results show the feasibility of the proposed approach and a
significant speed-up (2 times) in the execution time required for design simulation
with assertion checking by the proposed approach compared to state-of-the-art
commercial tool.

3.6 Verification assertions reuse for manufacturing testing

In this section we would like to depart from the main topic of the thesis, which
is HLDD-based approaches for simulation-based verification. Here we propose
([17],[23])co-auth. directions for the discussed in this chapter verification assertions
reuse for manufacturing test ([19]-[22],[25] and [26]-[33])co-auth. development to
enhance its quality.

The verification assertions contain valuable knowledge and sometimes “insider”
information about the design’s functionality and implementation. Normally they
are cleaned out after the verification phase in the design’s synthesizable description
and the information is lost. The proposed directions for assertions reuse are Test
Pattern Generation (TPG), embedded Built-In Self-Test (BIST) observability
improvement and Design for Testability (DfT) enhancement. Figure 3.28 repeats
the typical design development flow presented in Figure 3.1 and shows the main
directions for assertions reuse.

Several approaches for a variation of BIST for combinational circuits called
Hybrid BIST (the stimuli consists of both pseudorandom and deterministic test
patterns) have been proposed in ([28] - [35])co-auth.. Some approaches for
manufacturing test TPG proposed in ([21],[22])co-auth. consider fault models which
represent physical defects behaviour more accurately than the traditional stuck-at
fault model.

The approaches presented in ([26],[27])co-auth. consider test pattern generation for
sequential circuits based on design’s properties, however the properties themselves
were not automatically obtained and required comprehensive study of the design’s
under test functionality. In this section we propose to extract this information
partially from verification assertions and assumptions.

65

Design phase

Product
Maintenance

Verification

Assertions

Testing

DfT

Manufacturing

Specification

Figure 3.28. Design development flow (simplified) with assertions reuse

As it has been mentioned in Subsection 3.1.4, there are a number of approaches
proposed for aiming hardware checkers creation from assertions meant for
prototype verification/validation by emulation (a development flow phase standing
before mass-production). A few research groups propose to use verification
assertions for manufacturing testing. However they have several limitations and
focused only on test pattern generation by the synthesized checkers. The
approaches do not consider other aspects of test plan development and usually lead
to large area overhead. In this section we propose a wider range of manufacturing
test plan development areas where assertions can be reused.

3.6.1 Assumption-based test generation

A part of today manufactured ASICs contains scan-chains embedded during
DfT that increase observability and controllability of the design by providing an
access to the internal registers. This method allows reaching high fault coverage,
however it results in over-testing of the core (see e.g. [79]). In other words, it
covers faults that could never influence the functional behaviour of the circuit thus
reducing the yield. On the other hand, it has been shown that non-scan testing
based on pseudorandom test sequences can be highly feasible for several types of
designs (such as crypto cores as it was proven in [80]). Finally, not all the circuits

66

may have the embedded scan. The ideas proposed in this section consider non-scan
sequential circuits. However they can be partially applied to scan circuits as well.

The notion of test cubes is applied for test set representation when several bits

in the test vectors contain unassigned values X (see Figure 3.29). These bits can be
assigned to the normal binary values ‘1’ or ‘0’ whether based on some rules or just
randomly. The X-s add the 3rd dimension to the fully determined 2-dimensional
test set.

In case if the test engineer has no prior information about the design’s input data
dependencies (assumptions) he has to start with a test set filled with all X-s (an
empty set). The assumptions provide information how to assign a part of the bits in
the test cube which increases the final test quality and eases the test generation
process, because the assigned bits reduce the remaining search space exponentially.
For example if an assumption provides us information that some particular input
(pin) of the design is its RESET signal, then the test engineer may decide to set its
value to ‘1’ only once in some sequence of cycles. The assumptions may be much
more complex and origin from a design specification and its implementation
(design) phase.

As it is discussed in Subsection 2.2.2, both assumptions (sometimes referred
also as environmental constraints) and assertions are design properties. The first
ones contain information about the design’s environment and therefore its expected
inputs dependencies while the second ones describe the dependencies of the
design’s internal signals and outputs [4]. The assumptions can be described
explicitly by the designer or implicitly follow from some of the given assertions of
the connected designs or design cores. The latter case is shown in Figure 3.30 and
known as assumption-assertion dualism [6]. This method allows obtaining a wider
set of assumptions.

Figure 3.29. Test cube

0 X 0 1 1 0
1 0 0 1 X 0
1 1 0 1 1 1
0 X 0 X 1 0
0 1 1 1 0 X
1 1 0 0 0 1

0 1 0 1 1 0
1 0 0 1 1 1
1 1 0 1 1 1
0 0 0 0 1 0
0 1 1 1 0 0
1 1 0 0 0 1

0 0 0 1 1 0
1 0 0 1 1 0
1 1 0 1 1 1
0 0 0 0 1 0
0 1 1 1 0 0
1 1 0 0 0 1

0 0 0 1 1 0
1 0 0 1 1 1
1 1 0 1 1 1
0 0 0 0 1 0
0 1 1 1 0 1
1 1 0 0 0 1

0 1 0 1 1 0
1 0 0 1 1 0
1 1 0 1 1 1
0 0 0 0 1 0
0 1 1 1 0 1
1 1 0 0 0 1

=

Number of Inputs

N
um

be
r o

f v
ec

to
rs

Max
 =

2N
um

be
r o

f “
X”

67

Figure 3.30. Assumption-assertion dualism

Design
Core 1

Assertions

Design
Core 2

Assumptions

The final set of the assumptions can be divided in two groups:

• The first group is the assumptions explicitly assigning a set of bits in the
test cube. The rest of the undetermined bits should be assigned by
Pseudorandom or Genetic TPG. Deterministic TPG may be not reasonably
efficient in this case.

• The second group representing a set of more complex rules not suitable for
straightforward bits assignment is meant for an appropriate Deterministic
TPG constraints representation. The both groups of the assumptions should
be utilized for the maximum efficiency.

The main difference of the proposed approach from the one described in
([26],[27])co-auth. is the formal source and format of the assumptions.

3.6.2 Assertion-based BIST

Another possible application of the information provided by verification
assertions is Built-In Self-Test (BIST) ([26]-[33])co-auth. response analyzer
observability enhancement. The BIST has been proven to be an efficient approach
for manufacturing testing. However in case of non-scan circuits its main bottleneck
is observability. The mentioned in the state-of-the-art approaches for hardware
checkers obtained from assertions may find their application in online testing.
However, they usually consider TPG to be performed offline. We propose to use
these checkers for BIST observability enhancement. Here also two approaches are
possible:

• Assertion-based checkers act as separate observers in BIST response
analyzer architecture.

• Assertions aid building complex controller-based BIST observer. For
example, one of the task of which would be to inform the analyzer when to
check and when to stay in “Silence Mode”.

68

The main issue here is the coverage of observability by the existing assertions.
Therefore, the efficiency of this technique should be very much dependable on the
particular DUV and the designer’s assertions choice style.

3.6.3 Assertion-based DfT by test points insertion

The two main components of design’s testability are observability and
controllability. The both of them can be significantly improved during DfT phase.
These improvements usually include minor rearrangements inside the design or
addition of an extra logic (for example scan-chains as it was mentioned in
Subsection 3.6.1).

One of the DfT techniques is test points insertion, when an additional auxiliary
input or output pin is routed to an internal net of the design. The main drawback of
this technique is hardware area- and input/output pins overhead. The second ones
are very costly and increase the significance of this drawback. Therefore, only the
nets providing good controllability coverage should be chosen. The identification
of such nets is a very complex task, usually solved by heuristic approaches.

Figure 3.31. Assertions for test points insertion

Design

Assertions

We propose to use for test points locations the nets corresponding to the signals

(operands) from assertions (Figure 3.31). The good candidates for test points’
locations are the nets with hard-to-test faults, due to very low controllability. The
other intent for test point insertion would be a fan-out that provides at once a good
controllability to a set of middle-level controllability places. Such a test point
would shorten the test length. The both criteria can be usually satisfied by normal
assertions, because the assertions reflect the designer’s conception of the most
significant cornerstones of the design. At the same time it is necessary to note, that
test points insertion to the sequential circuits may lead at some extend to the same

69

drawback of over-testing as in case of scan-chains insertion mentioned in
Subsection 3.6.1.

In this section we have shown that verification assertions, which are normally
cleaned out after the verification phase in the synthesizable description, can be
reused for manufacturing testing in several ways. The potential of the first direction
was proved by experimental results in [27]co-auth., where it was shown that the
proposed approach of the properties-based random BIST has dramatically
improved generated test set fault coverage for non-scan design. However, further
development of the approaches is required and the feasibility of the proposed
directions must by proven by extensive experimental results. These tasks are
scheduled for the future work.

3.7 Chapter summary

This chapter has discussed simulation-based hardware verification and proposed
a new approach for HLDD-based assertions checking. The three main
contributions of this chapter are the following.

The first one is a temporal extension for the existing HLDD model. The new
extended model is aimed at temporal properties expression and named Temporally
extended High-Level Decision Diagrams (THLDD). The extension supports a set
of commonly used temporal constructs that can be used to express a wide set of
possible complex temporal relationships.

The second contribution is a methodology for direct conversion of assertions
expressed in Property Specification Language (PSL) to THLDD. The proposed
hierarchical approach introduces an extendable library of Primitive Property
Graphs (PPG Library). The components of this library serve as building blocks for
a complex THLDD property construction.

The third contribution is HLDD-based simulator HLDDsim modification to
support THLDDs and assertions checking. This part is supported by discussion of
properties’ activity time windows and variety of THLDD types.

The feasibility of the proposed approaches is proven by the presented
experimental results.

The chapter has also briefly discussed verification assertions reuse for
manufacturing testing.

70

Chapter 4
VERIFICATION COVERAGE

ANALYSIS

Hardware verification coverage analysis is aimed to estimate quality and
completeness of the performed verification. It plays a key role in simulation-based
verification and aids to find an answer to the important yet sophisticated question
of when the design is verified enough.

This chapter discusses a basic classification of verification coverage metrics and
the main aspects related to their measurement. The main focus is on the structural
coverage for simulation-based verification as the most widely used today in
practice.

The main contribution of this chapter is approaches for HLDD model based
verification coverage analysis. First, approaches for mapping commonly used
verification coverage metrics to HLDD-based coverage are proposed. Further, an
approach employing a hierarchical decision diagrams’ model for the condition
coverage measurement is presented. Finally, HLDD model manipulations for the
verification coverage analysis are discussed.

The HLDD-based verification coverage analysis has a set of advantages
compared to the commonly used HDL-based methods. In this chapter these
advantages are discussed in detail and illustrated on a common example design.
The feasibility and efficiency of the proposed approaches are supported by the
presented experimental results.

4.1 Verification coverage overview

As it has been noticed in Section 3.1 there are two main approaches in design
verification: formal and simulation-based. Although the notion of verification
coverage is also applicable for the first one, it is a fundamental part of simulation-

71

based verification process. From now on we will consider the notion of verification
coverage only in frames of the simulation-based verification approach.

The main purpose of verification coverage is to estimate how well we have
verified the DUV, in other words the progress of the verification process. The three
main aspects of simulation-based verification are:

• Stimuli generation
• Coverage measurement
• Response analysis

In practice, the verification process’s actions aimed at these three aspects can be
cycled as it is shown in Figure 4.1 (inspired by [5]).

Stimuli
generation

Coverage
measurement

Response
analysis

Figure 4.1. Simulation-based verification in cycle

Once the stimuli are generated the process of DUV simulation takes place. It
includes verification coverage measurement (assertion checking, if it is assumed by
the verification plan, takes place at this stage as well). The stage of simulation is
followed by the response analysis, when the simulation results (e.g. waveform) can
be compared with the responses of a reference (e.g. the design’s simplified
implementation or its implementation at a different abstraction level) or somehow
studied for expected/unexpected behaviour.

There are three main reasons for new cycle iteration:

• Independently from the response analysis results, verification coverage value
determines how thoroughly the DUV was examined. In case, if the value of
verification coverage is not sufficient (this criterion is discussed further in
Subsection 4.1.2), then the stimuli should be improved and new cycle iteration
may be initiated.

72

• The second reason is the case, when the response analysis may have
discovered an inconsistency in the responses. Further, it has been debugged
and led to detection of an implementation error (or multiple ones) in the DUV.
After the errors are corrected, new cycle iteration may be initiated.

• The third reason is an error in the stimuli (especially if it is a complex
testbench) detected by the debug process. Then the stimuli are improved and
new cycle iteration may be initiated.

A common practice in simulation-based verification is application of (pseudo4-)
random stimuli or variation of a constraint-random (i.e. (pseudo-) randomly
generated with regards to DUV’s particular properties) generated on-line during the
simulation. In this case “stimuli improvement” basically means simulation time
increase and/or the constraints review.

4.1.1 Verification coverage classification

There are two main types of verification coverage: functional and structural
(books [1],[2],[5] and a state-of-the-art commercial tool reference manual [77]).
Although [1] singles out a third type parameter coverage, which is a metric for the
variety of unit’s parameters (e.g. range and depth for a FIFO) examined, we do not
consider this type of verification coverage separately in this thesis.

Functional coverage is a metric for DUV’s functionality exercised during its
simulation. The main advantage of this type of verification coverage is that it relies
on design’s specification and does not depend on the particular implementation
under verification. Its measurement is a sophisticated process and it is less used in
practice for simulation-based verification. Assertion coverage, discussed in the
following subsection, can be considered as a subset of functional coverage.

Structural coverage is also commonly referred as code coverage. Its main
drawback is its quality dependence on the current implementation of the DUV. It
means that, even an implementation does not include at all a part of the specified
functionality, its structural coverage can still be 100%. The second drawback [81]
is that while it is perfectly suitable for software verification (testing) and smaller
hardware designs it may lack efficiency for covering corner cases of complex
designs due to their extended concurrent functionality. However, structural
coverage measurement, as opposed to functional one, is relatively easy to
implement and therefore it is widely used in practice. The alternative term, i.e.
code coverage, is widely used because the HDL code is a common representative
of the design’s structure. Although in the HLDD model-based design

4 It is almost impossible to implement a purely random data generator. However, even available solutions with
relatively good data randomness are often substituted with more deterministic pseudorandom ones. The main
advantage of the latter ones is the reproducibility of the generated data.

73

representation the structure of a design is described by graphs, in this chapter we
will still refer to structural coverage as code coverage.

Code coverage in its turn can be separated to several more narrowly defined
practically used coverage metrics, such as statement coverage, branch coverage,
toggle coverage, (FSM) state coverage, data flow, condition coverage and others.
Section 4.2 describes in details the listed above code coverage metrics and
proposes an approach for their analysis based on the HLDD model.

4.1.2 Sufficiency of verification coverage

The criterion of sufficiency (i.e. minimum acceptable) for hardware verification
coverage metrics is very much dependant on a particular verification plan.

