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Abstract 

This thesis addresses the main simulation-based hardware verification issues 
that are speed and accuracy of the verification process. In particular we target 
aspects of assertion checking and coverage measurement by exploiting advantages 
of High-Level Decision Diagrams (HLDD) design representation model.  

First, we present a novel method for assertion checking based on HLDD model. 
The presented approach proposes a temporal extension for the existing HLDD 
model aimed at supporting temporal properties expressed in Property Specification 
Language (PSL). Other contributions of this method are methodology for direct 
conversion of PSL properties to HLDD and HLDD-based simulator modification 
for assertions checking support. 

Second, we present a novel method for verification structural coverage analysis 
based on HLDD model. The main contributions of this method include approaches 
for mapping traditional code coverage metrics such as statement, branch and data 
flow coverage to HLDD constructs. Another contribution is an approach for 
condition coverage metric analysis. It employs a hierarchical decision diagrams 
model consisting of HLDDs and BDD-based representations of the conditional 
statements. The method also implies HLDD model manipulations targeting 
different aspects of verification coverage analysis.  

The proposed methods rely on homogeneous hardware verification flow based 
on HLDD model.  Previous research works have shown that HLDDs are an 
efficient model for simulation and convenient for diagnosis and debug. The 
performed experiments demonstrate feasibility and efficiency of the proposed 
approaches. 
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Kokkuvõte 

Antud töö on suunatud simuleerimisel-põhineva digitaalriistvara 
verifitseerimise kiiruse ja täpsuse tõstmisele. Töös on pakutud lähenemised väidete 
kontrolli ja verifitseerimise katte mõõtmise jaoks, mis rakendavad kõrgtaseme 
otsustusdiagrammide (KTOD) eeliseid skeemide esitamisel.  

Esiteks on esitatud uudne meetod väidete kontrolliks, mis põhineb KTOD 
mudelil. Esitatud lähenemine pakub välja temporaalse laienduse olemasolevale 
KTOD mudelile, mis on mõeldud Property Specification Language (PSL) keeles 
esitatud omaduste toetamiseks. Lisaks on töös esitatud metodoloogia PSL 
omaduste vahetuks konverteerimiseks KTOD mudelisse ja KTOD  simulaatori 
edasiarendus väidete kontrolli toetamiseks.  

Teiseks on dissertatsioonis välja töötatud meetod verifitseerimise struktuurse 
katte KTOD mudelil põhinevaks analüüsiks. Meetodi peamiseks panuseks on 
traditsiooniliste kattemõõtude, nagu lausete, harude  ja andmevoo katete sidumine 
KTOD struktuuriga. Lisatulemuseks on lähenemine tingimuste katte analüüsiks. 
Vimmane kasutab hierarhilist otsustusdiagrammide mudelit, mis koosneb KTOD-
dest ja tingimuslike lausete binaarsetel otsustusdiagrammidel põhinevast esitusest. 
Samuti sisaldab pakutud meetod KTOD mudeli teisendusi, mis on suunatud 
verifitseerimise katte analüüsi erinevatele tasemetele.  

Pakutud meetodid toetuvad homogeensele KTOD-l põhinevale riistvara 
verifitseerimise voole. Eelnev uurimistöö on näidanud, et KTOD on efektiivne 
mudel simuleerimise läbiviimiseks ning sobilik digitaalsüsteemide diagnostikat ja 
silumist silmas pidades. Dissertatsioonis teostatud katsed tõestavad pakutud 
lähenemiste rakendatavust ja efektiivsust. 
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Chapter 1 
INTRODUCTION 

This thesis addresses several simulation-based hardware verification issues. The 
main emphasis is put on assertion checking and structural coverage measurement 
exploiting advantages of High-Level Decision Diagrams (HLDD) design 
representation model.  

This introductory chapter first presents the motivation behind the presented 
work, followed by more detailed problem formulation. This is followed by a 
summary of the main contributions and an overview of the thesis structure.  

1.1 Motivation 

Nowadays, it is not easy to realize that mobile phones, so ordinary today, have 
got a wide spread only ten years ago as well as consumer digital cameras just five 
years ago. Not to mention the times (slightly more than 15 years ago) when usual 
people lived without the Internet. The technology advances very rapidly and today 
we are surrounded by complex electronic devices and embedded systems that have 
become a common part of our lives. We rely on them and accept their correct 
behaviour as granted. At the same time we are becoming more and more dependent 
on them. Minor failures may annoy us while a major one may have a serious 
catastrophic effect and even cost human lives.  

There are known famous cases of a fault occurrence in electronic devices. One 
of them is the flight tragedy of the European Space Agency’s first Ariane 5 
launcher on June4, 1996. Its first flight, known as Flight 501, has failed with the 
rocket self-destructing 37 seconds after launch. This case is sometimes called one 
of the most expensive “computer bugs” in history. The tragedy was caused purely 
by the system design error. Further, the official investigation report on this case 
[87] has concluded: “The extensive reviews and tests carried out during the Ariane 
5 Development Programme did not include adequate analysis and testing ..., which 
could have detected the potential failure”. 
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Another well known case is the “Pentium FDIV bug” in several Intel's original 
Pentium processors’ families [88]. Because of this fault, some particular floating 
point division operations performed with these processors could produce incorrect 
results. This fault was also one of the most expensive “computer bugs” and cost 
Intel Corp. $475 million.  

The rapid development of the digital systems requires a huge increase of efforts 
to verify the functionality, i.e. ascertain that the implemented design meets the 
intended specification. It is obvious that, an exhaustive functional verification of an 
average digital hardware design requires exercising an extremely large amount of 
possible input combinations. For example (the example is from [5]), let us consider 
a digital hardware design that has 10 inputs and 100 flip-flops (i.e. a bit more than 
three 32-bit registers). This design would require in the worst case (210)100, i.e. 
21000, test vectors to try. If we simulate 1000 test vectors per second, it would take 
us: (21000/(602*24*365.25))/1000 = 339,540,588,380,062,907,492,466,172,668,391, 
072,376,037,725,208,993,588,689,808,600,264,389,893,757,743,339,953,988,382,
771,724,040,525,133,303,203,524,078,771,892,395,266,335,942,544,299,458,056,
845,215,567,848,460,205,301,551,163,124,606,262,994,092,425,972,759,467,835,
103,001,336,717,048,865,167,147,297,613,428,902,897,465,679,093,821,978,784,
398,755,534,655,038,141,450,059,156,501 years to execute. Therefore, methods to 
overcome the complexity, yet provide acceptable results, are vital.  

The cause of an electronic system’s failure observable by its final user can hide 
behind a wide set of the system’s aspects. They include correctness of its software 
part, physical implementation, analog hardware part, the system timing issues etc. 
In this thesis we address digital hardware design verification against incorrect 
implementation of its intended functionality. This is type of design verification is 
usually referred to as hardware design functional verification. Several other design 
verification types as well as classification of hardware design functional 
verification are discussed in more detail in the introduction to Chapter 3. 

The growing complexity of the state-of-the-art hardware designs has made their 
verification a very important phase in the complete development process. As it was 
estimated in the last International Technology Roadmap for Semiconductors report 
[102], verification takes roughly 70% of design time, and therefore demands a huge 
amount of expensive resources such as man- or CPU-hours. This part of complete 
system development is often the most expensive phase. According to [102], the 
problem is caused by a pair of recent processes. They are, first, rapid design 
complexity increase and, second, the historically greater emphasis on other aspects 
of the design process that has produced significant progress in this area (e.g. 
automated tools for logic synthesis) leaving verification as the bottleneck. 

Hardware verification is usually divided into two types. They are, first, formal, 
which assumes theorem proving and other formal methods of mathematics and, 
second, simulation-based, which relies on design simulation with the provided set 
of test vectors (aka stimuli). In this thesis we focus on the second type. Simulation-
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based hardware verification usually assumes comparison of one implementation 
against specification or another implementation (alternative or simplified, e.g. at a 
higher abstraction level). The other way is not to compare against a reference but to 
narrowly aim at specific design properties. The second approach is usually referred 
as Assertion-Based Verification (ABV). This thesis considers both of the 
possibilities but in different order.  

ABV can be considered as one of the Design-for-Verifiability (DfV) techniques. 
They assume application of complementary parts of Hardware Description 
Language (HDL) code introduced especially for design verification assistance. In 
case of ABV this complementary code is assertions. ABV allows discovering 
design’s misbehaviour (causing assertions violation) earlier and more effective. 

On the other hand comprehensive verification coverage metrics help to estimate 
the verification progress and more effectively manage verification efforts. 
Coverage measurement addresses an important question of “when the design is 
verified enough”.  

1.2 Problem formulation 

Traditional design representation models are based on HDLs (e.g. VHDL or 
Verilog). However, there are known a number of drawbacks related to application 
of HDLs-based models in verification.  

The awkwardness and usually even inability of HDLs to represent complex 
temporal assertions has caused introduction of languages especially dedicated for 
this purpose such as Property Specification Language (PSL). The latter one in turn 
is not always supported by design simulation tools or this support may be 
expensive. The attempts to unify design implementation and its properties’ 
representations normally result in creation of large hardware checkers that assume 
significant restrictions on the initial assertion functionality. At the same time a 
comprehensive verification coverage measurement based on HDL model may 
require complicated HDL code manipulations resulting in inefficient resource 
consumption.  

In this thesis we address the main simulation-based hardware verification issues 
that are speed and accuracy of the verification process. In particular we target 
aspects of assertion checking and coverage measurement by exploiting decision 
diagrams based model advantages. The proposed approaches use a homogeneous 
hardware verification flow based on high-level decision diagrams design 
representation model. Previous research works, including [44],[45], have shown 
that HLDDs are an efficient model for design simulation and convenient for 
diagnosis and debug.  
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1.3 Contributions 

The main contributions of this thesis are summarised as follows: 

A new approach for HLDD-based assertions checking 

• A temporal extension for the existing HLDD model. The new extended model 
is aimed at temporal properties expression and named Temporally extended 
High-Level Decision Diagrams (THLDD). The extension supports a set of 
commonly used temporal constructs that can be used to express a wide set of 
possible complex temporal relationships. 

• A methodology for direct conversion of assertions expressed in Property 
Specification Language (PSL) to THLDD. The proposed hierarchical 
approach introduces an extendable library of Primitive Property Graphs (PPG 
Library). The components of this library serve as building blocks for a 
complex THLDD property construction.    

• An approach for HLDD-based assertion checking. A modification of the 
existing HLDD-based simulator (HLDDsim) is proposed to support THLDDs 
and assertion checking. This part is supported by explanations of temporal 
issues and different varieties of THLDD properties. 

A minor contribution includes discussions of verification assertions reuse for 
manufacturing testing. 

A new approach for HLDD-based coverage analysis 

• An approach for mapping traditional verification structural coverage metrics 
to HLDD-based coverage. In addition to the base code coverage metrics such 
as statement and branch coverage, the approach considers also more 
sophisticated ones, including FSM and data flow coverage metrics.  

• An approach for condition coverage analysis. The approach employs a 
hierarchical decision diagrams model consisting of HLDDs and BDD-based 
representations of the conditional statements. 

• An approach for HLDD model manipulations targeted to different aspects of 
verification coverage analysis.  

1.4 Thesis organization 

This thesis consists of 5 main chapters. The rest of it is organized as follows.  

Chapter 2 provides background information required for discussion of the 
further proposed approaches. First, design representation by decision diagrams is 
presented. It includes a brief introduction to Binary Decision Diagrams (BDD) and 
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description of High-Level Decision Diagrams (HLDD) model. Further Property 
Specification Language (PSL) is discussed with respect to its application for the 
proposed approaches. 

Chapter 3 starts with an overview of hardware functional verification, focusing 
on assertion-based verification. This section also includes the discussion of the 
related works and a brief presentation of Tallinn University of Technology 
verification framework APRICOT. Further, the approach for HLDD-based 
assertion checking is presented in the following sections. The sections are temporal 
extension to HLDD model, PSL to HLDD conversion method and the method for 
assertion checking with HLDDsim simulator for HLDD. The following section 
presents the experimental results proving the feasibility and efficiency of the 
proposed approach. A discussion of verification assertions reuse ideas is provided 
at the end of the chapter.  

Chapter 4 starts with discussion of verification coverage metrics basic 
classification and the main aspects related to their measurement while keeping the 
main focus on structural coverage. It is followed by proposal of an approach for 
mapping traditional verification coverage metrics to HLDD coverage. Further, an 
approach employing a hierarchical decision diagrams’ model for the condition 
coverage measurement is presented. Finally, HLDD model manipulations for the 
verification coverage analysis are discussed. The chapter is concluded with 
experimental results which demonstrate the feasibility and efficiency of HLDD-
based coverage analysis approach.  

 Chapter 5 draws conclusions for this thesis and discusses possible directions 
for future work.  

Two appendix sections are also included at the end of the thesis. The first one 
presents library of Primitive Properties’ Graphs (PPG library) as one of the HLDD-
based assertion checking approach contributions. The library is used for THLDD 
properties construction. The second appendix provides syntax for an internal file 
format AGM used for HLDD and THLDD models representation.  