The methodology of code coverage measurement is very much developed in
software testing discipline. A lot of research has been performed in this area in
software testing before this topic became vital in hardware verification (due to
DUVs’ complexity increase). There are many similarities in the problems of code
coverage measurement and some of the existing solutions can be reused from the
former discipline. In the area of software testing there are known [106] several
standards for software quality such as DO-178B [82] for software used in airborne
systems and [83], [84]. The second one [83] recommends full statement coverage
or full branch coverage, depending on the criticality of the object. Please consider
Figure 4.2, where DO-178B states a sequence of coverage combinations depending
on the software product target application criticality in increasing order (the terms
are adapted for the hardware verification terminology).

Level Effect of
System Failure

100%
statement
coverage

100%
branch

coverage

100%
condition
coverage

E No effect - - -

D - - - Minor

Major - C -

 - B Hazardous

Catastrophic A

Figure 4.2. DO-178B: minimal acceptable code coverage for software testing

There exists a standard also developed by RTCA and named DO-254 [85],
which is a counterpart to the DO-178B, but aiming hardware used in avionics.
None of the above-mentioned standards for both software testing and hardware
verification determine a general minimal numerical threshold for a sufficient
coverage. Normally, the decision which coverage value is satisfactory depends on a

74

particular verification plan. The coverage value is considered more informative in
comparison with the values of other iterations of measurement.

The numerical value of coverage metric is a ratio of an amount of its executed
units to the amount of the total units of this metric. The hits of the units’ executions
are usually counted and a particular metric can contain a requirement for a
threshold number of hits for the units to be counted. The approaches proposed in
this chapter always consider hits counting and the threshold value equal to 1, if it is
not stated otherwise.

Verification coverage analysis allows directing the effort of stimuli generation
to the crucial parts of the DUV and warns if particular stimuli improvement
activities do not give any increase in terms of verification coverage, i.e. do not
actually provide for any benefit. The strategy for design verification process
evaluation based on the verification coverage measurement results is known as
Coverage-Driven Verification (CDV) [5].

4.1.3 Assertion coverage

As it is emphasized in [5], the notion of assertion coverage has several
meanings (similar to the notion of assertion checking diversity, discussed in Clause
3.1.3.1). The first option is its usage to refer to the ratio of number of assertions to
the number of lines in the HDL code (or any other metric of design implementation
size, e.g. number of nodes in corresponding HLDDs). An alternative term for this
ration is assertion density. The second option is association of this notion with the
amount of functionality implemented by assertions. However, in frames of this
thesis we use the notion of assertion coverage for the information about the
assertions evaluation, i.e. activity/inactivity and pass/fail times.

The assertions can be classified by their purpose of application: checking or
coverage. This classification only partially correlates with division of assertions to
safety (i.e. something should never happen) and liveness (i.e. something should
eventually happen) ones. Checking assertions usually inserted to detect assertions
violation, in other words to they are aimed at capturing an undesired event. At the
same time, coverage assertions report expected behaviour. The second type of
assertions can be emphasized by PSL verification directive cover instead of assert.
Loosely, speaking the directives in this case only influence the way how the
simulator will process the assertion evaluation results (e.g. just store to file or take
an immediate action such as warning or maybe even simulation interruption).

The approach discussed in Chapter 3 and HLDDsim do not currently support
other than assert PSL verification directives, and process all the assertions in the
same way, i.e. store their evaluation results to a file for further analysis and debug
process. However, the classification of the assertions into checking and coverage
ones is important for coverage-driven verification strategy. The improvement of
stimuli can be motivated not only by insufficient code coverage, but also by

75

insufficient assertion coverage. For the second case, the coverage of coverage
assertions is more important than coverage of checking assertions. The situation
when some of the latter ones were not activated may only signal about the
correctness of the DUV.

In assertions-based verification the assertion coverage measurement may be
used as addition to or instead of the structural verification coverage measurement
stage. However, it is necessary to keep in mind that if an error is discovered and the
DUV was corrected before another iteration of the cycle (Figure 4.1), the assertions
should be re-examined beforehand. Unlike the verification coverage constituents
that are parts of the implementation and that have been directly changed with the
DUV’s modification, the assertions may require a separate effort for their explicit
modification. For example, the modified DUV could have eliminated a signal
monitored in some of its assertions.

The assertion coverage can be considered as a subset of functional coverage. Its
measurement implementation referred as HLDD-based assertion checking was
discussed in details in the previous chapter. The rest of this chapter will consider
only code coverage part of the verification coverage.

4.2 HLDD-based analysis of code coverage

In this section six traditional code coverage metrics mentioned in Subsection
4.1.1, i.e. statement coverage, branch coverage, toggle coverage, state coverage,
data flow coverage and condition coverage, are proposed to be analyzed based on
the HLDD model. The proposed analysis ([15],[16])co-auth. is more efficient
compared to the standard HDL approaches due to the nature of the HLDD model.
Once a correct mapping of coverage metric to HLDDs is created, the coverage
measurement overhead during design simulation is significantly reduced.

Let us consider a common example design CovEx. Its behavioural RTL VHDL
representation (only the functional segment) is provided in Figure 4.3. There are
three columns with numerical values to the left from the VHDL code. The third
column Ln. is basically the line number, while the other two are explained further.

The variables’ names in CovEx follow the following unification rules: {V- an
output variable; cS - a conditional statement; D- a decision; T- a terminal node; C-
a condition}.Correspondingly, cS‘x’_D‘y’ is the yth decision for the xth conditional
statement, V‘x’_T‘y’ is a yth possible value (terminal node) for the xth output
(variable), etc. Please note, that the condition cS3_C is equal to condition cS6_C
(they correspond to the same signal in the design), this is discussed further in
Section 4.3.

The HLDD representation of the example design CovEx is provided in Figure
4.4. It consists of 2 graphs for the variables V1 and V2 correspondingly. All the
nodes and edges in the HLDD representation are numbered, where the edges’

76

numbers are underlined. The nodes of the HLDD graphs correspond to both
conditional and assignment statements, while edges correspond to decisions. The
statements’ keywords are emphasized by bold in the VHDL representation of
CovEx (Figure 4.3).

4.2.1 Statement coverage mapping

The statement coverage is a ratio of statements executed during simulation to
the total number of statements under the given set of stimuli
([1],[2],[5],[106],[77]).

This metric has several variations. For example line coverage [5], which counts
lines as opposed to statements. It is more HDL coding style dependant and less
accurate than the statement coverage, which counts several statements separately
even if they are on the same line.

An observation that once a control statement is executed then a group of the
following statements is usually executed as well has lead to introduction of block
coverage. Here dividing lines for blocks are branching statements (see next
subsection) and several other statements such as wait and loop [1]. Although block
coverage can be consider an advanced version of statement coverage, in practice
usually exactly statement coverage metric is used (e.g. [77]). In our approach,
application of block coverage is more complicated then statement coverage due to
the system-based representation of a DUV by HLDDs. The statements form one
HDL block can be contained in different HLDD graphs and therefore may require
an effort for their (virtual) grouping back.

Please consider the VHDL description of the CovEx design presented in Figure
4.3. Here the third column of the numbers (Ln.) shows the line numbers, i.e.
constituents of the line coverage metric. The numbers from first column (Stm.)
correspond to the lines with statements (both conditional and assignment). While,
depending to the coding style the number of lines may vary (e.g. lines 2 and 3 may
be placed to the end of the first line), the number of statements remains constant.
The 3 lines from 4 to 6 can represent one “block”, in case of block coverage
measurement.

The statement coverage metric has a straightforward mapping to HLDD-based
coverage ([15],[16])co-auth.. It maps directly to the ratio of nodes mCurrent traversed
during the HLDD simulation presented in Algorithm 1 (Subsection 3.4.1) to the
total number of the HLDD nodes in the DUV’s representation. As an example, the
20 HLDD nodes of the two graphs in Figure 4.4 correspond to the 18 statements of
the VHDL segment. Covering all nodes in a HLDD model (i.e. full HLDD node
coverage) corresponds to covering all statements in the respective HDL. Please
note that some of the HDL statements have duplicated representation by the HLDD
nodes. This is due to the fact that in HLDD-based design representation the
diagrams are normally generated for each data variable separately. For example,

77

Figure 4.3. The VHDL file functional segment of an example design CovEx

Stm. Dcn. Ln. A functional segment CovEx of an VHDL file.

1*

1 if (cS1_C1 or cS1_C2)

then

1*

2
 case cS2_C is 3

4
2*

 when cS2_C_W1 =>
 V2 <= V2_T1;

2*
5 3

4

3
 if (cS3_C) -- where, cS3_C = cS6_C 6

7 then
 V1 <= V1_T2; 8 5
 else 9

10

6

4

 V1 <= V1_T1;
 end if; 11
 when cS2_C_W2 => 12

13
 5*

 V2 <= V2_T1;
 if (cS4_C1 and ((not cS4_C2) or cS4_C3))

7
8

6
14

 then 15
16 V1 <= V1_T3;

 else
9

17
10

7

 V1 <= V1_T1; 18
19 end if;

 when cS2_C_W3 => 20 8*
 V1 <= V1; 21

22
11
12

9
 if 5_C1 and cS5_C1) (cS
 then 23
 V2 <= V2_T2; 24

25
13

 else
14

10

 V2 <= V2_T1; 26
27
28

 end if;
 end case;
else 29

15
16

11*

 V2 <= V2_T2;
 if (cS6_C) -- where, cS3_C = cS6_C

30
31

 then 32 12
 V1 <= V1_T2;
 else

33
34

17

18

13

 V1 <= V1_T1; 37
36
37

 end if;
end if;

consider statements 1 and 2 emphasized by subscript asterisk character ‘*’ in Figure
4.3 and by additional subscript indexes in Figure 4.4. They are represented twice
by the nodes of both variables V1 and V2 graphs, and therefore there are 20 HLDD
nodes in total.

4.2.2 Branch coverage mapping

The branch coverage metric reports the ratio of branches in the control flow
graph of the code that are traversed under the given set of stimuli. The conditional
statements of HDL code are if- and case- statements. The branch coverage
indicates separately evaluations of the statements if and elsif to ‘true’ and ‘false’ as
well as evaluations of case statement to all of its solutions. This metric is also

78

known as decision coverage, especially in software testing [106], all-edge
coverage and arc coverage. In a typical application of branch coverage
measurement, the number of every decision’s hits is counted. Note, that the full
branch coverage comprises full statement coverage.

Conditional statements create different paths of execution over time. Path
coverage reports the ratio of paths in the control flow graph executed during
simulation under the given stimuli to the total amount of possible paths. This
metric is more stringent compared to branch coverage. However, its main
disadvantage is that the number of paths grows exponentially with the number of
conditional statements. Therefore, it is rarely used in practice for reasonably large
real designs.

Figure 4.4. HLDD representation of the example design CovEx

cS1_D1 cS2_D1

cS2_D2

cS3_D1

cS3_D2

cS1_D2

cS4_D1

cS4_D2

cS1 cS2 cS3 V1_T2

V1_T1

cS4 V1_T3

V1_T1

V1

cS1_D1 cS2_D1

cS2_D3 cS5_D1

cS5_D2

cS1_D2

cS1 cS2 V2_T1

cS5 V2_T2

V2_T1

V2_T2

V2

cS6_D1

cS6_D2

cS6 V1_T2

V1_T1

11 321

4

5 6

7

1

12111

13

82

10

112

9

2212

11 21 5

6

9

10

17

18

3

13

14

15

8

16

12

4

2212

cS2_D3
V1_T1

81

11

cS2_D2
V2_T1

52

7

79

Similar to the statement coverage, branch coverage also has very clear
representation ([15],[16])co-auth. in HLDD model. It is the ratio of every edge eactive
activated in the simulation process presented by Algorithm 1 (Subsection 3.4.1) to
the total number of edges in the corresponding HLDD representation of the DUV.

Please consider the VHDL segment in Figure 4.3. Here, the second column
(Dcn.) numbers all 13 branches (aka decisions) of the code. The edges in the
HLDD graphs provided in Figure 4.4 represent these branches and are marked by
the corresponding numbers (underlined). Covering all edges in a HLDD model (i.e.
full HLDD edge coverage) corresponds to covering all branches in the respective
HDL. Please note that some of the HDL branches also have duplicated
representation by the HLDD edges. This is due to the same reason as with HLDD
nodes. While several conditional statements appear in the graphs of both variables
(V1 and V2), some of their decisions do too. These decisions in the CovEx example
design are 1, 2, 5, 8, 11 (Figures 4.3 and 4.4), i.e. decisions of cS1 and cS2. They
are marked by ‘*’ in Figure 4.3 and by additional subscript indexes in Figure 4.4.

We will refer to statement and branch coverage as base coverage metrics. These
metrics cover the constituents of decision diagrams, i.e. nodes and edges. Also, the
majority of the other coverage metrics employ them in some way.

4.2.3 Toggle coverage mapping

The toggle coverage metric, depending on its implementation, reports how
many times each design signal, variable (or sometimes each bit of a register, or a
bus) toggles, i.e. changes its state from ‘1’ to ‘0’ and vice versa under the given set
of stimuli. Some code coverage measurement aided simulators measure in addition
the toggles to and from ‘X’ (undefined) and ‘Z’ (tristate) values.

In the current implementation ([15],[16])co-auth., the toggle coverage analysis
based on HLDD model does not have any particular advantages caused by HLDD
model application. It implies similar counters as HDL simulators do.

4.2.4 State coverage mapping

State coverage, also known as FSM coverage [5], implies several variations of
the DUV’s finite state machine behaviour analysis for the given set of stimuli. In
this thesis we consider the following two of them:

• The first approach is to analyze which states were visited during the
simulation and count the number of the visits (hits).

• The second approach is to analyze the amount of fired transitions from one
state to another.

A support for the state coverage measurement requires from a appropriate HDL
tool ability to identify and extract the DUV’s FSM from its RTL HDL description.

80

As it has been shown in Clauses 2.1.2.3 and 2.1.2.4 the HLDD-based
representation of a RTL design clearly distinguishes graphs for separate variables
including the state variable. Please consider Figures 2.8 and 2.10 for example.

The first approach (from the listed above) for the state coverage measurement
maps to the HLDD-based measurement of the coverage for the terminal nodes
(assignments) in the state variable’s graph. The second approach maps to the
HLDD edges based measurement of sub-paths between the current state node and
terminal nodes coverage (please consider Figures 2.8 and 2.10). HLDD-based
analysis of the state coverage implies the advantages of base coverages metrics
HLDD-based analysis.

4.2.5 Data flow coverage mapping

Data flow coverage metric ([86],[106]) reports covered and uncovered sub-
paths from data variables’ assignments to their subsequent references (for the given
set of stimuli). It can be considered as a simplified for calculation yet powerful
variation of the path coverage metric (please see the Subsection 4.2.2). The main
advantage of the data flow metric is its direct relevance to the actual design data
flow. For example, in case if we have the full branch coverage for a particular
DUV/stimuli pair, it does not guarantee the sub-path between a DUV’s variable
assignment and its reference (use) to be covered. Therefore, data flow coverage
provides for an extra potential of corner cases misbehaviour (implementation
errors) discovery. However, the analysis of this metric based on HDL design
representations has high complexity and, therefore, it is rarely used.