1.4.1 Formatting remarks 

The text of the thesis has the following hierarchy of division: 

• 1 Chapter 
• 1.1 Section 
• 1.1.1 Subsection 
• 1.1.1.1 Clause 

All co-authored references are emphasized in the work by a superscript suffix as 
follows: [ref.]co-auth..  
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Chapter 2 
BACKGROUND 

The approaches for hardware verification presented in this work take the 
advantage of design representation by High-Level Decision Diagrams (HLDDs) 
developed in Tallinn University of Technology. The purpose of this chapter is to 
introduce this model. Traditional Binary Decision Diagrams (BDDs) are also 
described in this chapter. BDD and HLDD themselves are not contributions of this 
thesis. However, most of the contributions rely on these models or are their 
extensions.  

This chapter introduces also IEEE standard Property Specification Language 
(PSL) applied for expressing assertions. Within this work PSL is not just a choice 
among available properties’ expression languages, but also serves in frames of this 
work as a reference for the supported set of assertions and their classification.  

2.1 Design representation by decision diagrams  

The history [9] of decision diagrams based design representation model 
development goes back to seventies when the basic concept of Binary Decision 
Diagrams (BDD) was introduced. It was done by two authors, Raimund J. Ubar 
and Sheldon B. Akers, independently from each other in 1976 [36] and 1978 [37] 
respectively. In [36] decision diagrams were originally referred to as alternative 
graphs. During the following years a number of works about using decision 
diagrams for test and simulation purposes were published, including [38] and [39]. 
However, it was not until the efficient Boolean manipulation method was presented 
by Randal E. Bryant in [40] when this type of representations became widely 
accepted by the research community.  

Further, a number of special classes of binary decision diagrams have been 
proposed. They include popular Reduced Ordered BDDs (ROBDD) [40], multi-
terminal BDDs [49], edge-valued BDDs [50], binary moment diagrams [51], multi-

7 

 



valued decision diagrams [52], zero-suppressed BDDs [53], functional decision 
diagrams (FDD) [54], Kronecker FDDs [55] and others.  

Structurally Synthesized BDDs (SSBDDs), formerly structural alternative 
graphs, are a class of BDD that have been proposed by Raimund Ubar in [36], [41]. 
This model is used for design representation at gate level and supported by a set of 
testing tools developed in Tallinn University of Technology and known as Turbo 
Tester ([58] and [90]). 

There is a number of word-level Decision Diagrams based models used for 
design representation at Register-Transfer and higher levels. High-Level Decision 
Diagrams (HLDDs) were proposed by Raimund Ubar in [41] and further 
developed by Jaan Raik in [9] and [42], [19]co-auth.. The other examples are 
multiterminal DDs (MTDDs) [49], K*BMDs [56] and Assignment DDs (ADDs) 
[57] are some of them. However, in MTDDs the nonterminal nodes hold Boolean 
variables only. K*BMDs, where additive and multiplicative weights label the edges 
are useful for compact canonical representation of functions on integers (especially 
wide integers). However, the main goal of HLDD representations is not canonicity 
but simulation and implications. The principal difference between HLDDs and 
ADDs lies in the fact that ADDs’ edges are not labelled by activating values. They 
are rather used as connecting signals to represent structure. In HLDDs, the 
selection of a node activates a path through the diagram, which derives the needed 
value assignments for variables. Furthermore, ADD model includes four types of 
nodes (read, write, operator, assignment decision). In HLDD the nodes are divided 
into non-terminal (control) and terminal (data) ones. There is a comparison 
example of HLDD vs. ADD representation of the same design provided in Clause 
2.1.2.5.  

The following two subsections provide a brief introduction to BDD and a more 
comprehensive one to HLDD models correspondingly. 

2.1.1 Binary decision diagrams 

BDD is a common representation for Boolean functions. A BDD is defined [9] 
as a directed acyclic graph with two terminal nodes, which are the 0-terminal and 
1-terminal nodes. Each non-terminal node is labelled by an input variable of the 
Boolean function, and has two outgoing edges, called 0-edge and 1-edge. 

Ordered BDD (OBDD) is a BDD, where the input variables appear in a fixed 
order on all the paths of the graph and no variable appears more than once in a 
path. Figure 2.1 shows 3 different representations for a BDD corresponding to a 
Boolean function f= (x1 · x2) v ¬x3. Figure 2.1a shows a full tree BDD, Figure 2.1b 
shows an OBDD and Figure 2.1c shows the same OBDD from Figure 2.1b but in 
alternative description style.  
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Alternative description style differs from the traditional BDD description style 

by the following.  Logic ‘1’ and ‘0’ constants holding terminals are omitted. 
Instead of them, a convention exists, that the right-hand edge of a node corresponds 
to 1-edge and the lower-hand edge to 0-edge. Exiting the BDD rightwards 
corresponds to the solution y = ‘1’, while exiting downwards corresponds to y = 
‘0’. In this type of description style the nodes can be labelled by both, variables and 
their inversions (see ¬x3 in Figure 2.1c).  

 
Reduced Ordered BDD (ROBDD) is created by applying the following 

reduction rules to OBDD [40]: 

Reduction rule1: Eliminate all the redundant nodes where both edges point to 
the same node (Figure 2.2a). 

Reduction rule2: Share all the equivalent sub-graphs (Figure 2.2b). 
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Figure 2.1. Different BDD representations for a Boolean function y = (x1·x2) V¬ x3 

... 

Figure 2.2. BDD reduction rules  

a) b)

x 

1 

... 

sG

0 

sG 

x
1 

...

sG0

...

0 

x

1 

sG1

0 
x

1 

...

0 

... 

sG0 sG1 

9 

 



The important feature of ROBDDs is that they provide for canonical forms of 
Boolean functions. This allows us to check the equivalence of two Boolean 
functions by merely checking isomorphism of their ROBDDs. This is a widely 
used technique in formal verification. 

The mentioned above Structurally Synthesized BDDs (SSBDDs) model is not 
directly used in frames of this thesis and therefore it is not discussed in detail. 
However, for the approaches where a hierarchical design representation is 
convenient, SSBDD model can complement HLDDs by representing the design’s 
modules at the gate level. As it will be shown in the next subsection HLDDs are 
applied for design representation at RTL and higher abstraction levels.  

2.1.2 High-level decision diagrams  

The HLDD model description provided in this subsection is mostly based on the 
description provided in [9] and considers minor refinements made in ([19] and 
[13]) co-auth.. 

Figure 2.3. A high-level decision diagram representing a function y= f(x1,x2,x3,x4 ) 

Gy=(M,E,Z,Γ),  
M={m0, m1, m2, m3, m4};  

 

2.1.2.1 HLDD model definition 
A High-Level Decision Diagram (HLDD) is a graph representation of a discrete 

function. A discrete function y = f(x), where y = (y1, …, yn) and x = (x1, …, xm) are 
vectors is defined on X = X1×…×Xm with values y ∈ Y = Y1×…×Yn, and both, the 
domain X and the range Y are finite sets of values. The values of variables may be 
Boolean, Boolean vectors, integers. Figure 2.3 presents an example of a graphical 
interpretation of a HLDD. 

Definition 1: A high-level decision diagram is a directed non-cyclic labelled 
graph that can be defined as a quadruple G=(M,E,Z,Γ), where M is a finite set of 
vertices (referred to as nodes), E is a finite set of edges, Z is a function which 
defines the variables labelling the nodes, and Γ is a function on E. 

E={e1, e2, e3, e4, e5}, e1=(m0, m1), 
e2=(m0, m3), e3=(m0, m4), e4=(m1, m2),  
e5=(m1, m3);  
Z(m0)=Z(m4)=x2, Z(m1)=x3, Z(m2)=x4, 
Z(m3)=x1; 
Γ(e1)={0}, Γ(e2)={1,2,3}, Γ(e3)={4,5,6,7}, 
Γ(e4)={2}, Γ(e5)={0,1,3}. 
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The function Z(mi) returns the variable xk, which is labelling node mi. Each node 
of a HLDD is labelled by a variable. In special cases, nodes can be labelled by 
constants or algebraic expressions. An edge e∈E of a HLDD is an ordered pair 
e=(mpc,msc)∈E2, where E2 is the set of all the possible ordered pairs in set E. 
Graphical interpretation of e is an edge leading  from node mpc to node msc. It is 
said that mpc is a predecessor node of msc, and msc is a successor node of the node 
mpc, respectively. Γ is a function on E representing the activating conditions of the 
edges for the simulating procedures. The value of Γ(e) is a subset of the domain Xk 
of the variable xk, where e=(mi,mj) and Z(mi)=xk. It is required that Pmi ={ Γ(e) | e = 
(mi,mj)∈E} is a partition of the set Xk.  

Figure 2.3 presents a HLDD for a discrete function y=f(x1,x2,x3,x4). HLDD has 
only one starting node (root node) m0, for which there are no preceding nodes. The 
nodes that have no successor nodes are referred to as terminal nodes Mterm ∈ M 
(nodes m2, m3 and m4 in Figure 2.3).  Design representation by high-level decision 
diagrams, in general case, is a system of HLDDs rather than a single HLDD. 
During the simulation in HLDD systems, the values of some variables labelling the 
nodes of a HLDD are calculated by other HLDDs of the system.  

In this thesis we propose to emphasize the connection between HLDD label (i.e. 
the graph name, bold y for the example in Figure 2.3) and the root node of the 
graph by a double arrow to distinguish it from the edges connecting the HLDD’s 
nodes. In case of design representation by a system of HLDDs the notations of 
variables labelling the terminal nodes Mterm are proposed to be underlined or 
remain normal for the explicit variables (i.e. input signals) and set off in italics for 
implicit variables (the ones referring to another HLDD graph in a system of 
HLDDs). An example of a system of HLDDs can be found in Figure 2.7. 

2.1.2.2 Basic simulation on HLDDs  
Simulation on decision diagrams takes place as follows. Consider a situation, 

where all the node variables are fixed to some value. For each non-terminal node 
mi ∉ Mterm according to the value vk of the variable xk=Z(mi) certain output edge e = 
(mi,mj), vk∈Γ(e) will be chosen, which enters into its corresponding successor node 
mj. Let us call such connections activated edges under the given values and denote 
them by . Succeeding each other, activated edges form in turn activated paths. 
For each combination of values of all the node variables there exists always a 
corresponding activated path from the root node to some terminal node. We refer to 
this path as the main activated path. The simulated value of variable represented by 
the HLDD will be the value of the variable labelling the terminal node of the main 
activated path. 

kv
im

11 

 



 
In Figure 2.4 simulation on the high-level decision diagram presented in Figure 

2.3 is shown. Assuming that variable x2 is equal to 2, a path (marked by bold 
arrows) is activated from node m0 (the root node) to a terminal node m3 labelled by 
x1. Let the value of variable x1 be 4, thus, y=x1=4. Note, that this type of simulation 
is event-driven since we have to simulate only those nodes that are traversed by the 
main activated path (marked by grey colour in Figure 2.4). 

When representing systems by decision diagram models, in general case, a 
network of HLDDs rather than a single DD is required. During the simulation in 
HLDD systems, the values of some variables labelling the nodes of a HLDD are 
calculated by other HLDDs of the system. The detailed algorithm for HLDD based 
systems simulation is provided in Subsection 3.4.1.  

2.1.2.3 Pure RTL designs representation by HLDDs 
Let us consider a design represented in a HDL at the Register-Transfer Level 

(RTL) of abstraction. We distinguish 2 styles of RTL description - pure RTL and 
behavioural RTL. While the first one more precisely targets the desired 
architecture, the second one describes the design in a more natural way. This and 
the following clauses introduce RTL design representations by HLDDs for these 
two description styles correspondingly.  

A deign described in the pure RTL style is assumed to be partitioned into a 
datapath and a control part. Figure 2.5 shows this type of architecture. Here, the 
control part is a Finite State Machine (FSM) with a state register (represented by 
variable xS in the corresponding HLDD model), next state logic and output logic. 
As input signals to the FSM are the primary inputs of the design (variables xI), 
conditional signals originating from the datapath (variables xN) and current value of 
the state variable xS. Outputs of the FSM are the primary outputs of the design 
(variables xO), control signals (variables xC) and the next value of xS. The signals’ 
variables notations introduced for Figure 2.5 are used throughout this clause. 

Figure 2.4. Design simulation on high-level decision diagrams 
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The datapath can be viewed as a network consisting of modules or blocks. 

These include registers, multiplexers and functional units (for implementing 
operations).  

 
All the registers and some internal lines of the datapath can be represented by 

variables in the RTL HLDD model (variables xR and xL, respectively). Inputs for 
the datapath are the primary inputs xI and control signals xC (e.g. multiplexer 

Figure 2.6. A datapath fragment (a) and its HLDD representation (b) 
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addresses and register enable signals). Outputs are the primary outputs xO as well 
as conditional signals xN (e.g. from comparison operators) leading to the control 
part FSM.  

In HLDDs representing the datapath, the non-terminal nodes correspond to 
control signals (labelled by variables xC). The terminal nodes represent operations 
(functional units). Register transfers and constant assignments are treated as special 
cases of operations. Figure 2.6 shows a simple example of a HLDD representation 
(Figure 2.6b) for the given datapath fragment (Figure 2.6a). In this example and 
further in this clause we use a notation where the prime symbol “ ' ” after diagram’s 
variable denotes one clock cycle delay, i.e. next state of the variable (e.g reg3' vs. 
reg3). 