On the other hand, HLDD-based design representation contains separate graphs
for each variable and signal of the design. Full data flow coverage of a design maps
to the coverage of all single paths from terminal nodes to the root nodes separately
in all variables’ HLDD sub-graphs. Data flow coverage HLDD-based analysis
strictly requires HLDD model of the reduced typed and partitioned by variable.
These requirements are discussed in Section 4.4.

4.2.6 Condition coverage mapping

Condition coverage metric ([5],[106]) reports the number of times each Boolean
sub-expression, separated by logical operators or and and, in a conditional
statement causes the complete conditional statement to evaluate to one of the
decisions (e.g. ‘true’ or ‘false’ values) under the given set of stimuli. It differs from
the branch coverage, by the fact that in the branch coverage only the final decision
determining the branch is taken into account. In case, if we have n conditions
joined by logical and operators in a logical expression of a conditional statement, it
means that the probability of evaluating the statement to the decision ‘true’ is 1/2n
(considering pure random stimuli for the condition values). Calculation of the

81

condition coverage based on HDL representation is a sophisticated multi-step
process. However, the condition coverage metric allows discovering information
about many corner cases of the DUV.

The approach for HLDD-based analysis of condition coverage is proposed and
described in detail in Section 4.3.

4.3 A hierarchical approach for HLDD-based condition
coverage analysis

In this section we propose an approach for HLDD-based condition coverage
analysis. The approach is based on a hierarchical DUV representation where the
conditional statements with complex logical expressions (normally represented by
single nodes in HLDD graphs) are representation by BDDs. A brief introduction to
this hierarchical representation was shown in Figure 2.9 (Clause 2.1.2.4). Please
note that the BDD graphs for expanded conditional statements use the alternative
description style presented in Subsection 2.1.1 (Figure 2.1c).

Let us consider the example design CovEx provided in Figures 4.3 and 4.4. It
contains 6 conditional statements cS1-cS6, repeated in Figure 4.5.

cS3: if (cS3_C) then cS3_D1 else cS3_D2; -- where, cS3_C = cS6_C

cS4: if (cS4_C1 and ((not cS5_C2) or cS5_C3))then cS4_D1 else cS4_D2;

cS5: if (cS5_C1 and cS5_C2) then cS5_D1 else cS5_D2;

cS6: if (cS6_C) then cS6_D1 else cS6_D2; -- where, cS3_C = cS6_C

cS2: case (cS2_C) when cS2_C_W1: cS2_D1;
 when cS2_C_W2: cS2_D2;
 when cS2_C_W3: cS2_D3;

cS1: if (cS1_C1 or cS1_C2) then cS1_D1 else cS1_D2;

Figure 4.5. The conditional statements of CovEx

The design contains 3 conditional statements with single conditions. They are
equivalent statements cS3 and cS6 and cS2 with a non-Boolean single condition.
Moreover, the case- conditional statements always contain a single, usually, non-
Boolean condition (in case of a Boolean condition it has two decisions and can be
substituted by an if- conditional statement). A BDD expansion graph for a
conditional statement with a single condition has the same number of edges as the
number of terminal nodes, and therefore does not contain any additional
information compared to the pure HLDD-based representation of this statement. In
other words the condition coverage for a HLDD with conditional statements nodes
containing only single conditions is equivalent to its branch coverage. The
conditional statements cS1, cS4 and cS5 contain complex logic expressions with
multiple conditions.

82

Figure 4.6. BDD-expanded multi-condition conditional statements of CovEx

The BDD-based expanded representations for all conditional statements of
CovEx design are provided in Figure 4.6. Here the terminal nodes are marked by
background colours according to different decisions for better readability. These 6
graphs can be considered as sub-graphs representing “virtual” variables (because
they are not real variables of the CovEx VHDL representation) cS1-cS6. Thus,
together with the two HLDD graphs for variables V1 and V2 from Figure 4.4 these
sub-graphs compose design’s hierarchical DD representation, which is a BDD-
aided HLDD.

The complete (i.e. not system-based) hierarchical DD graph for the variable V2
of CovEx design is provided in Figure 4.7.

The full condition coverage metric maps to full coverage of terminal nodes of
the BDD graphs from the system-based hierarchical DD representation during the
complete system simulation with the given stimuli. The size of the items list for

83

this coverage metric is where ncS is the number of conditional statements

and nci is the number of conditions in the ith conditional statement.

∑
=

cS
ic

n

i

n

1

2

In case if we measure the amount of covered terminal nodes for all complete
hierarchical DD graphs (an example of such graph for V2 of CovEx is provided in

Figure 4.7. Complete HLDD graph with expanded conditional statements for V2

cS2_C1_W1

cS2_C1_W3

cS2_C1 V2_T1

V2_T2

V2_T1

V2_T2

V2

T

F

cS1_C1 cS1_C2
T

cS2_C1_W2
V2_T1

cS1_C2
TF

F

T

F

cS5_C1 cS5_C2
T

F
F

cS5_C2
T

V2_T1

V2_T1

cS2_C1_W1
cS2_C1 V2_T1

cS2_C1_W2
V2_T1

cS2_C1_W3
V2_T2

V2_T1

T

F

cS5_C1 cS5_C2
T

F
F

cS5_C2
T

V2_T1

V2_T1

cS2_C1_W1
cS2_C1 V2_T1

cS2_C1_W2
V2_T1

cS2_C1_W3
V2_T2

V2_T1

T

F

cS5_C1 cS5_C2
T

F
F

cS5_C2
T

V2_T1

V2_T1

84

Figure 4.7) of the design, we will get a combination of the data flow and condition
coverage metrics (data flow/condition coverage). This metric is adequately
stringent for hardware simulation-based verification and has relatively good ratio
of stringency and calculation overhead. The obvious advantage of this combination
is that the enhancement of data flow coverage by the condition coverage metric
adds the competence of the DUV’s structure coverage in an orthogonal axis. An
analog for this coverage, however less stringent one, is the popular [106] in
software testing Modified Condition Decision Coverage (MC/DC) metric.

The main advantage of the proposed approach is low computational overheads
for condition coverage and data flow/condition coverage analysis. Once the
system-based- (for condition coverage) or complete- (for dataflow/condition
coverage) hierarchical DD is constructed, the analysis for an every given stimuli
set is evaluated in a straightforward manner by the same tool (HLDDsimcoverage).

The size of the DDs with the expanded conditional statements may grow
exponential to the number of conditions and therefore there is significant increase
of the memory consumption. However, the length of the average sub-path from the
root to terminal nodes grows linear to the number of the conditions. Therefore,
since the simulation time of a HLDD has a linear dependency to the average sub-
path from the root to terminal nodes, it will grow only linearly with respect to the
number of conditions.

4.4 HLDD model reduction manipulations for code coverage
analysis

In this section we propose [16]co-auth. to distinguish three types of HLDD
representation according to their compactness, and with consideration of the HLDD
reduction rules. These rules are similar to the reduction rules for BDDs [40]
presented in Subsection 2.1.1 and can be generalized as follows (the differences are
underlined):

HLDD reduction rule1: Eliminate all the redundant nodes whose all edges point
to an equivalent sub-graph.

HLDD reduction rule2: Share all the equivalent sub-graphs.

The three representation types in the increasing order of compactness are:
• Full tree HLDD contains all control flow branches of the design.
• Reduced HLDD is obtained by application of the HLDD reduction rule 1 to

the full tree representation. This HLDD representation is still a tree-graph.

85

• Minimized HLDD is obtained by application of both HLDD reduction rules 1
and 2 to the full tree representation. This representation is no longer a tree.

The presented in Figure 4.4 HLDD representation for the example design
CovEx is of the reduced type. Figures 4.8 and 4.9 present the full tree and
minimized HLDD representations for the same design, correspondingly.

A less compact HLDD representation contains more items, i.e. nodes and edges.
It means it requires more memory for the data structure storage and possibly longer

Figure 4.8. The full tree HLDD representation for the CovEx design

11d

11d

7d

7d

15d

15d

3d

3d

cS1_D1 cS2_D1

cS2_D2

cS3_D1

cS3_D2

cS1_D2

cS4_D1

cS4_D2

cS1 cS2 cS3 V1_T2

V1_T1

cS4 V1_T3

V1_T1

V1

cS6_D1

cS6_D2

cS6 V1_T2

V1_T1

11 31

71

21

41

6151

121111

131

11 21 5

6

9

10

17

18

81

161

41

cS2_D3 cS5_D1

cS5_D2

cS5 V1_T1

V1_T1

81

101

91

121

cS1_D1 cS2_D1

cS2_D2

cS3_D1

cS3_D2

cS1_D2

cS4_D1

cS4_D2

cS1 cS2 cS3 V2_T1

V2_T1

cS4 V2_T1

V2_T1

V2

cS6_D1

cS6_D2

cS6 V2_T2

V2_T2

12 32

72

22

42

6252

122112

132

12 22

82

162

42

cS2_D3 cS5_D1

cS5_D2

cS5 V2_T2

V2_T1

82

102

92

13

14

122

86

simulation time, if the average sub-path from the root to terminal nodes becomes
longer. However, it is potentially capable to represent the design’s structure more
accurately and therefore the coverage measurement may be more accurate as well.
In fact, this dependency is not “linear” and particular HLDD representation types
may be more convenient or not suitable at all for particular application.

It has been shown in [16]co-auth. (please see also Section 4.5) that analysis results
for the base code coverage metrics, i.e. statement and branch coverages, performed
on reduced HLDDs is more stringent that the ones with the minimized HLDDs.
Moreover, compared to HDL-based analysis the reduced HLDD-based results are
always more stringent, while minimized HLDD-based ones are often less.
However, it is necessary to note that the direct comparison to HDL is not very
accurate due to its dependency to the coding style.

At the same time the performance of the base coverage metrics analysis based
on reduced and minimized HLDD model is equivalent due to the fact that both
models have the same average length of sub-paths from the root to terminal nodes.
Compared to the full tree HLDD representation, the reduced HLDD model usually
has significant performance improvement while the accuracy of the design’s
structure representation remains the same for the base code coverage metrics.

Figure 4.9. The minimized HLDD representation for the CovEx design

cS1_D1

cS2_D1

cS2_D2

cS(3/6)_D1

cS(3/6)_D2cS1_D2

cS4_D1

cS4_D2

cS1 cS2

cS(3/6)

V1_T2

cS4 V1_T3
V1

1

cS1_D1 cS2_D1

cS2_D3

cS1_D2

cS1 cS2

cS5

V2_T2

V2

1

3

5 6

,12

7

111

4

1

2

,13

1

82

10

9

2212

11 21

5,17

9

13,15

8

4,16

2212

cS2_D3
V1_T1

81

6,10,11,18

cS2_D2
V2_T1

52

3,7,14

cS5_D2
12

cS5_D1

112

87

The conclusions for application of the three types of the HLDD representations
compactness for the structural coverage base metrics’ analysis are the following:

• The minimized HLDDs provide the most compact design representation, and,
therefore, it has the lowest memory requirements. However, a possibility of
coverage stringency loss should be considered for the structural coverage
analysis based on this type of DUV’s representation.

• The reduced HLDDs require more memory, but they do not lose in coverage
metrics’ stringency. The simulation speed compared to the minimized HLDDs
remains the same.

• The full tree HLDDs-based coverage analysis is slower and does not provide
any gain in the stringency of the considered metrics, compared to the reduced
HLDDs-based one. However, this representation type may be required for an
accuracy lossless analysis of several other coverage metrics. A comprehensive
analysis of these metrics is scheduled as a future work.

As it was discussed on the previous section the measurement of the condition
coverage is performed on the hierarchical DD model employing both HLDD model
and BDDs for expanded conditional statements representation. For this analysis we
assume reduced HLDD model and full tree type of the BDD representations.
Toggle and data flow and state coverage metrics are also proposed to be analyzed
based on reduced HLDDs.

Please note, that the correct analysis of the condition and data flow and state
coverage metrics may involve also other HLDD manipulations discussed in Clause
2.1.2.3 (Figure 2.7). It is the correct partitioning of the HLDDs.

• The data flow coverage analysis requires strict partitioning by variables, i.e.
exactly one graph for every variable or signal. In case of the data
flow/condition coverage the expanded conditional statements must be
contained in the compete hierarchical DD (Figure 4.7).

• The pure condition coverage analysis requires separation of the BDD graphs
representing conditional statements. The resulting design representation must
be system-based .

• The state coverage analysis accepts partitioning by variables and strictly
requires a separate graph for the DUV’s state variable.

The proposed in this chapter approaches and statements are supported by
experimental results presented in the next section.

88

4.5 Experimental results

This section provides experimental results ([15],[16])co-auth. for the proposed
HLDD-based verification coverage analysis approaches. First, the experimental
results present information for the comparison of the proposed approaches
implemented as HLDDsimcoverage with a state-of-the-art commercial tool from a
major CAD vendor. Second, the comparisons are performed for verification
coverage measurements based on different HLDD model representation types.

The experiments were carried with the benchmarks presented in Section 3.6
gcd, b00, b04, b09 and also 3 other benchmarks from the ITC’99 benchmarks
family [76],[102],[105] b01, b02 and b06.

• b01 is a design implementing functionality a finite state machine that
compares serial flows

• b02 is a design implementing functionality of a finite state machine that
recognizes binary-coded decimal numbers

• b06 is a design implementing functionality of an interrupt handler

Design

Coverage measurement time overhead, (%)

Commercial
HDL simulator HLDDsim

b00 28.0 1.0

b04 32.2 0.9

b09 78.9 4.3

gcd 31.7 3.2

Figure 4.10. Coverage analysis penalty: traditional vs HLDD

The comparative experiments between the HLDD-based code coverage analysis
tool HLDDsimcoverage and a state-of-the-art commercial HDL simulation tool from a
major CAD vendor have been presented in [15]co-auth.. Their results have shown that
the time overhead of verification coverage measurement in the popular commercial
tool environment is much higher than in the case of HLDD-based approach. When
HLDDs have coverage measurement time overhead in a range of 1% to 4%, the
commercial simulator uses from 28% up to 78% extra time for coverage
measurement (see Figure 4.10).

89

Design
Number of nodes Number of edges

min red. f.tree min red.

b01 30 57 267 52 62

b02 16 26 48 24 24

b06 47 116 440 83 111

b09 44 69 125 62 64

Figure 4.11. Characteristics of different HLDD manipulations

Figure 4.11 presents the characteristics [16]co-auth. of the different HLDD
representations introduced in Section 4.4. The columns min, red. and f.tree show
the number of nodes and edges in minimized, reduced and full tree HLDD model
representations, respectively. As it can be seen from the figure, around 45-80 % of
nodes were removed by the reduction step from the initial HLDD full tree. Further
40-60 % of nodes were eliminated by the minimization step.

Design Stimuli,
(vectors)

Statement coverage, (%) Branch coverage, (%)

red. HLDD min. HLDD VHDL red. HLDD min. HLDD VHDL

b01
14 86.0 100 93.8 74.2 84.6 88.9

23 96.5 100 100 90.3 100 100

b02
10 92.3 100 96.3 91.7 91.7 93.8

14 100 100 100 100 100 100

b06
11 80.2 100 85.5 79.3 89.2 87.5

52 98.3 100 100 98.2 100 100

b09
23 87.0 100 100 85.9 87.1 100

33 100 100 100 100 100 100

Figure 4.12. Comparison of code coverage analysis results

Figure 4.12 shows the comparison results [16]co-auth. of the base code coverage
metrics analysis based on reduced HLDDs, minimized HLDDs and a state-of-the-
art commercial HDL simulation tool from a major CAD vendor using the same set
of input stimuli for all three models. As it can be seen from the experiments, the
reduced HLDD model always achieves the best (i.e. most stringent results) of all
three. The minimized HLDD has the poorest outcome for statement coverage and
traditional HDL simulator is the weakest for measuring branch coverage in most
cases. However, as it has been noticed earlier, the comparison to HDL can be
slightly inaccurate due to coding style variations.

90

4.6 Chapter summary

This chapter has discussed the notion of verification coverage together with its
classification for simulation-based hardware verification. The main focus of the
chapter was structural coverage that is also known as code coverage. Several
practically used metrics of this coverage have been described and approaches for
their HLDD-based analysis have been presented. One of them is an approach for
condition coverage measurement that employs hierarchical decision diagrams
consisting of HLDDs and BDD-based representations of the conditional
statements. The chapter also discusses how the accuracy and performance of
HLDD-based coverage analysis depend of the HLDD model’s reduction
manipulations.

The HLDD-based structural verification coverage analysis has the following
main advantages:

• HLDD can be generated or manipulated further in accordance with its target
application for particular coverage metric analysis.

• All coverage metrics’ measurements and analysis are performed by the same
tool HLDDSimcoverage.

• HLDD-based analysis has a better performance than HDL-based one due to,
first, faster HLDD-based simulation and, second, lower percentage ratio for
the measurement overhead.

• The proposed HLDD-based coverage metrics are more stringent than HDL-
based ones and therefore allow discovering more corner cases and assessing
stimuli more precisely.

The HLDD-based verification coverage analysis approaches also consider
observability coverage [15]co-auth. that is not discussed in this thesis.

91

92

Chapter 5
CONCLUSIONS AND

FUTURE WORK

This thesis has presented several approaches addressing simulation-based
hardware verification issues. The approaches target assertion checking and
structural coverage measurement and exploit advantages of high-level decision
diagrams design representation model.

This chapter summarizes the thesis and points out open problems and
interesting directions for future work.

5.1 Conclusions

5.1.1 Contributions

The contribution of this thesis is twofold:

A new approach for HLDD-based assertions checking

• A temporal extension for the existing HLDD mode. The new extended model
is aimed at temporal properties expression and named Temporally extended
High-Level Decision Diagrams (THLDD). The extension supports a set of
commonly used temporal constructs that can be used to express a wide set of
possible complex temporal relationships.

• A methodology for direct conversion of assertions expressed in Property
Specification Language (PSL) to THLDD. The proposed hierarchical
approach introduces an extendable library of Primitive Property Graphs (PPG
Library). The components of this library serve as building blocks for a
complex THLDD property construction.

93

• An approach for HLDD-based assertion checking. A modification of the
existing HLDD-based simulator (HLDDsim) was proposed to support
THLDDs and assertion checking. This part was supported by explanations of
temporal issues and different varieties of THLDD properties.

The feasibility of the proposed approaches was proven by the presented
experimental results. A minor contribution includes discussions of verification
assertions reuse for manufacturing testing.

A new approach for HLDD-based coverage analysis

• An approach for mapping traditional verification structural coverage metrics
to HLDD-based coverage. In addition to the base code coverage metrics such
as statement and branch coverage, the approach considers also more
sophisticated ones, including FSM and data flow coverage metrics.

• An approach for condition coverage analysis. The approach employs a
hierarchical decision diagrams model consisting of HLDDs and BDD-based
representations of the conditional statements.

• An approach for HLDD model manipulations targeted to different aspects of
verification coverage analysis.

The feasibility of the proposed approaches was proven by the presented
experimental results.

5.1.2 Advantages

The main advantages of the proposed HLDD-based approaches for simulation-
based verification are outlined in the following:

 The proposed approaches rely on a homogeneous hardware verification flow
based on High-Level Decision Diagrams (HLDD) design representation
model. Once an appropriate input objects’ representation is created the
analysis is performed by the same tool HLDDSim.

 HLDD-based analysis has a better performance than HDL-based one due to,
first, faster HLDD-based simulation and, second, lower percentage ratio
overheads for both assertion checking the coverage measurement processes.

 THLDD model is capable to represent complex temporal properties and
supports a wide set of PSL language.

 HLDD can be generated or manipulated further in accordance with its target
application for particular coverage metric analysis.

94

5.2 Future work

In this section we outline a few issues which can be considered further in order
to improve and advance the approaches proposed in this thesis:

HLDD-based assertions checking:

• The presented approach, including its all three constituents (i.e. the model,
PSL to THLDD properties conversion methodology and assertion simulation-
based checking process), supports a wide set of PSL language. The supported
part is close to the PSL simple subset and it is a powerful instrument to
express the majority of practical temporal properties. However, in our future
work we would like to target the remaining PSL FL LTL operators and add a
support for SERE. The extension should necessarily include the support for
the strong version of the PSL operators. As soon as the HLDD-based design
representation finds its application in formal verification, the supported
language subset should support CTL and full LTL as opposed to currently
targeted PSL FL LTL simple subset.

• The proposed approach for HLDD-based assertion checking implies 2-step
process. First the DUV simulation trace for the given stimuli is calculated.
Second the assertions are evaluated based on the simulation trace. This
approach is convenient in the most of the cases, but in some situations (e.g.
very long simulations) the dynamic assertion checking may be preferable. Its
support may be addressed by HLDDsim modification.

• In this thesis we have drawn a number of ideas for verification assertions
reuse for manufacturing testing. The proposed ideas are scheduled for further
development and integration with the previously performed research in the
area of manufacturing testing.

HLDD-based coverage analysis:

• In this thesis we have briefly proposed a new approach for data flow coverage
metric analysis based on HLDD model. This metric seems very attractive in
terms of DUV’s structure representation accuracy. At the same time its
mapping to HLDD coverage has obvious convenience. A comprehensive
analysis of this metric application and detailed development of an appropriate
approach for its measurement are other attractive directions for future work.

• The proposed HLDD-based verification coverage analysis assumes structural
coverage (aka code coverage). This coverage type is widely applied in
practice, however it has several drawbacks. The latter ones are partially caused
by the extended concurrency of the state-of-the-art complex designs
functionality. Therefore, a comprehensive verification plan for such designs is
preferred to include functional coverage analysis. At present it is partially

95

supported in the HLDD-based verification flow by assertion coverage
analysis. However, as a longer term future work we see application of more
comprehensive coverage models for functional coverage HLDD-based
analysis.

In general:

• More comprehensive experimental results with additional benchmarks would
be beneficial. For this purpose we plan to try large complex real-life industrial
designs.

• Further development of the presented tools from HLDD-based verification
flow is relevant. Here the target is stand-alone reliable tool set that is
convenient to use.

• In this thesis we have considered simulation-base hardware verification. It is
widely used in practice and capable to handle large state-of-the-art designs.
However, a number of verification issues are more reasonable to address by
formal verification approach. We also consider to our research efforts towards
its support by HLDD-based verification flow.

Finally, the presented research has paved the way for future development of
HLDD model application in hardware functional verification. This thesis has
revealed not only advantages of this approach but also its potential for the future.

96

References

Books:

[1] William K. Lam, “Hardware Design Verification: simulation and Formal
Method-Based Approaches”, Prentice Hall, Pearson, 2005

[2] Bruce Wile, John C. Goss, Wolfgang Roesner, “Comprehensive Functional
Verification: The Complete Industry Cycle”, Elsevier, 2005

[3] Harry D. Foster, Adam C. Krolnik, “Creating Assertion-Based IP”, Springer,
2008

[4] Cindy Eisner, Dana Fisman, “A Practical Introduction to PSL”, Springer, 2006

[5] Andrew Piziali, “Functional Verification Coverage Measurement and
Analysis”, Springer, 2008

[6] Jun Yuan, Carl Pixley, Adnan Aziz, “Constraint-Based Verification”, Springer,
2006

[7] Douglas L. Perry, Harry D. Foster, “Applied Formal Verification”, McGraw-
Hill, 2005

[8] Katarzyna Radecka, Zeljko Zilic, “Verification by Error Modeling: Using
Testing Techniques in Hardware Verification”, Kluwer, 2003

[9] Jaan Raik, "Hierarchical Test Generation for Digital Circuits Represented by
Decision Diagrams", PhD thesis, TTU press, 2001

Co-authored papers:

[10] Maksim Jenihhin, Jaan Raik, Anton Chepurov, Raimund Ubar
“Temporally Extended High-Level Decision Diagrams for PSL Assertions
Simulation”, Proc. of 13th IEEE European Test Symposium (ETS’08),
Verbania, Italy, May 25-29, 2008, pp. 61-68

97

[11] Maksim Jenihhin, Jaan Raik, Anton Chepurov, Raimund Ubar, “PSL
Assertion Checking with Temporally Extended High-Level Decision
Diagrams”, Proc. of 9th IEEE Latin American Test Workshop (LATW’08),
Puebla, Mexico, February 17-20, 2008, pp. 49-54

[12] Maksim Jenihhin, Jaan Raik, Anton Chepurov, Raimund Ubar, “Assertion
Checking with PSL and High-Level Decision Diagrams”, Digest of the IEEE
8th Workshop on RTL and High Level Testing (WRTLT'07), Beijing, China
October 12-13, 2007, pp. 105-110

[13] Maksim Jenihhin, Jaan Raik, Anton Chepurov, Raimund Ubar, “PSL
Assertion Checking Using Temporally Extended High-Level Decision
Diagrams”, Journal of Electronic Testing: Theory and Applications (JETTA)
[submitted on September 30, 2008]

[14] Jaan Raik, Maksim Jenihhin, Anton Chepurov, Uljana Reinsalu, Raimund
Ubar, “APRICOT: a Framework for Teaching Digital Systems Verification”,
Proc. of 19th EAEEIE Annual Conference, IEEE, Tallinn, Estonia, June 29 -
July 2, 2008, pp. 1-6

[15] Jaan Raik, Uljana Reinsalu, Raimund Ubar, Maksim Jenihhin, Peeter
Ellervee, “Code Coverage Analysis using High-Level Decision Diagrams”,
Proc. of the 11th IEEE Workshop on Design and Diagnostics of Electronic
Systems (DDECS’08), April, 2008, pp. 201-206

[16] Karina Minakova, Uljana Reinsalu, Anton Chepurov, Jaan Raik, Maksim
Jenihhin, Raimund Ubar, Peeter Ellervee, “High-Level Decision Diagram
Manipulations for Code Coverage Analysis”, Proc of the 11th IEEE Biennial
Baltic Electronics Conference (BEC'08), Tallinn, Estonia, October 2008, pp.
207 - 210

[17] Maksim Jenihhin, Jaan Raik, Raimund Ubar, Anton Chepurov, “On
reusability of verification assertions for testing”, Proc. of 11th IEEE Biennial
Baltic Electronics Conference (BEC’08), Tallinn, Estonia, October 2008, pp.
151 - 154

[18] Maksim Jenihhin, “Assertion-based verification and testing with Decision
Diagrams”, PhD Forum (abstract + poster), Design, Automation and Test in
Europe (DATE’08), Munich, Germany, March 10-14, 2008

[19] Jaan Raik, Raimund Ubar, Taavi Viilukas, Maksim Jenihhin, “Mixed
Hierarchical-Functional Fault Models for Targeting Sequential Cores”, Journal
of Systems Architecture, 54(3-4), Elsevier, 2008, pp. 465 - 477

[20] Raimund Ubar, Sergei Devadze, Maksim Jenihhin, Jaan Raik, Gert Jervan,
Peeter Ellervee, “Hierarchical Calculation of Malicious Faults for Evaluating
the Fault-Tolerance”, Proc. of IEEE International Symposium on Electronic
Design, Test and Applications (DELTA’08), Hong Kong, January 23 - 25,
2008, pp. 222-227

98

[21] Maksim Jenihhin, Jaan Raik, Raimund Ubar, Witold Pleskacz, Michal
Rakowski, “Layout to Logic Defect Analysis for Hierarchical Test
Generation”, Proc. of 10th IEEE Workshop on Design and Diagnostics of
Electronic Circuits and Systems(DDECS’07), Kraków, Poland, April 11-13,
2007, pp. 35-40

[22] Witold Pleskacz, Maksim Jenihhin, Jaan Raik, Michal Rakowski, Raimund
Ubar, Wieslaw Kuzmicz, “Hierarchical Analysis of Short Defects between
Metal Lines in CMOS IC”, Proc. of the 11th Euromicro Conference on Digital
System Design (DSD) Architectures, Methods and Tools, Parma, Italy,
September 2008, pp 729 - 734

[23] Jenihhin, Maksim, “On reusability of verification assertions for testing”,
Proc. of the 3rd IKTDK Conference, Voore, Estonia, April 25-26, 2008, pp.
43-46

[24] Jenihhin, Maksim, “PSL Assertions based Verification with HLDD Tools”,
Proc. of the 2nd IKTDK Conference, Viinistu, Estonia, May 11-12, 2007, pp.
17 - 20

[25] Jenihhin, Maksim, “Case Study: Defect-Oriented Testing of a
Combinational Circuit”, Proc. of the 1st IKTDK Conference, Janeda, Estonia,
May 12-13, 2006, pp. 78 - 81

[26] Knut Hermann, Jaan Raik, Maksim Jenihhin “TTBist: a DfT Tool for
Enhancing Functional Test for SoC”, Proc. of the Baltic Electronics
Conference, Laulasmaa, Estonia, 2006, pp. 191-194

[27] Jaan Raik, Maksim Jenihhin, Rain Adelbert, “Sequential Circuits BIST
Synthesis from Signal Specifications”, Proc. of IEEE Norchip Conference,
Oulu, Finland, November 21-22, 2005, pp.196 - 199.

[28] Gert Jervan, Petru Eles, Zebo Peng, Raimund Ubar, Maksim Jenihhin
“Test Time Minimization for Hybrid BIST of Core-Based Systems”, Journal of
Computer Science and Technology, 21(6), 2006, pp. 907 - 912

[29] Raimund Ubar, Maksim Jenihhin, Gert Jervan, Zebo Peng “Hybrid BIST
Optimization for Core-based Systems with Test Pattern Broadcasting”, Proc.
of the IEEE International Workshop on Electronic Design, Test and
Applications (DELTA 2004), Perth, Australia, January 28-30, 2004, pp. 3 - 8.

[30] Raimund Ubar, Maksim Jenihhin, Gert Jervan, Zebo Peng “An Iterative
Approach to Test Time Minimization for Parallel Hybrid BIST Architecture”
Proc. of 5th IEEE Latin-American Test Workshop (LATW’04), Cartagena,
Colombia, March 8-10, 2004, pp. 98 - 103.