 
Usually, a datapath is represented by a system of HLDDs. Here, different 

partitioning strategies are possible. The most commonly used partitioning is the 
one, where for each primary output, fanout signal and register a HLDD 
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Figure 2.7. Datapath representing HLDD partitioning types 
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corresponds. In addition, multiplexers that are connected to inputs of a functional 
unit are represented by a separate HLDD. Figure 2.7b shows this type of HLDD 
system partitioning for the datapath given in Figure 2.7a. However, it is possible to 
use alternative partitioning. For example, Figure 2.7c shows an approach, where 
for each register of the datapath exactly one decision diagram corresponds. This 
type of partitioning is sometimes referred as register-oriented HLDD. Other types 
of HLDD partitioning can be used depending on the target model application.  

 
A simple RTL design control part is usually represented by a single HLDD, 

however in case of complex or multiple FSMs different partitioning are possible 
here as well.  

The control part HLDD calculates the values for a vector consisting of the state 
variable and control signals. In the HLDD, the non-terminal nodes correspond to 
current state (labelled by variable xS) and conditional signals originating from the 
datapath (variables xN). Terminal nodes hold vectors with the values of next state 
and control signals xC.  

Figure 2.8 shows an FSM state table and its corresponding HLDD repre-
sentation. In the HLDD, state' denotes the next state and state denotes the current 
state value. Variables A_enable, B_enable, mux_12 and mux_34 are FSM outputs 
and belong to the control signals xC. Variables RESET, LT and NEQ are FSM 
inputs and belong to xN. The dashed circles and arrows in Figure 2.10 depict setting 
up the edges and the terminal node corresponding to the fourth row of the state 
table.  

2.1.2.4 Behavioural RTL designs representation by HLDDs 
Behavioural RTL HDL description style represents the design as an FSM 

structure nested with data assignments. It includes clocking information and is 

Figure 2.8. Converting FSM state table into HLDD 
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therefore cycle-accurate. The control state is mapped to a case statement and 
conditions to if or case statements respectively. Each branch of the control state 
case statement corresponds to a certain control state and describes the datapath 
operations at the corresponding state and also the next state transitions.  

This style is also synthesizable as well as pure RTL, but it is less target 
architecture specific. The behavioural RTL style is more commonly used in 
practical design HDL-based implementation than pure RTL style, where the design 
is strictly partitioned to datapath and control part. For example, ITC’99 benchmark 
circuits [76],[102] that are widely used in research community and partially 
represent real industrial designs, are described in behavioural RTL style.  

A separate HLDD diagram is generated for each internal signal and output port 
of the behavioural RTL description. For each such signal v we generate a diagram 
by parsing the behavioural RTL code as follows: 

1. From the nested if/case structure generate a diagram where nodes correspond 
to conditions in respective if/case statements and edges correspond to decisions 
and are marked by the activation values of the respective decisions. 

2. The terminal nodes are labelled by the right-hand side of assignments to a 
signal v. If there is no assignment to the signal v in the corresponding decision 
branch then the respective terminal node will be labelled by v. 

... s1 a) T 

 
Figure 2.9 shows HLDD generation for the common behavioural RTL HDL (we 

consider VHDL) constructs. Figures 2.9a and 2.9b show simple if and case 

Figure 2.9. HLDD representation for the common constructs   
of the behavioural RTL VHDL 
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conditional statements. Figure 2.9c shows a complex if construct, which consists of 
two conditions c3 and c4 joint by the logical and operator. For a complex 
conditional statement consisting of a set of conditions 2 HLDD variants are 
possible. Normally, the conditional statement evaluated as a whole and therefore 
can be represented by a HLDD with compact conditional statements (the bottom-
left part of Figure 2.9c). However, in case if we are interested in several particular 
simulation coverage metrics (e.g. condition coverage) measurement, we may be 
interested in a HLDD representation with expanded conditional statements (the 
right-hand-side part of Figure 2.9c). This topic is discussed in detail in Chapter 4 
(Section 4.3). Please note, that depending on the application we may be interested 
in a non-reduced HLDD. For example, c4 is analyzed even after the false-edge of 
c3 node in Figure 2.9c, however here the reduction rule 1 from the Subsection 
2.1.1 (Figure 2.2a) would be applicable.  

Note, that since we do not support asynchronous latches in our approach the 
synthesizable RTL style must always include else and default branches of the if and 
case statements, respectively. Alternatively, default value assignments of signal v 
must be given. 

Figure 2.10 shows an implementation GCD1 of a greatest common devisor 
design, which is actually a benchmark gcd from the HLSynth’92 benchmarks 
family [103]) in behavioural RTL VHDL and its corresponding HLDD. The 
comparison benchmark from the next clause (Figure 2.11) is an alternative pure 
RTL description implementation of the Greatest Common Devisor design (GCD2). 
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    state:=s5; 
  END CASE 
END IF 
... 

Figure 2.10. Behavioural RTL VHDL and HLDD representations  
for a design GCD1  
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2.1.2.5 HLDD vs. ADD representations comparison 
This clause provides an example (proposed in [43]) of HLDD model 

comparison with a commonly used Assignment Decision Diagram (ADD) 
approach.  

Figure 2.11 presents the schematic RTL description of a Greatest Common 
Divisor benchmark GCD2. Figures 2.12 and 2.13 show its corresponding HLDD 
and ADD representations respectively.  

 
Apart from the fact that HLDD description contains less nodes, there are the 

following fundamental differences:  

• ADDs structure closely matches the RTL design. Edges of ADD correspond to 
connecting nets in datapath. ADD for FSM is equivalent to its gate-level 
implementation. In contrast, HLDDs do not strictly follow the circuit 
structure. Here, a synthesis to extract data and control relationships from the 
circuit functionality has been carried out.  

• ADD model includes four types of nodes (read, write, operator, assignment 
decision). In HLDD the nodes are treated uniformly and can be divided into 
nonterminal nodes (control) and terminal nodes (data). 

Figure 2.11. A RTL design GCD2 

RESET LT NEQ state state’
(next) A_enable B_enable mux_12 mux_34

1 X X X S0 1 1 0 X 
0 X 1 S0 S1 0 0 X X 
0 X 0 S0 S0 0 0 X X 
0 1 X S1 S2 0 0 X X 
0 0 X S1 S3 0 0 X X 
0 X X S2 S0 0 1 1 1 
0 X X S3 S0 1 0 1 0 

LT 

OUT

=0 

=1 

mux_12 

=0 

=1 

mux_12 

  

>

  

>

reg_A

≠

<
IN1 

IN2  
=0

=1

mux_34 

=0

=1

mux_34 

−

NEQ 

mux3 

A_enable 

B_enable 

subtr 
mux4 reg_B
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• While ADDs do not support decision-making implicitly in the model, in 
HLDDs, the selection of a node activates a path through the diagram, which 
derives the needed value assignments for variables. Note, that the edges in 
ADD model have no labels. This is the most significant difference between 
the two models. 

Figure 2.12. HLDD representation for the GCD2 design 

fsm_vec = 

 

 

(state’, A_enable, 
B_enable, 
mux_12, mux_34) 

reset state 
1

NEQ 
S0

LT 
S1

S1,0,0,X,X 

S0,0,0,X,X 

S2,0,0,X,X 

0 1

S3,0,0,X,X 

S0,0,1,1,1 
S2

S0,1,0,1,0 
S3

0
S0,1,1,0,X 

1

0

OUT 
(reg_A’) A_enable mux_12 

0 

IN1 
0

reg_A 

1 

subtr 
1

regB’
B_enable mux_12 

0

IN2 
0 

reg_B 

1

subtr 
1 

mux3 
mux_34 

reg_B 
1 

reg_A 
0 

LT 
reg_A < reg_B 

mux4 
mux_34 

reg_A 
1 

reg_B 
0 

subtr
mux3 - mux4 

NEQ 
reg_A ≠ reg_B 

Figure 2.13. ADD representation for the GCD2 design 

19 

 



2.1.2.6 HLDD model advantages for debug in verification 
High-level decision diagrams model has a set of advantages compared to HDL 

and other DD based design representation models. A comparison with ADD has 
been provided in the previous clause. This clause describes by example some 
advantages of HLDD model for debug process in verification.  

As an example, consider a datapath of a design depicted in Figure 2.14a and its 
corresponding HLDD representation shown in Figure 2.14b. Here, R1 and  R2 are 
registers (R2 is also output), MUX1, MUX2 and MUX3 are multiplexers, + and * 
denote adder and multiplier, IN is and input bus, y1, y2, y3 and y4 serve as input 
control variables, and a, b, c, d and e denote internal buses, respectively. In the 
HLDD, the control variables y1, y2, y3 and y4 are labelling internal decision nodes of 
the HLDD with their values shown at edges. The terminal nodes are labelled by a 
constant #0 (reset of R2), by word variables R1 and R2 (data transfers to R2), and by 
expressions related to data manipulation operations of the network. By bold lines 
and grey nodes, a full activated path in the HLDD is shown from Z(m0)= y4 to 
Z(mT∈MT)=R1*R2, which corresponds to the pattern y4=2, y3=3, and y2=0. The 
activated part of the network at this pattern is denoted by grey boxes.  

 
The main advantage and motivation of using HLDD model, compared to other 

design representation models relying on netlists of primitive functions, is the 
increased efficiency of simulation and diagnostic modelling. The efficiency is 
caused by direct and compact representation of cause-effect relationships. For 

Figure 2.14. HLDD model advantages for debug 
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example, instead of simulating the control word y1, y2, y3, y4 = 0032 by computing 
the functions a = R1, b = R1, c = a + R2, d = b * R2, e = d, and R2 = e, we only need 
to trace the nodes y4, y3 and y2 on the HLDD and compute a single operation R2 = 
R1 * R2. In case of detecting an error in R2 the possible causes can be defined 
immediately along the simulated path through y4, y3 and y2 without any diagnostic 
analysis inside the corresponding RTL netlist. As a result of such a quick reasoning 
the debugging of a system can be considerably simplified. A detailed analysis 
inside the RTL netlist is needed only if all the values of y4, y3 and y2 are correct. In 
such a way, a very efficient hierarchical debugging procedure can be carried out 
with HLDDs: first, by a quick trace of faulty nodes in HLDDs, and then after 
locating the erroneous RTL region, by exactly locating the cause of error in this 
region. 

The advantages for debug and proven [44],[45] faster design HLDD-based 
simulation are a strong motivation for HLDD application for simulation-based 
functional verification.  

The first section of this background chapter has presented discussed the 
advantages of the design representation model called high level decision diagrams. 
This model is used for the approaches proposed in Chapters 3 and 4.  

2.2 Property specification language  

This section provides introductory information about a language for assertions 
expression Property Specification Language (PSL). Within this work PSL is not 
just a choice among available assertions expression languages like System Verilog 
Assertions, Open Vera Assertions, e, Open Verification Library, SystemC 
Assertions, etc. Based on the number of factors, discussed further, PSL serves in 
frames of this work as a reference for the supported set of properties and their 
classification.  

Assertion-based verification popularity has encouraged a common property 
specification language development by the Functional Verification Technical 
Committee of Accellera. After a process in which donations from a number of 
companies were evaluated, the Sugar language [99] from IBM was chosen as the 
basis for PSL. The latest Language Reference Manual (LRM) for PSL version 1.1 
was released in 2004 [91].  The language became an IEEE 1850 Standard in 2005 
[92] and later IEC 62531 Standard [61] in 2007. The both above mentioned 
standards are based upon Accellera’s LRM [91] with minor modifications (e.g. 
SystemC flavor introduction). This LRM together with the web resources listed on 
the PSL/Sugar Consortium webpage [94] can be considered for comprehensive 
PSL definition and explanation source. The information about PLS provided in this 
Chapter focuses on the parts of the language required for implementation and 
understanding of the approaches described in Chapter 3.  
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Figure 2.15. An example of PSL assertion with its structure explained  
and possible DUV’s behavior timing diagrams 

The asserted PSL property a1 states that after signal s_req assignment signal s_ack 
must be assigned at the next evaluation cycle.   

a1: assert always (s_req −> next s_ack); 

assertion 
label 

c)  not activated  

s_req

s_ack

s_req

s_ack

b)  FAIL 

s_req 

s_ack 

a)  PASS 

verification 
directive invariance 

operator 
the main part of 

the property 

the 
property 

An example of a PSL assertion is shown in Figure 2.15. The assertion in the 
example consists of an optional label, the verification directive and the property to 
be checked. The last one is composed of the signals of interest and PSL operators. 
The timing diagrams in the bottom demonstrate 3 of many possible variants of the 
DUV’s behaviour. In case of behaviour (a) the assertion is satisfied. However, the 
assertion will be violated in case of (b) and not activated (or vacuously passed) in 
case of behaviour (c). 

2.2.1 PSL organization 

As it was mentioned, PSL is primarily based on IBM’s Sugar language. The 
latter one was, in turn, originally based on Computation Tree Logic (CTL) (first 
introduced  in 1977 [62]), initially just providing “sugaring” to the CTL’s 
complicated syntax for IBM tools users’ convenience in early ’90-ies (as it is stated 
in [4] and [2]).  The main application of Sugar was Formal Verification. Later, 
before PSL standardization, Sugar has employed Linear-Time (temporal) Logic 
(LTL) (first introduced in 1981 [63]) capabilities. At present, PSL consists of 2 
parts: 

• Foundation Language (FL), that is based on LTL and applied for both 
simulation-based and formal verification 

• Optional Branching Extension (OBE), that is based on CTL and finds its 
application in formal verification 
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The main emphasis of this thesis is put on simulation-based verification, 
therefore from now on we will consider mostly FL part of PSL.  