[31] Gert Jervan, Petru Eles, Zebo Peng, Raimund Ubar, Maksim Jenihhin
“Hybrid BIST time minimization for core-based systems with STUMPS
architecture”, Proc. of the 18th IEEE International Symposium on Defect and

99

[32] Gert Jervan, Petru Eles, Zebo Peng, Raimund Ubar, Maksim Jenihhin
“Test Time Minimization for Hybrid BIST of Core-Based Systems”, Proc. of
the 12th IEEE Asian Test Symposium (ATS03), Xian, China, November 17-19,
2003, pp. 318 - 323

[33] Raimund Ubar, Maksim Jenihhin, Gert Jervan, Zebo Peng “Test Time
Minimization for Hybrid BIST with Test Pattern Broadcasting”, Proc. of the
21st NORCHIP Conference, Riga, Latvia, November 10-11, 2003, pp. 112 -
116

[34] Maksim Jenihhin, “Test Time Minimization for Parallel Hybrid BIST
Architectures”, Master thesis, Tallinn University of Technology, Tallinn, June
2004

[35] Maksim Jenihhin, “Test Time Minimization for Hybrid BIST of Systems-
on-Chip”, Bachelor thesis, Tallinn University of Technology, Linköping, June
2003

Papers:

[36] R. Ubar, “Test Generation for Digital Circuits Using Alternative Graphs”,
Proc. of Tallinn Technical University, Estonia, No. 409, , 1976, pp. 75-81 (in
 Russian)

[37] S. B. Akers, “Binary Decision Diagrams”, IEEE Trans. on Computers,
Vol. 27, 1978, pp.509-516

[38] R. Ubar, “Alternative Graphs and Test Generation for Digital Systems”,
Proc. of 2nd Conf. On Fault Tolerant Systems and Diagnostics, Brno,
Czechoslovakia, 1979, pp. 177-184

[39] R. Ubar, “Test Pattern Generation for Digital Systems on the Vector
Alternative Graph model”, Proc. of 13-th International Symposium on Fault
Tolerant Computing, Milano, Italy, 1983, pp. 347-351

[40] R. E. Bryant, “Graph-based algorithms for Boolean function
manipulation”, IEEE Trans. on Computers, Vol. C-35, No. 8, August 1986, pp.
677-691

[41] R. Ubar, "Test Synthesis with Alternative Graphs", IEEE Design & Test of
Computers, Spring 1996, pp. 48-57

[42] J. Raik, R. Ubar, "Fast Test Pattern Generation for Sequential Circuits
Using Decision Diagram Representations.", JETTA, Kluwer, Vol. 16, No. 3,
June, 2000, pp. 213-226

[43] J.Raik, R. Ubar, T. Viilukas, “High-Level Decision Diagram based Fault
Models for Targeting FSMs”, Proc. of the 9th IEEE Euromicro Conference on

100

[44] R. Ubar, A. Morawiec, J. Raik, “Cycle-based Simulation with Decision
Diagrams”, Proc. of the DATE Conference, Munich, Germany, March 9-12,
1999, pp. 454-458

[45] R. Ubar, J. Raik, A. Morawiec, “Back-tracing and Event-driven
Techniques in High-level Simulation with Decision Diagrams”, Proc. of
ISCAS 2000, Vol. 1, pp. 208-211

[46] J. Raik, and R. Ubar. “Sequential Circuit Test Generation Using Decision
Diagram Models,” Proc. of the DATE Conference, Munich, Germany, March
9-12, 1999, pp. 736–740

[47] J. Raik, R. Ubar, "DECIDER: A System for Hierarchical Test Pattern
Generation", East-West Design & Test Conference - EWDTC'03, Scientific-
Technical Journal Radioelectronics and Informatics, No. 3 (24), July-
September, 2003, pp. 40-45

[48] H.-T. Liaw, C.-S. Lin, “On the OBDD-representation of general Boolean
functions”, IEEE Trans. on Computers, Vol. C-41, No. 6, June 1992, pp. 61-
664

[49] E. M. Clarke, K. L. McMillan, X. Zhao, M. Fujita, J. Yang, “Spectral
transforms for large Boolean functions with applications to technology
mapping”, Proc. of the 30th ACM/IEEE DAC, June 1993, pp. 54-60

[50] Y.-T. Lai, M. Pedram, S. B. Vrudhula, “FGILP: An integer linear program
solver based on function graphs”, Proc. of the IEEE/ACM ICCAD, November
1993, pp. 685-689

[51] R. E. Bryant, Y.-A. Chen, “Verification of arithmetic functions with binary
moment diagrams”, Proc. 32nd ACM/IEEE DAC, June 1995

[52] A. Srinivasan, T. Kam, S. Malik, R. Brayton, “Algorithms for discrete
function manipulation”, Proc. IEEE/ACM ICCAD, November 1990, pp. 92-95

[53] S. Minato, “Zero-suppressed BDDs for set manipulation in combinatorial
problems”, Proc. of the 30th ACM/IEEE DAC, June 1993, pp. 272-277

[54] U. Kuebschull, E. Schubert, W. Rosenstiel, “Multilevel logic synthesis
based on functional decision diagrams”, Proc of the IEEE EDAC, March 1992,
pp. 43-47

[55] R. Drechsler, A. Sarabi, M. Theobald, B. Becker, M. Perkowski, “Efficient
representation and manipulation of switching functions based on ordered
Kronecker functional decision diagrams”, Proc. of the 31st ACM/IEEE DAC,
June 1994, pp. 415-419

101

[56] R. Drechsler, B. Becker, S. Ruppertz, „K*BMDs: a new data structure for
verification“, Proc. of European Design & Test Conf., 1996, pp. 2-8

[57] V. Chayakul, D. D. Gajski, L. Ramachandran, “High-Level
Transformations for Minimizing Syntactic Variances”, Proc. of ACM/IEEE
DAC, June 1993, pp. 413-418

[58] M. Aarna, E. Ivask, A. Jutman, E. Orasson, J. Raik, R. Ubar, V.
Vislogubov, H.-D. Wuttke. “Turbo Tester - Diagnostic Package for Research
and Training”, East-West Design & Test Conference - EWDTC'03, Scientific-
Technical Journal Radioelectronics and Informatics, No. 3 (24), July -
September 2003, pp. 69-73

[59] Anton Chepurov, “Interface between VHDL and High-level Decision
Diagram model descriptions”, Master thesis, TUT, Tallinn, 2008

[60] S. Ben-David, D. Fisman, S. Ruah, “The safety simple subset”, Proc. of
IBM Verification Conference, 2005 (available at [96])

[61] IEC 62531 (Edition 1.0, 2007-11), “Standard for Property Specification
Language (PSL)”, International Electrotechnical Commission, 2007 (available
at [97])

[62] A. Pnueli, “The temporal logics of programs”, Proc. of the Annual IEEE
Symposium on Foundations of Computer Science (FOCS‘77), 1977, pp. 46-57

[63] E.M. Clarke, E.A. Emerson, “Design and synthesis synchronization
skeletons using branching time temporal logic”, Proc. of Logic of Programs
Workshop, volume 131 of LNCS, Springer, 1981, pp. 52-71

[64] P. Yeung, K. Larsen, “Practical Assertion-based Formal Verification for
SoC Designs”, Proc. of International Symposium on System-on-Chip 2005, 15-
17 Nov. 2005 pp. 58-61

[65] Y. Abarbanel et al., “FoCs: Automatic generation of simulation checkers
from formal specifications,” In Computer Aided Verification, Chicago, USA,
2000, pp. 538-542

[66] Y. Oddos, K. Morin-Allory, D. Borrione, “Prototyping Generators for on-
line test vector generation based on PSL properties”, Proc. of IEEE Design and
Diagnostics of Electronic Circuits and Systems (DDECS '07), 11-13 April
2007, pp. 1 - 6

[67] S. Gheorghita and R. Grigore, “Constructing Checkers from PSL
Properties”, Proc. of 15th International Conference on Control Systems and
Computer Science (CSCS15), vol. 2, 2005, pp. 757–762

[68] D. Bustan, D. Fisman, J. Havlicek, “Automata construction for PSL”, The
Weizmann Institute of Science, Technical Report MCS05-04, May 2005

102

[69] D. Pidan, S. Keidar-Barner, M. Moulin, D. Fisman, “Optimized algorithms
for dynamic verification”, Technical Report Delivery 3.1/1, PROSYD [101],
March 2005

[70] M. Straka, Z. Kotasek, J. Winter, “Digital Systems Architectures Based on
On-line Checkers”, Proc. of the 11th Euromicro Conference on Digital System
Design (DSD) Architectures, Methods and Tools, Parma, Italy, September
2008, pp 81-87

[71] M. Boulé and Z. Zilic, “Efficient Automata-Based Assertion-Checker
Synthesis of PSL Properties”, Proc. of the 2006 IEEE International High Level
Design Validation and Test Workshop (HLDVT’06), 2006, pp. 69-76

[72] M. Boule, J.-S. Chenard, Z. Zilic, “Assertion Checkers in Verification,
Silicon Debug and In-Field Diagnosis”, Proc. of 8th International Symposium
on Quality Electronic Design (ISQED '07), 26-28 March, 2007, pp. 613-620

[73] K. Morin-Allory, D. Borrione, “Proven correct monitors from PSL
specifications”, Proc. of Design, Automation and Test in Europe (DATE’06) ,
2006, pp 1-6

[74] M. Riazati, S. Mohammadi, A. Afzali-Kusha, Z. Navabi, “Improved
Assertion Lifetime via Assertion-Based Testing Methodology”, Proc. of
International Conference on Microelectronics (ICM '06), 16-19 December
2006, pp. 48 - 51

[75] M. Kakoee, M. Riazati, S. Mohammadi, “Enhancing the Testability of
RTL Designs Using Efficiently Synthesized Assertions”, Proc. of 9th
International Symposium on Quality Electronic Design (ISQED 2008), 17-19
March 2008, pp. 230 - 235

[76] F. Corno, M.S. Reorda, G. Squillero, “RT-level ITC'99 benchmarks and
first ATPG results”, Journal, Design & Test of Computers, IEEE, Volume 17,
Issue 3, July - September 2000, pp. 44 - 53

[77] Mentor Graphics Corporation, “QuestaSim User’s Manual”, version 6.1d,
Published on January 16, 2006

[78] Rainer Findenig, “Behavioral Synthesis of PSL Assertions”, Diploma
Thesis, Upper Austrian University of Applied Sciences, Austria, June 2007

[79] I. Pomeranz, S.M. Reddy, “On Generating Tests that Avoid the Detection
of Redundant Faults in Synchronous Sequential Circuits with Full Scan”, IEEE
Transactions on Computers, Volume 55, Issue 4, April 2006, pp 491 – 495

[80] A. Schubert, W. Anheier, “On random pattern testability of cryptographic
VLSI cores”, Proc. of IEEE European Test Workshop, May 1999, pp. 15–20

[81] M. Lange, T. Boer, “Effective Functional Verification Methodologies for
DO-254 Level A/B and Other Safety-Critical Devices”, White paper, rev. 1.1,
Mentor Graphics Corp., 2007

103

[82] RTCA DO-178B / EUROCAE ED-l2B, “Software Considerations in
Airborne Systems and Equipment Certification”, RTCA Inc., Washington,
December 1992

[83] ANSI/IEEE Std 1008-1987, “IEEE Standard for Software Unit Testing”,
IEEE, Reaffirmed, December 2, 1993

[84] U.S. Food and Drug Administration, “General Principles of Software
Validation”, Final Guidance for Industry and FDA Staff, renewed at January
11, 2002

[85] RTCA DO-254 / EUROCAE ED-80 “Design Assurance Guidance for
Airborne Electronic Hardware”, RTCA Inc., Washington, April, 2000

[86] Q. Zhang, I. Harris, “A data flow fault coverage metric for validation of
behavioral HDL descriptions”, Proc. of IEEE/ACM International Conference
on Computer Aided Design (ICCAD’00), 5-9 November, 2000 pp. 369 - 372

[87] J. L. Lions, the chairman of the board “ARIANE 5 Flight 501 Failure”,
Report by the Inquiry Board, Paris, July 19, 1996

[88] Intel Corp., “FDIV Replacement Program”, White paper, November 30,
1994

Web resources:
(All listed URLs are valid as for the state of October 2008.)

[89] EU’s 6th Framework Programme research project VERTIGO web page,
[http://www.vertigo-project.eu]

[90] Turbo Tester web page,
[http://www.pld.ttu.ee/tt/]

[91] Accellera, “Property Specification Language Reference Manual”, v1.1,
June 9, 2004,
[http://www.eda.org/vfv/docs/PSL-v1.1.pdf]

[92] IEEE Std 1850-2005, “IEEE standard for Property Specification Language
(PSL),” 2005, (the .pdf file is available at [93])
[http://www.eda.org/ieee-1850/]

[93] IEEE Std 1850-2005 at “IEEE Xplore” ,
[http://ieeexplore.ieee.org/iel5/10222/32588/01524461.pdf]

[94] PSL/Sugar Consortium webpage
[http://www.pslsugar.org/]

[95] IBM AlphaWorks, “FoCs Property Checkers Generator ver. 2.04”,
[http://www.alphaworks.ibm.com/tech/FoCs/]

[96] IBM, “The safety simple subset”, web resource,
[http://www.haifa.ibm.com/Workshops/verification2005/papers/verification/sss.pdf]

104

[97] “IEEE Xplore”, database web page,
[http://ieeexplore.ieee.org]

[98] IBM, “General Description Language”, GDL flavor of PSL, a
complementary document to the IEEE Std 1850-2005,
[http://www.haifa.il.ibm.com/projects/verification/sugar/gdl.ps]

[99] Project “Sugar”, IBM Research,
[http://www.haifa.ibm.com/projects/verification/sugar/]

[100] PSL-based Verification Tools, IBM Research,
[http://www.haifa.ibm.com/projects/verification/sugar/tools.html/]

[101] EU’s 6th Framework Programme research project PROCYD web page,
[http://www.prosyd.org/]

[102] ITRS, “International Technology Roadmap for Semiconductors report”,
2007 Edition, Design section,
[http://www.itrs.net/]

[103] HLSynth92 benchmarks family webpage, Collaborative Benchmarking and
Experimental Algorithmics Lab,
[http://www.cbl.ncsu.edu:16080/benchmarks/HLSynth92/]

[104] ITC'99 Benchmarks webpage, CAD Group, Politecnico di Torino,
[http://www.cad.polito.it/tools/itc99.html]

[105] ITC'99 Benchmarks webpage, Scott Davidson, Sun Microsystems, Inc.,
[http://www.cerc.utexas.edu/itc99-benchmarks/bench.html]

[106] Web-articles: “Code Coverage Analysis” and “Minimum Acceptable Code
Coverage”, Bullseye Testing Technology,
[http://www.bullseye.com/]

105

106

Appendix A
PPG LIBRARY

This appendix describes the extendable Library of Primitive Property Graphs
(PPGs) and is a part one of the main contributions of this thesis. The section
consists of the following parts. First, the format of ppg.lib file used for THLDD
properties Constructor (see Section 3.3.3) is given. Then a set of supported
operators is provided, where each operator is presented by its

a) PSL notation based on PSL Standard IEEE 1850 [92]
b) THLDD graph in AGM format (refer to Appendix B)
c) THLDD graph graphic portrayal
d) the operator related notes
The supported set of PSL operators was discussed in Sections 2.2 and 3.3.