2.2.1.1 Flavors 
For convenience of the language users, PSL supports 5 flavors1, each of them 

corresponding to one HDL. The main difference between the flavors is seen for 
Boolean expressions. At present the flavors are: 

• SystemVerilog (IEEE Std 1800) 
• Verilog (IEEE Std 1364) 
• VHDL (IEEE Std 1076) 
• SystemC (IEEE Std 1666) 
• GDL (General Description Language [98]), which is known also as a 

placeholder for the future HDL from IBM 

VHDL flavor: Verilog flavor: 
-- psl property p1 is 
--   always (sig1 ->  

// psl property p1 = 
//   always (sig1 -> 

--      ((sig2(0 to 4)= “1010”) or //     ((sig2[0:4]== 4b’1010) || 
//     (sig2[0:4]== 4b’0101))) 
//   @(posedge clk); 

--       (sig2(0 to 4)= “0101”))) 
--   @(clk’event and clk=’1’); 
-- psl assert p1; // psl assert p1; 

Figure 2.16. The same PSL property expression in Verilog and VHDL flavors 
 

An example of the same PSL property expression in Verilog and VHDL flavor 
is given in Figure 2.16. It is not allowed to mix flavors within one property 
(otherwise it could not be parsed).  

2.2.1.2 Modes 
In practice PSL properties related to a design under verification (DUV) may be 

expressed in one of the two modes [2].  

• The stand-alone mode means that all properties related to a DUV are grouped 
into a separate file or files, and also usually organised within the files into 
verification units. This approach is preferred by verification engineers, 
because of the convenience for complex verification plan organization.  

• The second mode is the embedded mode. In this mode, usually preferred by 
designers, the DUV’s properties are written directly into its HDL files. 

                                                      
1 In the frames of PSL specification this term is normally used in the US transcription 
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Normally, special directives for HDL compilators with PSL support hidden 
into comments are used in this mode (e.g. like “-- psl” for VHDL flavor in 
Figure 2.16).  

The embedded mode properties should be of the same PSL flavor as DUV’s 
HDL. On the contrary, stand-alone properties can be of flavor B different from 
DUV’s HDL A. However, it is necessary to check if the applied verification tool 
(e.g. simulator) with PSL support has the support for HDL B (e.g. SystemC).  

The approaches proposed in the Chapter 3 of this work generally assume the 
VHDL flavor and the stand-alone mode for PSL properties expression. 

2.2.1.3 Layers 
PSL is a multi-layered language. The layers are: 

• Boolean layer – the lowest one, it consists of Boolean expressions in HDL 
(e.g. a and (b or c) ). These expressions are used as building blocks in the 
upper layer to compose complex properties. Boolean expression is an 
expression that is evaluated in a single (clock) cycle and has the value true or 
false. Boolean expressions may contain non-Boolean expressions.  

• Temporal layer – it is the main part of the language. It builds temporal 
properties of Boolean expressions which describe DUV’s (or its environment) 
behaviour over time (e.g. a and (next[3]b or next_e[5 to 7]c) ). The 
main tools here are temporal operators that are introduced further. This layer 
also adds the support for Sequential Extended Regular Expressions (SERE) 
(e.g. {a;{[*3];b} or {[*5 to 7]; c}} ).  

• Verification layer - it provides directives that tell a verification tool what to do 
with specified properties. For example the directive assert specifies that the 
property is asserted (i.e. DUV’s behaviour described by the property should 
hold) and makes an assertion out of it. The other directives are: assume 
(widely used to model DUV’s environment), cover, restrict and others. It also 
includes declaration of verification units vunit-s used for properties 
organization, as it was mentioned in the previous subsection. Verification 
units can inherit from other ones.  

• Modelling layer - additional helper code to model auxiliary combinational 
signals, state machines etc. that are not part of the DUV but are required to 
express the property. Usually (except SystemC and GDL flavor) the modelling 
layer instances are synthesizable. 

The approaches provided in the Chapter 3 focus on the first two layers of PSL. 
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2.2.1.4 Styles 
There are two styles in use for PSL properties expression.  

• LTL style - is the approach when a PSL property is composed of 
Boolean expressions as operands for PSL Boolean and temporal 
operators, as well as pure HDL operators.  

• SERE2 style - makes use of sequences of Boolean variables or simple 
Boolean expressions. The sequences are enclosed curly braces and their 
atoms are usually separated by semi-colons (e.g. {a;(b && c);d} ). 
As opposed to Regular Expressions (REs) from pattern matching, 
SEREs are allowed to have not only variables but also expressions as 
atoms for their sequences. A SERE may be an operand for some PSL 
temporal operators, a part of another SERE and can contain special 
SERE repetition operators. For example, the following sequence 
{a;b[*5];{c;d}[=3]} means that fist a is assigned, followed by 5 
consecutive assignments of b and, finally, followed by sub-sequence c 
followed by d assignment for 3 non-consecutive times. Practically, in 
SERE style, a property is expressed as SEREs connected by suffix 
implication operators (“|−>” and “|=>”).  

The most of the properties can be expressed in both LTL and SERE styles, 
however with different levels of convenience. Usually it is more reasonable to 
express a property or a part of a complex property in one of the styles and therefore 
styles are normally mixed. According to [4], while every LTL style property can be 
translated to SERE style, there are some SERE style properties (with a particular 
form of counting, like “p holds on every even cycle”) that cannot be expressed by 
LTL (nor is it expressible by pure CTL).   

 The approaches from Chapter 3 include currently support for LTL style, 
however they do not have any principal constraint for SERE style usage. The 
support for SERE style PSL properties can be relatively easily added (as it will be 
explained further) and is scheduled for the future work. The most of the simple 
SERE style properties are known to have their formal equivalences in LTL style. 
Figure 2.19 from the next subsection presents a table with such equivalences [4]. 

2.2.2 PSL properties  

It is important to distinguish between the two notions often used 
interchangeably: a property and an assertion. A property is some specified part of 
behaviour (of the DUV, its environment or the whole system). The property itself 
                                                      
2 An interesting fact is that in Sugar before PSL standardization, SERE was acronym for Sugar Extended Regular 
Expressions (as opposed to the present Sequential Extended Regular Expression) [99] 
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does not state if it is expected to fail or hold, whether the DUV should be checked 
for it during simulation or it should be avoided during some actions. A property 
with the verification directive (see 2.2.1.3) assert (added directly or separately in 
the corresponding vunit) makes an assertion of the property. Assertions are the 
most often usage of the properties in verification, however a property can serve as 
an assumption, a restriction or other depending of it application. Figure 2.15 shows 
clear separation of the property part in the assertion a1.  

The properties are composed of combinations of operators with operands that 
are variables, internal signals or primary inputs/outputs of interest. A property can 
state single signal assignment without an explicit operator (e.g. p1: signal_a; or 
a1: assert signal_a; ).  

2.2.2.1 Operators 
This subsection discusses some commonly used PSL FL operators and their 

attributes. The complete list of PSL operators [92] sorted by their precedence is 
provided in Figure 2.17. The formal definitions for the operators are available in 
[92].  More details on PSL operators are also available in Appendix A of this work, 
which presents the Primitive Properties Graphs (PPG) library. PPG library is one 
of the contributions of this thesis and proposes decision diagrams based 
representation for a set of PSL operators.   

Operator Operator class Associativity 
and    or    not    etc. HDL operators same as in HDL 

union Union operator left 

@ Clocking operator left 

[*]    [+]    [=]    [->] SERE repetition left 

within SERE sequence within left 

&    && SERE sequence AND left 

| SERE sequence OR left 

: SERE sequence fusion left 

; SERE seq. concatenation left 

abort   async_abort   sync_abort FL termination left 

next*   next_event*   eventually! FL occurrence right 

until*    before* FL bounding right 

|−>    |=> SERE seq. implication right 

−>    <−> Boolean implication right 

always    never FL invariance operators right 

Figure 2.17. PSL FL operators (sorted by precedence from the highest on top) 
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In Figure 2.17 the asterisk at the end of a name (i.e. name*) denotes the whole 
family of operators, which is a group of operators that are related. Operators of one 
family usually share a common family name (prefix) that is followed by suffix (can 
be empty). For example, next, next_a, next_e, next!, next_a!, next_e! are operators 
from next* family. 

Only particular operators can have their dedicated suffixes or particular a 
combination of them. Normally the suffixes have the following meaning: 

• “_a” - the property should hold within all the time range of the operator (e.g. 
p1: next_a[3 to 5](signal_1); ) 

• “_e”  - there should exist a time moment when the property holds within the 
time range of the operator (e.g. p1: next_e[3 to 5](signal_1); ) 

• “_”  - it means the overlapping version of the operator (e.g. p1: (x) until_ 
(y); ) 

• “!” - it means the strong version of the operator (e.g. p1: (x) until!_ 
(y);) 

Along with the set of operators, PSL has a number of built-it functions. Some of 
the functions are:  

prev() - returns the previous value of the expression in the argument 
next() - returns the value at the signal in the argument at the next smallest 

evaluation cycle 
rose() - returns ‘true’ if the signal in the argument has changed to ‘1’ from ‘0’ 

in the previous evaluation cycle, otherwise ‘false’ 
fell() - returns ‘true’ if the signal in the argument has changed to ‘0’ from ‘1’ 

in the previous evaluation cycle, otherwise ‘false’ 
stable() - returns ‘true’ if the signal in the argument has not been changed 

since the previous evaluation cycle, otherwise ‘false’ 

There are 7 more less frequently used PSL built-in functions. The formal 
definitions of the functions are available in [92].  

It is important to notice that PSL clearly defines when each of the properties 
should be evaluated by adding @ clocking operator at the end of each property 
(e.g. @(clk’event and clk=’1’); like in Figure 2.16 for VHDL flavor). The 
other option if the same evaluation cycle is valid for all the properties to declare in 
vunit one default clock (e.g. default clock is clk’event and clk=’1’;). The 
examples given in this work and the approaches from Chapter 3 assume the latter 
case and the properties evaluation clock to be the same with DUV’s one, if it is not 
stated otherwise. 
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2.2.2.2 Strong vs. weak operators 
In the PSL the notion of strength is applicable to the properties as such and to 

PSL temporal operators. A property holds strongly if it holds on a finite path 
(simulation-based verification) and will hold on any extension of the path (e.g. p1: 
eventually!(not a and b); ).  

As it is mentioned above the strong version of an operator is distinguished by 
“!” at the end of it. Temporal operators may come in both strong and weak forms 
or only in one of them. For example, always has only weak version, eventually! 
is available only in the strong one, while until can have the both. 

The strong operators require that the terminating condition eventually occurs, 
while the weak ones do not. Let’s consider two properties (busy until done;) 
and  (busy until! done;). The first one will be satisfied even if done is never 
asserted and busy stayed asserted forever, while the second one requires done to 
finally occur. 

2.2.2.3 Vacuous pass 
The notion of vacuity is not PSL specific, however it is important for 

understanding the concept of assertion satisfaction and violation.  

Vacuous pass occurs if a passing property contains Boolean expression that, in 
frames of the given simulation trace, has no effect on the property evaluation. 

Let’s consider a simple property (p1: always (req −> next ack);). p1 will 
pass on the simulation trace where signal req is never asserted without 
consideration when and if at all signal ack was asserted. It will be a vacuous pass 
because the property has passed not because of meeting all the specified behaviour 
but only because of non-fullfilment of logical implication activation conditions.  

It is verification (simulation) tool dependant decision whether to treat vacuous 
passes as actual satisfactions of properties. The approaches presented in Chapter 3 
separate vacuous passes from normal passes of a property. 

2.2.2.4 PSL flexibility and common equivalences 
Besides the convenience of 5 different flavors and different modes and styles, 

PSL gives the flexibility to express the same property in several possible ways. The 
most common equivalences for some simple properties expressed by means of 
different FL operators are provided in Figure 2.18. A set of commonly used 
equivalences between SERE and LTL style is provided in Figure 2.19. The other 
required equivalences can be written out as well or just used on-the-fly.  
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Property An equivalent property 
p or q not((not p) and (not q)) 

p and q not((not p) or (not q)) 

p −> q (not p) or q 

always p not(eventually! (not p)) 

always p never(not p) 

eventually! p not(always (not p))  

eventually! p “true” until! p 

next p not(next!(not p)) 

next! p not(next(not p)) 

p until q (p until! q) or (always p) 

p until q not((not q) until! ((not p) and (not q))) 

p until! q not((not q) until ((not p) and (not q))) 

p until_ q p until (p and q) 

p until!_ q p until! (p and q) 

p before q (not q) until (p and (not q)) 

p before! q (not q) until! (p and (not q)) 

p before_ q (not q) until p  

p before!_ q (not q) until! p  

next_event(b)(q) (not b) until (b and q) 

next_event!(b)(q) (not b) until! (b and q) 

Figure 2.18. Some common equivalences between PSL FL operators 

This flexibility allows avoiding particular parts of the language (e.g. undesired 
operators or their special order, or even the whole style). The reason for this may 
be requirement to follow some specific rules dictated by software tools or method. 
In some cases, however, satisfaction of the rules forbids usage of some expressible 
by PSL properties in any form.  

The most widely known set of such rules is the one defining the simple subset 
of PSL (Figure 2.21). It is a set of PSL supported by most of the available 
commercial hardware simulation tools with the ability to evaluate PSL assertions. 
The approaches described in Chapter 3 of this work have limited support for PSL 
as well. Some of the limitations were mentioned within this Chapter and will be 
discussed further.  

The flexibility of the PSL gives the possibility to express a very wide set of 
possible properties within the frames of the method or software tool constraints. 
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LTL style property An equivalent SERE style property 
eventually! b {[*] ; b}! 

eventually! s! {[*] ; s}! 

b until c {b[*] ; c} 

b until s! {b[*] ; s} 

b until! c {b[*] ; c}! 

b until! s! {b[*] ; s}! 

b and next c {b ; c} 

b and next s {b ; s} 

b and next! c {b ; c}! 

b and next! s! {b ; s}! 

next[i](b) {[*i] ; b} 

next[i](s) {[*i] ; s} 

next![i](b) {[*i] ; b}! 

next![i](s!) {[*i] ; s}! 

next_a[i to j](b) {[*i] ; b[*j-i+1]} 

next_a[i to j](s) for k in {i to j}: & {[*k] ; s} 

next_a![i to j](b) {[*i] ; b[*j-i+1]}! 

next_a![i to j](s!) for k in {i to j}: & {[*k] ; s}! 

next_e[i to j](b) {[*i to j] ; b} 

next_e[i to j](s) {[*i to j] ; s} 

next_e![i to j](b) {[*i to j] ; b}! 

next_e![i to j](s!) {[*i to j] ; s}! 

always{s} |−> p {[*] ; s}! |−> p 

always{s} |=> p {[*] ; s}! |=> p 

Figure 2.19. Some common equivalences between SERE and LTL style 

2.2.3 PSL simple subset 

PSL provides very wide spectrum of applications, including complete design 
formal specification. As it was mentioned in section 2.2.1, only FL part of it is 
applicable for simulation-based hardware designs verification. However, not the 
whole FL part but usually only its subset known as PSL simple subset is supported 
by currently available commercial dynamic verification and simulation tools.  

p1: always ((next sig_ack) −> sig_req);

p2: always (sig_ack −> next sig_ack); 

Figure 2.20. p1 does not belong to the PSL simple subset, while p2 does 
 

Loosely speaking the simple subset has a requirement for time to advance 
monotonically within the property expression. An example of two properties p1 
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PSL operator Restriction 
not the operand is a Boolean 
never the operand is a Boolean or a sequence 
eventually! the operand is a Boolean or a sequence 
or  at most one operand is a non-Boolean 
−> the left-hand side operand is a Boolean 
<−> both operands are Boolean 
until    until! the right-hand side operand is a Boolean 

until_   until!_ both operands are Boolean 
before* both operands are Boolean 
next_e* the operand is Boolean 
next_event_e* the FL Property operand is Boolean 

Figure 2.21. PSL simple subset rules 

and p2 is provided in Figure 2.20. Here, p1 does not belong to the PSL simple 
subset, while p2 does. 

 The simple subset is explicitly defined in [92] by the set of rules stating 
restrictions for several PSL operators operands types. The rules are provided in 
Figure 2.21. IBM, the authors of PSL’s predecessor Sugar, have published in [60] 
formal proof for the PSL simple subset specification.  

The aim of the simulation-based verification part of the approaches from 
Chapter 3 is the support for the complete PSL simple subset (not fully implemented 
yet and scheduled for the future work).  

2.3 Chapter summary  

This chapter has provided background information required for understanding 
of the main part of this thesis, where the work contributions are presented. The 
approaches proposed further rely on the design representation model based on 
high-level decision diagrams, proposed and developed in TUT. The first part of this 
chapter has discussed this model and emphasized its main advantages for 
application in simulation-based verification. 

The second part of the Chapter has presented PSL, as the source and reference 
language for assertions used in assertion-based verification methods described 
further in this work. The language description presented was oriented towards the 
approaches from this thesis.  
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Chapter 3 
ASSERTION-BASED 

VERIFICATION 

“Functional verification is hard. Period. No disagreement here,”-  

Harry Foster3 

Hardware design verification phase is known to take even more computational 
and human resources than the design phase itself.  This chapter proposes an 
approach of HLDD-based assertion checking aimed to assist with this problem. 

The main scope of this chapter is simulation-based verification aided by 
assertions. The three main contributions of this chapter are the following. The first 
one is a temporal extension for the existing HLDD model, described in the 
previous chapter. The second one is a methodology for direct conversion of 
assertions expressed in PSL to temporally extended high-level decision diagrams 
(THLDD). The third contribution is HLDD-based simulator HLDDsim 
modification to support THLDDs and assertions checking.  

A set of experimental results demonstrating the feasibility and effectiveness of 
the proposed concept is provided at the end of the chapter. Here the proposed 
approach is compared against a commercial simulator with PSL assertions support 
from a major CAD vendor. 

Finally, the reusability of verification assertions for manufacturing testing 
development is briefly discussed.  

                                                      
3 Harry Foster is the chair of IEEE-1850 WG, the chair of Accellera Formal Verification Technical Committee, 

principal engineer in Mentor Graphics, the author of several books about verification (i.a. [3] and [7]).  
(The citation is the first clause in the foreword to [4]).  
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3.1 Overview 

3.1.1 Design flow 

Figure 3.1. Design development flow (simplified) 

Specification

Design phase Verification 

Assertions

Testing 

DfT 

Manufacturing

Product 
Maintenance 

 
The flowchart in the Figure 3.1 shows the typical flow of a design (e.g. ASIC, 

i.e. Application Specific Integrated Circuit) development process. The process 
starts from the specification phase which normally results in formal or partially-
formal list of functionality and requirements for the future product. At the design 
phase the product implementation begins and usually goes through several levels 
of abstraction. The abstraction levels may include behavioural, TLM, RTL, gate 
and finally physical layout, required for the actual manufacturing and normally 
obtained by the synthesis tools. The design phase closely interacts with verification 
phase which checks the design’s partial and complete implementations for their 
functional correctness. Further the verified design is manufactured (manufacturing 
phase) at the factory and passed to the customer. At this point product maintenance 
phase begins, which concludes the product development process. However, in 
order to ensure the physical manufacturing correctness of the product instances 
(chips), each one of them should pass the testing phase against physical defect. The 
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last one is a complex task itself and can be assisted by Design for Testability (DfT) 
phase.  

At this stage it is a good time to distinguish between three important notions in 
the hardware design development process. The terms are sometimes used 
interchangeably in literature and some scientific publications. However, we would 
like to emphasize clear difference in their definitions (rephrased from [1] and [2]) 
used frames of this work.  

• Verification is meant to ensure that design fulfils the specified functionality. 
Verification is performed in software using models (i.a. HDL-based) 
evaluated in PC environment.  

• Validation aims at the same target as verification. However, here the object is 
real physical hardware prototype as opposed to model in verification.  

• Testing aims at physical defects in each produced instance of the product. 

While validation allows theoretically more accurate results, compared to 
verification, it is obviously more expensive to implement. In practice a validation 
phase can be added to the ASIC development flow after the design and verification 
phases in the simplified flowchart shown in Figure 3.1. Moreover, practically, 
validation often complements verification and used to check different more precise 
aspects of the implementation’s functional correctness. While validation is not 
considered in the reminder of this thesis, manufacturing testing will be discussed in 
more detail in the Section 3.6.   

3.1.2 Design verification 

Functional design verification usually assumes comparison of one 
implementation against specification or another implementation (alternative or 
simplified, i.a. at a higher abstraction level). The other way is not to compare 
against a reference but to narrowly aim at specific design properties. The second 
approach is usually referred as Assertion-Based Verification (ABV).  

The two main types of the hardware design verification approaches are formal 
(its alternative term is static) and simulation-based (alternative term is dynamic) 
ones. However, particular designs verification strategies (plans) may benefit from 
semiformal or other words mixed-type verification approaches.  

Informal definitions of the verification types are the following: 

• Formal verification assumes formal mathematical prove of the design 
correctness or its property validity. The formally proven aspect stays valid for 
any stimuli, if it is not stated otherwise.  

• Simulation-based verification relies on design simulation by a set of 
predetermined or random stimuli. The simulation results (waveforms) are 
further analyzed for similarity with the reference simulation results (e.g. of an 
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alternative implementation) or checked for a particular behaviour specified by 
the DUV’s property.  

In the industry the simulation-based verification approaches find much wider 
application due to their lower requirements to computational resources. The pure 
formal verification methods are not practically applicable to real life large designs 
and normally used only for designs smaller parts of a particular functionality.  

The decision diagrams based methods proposed in this chapter are dedicated to 
simulation-based verification. However, some of the contributions can be adapted 
to formal verification as well. 

3.1.3 Assertion-based verification 

A way to cope with the verification complexity is Design-for-Verifiability 
(DfV) techniques. They serve for the same purpose as widely used and well known 
DfT techniques for manufacturing testing. Assertion-Based Verification (ABV) can 
be classified as one of the DfV techniques. The main idea of DfV is application of 
complementary parts of HDL code introduced especially for design verification 
assistance. In case of ABV this complementary code is assertions.  

ABV is meant to assist both formal methods and simulation-based verification 
and allow discovering Design under Verification (DUV) misbehaviour (causing an 
assertion violation) earlier and more effective. Another important advantage of 
ABV is its aid to debug process.  

As it has been specified in Subsection 2.2.2, formally, assertions are asserted 
properties. Speaking loosely, assertions are formal representations of desired 
intents of the specification engineer or the designer. In the case of simulation-based 
verification they provide better observability on the design what allows detecting 
bugs earlier and closer to their origin. At the same time in the case of formal 
verification with model checking, the assertions increase the controllability of the 
design and direct verification to the area of interest. Each assertion violation 
discovered by model checking is reported as a counter-example. 

ABV was initially separately aimed at the main drawbacks of simulation-based 
and formal verification approaches. For the first one it is known that the 
performance of simulation is low at the system level and the design coverage is 
inversely proportional to the complexity of the system. For the second it is the fact 
that formal verification can achieve very high coverage but it has very limited 
scalability that usually cannot go above the module level.  

The question of the origin of assertions can be formulated as a separate topic for 
research itself. An important aspect here is the problem of completeness. Usually 
assertions do not describe all the possible properties of a design what would mean 
translation of the complete design specification to an appropriate formal 
specification language (e.g. PSL). Instead of this only design areas of concern, 
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sometimes referred as verification hot spots, are targeted. In practice they are often 
provided by design engineer and require deep knowledge of the DUV behaviour. 
Verification hot spot, as defined by [64], typically: 

 contains a great number of sequential states 

 deeply hidden in the design, making it difficult to control from the inputs 

 has many interactions with other state machines and external agents 

 has a combination of these properties 

As it has been already mentioned in the Clause 2.2.1.2, in practice there are two 
modes [2] of assertions description indirectly implicitly related to the two origins 
of assertions. The first mode is named embedded and assumes that the assertions 
are written directly to the design’s HDL files. It is preferred by design engineers 
who are the first group of assertions creators.  The second mode is named stand-
alone, which means that all assertions related to the design or its part (e.g. 
separated by a different HDL file) are grouped into a separate file. This mode 
allows more complex organization of assertions and normally preferred by 
verification engineers who form the second group of assertions creators.  

Figure 3.2. An example of assertion checking by a commercial tool 
 

Figure 3.2 shows example of assertion checking by a commercial tool. The 
screenshot in the figure is waveform, transcript and assertion expression windows 
of QuestaSim environment from Mentor Graphics Corp. Here the asserted property 
prop_lpc_lad_TRAL is activated at 165 ns of simulation time and fails at 465 ns 
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(marked by reversed triangle), because signal lpc_lad of the DUV has taken value 
x‘F’ instead of the awaited x‘B’. The simulator has reported an error to the 
transcript window. In the described simulation-based verification case, the 
application of this assertion has helped to detect DUV’s functional misbehaviour. 
The preconditions for this detection are an appropriate assertion and stimuli 
capable to cover the assertion.  

3.1.3.1 Diversity of assertion checking 
The notion of assertion checking may refer to different processes depending on 

the type of verification approach and other factors.  

In case of simulation-based verification, assertion checking means monitoring 
simulation results of the DUV for particular combinations notifying about 
satisfaction or violation of the property of interest. Such application of assertion 
checking has given assertions pseudonym monitors [6]. The properties with 
verification directives assume or restrict (for details, see Clause 2.2.1.3 and 
Subsection 2.2.2) instead of assert are sometimes named generators [6] and can 
serve for stimuli filtering or generation (this topic is discussed in more details in 
Subsection 3.6).  

As it was mentioned above assertion checking in formal verification may result 
in creation of a counter-example in case if the assertion fails. The assertions to be 
checked in formal verification are often referred to as checkers.  

At the same time there is a subset of assertions that can be expressed in the 
synthesizable form. The synthesizable form of assertions cannot be expressed in 
PSL and should be converted to constructs represented by another appropriate 
model (e.g. one of the HDLs, i.a. VHDL). These constructs are also referred to as 
(hardware) checkers. They are usually embedded to the version of DUV ready for 
synthesis and can be physically implemented as a single design on a chip, its 
prototype or in FPGA. These checkers can serve for many purposes including 
design validation and online test patterns generation for manufacturing testing (see 
Subsection 3.6). Usage of hardware checkers can lead to huge area overhead due to 
complex temporal relationships in the property implemented by the checker.  