Loosely speaking, the library mostly includes PSL FL operators of LTL style (vs.
SERE style). It conforms with the PSL simple subset rules and supports weak
versions (vs. strong) of the operators. Several FL operators such as abort and
next_event_e/next_event_a are not included in this version. PSL operators’
precedence together with their classification was presented in Figure 2.17 (Clause
2.2.2.1). The PPG Library is constantly developing which leads to the extension of
the supported operators set. Many PSL operators have an equivalent expression by
means of other operators.

A.1 Format of the ppg.lib file

There are 2 types for operand_type available in ppg.lib file format.

• BOP – Boolean OPerand, may consist of
a) Boolean type signal (primary I/O or internal)
b) Boolean expression, processed by HLDD constructor as VHDL

Boolean expression (e.g. comparison operators “<”, “>=”, etc.)
c) Boolean operator, processed THLDD Constructor (e.g. logical and)

107

• TOP – Temporal OPerand is a complex operand that contains a temporal
operator (also includes BOP)

Figure A.1.1 shows the template for the ppg.lib file.

; PPG Library file

; Version: yy.mm.dd
; Notes: plain text with notes about the current version

operators
{

List of all described in this file operators together with operands types
The operators appear in the precedence order.

}

operator_name(operand_type){
 operator graph in the AGM format
}

Figure A.1.1 ppg.lib file template

The THLDD graphs representing PSL operators have the same precedence as
the original operators. The precedence is specified by the IEEE-1850 [92]. The
THLDD Constructor obtains this information related to the supported operators
from the ppg.lib file’s operators section.

Figure A.1.2 shows an example of a truncated ppg.lib file with two PPGs.

108

; PPG Library file
; Version: 08.07.03
; Notes: This is a truncated version with 2 PPGs

operators
{
 BOP -> TOP;
 next[n] TOP;
}

BOP -> TOP {
 STAT# 5 Nods, 6 Vars, 1 Grps, 2 Inps, 1 Outs, 3 Cons

 VAR# 0: (i____) "BOP" <1:0>
 VAR# 1: (i____) "TOP" <1:0>

 ;terminal node constants
 VAR# 2: (c____) "FAIL" <1:0> VAL = 0
 VAR# 3: (c____) "PASS" <1:0> VAL = 1
 VAR# 4: (c____) "CHECKING" <1:0> VAL = 2

 ;property PPG
 VAR# 5: (o____) "PROPERTY" <1:0>
 GRP# 0: BEG = 0, LEN = 5 -----
 0 0: (n___) (0=>4 1=>1 2=>4) V = 0 "BOP" <1:0>
 1 1: (n___) (0=>2 1=>3 2=>4) V = 1 "TOP" <1:0>
 2 2: (____) (0 0) V = 2 "FAIL" <1:0>
 3 3: (____) (0 0) V = 3 "PASS" <1:0>
 4 4: (____) (0 0) V = 4 "CHECKING" <1:0>
}

next[k] TOP {
 STAT# 4 Nods, 5 Vars, 1 Grps, 1 Inps, 1 Outs, 3 Cons

 VAR# 0: (i____) "TOP" <1:0>

 ;terminal node constants
 VAR# 1: (c____) "FAIL" <1:0> VAL = 0
 VAR# 2: (c____) "PASS" <1:0> VAL = 1
 VAR# 3: (c____) "CHECKING" <1:0> VAL = 2

 ;property PPG
 VAR# 4: (o____) "PROPERTY" <1:0>
 GRP# 0: BEG = 0, LEN = 4 -----
 0 0: (n___) (0=>1 1=>2 2=>3) V = 0 "TOP" <1:0> @k
 1 1: (____) (0 0) V = 1 "FAIL" <1:0>
 2 2: (____) (0 0) V = 2 "PASS" <1:0>
 3 3: (____) (0 0) V = 3 "CHECKING" <1:0>
}

Figure A.1.2. An example of ppg.lib file

109

A.2 Set of the supported operators

A.2.1 always

a) PSL notation: FL_Property ::= always FL_Property
Example: P: always(TOP);
Explanation:
An “always” property holds in the current cycle of a given path iff the FL
Property that is the operand holds at the current cycle and all subsequent
cycles.

b) THLDD graph in AGM format

always TOP {
 STAT# 4 Nods, 5 Vars, 1 Grps, 1 Inps, 1 Outs, 3 Cons

 VAR# 0: (i____) "TOP" <1:0>

 ;terminal node constants
 VAR# 1: (c____) "FAIL" <1:0> VAL = 0
 VAR# 2: (c____) "PASS" <1:0> VAL = 1
 VAR# 3: (c____) "CHECKING" <1:0> VAL = 2

 ;property PPG
 VAR# 4: (o____) "PROPERTY" <1:0>
 GRP# 0: BEG = 0, LEN = 4 -----
 0 0: (n___) (0=>1 1=>2 2=>3) V = 0 "TOP" <1:0> @[0 to END]_a
 1 1: (____) (0 0) V = 1 "FAIL" <1:0>
 2 2: (____) (0 0) V = 2 "PASS" <1:0>
 3 3: (____) (0 0) V = 3 "CHECKING" <1:0>
}

c) THLDD graph portrayal:

d) Notes:

None.

 P "always(TOP)"
[tmin = 0; tmax = tend]

FAIL PASS

TOP

CHK.

110

A.2.2 never

a) PSL notation: FL_Property ::= never FL_Property
Example: P: never(BOP);
Explanation:
A “never” property holds in the current cycle of a given path iff the FL
Property that is the operand does not hold at the current cycle and does not
hold at any future cycle.

b) THLDD graph in AGM format

c) THLDD graph portrayal:

d) Notes:

The operand of a “never” operator is BOP because of the PSL simple subset
requirements. It is allowed to be a Sequence, but Sequences are not currently
supported. According to good practice of PSL application (refer to [4]), logical
implication “->” within an operand of “never” is rarely used. Normally it
should be substituted by “and”, or a combination of “always” and negation
“not” operators should be used instead of “never”.

 P "never(BOP)"
[tmin = 0; tmax = tend]

FAIL PASSCHK.

BOP

never BOP {
 STAT# 4 Nods, 5 Vars, 1 Grps, 1 Inps, 1 Outs, 3 Cons

 VAR# 0: (i____) "BOP" <1:0>

 ;terminal node constants
 VAR# 1: (c____) "FAIL" <1:0> VAL = 0
 VAR# 2: (c____) "PASS" <1:0> VAL = 1
 VAR# 3: (c____) "CHECKING" <1:0> VAL = 2

 ;property PPG
 VAR# 4: (o____) "PROPERTY" <1:0>
 GRP# 0: BEG = 0, LEN = 4 -----
 0 0: (n___) (0=>2 1=>1 2=>3) V = 0 "BOP" <1:0> @[0 to END]_a
 1 1: (____) (0 0) V = 1 "FAIL" <1:0>
 2 2: (____) (0 0) V = 2 "PASS" <1:0>
 3 3: (____) (0 0) V = 3 "CHECKING" <1:0>
}

111

A.2.3 Logical implication

a) PSL notation: FL_Property ::= FL_Property -> FL_Property
Example: P: (BOP -> TOP);
Explanation:
A logical implication property holds in a given cycle of a given path iff:
- The FL Property that is the left operand does not hold at the given cycle, or
- The FL Property that is the right operand does hold at the given cycle.

b) THLDD graph in AGM format

c) THLDD graph portrayal:

d) Notes:

The left-hand side operand of a logical implication is BOP because of the PSL
simple subset requirements.

 P "(BOP) -> (TOP)"

FAIL PASSCHK.

BOP TOP

BOP -> TOP {
 STAT# 5 Nods, 6 Vars, 1 Grps, 2 Inps, 1 Outs, 3 Cons

 VAR# 0: (i____) "BOP" <1:0>
 VAR# 1: (i____) "TOP" <1:0>

 ;terminal node constants
 VAR# 2: (c____) "FAIL" <1:0> VAL = 0
 VAR# 3: (c____) "PASS" <1:0> VAL = 1
 VAR# 4: (c____) "CHECKING" <1:0> VAL = 2

 ;property PPG
 VAR# 5: (o____) "PROPERTY" <1:0>
 GRP# 0: BEG = 0, LEN = 5 -----
 0 0: (n___) (0=>4 1=>1 2=>4) V = 0 "BOP" <1:0>
 1 1: (n___) (0=>2 1=>3 2=>4) V = 1 "TOP" <1:0>
 2 2: (____) (0 0) V = 2 "FAIL" <1:0>
 3 3: (____) (0 0) V = 3 "PASS" <1:0>
 4 4: (____) (0 0) V = 4 "CHECKING" <1:0>
}

112

A.2.4 Logical iff

a) PSL notation: FL_Property ::= FL_Property <-> FL_Property
Example: P: (BOP1 <-> BOP2);
Explanation:
A logical “iff” property holds in a given cycle of a given path iff:
- Both FL properties that are operands hold at the given cycle, or
- Neither of the FL properties that are operands holds at the given cycle.

b) THLDD graph in AGM format

c) THLDD graph portrayal:

d) Notes:

Both operands of a logical “iff” are BOP because of the PSL simple subset
requirements.

 P "(BOP1) <-> (BOP2)"

FAIL PASSCHK.

BOP1 BOP2BOP2

BOP1 <-> BOP2 {
 STAT# 6 Nods, 6 Vars, 1 Grps, 2 Inps, 1 Outs, 3 Cons

 VAR# 0: (i____) "BOP1" <1:0>
 VAR# 1: (i____) "BOP2" <1:0>

 ;terminal node constants
 VAR# 2: (c____) "FAIL" <1:0> VAL = 0
 VAR# 3: (c____) "PASS" <1:0> VAL = 1
 VAR# 4: (c____) "CHECKING" <1:0> VAL = 2

 ;property PPG
 VAR# 5: (o____) "PROPERTY" <1:0>
 GRP# 0: BEG = 0, LEN = 6 -----
 0 0: (n___) (0=>1 1=>2 2=>5) V = 0 "BOP1" <1:0>
 1 1: (n___) (0=>4 1=>3 2=>5) V = 1 "BOP2" <1:0>
 2 2: (n___) (0=>3 1=>4 2=>5) V = 1 "BOP2" <1:0>
 3 3: (____) (0 0) V = 2 "FAIL" <1:0>
 4 4: (____) (0 0) V = 3 "PASS" <1:0>
 5 5: (____) (0 0) V = 4 "CHECKING" <1:0>
}

113

A.2.5 Logical not

a) PSL notation: FL_Property ::= NOT_OP FL_Property
Example: P: not(BOP);
Explanation:
A logical “not” property holds in a given cycle of a given path iff the FL
property that is the operand does not hold at the given cycle.

b) THLDD graph in AGM format

c) THLDD graph portrayal:

d) Notes:

The operand of a logical “not” operator is BOP because of the PSL simple
subset requirements.

 P "not(BOP)"

FAIL PASSCHK.

BOP

not BOP {
 STAT# 4 Nods, 5 Vars, 1 Grps, 1 Inps, 1 Outs, 3 Cons

 VAR# 0: (i____) "BOP" <1:0>

 ;terminal node constants
 VAR# 1: (c____) "FAIL" <1:0> VAL = 0
 VAR# 2: (c____) "PASS" <1:0> VAL = 1
 VAR# 3: (c____) "CHECKING" <1:0> VAL = 2

 ;property PPG
 VAR# 4: (o____) "PROPERTY" <1:0>
 GRP# 0: BEG = 0, LEN = 4 -----
 0 0: (n___) (0=>2 1=>1 2=>3) V = 0 "BOP" <1:0>
 1 1: (____) (0 0) V = 1 "FAIL" <1:0>
 2 2: (____) (0 0) V = 2 "PASS" <1:0>
 3 3: (____) (0 0) V = 3 "CHECKING" <1:0>
}

114

A.2.6 Logical and

a) PSL notation: FL_Property ::= FL_Property AND_OP FL_Property
Example: P: (TOP1 and TOP2);
Explanation:
A logical “and” property holds in a given cycle of a given path iff the FL
properties that are operands both hold at the given cycle.

b) THLDD graph in AGM format

c) THLDD graph portrayal:

d) Notes:

None.

 P "(TOP1) and (TOP2)"

FAIL PASSCHK.

TOP1 TOP2

TOP1 and TOP2 {
 STAT# 5 Nods, 6 Vars, 1 Grps, 2 Inps, 1 Outs, 3 Cons

 VAR# 0: (i____) "TOP1" <1:0>
 VAR# 1: (i____) "TOP2" <1:0>

 ;terminal node constants
 VAR# 2: (c____) "FAIL" <1:0> VAL = 0
 VAR# 3: (c____) "PASS" <1:0> VAL = 1
 VAR# 4: (c____) "CHECKING" <1:0> VAL = 2

 ;property PPG
 VAR# 5: (o____) "PROPERTY" <1:0>
 GRP# 0: BEG = 0, LEN = 5 -----
 0 0: (n___) (0=>2 1=>1 2=>4) V = 0 "TOP1" <1:0>
 1 1: (n___) (0=>2 1=>3 2=>4) V = 1 "TOP2" <1:0>
 2 2: (____) (0 0) V = 2 "FAIL" <1:0>
 3 3: (____) (0 0) V = 3 "PASS" <1:0>
 4 4: (____) (0 0) V = 4 "CHECKING" <1:0>
}

115

A.2.7 Logical or

a) PSL notation: FL_Property ::= FL_Property OR_OP FL_Property
Example: P: (BOP or TOP);
Explanation:
A logical “or” property holds in a given cycle of a given path iff at least one of
the FL properties holds at the given cycle.

b) THLDD graph in AGM format

c) THLDD graph portrayal:

d) Notes:

One of the operands of a logical “or” is BOP because of the PSL simple subset
requirements.

 P "(BOP) or (TOP)"

FAIL PASSCHK.