 The main part of this chapter focuses on assertion checking in simulation-
based hardware verification. Using alternative terminology it is possible to say that 
it is focused on hardware assertions monitoring in software.  

3.1.4 State of the art 

To the best of our knowledge this thesis, supported by the series of publications 
([12],[11],[10],[13] and [14])co-auth., is the first attempt of PSL assertions conversion 
to and checking with decision diagrams based design representation model. Here 
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by decision diagrams we consider acyclic graphs, but not cyclic automata-based 
structures.  

The research topic of PSL properties conversion to design representation 
models is gaining its popularity. There are several approaches published in recent 
time ([65] - [75]). The target application of the converted properties varies and 
includes among others software monitors and hardware checkers.  

Yael Abarbanel et al. in [65] have proposed a tool called Formal Checkers 
(FoCs) [95] that has become very popular today and is widely used as a reference. 
It is capable of converting PSL properties of different flavors to synthesizable 
VHDL. This tool is discussed further in Clause 3.1.4.1. 

Oddos, Morin-Allory et al. in [66],[73] have proposed a modular approach 
where sub-modules for each PSL property operator are built and interconnected  
according to the expression being implemented, so that they produce a RTL 
synthesizable design. Assertions produce a pair of signals that indicate the status of 
the assertion. Such generator can be connected to the design under test for 
verification by simulation or emulation. 

Gheorghita et al. in [67] propose a competitor to FoCs, producing automata. It 
considers e and Verilog as output checkers HDLs. The time to produce the 
checkers is larger than in FoCs.  

Bustan, Fisman et al. in [68] provide automata construction for the core logic of 
PSL defined by them and named as LTL-WR, which is an extension of LTL with 
regular expressions. In their work they show that for every LTL-WR formula there 
exists a non-deterministic Bäuchi automaton whose size is exponential in the size 
of the formula. 

Pidan et al. in [69] proposed an algorithm with similar to [68] complexity for 
designing dynamic verifiers for PSL formulas. Firstly, they transformed a PSL 
formula to a non-deterministic finite automaton. Then they implemented the NFA 
with a discrete transition system, which, in turn, was translated into HDL codes.  

Kotasek et al. in [70] propose a methodology for generating VHDL descriptions 
of hardware checkers for such components as communication protocols, counters, 
decoders, registers and comparators. The proposed application of the approach is 
the design of fault tolerant systems. 

Boule, Zilic et al. in [71],[72] present a technique for automata-based checker 
generation of PSL properties oriented on dynamic verification and post-fabrication 
silicon debug. Their full automata-based approach (the tool’s name is MBAC) 
allows an entire assertion to be represented by a single automaton, as opposed to 
modular approaches (e.g. [73]) where sub-circuits are created only for individual 
operators. For this purpose, automata algorithms are developed for the base cases, 
and a complete set of rewrite rules is developed and applied for all other operators. 
The checkers produce a single result signal for each assertion, as opposed to the 
paired signal result (e.g [73]). 
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Riazati, Navabi et al. in [74],[75] propose an approach for hardware checkers 
creation by synthesizing OVL assertions. The intended application area is online 
manufacturing test and fault tolerant systems. First, based on the ATPG results and 
fault simulation, they select a set of assertions with a good ratio of fault coverage 
over hardware area. Second, they merge similar assertions together and make a 
unified hardware checker in order to attain minimized resource usage for assertion 
circuits and reduce hardware overhead. 

Direct PSL assertion checking in simulation-based verification is supported by a 
large number of commercial CAD tools and includes among others QuestaSim 
from Mentor Graphics Corp [77]. A list of more than 40 of such tools available by 
March 2006 was gathered by IBM in [100]. By current date the list should be 
significantly longer, considering that PSL has been approved as an IEEE standard 
in 2005. 

The main difference of the approach proposed in this chapter from the listed 
above ones are:  

• It allows avoidance of the synthesizable HDL descriptions related constraints. 
The approach aims verification by simulation in software, as opposed to 
validation by hardware emulation and post-silicon test/debug. This topic is 
discussed in more details in Clause 3.1.4.1.  

• At the same time the PSL properties are converted in straightforward way to 
acyclic decision diagrams without any loose of information. No automata-like 
structures constructions are involved in the conversion process.  

• The approach exploits a proven efficient for simulation high-level decisions 
diagrams design representation model.  

3.1.4.1 An experience with FoCs 
Our first attempt ([12],[24])co-auth. of PSL properties translation to HLDD was 

implying the generation of VHDL checkers by IBM’s FoCs [65],[95] as an 
intermediate step. However this experience has revealed particular limitations and 
inefficiency for HLDD-based assertions creation. Moreover, checkers synthesis 
from PSL properties are efficient mainly for the case where checkers are to be used 
in hardware emulation. The application of the same checker constructs for 
simulation in software may lack efficiency due to target language concurrency and 
poor means for temporal expressions.  

The details of the FoCs-based approach for PSL assertions conversion to HLDD 
model can be demonstrated by the example from [12]co-auth.. The object for this 
example is a simple SERE style PSL assertion fe_seq (Figure 3.3). 

 

fe_seq: assert always ({a; [*2]; b} |=> {c});

Figure 3.3. The fe_seq assertion for FoCs-based approach experience 
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The precondition of fe_seq assertion is the sequence of system behaviour when 
signal a is set to ‘1’, followed by a don’t-care sequence 2 clock cycles long and 
then signal b set to ‘1’. This precondition activates the main part of the assertion 
and requires c to be set to ‘1’ just after it (non-overlapping implication). 

PROCES
BEGIN 
  IF ( ( clk = '1' ) ) THEN 
    focs_ok <= 
    ( focs_vout(4) OR NOT( c ) ) ; 
  ELSE 
    focs_ok <= '1' ; 
  END IF; 
END PROCESS; 
 
PROCESS 
... 

LE focs_vout : std_logic_vector(4 DOWNTO 0); VARIAB
BEGIN 
  WAIT UNTIL (clk'EVENT AND clk = '1'); 
  ... 
  focs_vout(4 DOWNTO 0) := reverse( ( ( ( ( ( ( focs_v(0) AND a ) )  
    & ( ( focs_v(1) AND '1' ) ) ) & ( ( focs_v(2) AND '1' ) ) ) &  
    ( ( focs_v(3) AND b ) ) ) & ( ( focs_v(4) AND NOT( c ) ) ) ) ); 
  ... 
END PROCESS; 

S (clk) 

Figure 3.4. VHDL checker generated by FoCs for assertion fe_seq 
 

Figure 3.4 shows a shortened form of the resulting VHDL code generated by 
FoCs from the fe_seq expressed in PSL. The VHDL checker can be converted to 
HLDD graphs by means of the standard VHDL to HLDD interface tool [59]. 

A possible system of HLDD graphs representing the checker is provided in 
Figure 3.5. In the figure we use a notation where the prime symbol “ ' ” after 
diagram variable denotes one clock cycle delay.  
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c 

1 
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0
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Figure 3.5. HLDD representation of the VHDL checker from Figure 3.4. 
 

    As it can be seen from the Figure 3.5, the FoCs-based approach result in very 
ineffective system of HLDD graphs, which can be unreasonably large in case of 
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simple but long-time temporal properties. Here a separate graph is required for 
every variable’s evaluation cycle delay. Signals a and c are located in 4 cycles time 
distance and therefore caused 4 intermediate variables a1-a4. In case of physical 
hardware the intermediate variables may have to be substituted by memory 
elements (registers). 

Figure 3.6. An example of NFA and DFA for a pure LTL property !p→G((a|b)*)  

s2 s1

s3 s4

s5 

 
A solution to the inefficient for our task approach of checkers representation can 

lay in an explicit automata construction (FoCs may also in some cases implicitly 
construct automata-based structures). An example of such solution (among many 
others partially mentioned in Subsection 3.1.4) is provided in [6]. The approach 
requires a construction of NFA (Nondeterministic Finite Automation) followed by 
its defeminisation to DFA (Deterministic Finite-state Automaton). An example of 
NFA and DFA for a property expressed by original LTL with Regular Expressions 
is shown in Figure 3.6a and Figure 3.6b correspondingly (the semantics 
explanation is provided in [6]). However, this complicated solution does not suit 
for our target application which is verification by design simulation in software.  

Therefore a different solution for PSL assertions conversion to the target HLDD 
model was required. It should use all the advantages of model simulation in 
software without involving unnecessary restrictions (e.g. the ones came with FoCs 
application as an intermediate step). Later, we have proposed the solution as idea in 
[11]co-auth. and more detailed in [10]co-auth. and [13]co-auth.. The approach is one of the 
main contributions of this thesis and described in details further in this chapter. 

3.1.5 APRICOT 

APRICOT is an acronym for Assertions checking (monitoring), formal PRoperty 
checkIng, verification COverage measurement and Test pattern generation. This is 
the name [14]co-auth. for a hardware verification framework developed by Tallinn 
University of Technology. As it follows from its name decryption, the framework 
supports a wide range of verification tasks.  The novelty of APRICOT lies in the 
usage of the HLDD design representation model (see Subsection 2.1.2) advantages 
for the mentioned above verification tasks.  
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The direct APRICOT development has started during participation of TUT in 
Framework Program 6 European project VERTIGO [89]. The partners of the 
project besides TUT are ST Microelectronics (co-ordinator), Aerielogic, TransEDA 
and three other universities: LIU (Linköping, Sweden), SOTON (Southampton, 
UK) and UNIV (Verona, Italy).  

The framework is aimed at both education and research. It has interfaces to 
commonly used design formats such as VHDL, SystemC, PSL and EDIF, as well 
as an intermediate format HIF (HDL Intermediate Format), developed by UNIV. 
The internal format for SSBDD, HLDD and THLDD models representation is 
AGM (Alternative Graph Model format). Figure 3.7 shows the APRICOT 
verification flow. 

 
VHDL to HIF and SystemC to HIF interfaces are developed at UNIV and 

integrated to the flow as intermediate steps. HIF to HLDD interface is developed in 
cooperation [89] between TUT and UNIV, and the direct VHDL to HLDD 
interface is developed in TUT [59]. 

 The formal methods implemented in the APRICOT framework include high-
level Automated Test Pattern Generation (ATPG) and formal property checking. 
The former is based on DECIDER engine [19]co-auth.. The property checking 
constituent is currently reduced to using the modified DECIDER ATPG with 
constraint solving support (DECIDERverification) [46] as a model-checking engine. 

The basis for verification coverage analysis and assertion monitoring is fast 
HLDD-based simulator (HLDDsim) with the corresponding modifications. The 
following parts (marked my grey) of the APRICOT are contributions of this thesis 
and will be discussed further in more details:  

Figure 3.7. APRICOT verification flow 
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• HLDD-based assertions checking  (HLDDsimassertions) 

• HLDD-based  verification coverage analysis (HLDDsimcoverage) 

• PSL to THLDD interface  

• THLDD model for properties representation 

The APRICOT verification framework is easy to use because of the variety of 
the available interfaces to the common design formats. It supports a wide range of 
verification tasks that alternatively would require a set of different commercial 
CAD tools. All the tools of APRICOT are based on the efficient high-level 
decision diagrams design representation model and allow homogeneous 
verification flow. The experimental results (partially presented in Sections 3.5 and 
4.5) show the advantages of HLDD-based verification tools compared to the tools 
from the major CAD vendors. 

The mentioned above contributions of this thesis to the APRICOT are described 
in details in the current and the following chapters.  

3.2 Temporal extension for the HLDD model 

The first attempts of assertions application in hardware verification have 
revealed inefficiency and sometimes inability of the traditional hardware 
description languages to express complex temporal relationships in the properties. 
This fact has encouraged development of PSL (Section 2.2), with its powerful 
temporal instruments, and several other assertions-oriented languages mentioned in 
the introduction to Section 2.2. In the last years these languages have found a wide 
application in ABV projects and proven their efficiency.  

In the same way as PSL adds temporal instruments to assertion-based 
verification of the DUVs represented by HDL a temporal extension to HLDD 
model is required for a successful assertions application in HLDD-based 
verification flow.  

One of the principles of HLDD-based verification is homogeneous verification 
flow. It means that all objects of the flow should be represented by the same or a 
compliant design representation model, i.e. HLDD or HLDD compliant. While 
HLDDs are proven [44],[45],[19]co-auth. to be efficient for design representation, 
representation of temporal PSL properties by pure HLDDs has revealed 
inefficiency of this approach. This fact is discussed in details in Clause 3.1.4.1. The 
solution developed in ([11],[10],[13])co-auth. and provided in this chapter is a 
temporal extension to HLDD model. The model with this extension support is 
named as Temporally extended High-Level Decision Diagrams (THLDD).  

Further in this section the definition of THLDDs is presented and the interface 
of the novel model is discussed.  
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3.2.1 THLDD model definition 

Unlike the traditional HLDD described in the Subsection 2.1.2, the temporally 
extended high-level decision diagrams are aimed at representing temporal logic 
properties.  

A temporal logic property P at the time-step th ∈ T denoted by Pth = f(x,T), 
where x = (x1, …, xm)  is a vector defined on a finite domain X = X1×…×Xm  and  T 
= {t1, …, ts} is a finite set of time-steps. In order to represent the temporal logic 
assertion Pth = f(x,T), a temporally extended high-level decision diagram GP can be 
used. 

Definition 2: A Temporally extended High-Level Decision Diagram (THLDD) 
is a non-cyclic directed labelled graph that can be defined as a sextuple 
GP=(M,E,T,Z,Γ,Φ), where M is a finite set of nodes, E is a finite set of edges, T is a 
finite set of time-steps, Z is a function which defines the variables labelling the 
nodes, Γ is a function on E representing the activating conditions for the edges, and 
Φ is a function on M and T defining temporal relationships for the labelling 
variables. 

 The graph GP has exactly three terminal nodes Mterm ∈ M labelled by 
constants, whose semantics is explained below: 

• FAIL — the assertion P has been simulated and does not hold; 
• PASS — the assertion P has been simulated and holds; 
• CHECKING — the assertion P has been simulated and it does not fail, nor 

does it pass non-vacuously (See Clause 2.2.2.3 and Subsection 3.3.1 for 
discussions of vacuity).  

The function Φ(mi,t) represents the relationship indicating at which time-steps 
t∈T the node labelling variable xl=Z(mi) should be evaluated. More exactly, the 
function returns the range of time-steps relative to current time tcurr where the value 
of variable xk must be read. We denote the relative time range by Δt and calculus of 
variable xl using the time-range Φ(mi,t)= Δt by xl

Δt. We distinguish three cases: 

• Δt=∀{j,...,k}, meaning that xl
Δtj ∧ ... ∧ xl

Δtk  is true, i.e. variable xl  is true at 
every time-step between tcurr+j and tcurr+k. 

• Δt=∃{j,...,k}, meaning that xl
Δtj ∨ ... ∨ xl

Δtk is true, i.e. variable xl is true at least 
at one of the time-steps between tcurr+j and tcurr+k. 

• Δt=k, where k is a constant. In other words, the variable xl has to be true k 
time-steps from the current time-step tcurr. In fact, Δt=k is equivalent to and 
may be represented by Δt=∀{k,...,k}, or alternatively by Δt=∃{k,...,k}. 

Notation event(xc) is a special case of the upper bound of the time range denoted 
above by k and means the first time-step when xc becomes true. This notation can 
be used in the three listed above THLDD temporal relationship functions Φ(mi,t), 
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which creates the listed below variations of them. For xl
Δt, where xl and xc are node 

labelling variables: 

• Δt=∀{0,...,event(xc)}, which means that variable xl is true at every time-step 
between tcurr and the first time-step when variable xc becomes true, inclusive. 
This is equivalent to the PSL expression xl until_ xc. The PSL expression xl 
until xc can be represented by Δt=∀{0,...,event(xc)-1}. 

• Δt=∃{0,...,event(xc)}, which means that variable xl is true at least at one of the 
time-steps between tcurr and the first time-step when variable xc becomes true, 
inclusive. This is equivalent to the PSL expression xl before_ xc. The PSL 
expression xl before xc can be represented by Δt=∃{0,...,event(xc)-1}. 

• Δt=(k·event(xc)+1), which means that variable xl has to be true at the next 
time-step after the one where xc is true for the kth time. This is equivalent to the 
PSL expression next_event(xc)[k]xl. k is a positive integer greater or equal to 1. 
If k=1, then Δt=(event(xc)+1) and its is equivalent to the PSL expression 
next_event(xc) xl. 

For Boolean, i.e. non-temporal variables Δt = 0.  

The notion of event(xc) has been introduced in [13]co-auth.. 

3.2.2 THLDD interface 

THLDD name 
(property label) 

[ Δt ]

 
As it is mentioned above each THLDD graph has one root node and exactly 3 

terminal nodes (CHECKING, FAILED and PASSED), as opposed to HLDD graphs 
that have an arbitrary number of terminal nodes. This constraint has been 
introduced [11]co-auth. to allow strict hierarchy in complex THLDD graphs that 
imply THLDD sub-graphs. It has also an optional relative time range Δt, which 
shows when the assertion has to be checked. As it will be shown further, the 
standard interface is a precondition to the efficient and easy method for complex 
THLDD construction. The standard interface is shown in Figure 3.8.  

Figure 3.8. Standard THLDD interface 

FAIL PASS

A network of the THLDD 
nodes and / or sub-THLDDs

CHK.
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The meanings of the terminal nodes of the interface are as specified in 
Definition 2. This interface is suitable for the subset of PSL properties with weak 
versions of operators only. The support of strong versions of PSL operators 
requires the fourth terminal node PENDING (and, as it will be discussed further, 
modification of some PPGs, see Section 3.3). The support of strong versions of 
PSL operators would not influence the principals of the approach described in this 
chapter and is scheduled for the future work.  

3.2.3 THLDD temporal relationships 

One of the motivations for introduction of PSL was the poor ability of standard 
HDL languages to express temporal relations between expressions in assertions. 
The main instruments for this purpose used in PSL are temporal operators of its 
own (LTL) and repetition operators of SERE. A powerful part of the temporal 
operators are their auxiliary suffixes (see Clause 2.2.2.1).  

In this thesis we propose a temporal extension for the HLDD model that 
supports several temporal PSL constructs. The table in Figure 3.9 shows examples 
on how temporal relationships in THLDDs map to PSL expressions. The first two 
of the proposed in the table THLDD temporal relationship constructs are basic, 
while the following four are derivative from them. 

Class THLDD 
construct  Φ 

Formal semantics Equivalent PSL 
expression 

B
as

ic
 xΔt=∀{j,...,k} x holds at all time-steps between tj and tk next_a[j to k] x  

xΔt=∃{j,...,k} x holds at least once between tj and tk next_e[j to k] x 

D
er

iv
at

iv
e 

xΔt=k x holds at k time-steps from tcurr next[k] x  

xΔt=∀{0,...,event(xc)} x holds at all time-steps between tcurr and 
the first  time-step from tcurr where xc holds x until_ xc  

xΔt=∃{0,...,event(xc)} x holds at least once between tcurr and the 
first  time-step from tcurr where xc holds x before_ xc 

xΔt= (k·event(xc)+1) x holds at the next time-step after the one 
where xc holds for the kth time from tcurr 

next_event(xc)[k] x 

Figure 3.9. Table of temporal relationships in THLDDs 
 

In addition, we introduce [11]co-auth. the notion of tend as a special value for the 
upper bound of the time range denoted by above by k. tend is the final time-step that 
occurs at the end of simulation and is determined by one of the following cases:  

• Number of test vectors 
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• The amount of time provided for simulation 
• Simulation interruption 

The special values for the time range bounds (i.e. event(xc) and  tend)  are 
supported by the HLDD-based assertion checking approach (please see Section 3.4 
for the details). In the proposed approach design simulation, which calculates 
simulation trace, precedes assertion checking process. In practice, tend is the final 
time-step of the pre-stored simulation trace.  

Note, that the main purpose of THLDD as the proposed temporal extension for 
the existing HLDD model defined in Subsection 2.1.1 is transferring additional 
information (i.a. temporal) to the modified HLDD simulator HLDDsimassertions that 
will be used for assertions checking. Further minor not principal extensions of the 
THLDD model would require, first, introduction of the new notation to the model 
(primarily its description in the AGM format) and, second, the corresponding 
“teaching” HLDDsim how to understand and process this extension.  

3.3 PSL to THLDD conversion method 

The idea of the proposed conversion method ([11],[10],[13])co-auth. relies on the 
principle of “divide and conquer”. The method is based on partitioning of PSL 
properties into elementary entities containing only one operator. There are two 
main stages in the approach. The first one is preparatory and consists of Primitive 
Property Graphs Library creation for elementary operators. The second stage is 
PSL assertion expression parsing and recursive hierarchical construction of the 
THLDD for a complex property using the PPG library elements.  

3.3.1 Primitive Property Graphs 

Prior to the THLDD property construction procedure a Primitive Property 
Graph (PPG) should be created for every PSL operator supported by the proposed 
approach. All the created PPGs are combined into one PPG library. The library is 
extensible and should be created only once. It implicitly determines the supported 
PSL subset. The method currently supports only weak versions of PSL operators. 
However, by means of the supported operators a large set of properties expressed 
in PSL can be derived, as it was discussed in Clause 2.2.2.4.  

Primitive Property Graph is always a THLDD graph. That means it has the 
standard interface with one root node and three terminal nodes (CHECKING, FAIL 
and PASS) as it was described in Subsection 3.2.2. Some potential modifications of 
the approach like strong PSL operators’ support, and consequently modification of 
the interface, may lead to recreation of all PPGs.  
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Example PPGs created for 4 PSL operators are shown in Figure 3.10. The 

complete set of PPGs from the current version of the PPG library with detailed 
complementary information is presented in Appendix A.  

Note, that the logic implication operator ‘->’ in Figure 3.10b exits to the 
terminal node CHECKING when the precondition Pa fails. This is due to the fact 
that in assertion checking the verification engineer is not interested in non-vacuous 
passes of the property (see Clause 2.2.2.3). The terminal node CHECKING is 
allowed to be eliminated from some graphs where it practically cannot be reached. 
This permission does not interfere with the proposed general THLDD structure. 
The PPGs, as well as complex THLDDs, without temporal relationships (e.g. 
logical and and logical implication) are evaluated to one of the terminal nodes at 
every time-step of the assertion checking. At the same time, the PPGs, as well as 
complex THLDDs, with temporal relationships (e.g. logical always and next_e) 
may evaluate to one of the terminal nodes at an arbitrary time-steps of the assertion 
checking, according to their particular temporal relationship function. In the 
following subsection an assertion checking algorithm is presented that is capable of 
handling such functions. 

3.3.1.1 PPG Library  
Appendix A at the end of this thesis presents the extensible Library of Primitive 

Property Graphs (PPG Library) in details. First, the format of ppg.lib file used for 

Figure 3.10. Example PPGs for a set of PSL operators 

a) invariance operator always 
 

PPG2 ″Pa -> Pb ″ 

FAIL PASS CHK.

Pa Pb 

PPG1 ″always(Pa) ″ 

[tmin = 0;  tmax = tend ] 

FAIL PASS

Pa 

CHK. 

b) logic implication -> 

c) temporal operator next_e 

PPG3 ″next_e[ j to k ](Pa)″ 

[ Δt = ∃{ j,...,k } ]

FAIL PASSCHK. 

Pa 

 

PPG4 ″ Pa and Pb″ 

d) logical and 

FAIL PASS 

P Pb a 

CHK.
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THLDD properties constructor is given. Then PPGs for a set of supported PSL 
operators are provided. Every clause describing a PPG consists of: 

• PSL notation in correspondence with [92] 
• THLDD graph in AGM format 
• THLDD graph graphical portrayal 
• PPG operator related notes. 

PPG Library section is separated to a separate Appendix because of its size and 
in order to keep the coherence of the PSL to THLDD properties conversion method 
explanation flow.  

3.3.2 Parser 

The second stage of the proposed method is implemented [10]co-auth. as one tool  
but has a logical division into two separate tasks. The first task is PSL property 
expression parsing.  

As it has been mentioned in Section 2.2 PSL is a very rich and powerful 
language. None of the commercial or academic tools available at present have the 
support for the whole language set, moreover such a support would be impractical. 
In practice each of the tools with PSL support has a set of rules for the PSL-
expressed properties and assertions. At present, the proposed approach has the 
following restrictions and assumptions for the PSL expressions. The most of them 
are not principal and can be easily modified in future. 

1. Stand-alone mode. As it has been specified in Clause 2.2.1.2 and Section 
3.1.3, in this mode all the PSL properties related to the DUV are put into 
separate files, as opposed to their embedment into the DUV’s HDL files.  

2. Single clock. The present implementation of the approach assumes all the PSL 
assertions under conversion are clocked and their clock is the same as the one 
of the DUV. A consequent assumption is a single clock in the part of the DUV 
set up for co-simulation with the assertions. In terms of PSL there should 
present one default clock declaration for all the properties in the file (e.g. 
default clock is clk’event and clk=’1’;).  

3. Limited support for the verification and modelling layers of PSL. Currently 
each property is supported and assumed to have only verification directive 
assert (i.e. the approach supports only assertions). It can be adjoined directly 
to the property body (Figure 3.11a ) or stated separately with the support for 
combination of properties (Figures 3.11b and  3.11c). The most of the 
constructs of the verification and modelling layers are not supported directly; 
however their meaning can be expressed by means of upper-layer THLDD 
properties (discussed further in Subsection 3.3.4). 
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4. Subset of supported PSL operators.  

a. The current implementation supports only LTL style and does not support 
SERE style of PSL assertions expressions. This support can be easily 
added by extension of PPG Library and minor extension of the parser.  

b. Only weak versions of PSL operators are supported. The strong versions 
would require modification of the THLDD standard interface and several 
PPGs).  

c. PPGs for some PSL FL operators (e.g. abort) are not developed yet. 
However, this fact is not due to a principal constraint of the proposed 
approach. 