BOP TOP

BOP or TOP {
 STAT# 5 Nods, 6 Vars, 1 Grps, 2 Inps, 1 Outs, 3 Cons

 VAR# 0: (i____) "BOP" <1:0>
 VAR# 1: (i____) "TOP" <1:0>

 ;terminal node constants
 VAR# 2: (c____) "FAIL" <1:0> VAL = 0
 VAR# 3: (c____) "PASS" <1:0> VAL = 1
 VAR# 4: (c____) "CHECKING" <1:0> VAL = 2

 ;property PPG
 VAR# 5: (o____) "PROPERTY" <1:0>
 GRP# 0: BEG = 0, LEN = 5 -----
 0 0: (n___) (0=>1 1=>3 2=>4) V = 0 "BOP" <1:0>
 1 1: (n___) (0=>2 1=>3 2=>4) V = 1 "TOP" <1:0>
 2 2: (____) (0 0) V = 2 "FAIL" <1:0>
 3 3: (____) (0 0) V = 3 "PASS" <1:0>
 4 4: (____) (0 0) V = 4 "CHECKING" <1:0>
}}

116

A.2.8 next

a) PSL notation: FL_Property ::= next[Number](FL_Property)
Example: P: next[k](TOP);
Explanation:
A next[n] property holds in a given cycle of a given path iff:
- There is not an kth next cycle or
- The FL property that is the operand holds at the kth next cycle

b) THLDD graph in AGM format

next[k] TOP {
 STAT# 4 Nods, 5 Vars, 1 Grps, 1 Inps, 1 Outs, 3 Cons

 VAR# 0: (i____) "TOP" <1:0>

 ;terminal node constants
 VAR# 1: (c____) "FAIL" <1:0> VAL = 0
 VAR# 2: (c____) "PASS" <1:0> VAL = 1
 VAR# 3: (c____) "CHECKING" <1:0> VAL = 2

 ;property PPG
 VAR# 4: (o____) "PROPERTY" <1:0>
 GRP# 0: BEG = 0, LEN = 4 -----
 0 0: (n___) (0=>1 1=>2 2=>3) V = 0 "TOP" <1:0> @k
 1 1: (____) (0 0) V = 1 "FAIL" <1:0>
 2 2: (____) (0 0) V = 2 "PASS" <1:0>
 3 3: (____) (0 0) V = 3 "CHECKING" <1:0>
}

c) THLDD graph portrayal:

d) Notes:

- The number “k” should be positive integer and statically computable. However, “k” is
allowed to take value END (see Subsection 3.2.3) in frames of this approach. Value ‘0’
for “k” is generally allowed, “next[0](TOP)” means TOP holds at the current cycle.
- Property “next(TOP)” is equivalent to the property “next[1](TOP)”.
- Property “next[k](TOP)” can also be expressed as “next_a[k to k](TOP)”; for BOP
“next[k](BOP)” is also expressible by “next_e[k to k](BOP)”.

 P "next[k](TOP)"
[Δt = k]

FAIL PASS

TOP

CHK.

117

A.2.9 next_a

a) PSL notation: FL_Property ::= next_a[finite_Range](FL_Property)
Example: P: next_a[j to k](TOP);
Explanation:
A next_a[j to k] property holds in the current cycle of a given path iff the FL
property that is the operand holds at all cycles between the jth and kth next cycle,
inclusive. (If not all those cycles exist, then the FL Property that is the operand
holds on as many as do exist.)

b) THLDD graph in AGM format

next_a[j to k] TOP {
 STAT# 4 Nods, 5 Vars, 1 Grps, 1 Inps, 1 Outs, 3 Cons

 VAR# 0: (i____) "TOP" <1:0>

 ;terminal node constants
 VAR# 1: (c____) "FAIL" <1:0> VAL = 0
 VAR# 2: (c____) "PASS" <1:0> VAL = 1
 VAR# 3: (c____) "CHECKING" <1:0> VAL = 2

 ;property PPG
 VAR# 4: (o____) "PROPERTY" <1:0>
 GRP# 0: BEG = 0, LEN = 4 -----
 0 0: (n___) (0=>1 1=>2 2=>3) V = 0 "TOP" <1:0> @[j to k]_a
 1 1: (____) (0 0) V = 1 "FAIL" <1:0>
 2 2: (____) (0 0) V = 2 "PASS" <1:0>
 3 3: (____) (0 0) V = 3 "CHECKING" <1:0>
}

c) THLDD graph portrayal:

d) Notes:

- Both bounds of the range “j” and “k” must be positive integers and statically
computable, where “j”<= “k”.
- The value of number “j” is allowed to be ‘0’. In this case the property TOP that is
operand of “next_a[0 to k](TOP)” holds starting from the current cycle and for the
next “k” cycles.
- The right bound “k” is allowed to take value END (see Subsection 3.2.3) in frames of
this approach.

 P "next_a[j to k](TOP)"
[Δt = { j,...,k }]∀

FAIL PASS

TOP

CHK.

118

A.2.10 next_e

a) PSL notation: FL_Property ::= next_e[finite_Range](FL_Property)
Example: P: next_e[j to k](BOP);
Explanation:
A next_e[j to k] property holds in the current cycle of a given path iff:
- There are less than “j” next cycles following the current cycle, or
- There is some cycle between the ith and jth next cycle, inclusive, where the FL
property that is the operand holds.

b) THLDD graph in AGM format

next_e[j to k] BOP {
 STAT# 4 Nods, 5 Vars, 1 Grps, 1 Inps, 1 Outs, 3 Cons

 VAR# 0: (i____) "BOP" <1:0>

 ;terminal node constants
 VAR# 1: (c____) "FAIL" <1:0> VAL = 0
 VAR# 2: (c____) "PASS" <1:0> VAL = 1
 VAR# 3: (c____) "CHECKING" <1:0> VAL = 2

 ;property PPG
 VAR# 4: (o____) "PROPERTY" <1:0>
 GRP# 0: BEG = 0, LEN = 4 -----
 0 0: (n___) (0=>1 1=>2 2=>3) V = 0 "BOP" <1:0> @[j to k]_e
 1 1: (____) (0 0) V = 1 "FAIL" <1:0>
 2 2: (____) (0 0) V = 2 "PASS" <1:0>
 3 3: (____) (0 0) V = 3 "CHECKING" <1:0>
}

c) THLDD graph portrayal:

d) Notes:

- Both bounds of the range “j” and “k” must be positive integers and statically
computable, where “j”<= “k”.
- The value of number “j” is allowed to be ‘0’. In this case the property BOP that is
operand of “next_e[0 to k](BOP)” holds either in the current cycle or in one of the
next “k” cycles. The right bound “k” is allowed to take value END (see Subsection
3.2.3) in frames of this approach.
- The operand of a “next_e” operator is BOP because of the PSL simple subset
requirements.

 P "next_e[j to k](BOP)"
[Δt = { j,...,k }]∃

FAIL PASS

BOP

CHK.

119

A.2.11 next_event

a) PSL notation: FL_Property ::=
 next_event(Boolean)[positive_Number](FL_Property)
Example: P: next_event(BOP)[k](TOP);

Explanation:
A “next_event[k]” property holds in the current cycle of a given path iff:
- The Boolean expression that is the operand does not hold at least “k” times, starting
at the current cycle, or
- The Boolean expression that is the operand holds at least “k” times, starting at the
current cycle, and the FL Property that is the operand holds at the “kth” occurrence of
the Boolean expression.

b) THLDD graph in AGM format

next_event BOP[k] TOP {
 STAT# 4 Nods, 6 Vars, 1 Grps, 2 Inps, 1 Outs, 3 Cons
 VAR# 0: (i____) "TOP" <1:0>
 VAR# 1: (i____) "BOP" <1:0>
 ;terminal node constants
 VAR# 2: (c____) "FAIL" <1:0> VAL = 0
 VAR# 3: (c____) "PASS" <1:0> VAL = 1
 VAR# 4: (c____) "CHECKING" <1:0> VAL = 2
 ;property PPG
 VAR# 5: (o____) "PROPERTY" <1:0>
 GRP# 0: BEG = 0, LEN = 4 -----
 0 0: (n___) (0=>1 1=>2 2=>3) V = 0 "TOP" <1:0> @ k*event BOP
 1 1: (____) (0 0) V = 2 "FAIL" <1:0>
 2 2: (____) (0 0) V = 3 "PASS" <1:0>
 3 3: (____) (0 0) V = 4 "CHECKING" <1:0>
}

c) THLDD graph portrayal:
P "next_event (BOP)[k](TOP)"

[Δt = k·event(BOP)+1]

d) Notes:

- The number “k” must be a statically computable positive integer, where k ≥ 1.
- Property “next_event(BOP)(TOP)” is equivalent to “next_event(BOP)[1](TOP)”.
- The formula “next_event(‘true’)(TOP)” is equivalent to the formula “next[0](TOP)”.
Similarly, if “BOP” holds in the current cycle, then “next_event(BOP)(TOP)” is
equivalent to “next_event(‘true’)(TOP)” and therefore to “next[0](TOP)”. However,
none of these is equivalent to “next(TOP)”.

FAIL PASS

TOP

CHK.

120

A.2.12 until

a) PSL notation: FL_Property ::= (FL_Property) until (FL_Property)
Example: P: (TOP)until(BOP);
Explanation:
An “until” property holds in the current cycle of a given path iff:
- The FL property that is the left operand holds forever, or
- The FL property that is the right operand holds at the current cycle or at some
future cycle, and the FL property that is the left operand holds at all cycles up
to, but not necessarily including, the earliest cycle at which the FL Property
that is the right operand holds.

b) THLDD graph in AGM format

TOP until BOP {
 STAT# 4 Nods, 6 Vars, 1 Grps, 2 Inps, 1 Outs, 3 Cons
 VAR# 0: (i____) "TOP" <1:0>
 VAR# 1: (i____) "BOP" <1:0>
 ;terminal node constants
 VAR# 2: (c____) "FAIL" <1:0> VAL = 0
 VAR# 3: (c____) "PASS" <1:0> VAL = 1
 VAR# 4: (c____) "CHECKING" <1:0> VAL = 2
 ;property PPG
 VAR# 5: (o____) "PROPERTY" <1:0>
 GRP# 0: BEG = 0, LEN = 4 -----
 0 0: (n___) (0=>1 1=>2 2=>3) V = 0 "TOP" <1:0> @[0 to
 event BOP -1]_a
 1 1: (____) (0 0) V = 2 "FAIL" <1:0>
 2 2: (____) (0 0) V = 3 "PASS" <1:0>
 3 3: (____) (0 0) V = 4 "CHECKING" <1:0>
}

c) THLDD graph portrayal:
P "(TOP) until (BOP)"

[Δt =

d) Notes:

- The same PPG but with the time window “Δt=∀{ 0,...,event(BOP)}” corresponds to
the PSL operator “(TOP)until_(BOP)”
- The right hand side operand of a “until” operator is BOP because of the PSL simple
subset requirements.

∀{ 0,...,event(BOP)-1}]

FAIL PASS

TOP

CHK.

121

A.2.13 before

a) PSL notation: FL_Property ::= (FL_Property) before (FL_Property)
Example: P: (BOP1)before(BOP2);
Explanation:
A “before” property holds in the current cycle of a given path iff:
- Neither the FL Property that is the left operand nor the FL Property that is the
right operand ever hold in any future cycle, or
- The FL Property that is the left operand holds strictly before the FL Property
that is the right operand holds.

b) THLDD graph in AGM format

BOP1 before BOP2 {
 STAT# 4 Nods, 6 Vars, 1 Grps, 2 Inps, 1 Outs, 3 Cons

 VAR# 0: (i____) "BOP1" <1:0>
 VAR# 1: (i____) "BOP2" <1:0>
 ;terminal node constants
 VAR# 2: (c____) "FAIL" <1:0> VAL = 0
 VAR# 3: (c____) "PASS" <1:0> VAL = 1
 VAR# 4: (c____) "CHECKING" <1:0> VAL = 2
 ;property PPG
 VAR# 5: (o____) "PROPERTY" <1:0>
 GRP# 0: BEG = 0, LEN = 4 -----
 0 0: (n___) (0=>1 1=>2 2=>3) V = 0 "BOP1" <1:0> @[0 to
 event BOP2 - 1]_e
 1 1: (____) (0 0) V = 2 "FAIL" <1:0>
 2 2: (____) (0 0) V = 3 "PASS" <1:0>
 3 3: (____) (0 0) V = 4 "CHECKING" <1:0>
}

c) THLDD graph portrayal:
P ""(BOP1) before (BOP2)"

[Δt = { 0,...,event(BOP2)-1}]∃

d) Notes:

- The same PPG but with the time window “Δt=∃{ 0,...,event(BOP)}” corresponds to
the PSL operator “(BOP1)before_(BOP2)”
- Both operands of a “before” operator are BOP because of the PSL simple subset
requirements.

FAIL PASS

BOP1

CHK.

122

Appendix B
AGM FORMAT

This appendix describes syntax of AGM file format. This format is used to
represent the following design representation models proposed and used in TUT:

• SSBDD
• HLDD (RTL, TLM and behavioural abstraction levels)
• THLDD

This format is not a contribution of this thesis but rather presented here for
explanatory purposes. Only several minor modifications have been introduced to
the format to support new THLDD model.

AGM stands for Alternative Graph model Format. This abbreviation has
historical roots in the first publications of Prof. Raimund Ubar on topic of decision
diagrams, where they were referred to as alternative graphs (e.g. [38]).

AG model format is case sensitive. It is a line-based format where maximum
line length can be 256 characters. In the following the BNF syntax of AG model
format is presented. The meta-syntax used obeys the following rules:

1) Syntactic categories (nonterminals) are printed in italics; literal words,
characters and constants are enclosed to ‘quotes’.

2) If a construct is enclosed to [square brackets], it is optional.
3) If a construct is enclosed to {curly brackets}, it may be repeated zero or

more times.
4) A choice is indicated with a vertical bar |.
5) If a construct is enclosed in <chevrons>, it can occur at most once.

123

B.1 AGM syntax

ag_model :=
statistics
mode
[control_signals]
ag_description

statistics :=
‘STAT#’ natural ‘Nods,’ natural ‘Vars,’ natural ‘Grps,’ natural ‘Inps,’ natural
‘Outs,’ natural ‘Cons’ [‘,’ natural ’Funs’] [‘,’ natural ’Mems’] [‘,’ natural
‘C_outs’]

The natural values reflect the number of nodes, variables, graphs, inputs,
outputs, constants, functions, memory arrays and control part outputs, respectively.
The number of functions and memory arrays are meaningful in the high-level
descriptions. The number of control part outputs is used with the RTL descriptions
divided into a control part and a datapath only.

mode :=
‘MODE#’ ‘STRUCTURAL’ | ‘RTL’ | ‘BEHAVIORAL’ | ‘TEMPORAL’

Indicates whether a structural gate-level model, a RTL model, a behavioral
model, or a temporally extended model is being described. RTL and behavioral
models have the following difference: RTL descriptions contain clocking
information while behavioral descriptions do not. Other intermediate abstraction
levels’ models, such as TLM, are logically included in one of these two groups
depending on the clocking information presence. Temporally extended model is
used for THLDD representation. It differs from the behavioral mode by presence of
additional temporal relationships information for properties.

control_signals := ‘COUT#’ natural {‘,’ natural}

Shows the variable indexes of control signal variables. Used in RTL
descriptions partitioned to datapath and control parts.

ag_description :=

[{input_definition}]
[{memory_definition}]
[{constant_definition}]
[{function_definition}]
[{control_definition}]
{graph_variable_definition}

The definitions are ranged according to the order shown above. There are no
memory definitions or function definitions in structural gate-level AG models.

124

control_definitions are used only in the RTL descriptions partitioned into control
and datapath parts.

input_definition :=
‘VAR#’ var_index ‘:’ ‘(‘ variable_flags ’)’ var_name var_range

Defines a primary input of the model.

memory_definition :=
‘VAR#’ var_index ‘:’ ‘(‘variable_flags’)’ var_name var_range [row_range]
column_range
memory_row
{memory_row}

Defines a memory array. The optional row_range is used with two-dimensional
arrays, and it determines the range of row addresses used in memory. In one-
dimensional arrays, row_range is omitted. In similar way, column_range
determines the range of column addresses used in the memory variable.

memory_row := ‘{‘ integer {‘,’ integer} ‘}’

Defines the contents of a memory variable. The number of integers in
memory_row is determined by column_range.

row_range := mem_range

Row_range is used with two-dimensional arrays, and it determines the range of
row addresses used in memory. In one-dimensional arrays, row_range is omitted.

column_range := mem_range

Determines the range of column addresses used in the memory variable.

mem_range := ‘[‘ integer ‘-’ integer ‘]’

In mem_range the first integer must be less than the second one.

constant_definition :=
‘VAR#’ var_index ‘:’ ‘(‘variable_flags’)’ var_name var_range ‘VAL’ ‘=’ integer

Defines a constant. The integer value shows the value of the constant.

function_definition :=
‘VAR#’ var_index ‘:’ ‘(‘variable_flags’)’ var_name var_range
‘FUN#’ function_type arguments_definition

Defines an operation or function.

function_type := identifier

Shows the type of the operation.

arguments_definition := ‘(‘ [argument] {‘,’ argument} ’)’

Defines the arguments (if any) of an operation.

125

argument := ‘A’argument_index ‘<=’ argument_variable range

The range shows the bit-slice of the variable argument_variable that is used as
a function argument.

argument_index := natural

Shows the index of the function argument.

argument_variable := natural

Shows the index of the variable used as the function argument.

control_definition :=
‘VAR#’ var_index ‘:’ ‘(‘ variable_flags ’)’ var_name var_range

+

Defines a control signal. Used to define control part output signals of the RTL
designs partitioned into datapath and control parts.

graph_variable_definition :=
‘VAR#’ var_index ‘:’ ‘(‘variable_flags’)’ var_name var_range
graph_definition

Defines a variable for which a graph corresponds.

graph_definition :=
‘GRP#’ graph_index ‘:’ ‘BEG’ ‘=’ natural ‘,’ ‘LEN’ ‘=’ natural ‘-----’
node_definition | parallel_node_definition
{node_definition | parallel_node_definition}

Defines a graph in the AG model. The ‘BEG=’ construct shows the absolute
index of the first node in the graph. The ‘LEN=’ construct in turn shows the
number of nodes in the graph.

node_definition :=
nod_abs_index nod_index ‘: (‘nod_flags’) (’ successors ‘) V =’ nod_var nod_name
nod_range

Defines an AG node. nod_abs_index and nod_index represent the absolute
(inside the model) and relative (inside the graph) indexes of the node. Construct
successors shows the successor nodes of current node which are chosen with
different node values. Index of the variable labeling the node is determined with
nod_var.

parallel_node_definition :=
nod_abs_index nod_index ‘: (v___)’ ‘(‘ ‘0’ ‘0’ ‘)’ ‘VEC =’ nod_var_vector

Defines a terminal node of the FSM graph of RTL description. nod_abs_index
and nod_index represent the absolute (inside the model) and relative (inside the
graph) indexes of the node, respectively. Indexes of the variables labeling the node
are determined with nod_var_vector.

126

nod_var_vector := ‘ ”’ state_value {signal_value} ’ ”’

state_value shows the value of the next state. The signal_value constructs show
the values of the control signals defined in the control_signals construct.

state_value := natural

Shows the value of the next state.

signal_value := ‘0’ | ‘1’ | ‘X’

The signal_value constructs show the values of the control signals defined in
the control_signals construct.

nod_var := natural[[‘[‘ ‘V’ ‘=’ row_index ’]’] ‘[‘ ‘V’ ‘=’ column_index ’]’]

Shows the index of the variable labeling the node. Optional constructs
row_index and column_index are used with memory variables labeling the node.
These constructs determine the indexes of the variables used for addressing rows
and columns, respectively.

nod_name := string

Shows the name of the node.

nod_range := range

nod_range determines the bit-slice of the variable that labels the node. AG
model format allows slices of variables to be used for labeling a node.

row_index := natural

Determines the indexes of the variables used for addressing rows of the memory
variable.

column_index := natural

Determines the index of the variable used for addressing columns of the
memory variable.

nod_abs_index := natural

Shows the absolute (inside the model) index of the node.

nod_index := natural

Shows the relative (inside the graph) index of the node inside the graph.

graph_index := natural

Shows the index of the graph.

variable_flags := < ‘i’ | ‘m’ | ‘c’ | ‘f’ | ‘o’ | ‘n’ | ’_’ | ‘F’ > {<‘d’> | ‘_’}

The variable flags have the following interpretation:
‘i’ - input variable

127

‘m’ - memory variable (RTL, behavioral)
‘c’ - constant variable
‘f’ - function variable (RTL, behavioral)
‘o’ - output variable
‘d’ - clock cycle delay, e.g. in registers, flipflops. (Gate-level, RTL)

The following flags are used with RTL descriptions only:
‘n’ - control part output signal
‘F’ - FSM graph variable
‘r’ - reset variable
‘s’ - state variable

nod_flags := < ‘i’ | ’_’ > { ‘n’ | ‘v’ | ‘_’}

The node flags have the following interpretation:
‘i’ - inverted node (in gate-level descriptions only)
‘n’ - non-terminal node (RTL, behavioral)
‘v’ - control part terminal node (RTL)

successors :=
nonterminal_successors | terminal_successor | boolean_successors

Construct successors shows the successor nodes of current node which are
chosen with different node values.

nonterminal_successors :=
node_values ‘=>’ successor_index {node_values ‘=>’ successor_index }

This construct shows the indexes of successor nodes which will be selected with
corresponding node values. (Used with RTL and behavioral models only).

terminal_successors := ‘0’ ‘0’

Terminal nodes are nodes which have no successor nodes.

boolean_successors:= natural natural

This type of construct can be used with Boolean AGs only. The first natural
number indicates the relative index of the successor node when the value of current
node is ‘0’, and the second number shows the relative index of the successor node
when current node is ‘1’, respectively. If the index of the successor node is ‘0’, it
shows that there is no successor nodes to current node with corresponding value.

node_values := natural { ‘,’ | ‘-’ natural}

Determines the set of node values that activate the corresponding branch. The
comma ‘,’ character is used for separating the indexes; the minus sign ‘-‘ is used
for index ranges, e.g. ‘3-5’, which can be alternatively written as ‘3,4,5’.

successor_index := natural | ‘X’

128

If successor_index is a natural number, it shows the index of the successor
node. Otherwise, if successor_index is ‘X’, it means that the successor is
undetermined.

var_index := natural

Shows the index of the variable.

var_name := string

Shows the name of the variable.

var_range := range

Shows the bitwidth of the variable.

range := [‘<’ natural ‘:’ natural ‘>’]

Range is a construct for describing bit-vectors. The first natural shows the index
of the most significant bit and the latter is for the least significant bit, respectively.
If range is omitted, it will default to ‘<0:0>’.

string := ‘ ” ’ {character} ‘ “ ’

Character can be any character, except newline and double quote ‘ ” ’.

integer :=
[‘-’]natural
Any integer number.
natural

Natural can be any non-negative number.

identifier :=
alphabetic_character{alphabetic_character | digit | ‘_’}
alphabetic_character := ‘A’| …| ’Z’ | ‘a’ | …| ‘z’
digit := ‘0’ | ‘1’ | …| ‘9’

129

130

Curriculum Vitae
in English

Personal data
Name Maksim Jenihhin
Date and place 09.06.1981, ESTONIA
of birth
Citizenship Estonian

Contact data
Address Raja 15, Tallinn 12618, ESTONIA
Phone +372 620 2262
E-mail maksim@computer.org

Education
2004 - ... Ph.D. student in Computer Engineering,
 Tallinn University of Technology
2003 - 2004 M.Sc. in Computer Engineering, TUT
1999 - 2003 B.Sc. in Computer Engineering, TUT
1988 - 2003 1999, Secondary Education from
 Russian High School of Jõhvi

Career
2007 - ... Tallinn University of Technology,
 Faculty of Infotechnology, Dept. of Computer Engineering
 Chair of Computer Engineering and Diagnostics,
 Researcher
2004 - 2007 ELIKO Ltd. Competence Centre in Electronics-, Info- and
 Communication Technologies, Development Engineer
2003 - 2004 Borthwick-Pignon Solutions Ltd., Test Engineer

131

Honours & Awards
Ustus Agur grant, Estonian Association of Information Technology and
Telecommunications (ITL), May 16, 2007

"Tiger University" grant for ICT PhD students, Estonian Information
Technology Foundation (EITSA), 2007

AS Eesti Energia grant, Development fund of TUT, November 22, 2007

AS Tallinna Sadam grant, Development fund of TUT, November 22, 2006

Jaan Poska grant, Tallinn Council, May 15, 2006

"Tiger University" grant for ICT PhD students, Estonian Information
Technology Foundation (EITSA), 2006

Jaan Poska grant, Tallinn Council, May 15, 2005

"Tiger University" grant for ICT PhD students, Estonian Information
Technology Foundation (EITSA), 2005

Yearly Award, Natural Sciences and Engineering - Maksim Jenihhin;
Estonian National Contest for Young Scientists II Prize, 2004

132

Curriculum Vitae
Eesti keeles

Isikuandmed
Nimi Maksim Jenihhin
Sünniaeg ja 09.06.1981, EESTI
-koht
Kodakondsus Eesti

Kontaktandmed
Aadress Raja 15, Tallinn 12618, EESTI
Telefon +372 620 2262
E-post maksim@computer.org

Hariduskäik
2004 - ... doktorant, Arvutitehnika Instituut, Tallinna Tehnikaülikool
2003 - 2004 tehnikateaduste magister, Arvuti- ja Süsteemitehnika
 eriala, Tallinna Tehnikaülikool
1999 - 2003 tehnikateaduste bakalaureus, Arvuti- ja Süsteemitehnika
 eriala, Tallinna Tehnikaülikool
1988 - 2003 keskharidus, Jõhvi Vene Gümnaasium

Teenistuskäik
2007 - ... Tallinna Tehnikaülikool, Infotehnoloogia teaduskond,
 Arvutitehnika instituut, Arvutitehnika- ja diagnostika
 õppetool, teadur
2004 - 2007 ELIKO OÜ Tehnoloogia Arenduskeskus, arendusinsener
2003 - 2004 Borthwick-Pignon OÜ, testinsener

133

134

Teaduspreemiad ja -tunnustused
ITL-i Ustus Aguri nimiline stipendium, 16. mai 2007.a

"Tiigriülikooli" stipendium IKT doktorantidele (EITSA), 2007.a

AS Eesti Energia stipendium, TTÜ arengufond, 22. november 2007.a

AS Tallinna Sadam stipendium, TTÜ arengufond, 22. november 2006.a

Jaan Poska stipendium, Tallinna Linnavalitsus, 15. mai 2006.a.

"Tiigriülikooli" stipendium IKT doktorantidele (EITSA), 2006.a

Jaan Poska stipendium, Tallinna Linnavalitsus, 15. mai 2005.a.

"Tiigriülikooli" stipendium IKT doktorantidele (EITSA), 2005.a

Aasta preemia, Loodusteadused ja tehnika - Maksim Jenihhin; Üliõpilaste
teadustööde riikliku konkursi II preemia, 2004.a

	Abstract
	Kokkuvõte
	Acknowledgements
	Table of Contents
	List of Publications
	List of Abbreviations
	Chapter 1 INTRODUCTION
	1.1 Motivation
	1.2 Problem formulation
	1.3 Contributions
	1.4 Thesis organization
	1.4.1 Formatting remarks

	Chapter 2 BACKGROUND
	2.1 Design representation by decision diagrams
	2.1.1 Binary decision diagrams
	2.1.2 High-level decision diagrams
	2.1.2.1 HLDD model definition
	2.1.2.2 Basic simulation on HLDDs
	2.1.2.3 Pure RTL designs representation by HLDDs
	2.1.2.4 Behavioural RTL designs representation by HLDDs
	2.1.2.5 HLDD vs. ADD representations comparison
	2.1.2.6 HLDD model advantages for debug in verification

	2.2 Property specification language
	2.2.1 PSL organization
	2.2.1.1 Flavors
	2.2.1.2 Modes
	2.2.1.3 Layers
	2.2.1.4 Styles

	2.2.2 PSL properties
	2.2.2.1 Operators
	2.2.2.2 Strong vs. weak operators
	2.2.2.3 Vacuous pass
	2.2.2.4 PSL flexibility and common equivalences

	2.2.3 PSL simple subset

	2.3 Chapter summary

	Chapter 3 ASSERTION-BASED VERIFICATION
	3.1 Overview
	3.1.1 Design flow
	3.1.2 Design verification
	3.1.3 Assertion-based verification
	3.1.3.1 Diversity of assertion checking

	3.1.4 State of the art
	3.1.4.1 An experience with FoCs

	3.1.5 APRICOT

	3.2 Temporal extension for the HLDD model
	3.2.1 THLDD model definition
	3.2.2 THLDD interface
	3.2.3 THLDD temporal relationships

	3.3 PSL to THLDD conversion method
	3.3.1 Primitive Property Graphs
	3.3.1.1 PPG Library

	3.3.2 Parser
	3.3.3 Constructor
	3.3.4 Representation types of THLDD properties

	3.4 The method for assertions checking with HLDDsim
	3.4.1 HLDDsim algorithm
	3.4.2 HLDDsim modification for assertions checking
	3.4.3 THLDD assertions checking timing issues

	3.5 Experimental results
	3.6 Verification assertions reuse for manufacturing testing
	3.6.1 Assumption-based test generation
	3.6.2 Assertion-based BIST
	3.6.3 Assertion-based DfT by test points insertion

	3.7 Chapter summary

	Chapter 4 VERIFICATION COVERAGE ANALYSIS
	4.1 Verification coverage overview
	4.1.1 Verification coverage classification
	4.1.2 Sufficiency of verification coverage
	4.1.3 Assertion coverage

	4.2 HLDD-based analysis of code coverage
	4.2.1 Statement coverage mapping
	4.2.2 Branch coverage mapping
	4.2.3 Toggle coverage mapping
	4.2.4 State coverage mapping
	4.2.5 Data flow coverage mapping
	4.2.6 Condition coverage mapping

	4.3 A hierarchical approach for HLDD-based condition coverage analysis
	4.4 HLDD model reduction manipulations for code coverage analysis
	4.5 Experimental results
	4.6 Chapter summary

	Chapter 5 CONCLUSIONS AND FUTURE WORK
	5.1 Conclusions
	5.1.1 Contributions
	5.1.2 Advantages

	5.2 Future work

	References
	Appendix A PPG LIBRARY
	A.1 Format of the ppg.lib file
	A.2 Set of the supported operators
	A.2.1 always
	A.2.2 never
	A.2.3 Logical implication
	A.2.4 Logical iff
	A.2.5 Logical not
	A.2.6 Logical and
	A.2.7 Logical or
	A.2.8 next
	A.2.9 next_a
	A.2.10 next_e
	A.2.11 next_event
	A.2.12 until
	A.2.13 before

	Appendix B AGM FORMAT
	B.1 AGM syntax

	CV in English
	CV in Estonian

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