The subset of supported operators is implicitly defined by the PPG Library. 

a) 
   a1: assert always (a -> (b or c)); 

b) 
   p2: always (a -> (b or c)); 
   a2: assert p2; 

c) 
   p3: ( or ); b  c
   a3: assert always (a -> p3); 

Figure 3.11. Possible combinations for the verification directive assert usage 
 

In case if the above set of rule is satisfied the parser will partition the property 
under conversion into entities containing one operator only. Further the 
hierarchical set of the entities operators is passed to the constructor. The operands 
of the operators can be:  

• primary inputs and outputs 
• internal signals (variables) 
• other operators 

The precedence of the operators in the hierarchy is kept in accordance with [92] 
(see Figure 2.17) and their order of appearance. The order is passed to the parser 
from the PPG Library file ppg.lib where it is explicitly specified for the supported 
(described in this file) set of the operators. The details are described in Section A.1 
of Appendix A.  

3.3.3 Constructor 

Complex properties are hierarchically constructed from elementary graphs in 
PPG Library in the top-down manner. The process of construction starts from the 
operators with the lowest precedence forming the top level. Then their operands 
that are sub-operators with higher precedence recursively form lower levels of the 
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complex property. For example, always and never operators have the lowest level 
of precedence and consequently their corresponding PPGs are put to the highest 
level in the hierarchy. The sub-properties (operands) are step-by-step substituted by 
lower level PPGs until the lowest level, where sub-properties are pure signals or 
HDL operations.  

As it was mentioned earlier, the verification directive assert is assumed for all 
the properties in the current approach. Therefore, it does not have any reflection in 
the final property under conversion graphical portrayal or its code in the AGM 
format. Please note that this directive (as well as others e.g. assume) is not a PSL 
operator and therefore it cannot have a PPG. In the future work different 
verification directives can be represented as auxiliary suffixes to the properties 
names to pass this information to the THLDD processing tool (e.g. HLDDsim).   

Let us consider an example PSL assertion gcd_ready for the GCD1 design (see 
Figure 2.10) provided in Figure 3.12. 

gcd_ready: assert always((not ready) and (a=b) -> next_e[1 to 3](ready)); 

Figure 3.12. An example PSL assertion P for DUV GCD 
 

The step-by-step construction of this complex property is presented in Figures 
3.13 and 3.14 (in the intermediate steps the gcd_ready property is denoted by P). 
The process consists of 6 steps starting from the lowest level precedence operator 
always of the gcd_ready (denoted by P) property (Figure 3.13a). In this step the 
remaining part of the PSL property under construction, put into the brackets of this 
operator, is considered as its operand P1. The PPG corresponding to always is 
taken from the PPG Library and put as the starting THLDD of the property. The 
figure contains the portrayal of this THLDD for illustration, while the tool itself 
“thinks” in terms of AGM format for THLDD representation. In the second step 
(Figure 3.13b) the operand of always P1 in the THLDD is substituted by the PPG 
for logical implication -> with two operands P2 and P3. The process continues until 
the Step 6 (Figure 3.14c) where all the sub-properties P5, P6, P7 from Step 5 
(Figure 3.14b) that are operands for the upper level operators are whether pure 
signals (e.g. ready) or HDL expressions (e.g. a=b).  

Please note that the Step 6 includes also elimination of a number of redundant 
edges outgoing from terminal nodes CHECKING of P5, P6, P7 from Step 5. These 
sub-properties have been considered as temporal (aka TOP in PPG Library 
terminology, see Appendix A) in Step 5 and therefore had the third terminal node. 
After their substitution by Boolean and bit type operands (aka BOP in PPG Library 
terminology, Appendix A) their terminal nodes CHECKING are eliminated. 

Figure 3.14c shows the final THLDD representation for the example complex 
PSL property P given in Figure 3.12.  
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Figure 3.13. A THLDD property construction process  
(continued in Figure 3.14) 

Complete:      P: assert always((not ready) and (a=b) -> next_e[1 to 3](ready)); 
Constructed:  P: assert always(P1); 

P1a) Step 1 

P2

P 
[ tmin = 0;  tmax = tend ] 

 

P3

Complete:      P: assert always((not ready) and (a=b) -> next_e[1 to 3](ready)); 
Constructed:  P: assert always(P2 -> P3); 

b) Step 2 

P4 P3

Complete:      P: assert always((not ready) and (a=b) -> next_e[1 to 3](ready)); 
Constructed:  P: assert always((P4 and P5)-> P3); 

c) Step 3 P5

FAIL PASS

P1

CHK. 

P 
[ tmin = 0;  tmax = tend ] 

FAIL PASS

P2 P3

CHK. 

P 
[ tmin = 0;  tmax = tend ] 

FAIL PASSCHK. 

P3P4 P5
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a) Step 4 

 

Figure 3.14. A THLDD property construction process  
(continued from Figure 3.13) 

P7 P6 

Complete:      P: assert always((not ready) and (a=b) -> next_e[1 to 3](ready)); 
Constructed:  P: assert always(((not P7) and P5)-> next_e[1 to 3]P6); 

b) Step 5 P5

P4 P6 

Complete:      P: assert always((not ready) and (a=b) -> next_e[1 to 3](ready)); 
Constructed:  P: assert always((P4 and P5)-> next_e[1 to 3]P6); 

P5

P7

P 
[ tmin = 0;  tmax = tend ] 

P6 

Complete:      P: assert always((not ready) and (a=b) -> next_e[1 to 3](ready)); 
Constructed:  P: assert always((not ready) and (a=b) -> next_e[1 to 3](ready)); 

c) Step 6 P5

FAIL PASS

P6 
[ Δt=∃{1,...,3} ]P4 P5

CHK. 

P 
[ tmin = 0;  tmax = tend ] 

FAIL PASS

P6 
[ Δt=∃{1,...,3} ]P7 P5

CHK. 

1 T 

ready a=b  ready [Δt=∃{1,...,3}]

[ tmin = 0;  tmax = tend ] 

FAIL 

0 

F F 

T 

P (gcd_ready) 

PASSCHK. 
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The presented PSL to THLDD conversion method supports PSL files with a set 
of PSL assertions and pure properties. The properties are allowed to have 
hierarchical dependencies and multi-layered properties for verification layer 
expression assistance. This topic is discussed in more details in the next subsection. 
The resulting THLDD properties are stored in AGM format file. This file serves as 
an input for HLDD based assertions checking tool presented in the next section.  

3.3.4 Representation types of THLDD properties  

The THLDD properties may have the following three types of representation: 

• Flattened 
• Partially flattened 
• System-based 

The first type assumes the whole property to be represented by a single graph. 
An example THLDD property given in Figure 3.14c is of this type. Flattened 
representation is the most optimized for checking by HLDDsimassertions, because it 
reduces the number of nested calls and therefore reduces the checking time. 
However, not all the generally supported PSL properties can have this type of 
THLDD representation. In case if a basic Boolean sub-property within the given 
property of interest has a complex activity time window (i.a. not a single range), 
then the property can have only partially flattened or system-based representations.  

The second type of representation was introduced to overcome the constraints 
of the first type. Partially flattened representation of a property is a system of 
graphs, where several temporal sub-properties are detached to separate graphs in 
order to keep all the sub-properties activity windows simple (describable by a 
single continuous range). Optimal partially flattened representation of a property 
has the minimal number of graphs capable to express the complex system of time 
windows in THLDD. The number of separate graphs in the optimal partially 
flattened representation is less than or equal to the number of temporal operators in 
the property. An example of a PSL property that requires partially flattened (or 
system-based) representation is given in Figure 3.15. The detailed discussion of the 
complex and simple time windows is given in the next subsection. 

complex_tw_1: assert always (A -> next_a[3 to 7](next_e[1 to 4](B)) ); 

Figure 3.15. An example of a property with a complex activity time window 
 

System-based representation of a property is the system of PPGs corresponding 
to the property’s operators. The number of graphs in such representation is always 
equal to the number of all operators (must be listed in PPG Library and not treated 
as a HDL Boolean expression or otherwise) of the property. This type of 
representation is maximal and may cause HLDDsimassertions non-optimal 
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performance in terms of checking time due to higher number of nested calls. 
However, the main benefit of this type of representation is its flexibility and 
reduction of principal constraints for an arbitrary property representation by 
THLDD. System-based represented property is also more flexible in terms of 
simple modifications for its reusability within verification plan. It means, a similar 
property differing by a simple part (please consider the example in Figure 3.16) can 
be derived from the original one by touching only one THLDD sub-graph in the 
system leaving the rest of its sub-graphs and links as they were. An implicit 
argument for system-based THLDD representation type usage is the design 
representation model HLDD system-based nature. 

P1: assert always (A -> (next_a[3 to 7](B)) or (next(C))); 

P2: assert always (A -> (next_a[3 to 7](D)) or (next(C))); 

P3: assert always (A -> (next_a[3 to 8](B)) or (next(C))); 

 
P2 and P3 are similar to P1, and can be derived by modifying only one graph in the system. 

Figure 3.16. Similarity in properties   
 

The system-based structure is also used for multi-layered THLDD properties. 
They are applied for the Verification and Modelling layers of PSL and can be 
utilized for modelling of ABV plan or its parts. The upper-layer THLDD properties 
are very useful for properties internal reuse management – an important part of a 
real life verification process configuration.  

low_prop1: assert always (A -> (next_a[3 to 7]( )) or (next(C))); B

low_prop2: assert always (D -> ((E) until (F)); 

low_prop3: assert always (C -> (next[2](not (C)))); 

conf1: low_prop1 and low_prop2;  

conf2: low_prop2 and low_prop3; 

Figure 3.17. An example of upper-layer properties application 
 

An example of upper-layer property usage is given in Figure 3.17. Here 
assertions low_prop1, low_prop2, low_prop3 are used in two different 
configurations of an ABV plan. The major shortcoming for the upper-layer 
properties flexibility is the constraints of PSL simple subset (see Subsection 2.2.3). 
For example, some of them are the restriction for the negation operator not operand 
to be Boolean and the restriction for the logical or operator at least one of the 
operands to be Boolean. These restrictions prohibit convenient combinations of 
temporal lower-layer properties in upper-layer ones. 
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Figure 3.18 shows system-based representation of the property gcd_ready 
(Figure 3.12) for GCD1 design (Figure 2.10).  
gcd_ready: assert always((not ready) and (a=b) -> next_e[1 to 3](ready)); 

The THLDD flattened representation for this property was shown in Figure 
3.14c.  

 
The process of creation of a flattened type THLDD property was described in 

details in this section. The process of creation of partially-flattened and system-
based types properties is very similar. The difference is (partial) replacement of, 
the direct substitution of operands by lower-level sub-properties’ PPGs, by creation 
of links (i.e. calls) between them. In frames of this thesis by default we consider 
optimal partially flattened representation type for THLDD, if it is not stated 
otherwise.  

Figure 3.18. A system-based type representation of the property gcd_ready  

 

FAIL PASS CHK.

P2 P3 

P1   THLDD for ( P2 -> P3 ) 

 

P3   THLDD for ( next_e[1 to 3] (ready) 

[ Δt = ∃{ 1,...,3 }  ] 

FAIL PASS CHK.

(ready)

System of THLDDs for gcd_ready 

PASS FAILCHK.

P4   THLDD for ( not ready ) 
 

FAIL PASSCHK. 

(ready) 

P2   THLDD for ( P4 and (a=b) ) 

FAIL PASSCHK. 

P4 (a=b) 

gcd_ready  THLDD for ( always(P1) ) 
[tmin = 0;  tmax = tend ] 

FAIL PASS

P1 

CHK. 
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3.4 The method for assertions checking with HLDDsim  

This section presents a method for HLDD-based assertions checking. First the 
existing HLDD design simulator HLDDsim is discussed. Further its 
complementary modification for assertions checking support is presented. The 
section also presents the general flow of HLDD-based assertion checking process 
and discusses in details the THLDDs’ checking timing issues. 

3.4.1 HLDDsim algorithm 

The basis for assertion checking proposed in this thesis is the HLDD model 
simulator (HLDDsim) engine. An algorithm for it (Algorithm 1) is presented in 
Figure 3.19. It supports both behavioural and RTL (pure RTL and behavioural 
RTL, see clauses 2.1.2.3 and 2.1.2.4) design abstraction levels and has been 
proposed in [45]. This algorithm is briefly explained below and it is used for DUV 
simulation. The following description uses HLDD model data structure notations 
provided in Clause 2.1.2.1. 

In the RTL style, the algorithm takes the previous time step value of variable xj 
labelling a node mi if xj represents a clocked variable in the corresponding HDL. 
Otherwise, the present value of xj will be used. In the case of behavioural HDL 
coding style HLDDs are generated and ranked in a specific order to ensure 
causality. For variables xj labelling HLDD nodes the previous time step value is 
used if the HLDD diagram calculating xj is ranked after current decision diagram. 
Otherwise, the present time step value will be used. 

SimulateHLDD() 
For each diagram G in the model 

 mCurrent = m0 
 Let xCurrent be the variable labeling mCurrent  
 While mCurrent is not a terminal node 
  If  xCurrent is clocked or its DD is ranked after G then 
   Value = previous time-step value of xCurrent 
  Else 
   Value = present time-step value of xCurrent 
  End if 
  For {Γ | Value ∈ Γ(eactive), eactive =( mCurrent, mNext)}  
   mCurrent = mNext 
  End if 
 End while 
 Assign xG = xCurrent   

End for 
End SimulateHLDD 

Figure 3.19. Algorithm 1. RTL/behavioural simulation on HLDDs  
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3.4.2 HLDDsim modification for assertions checking 

The support of assertion checking in HLDDsim implies an extra step added on 
top of the existing functionality.  

AssertionCheck() 
 For each diagram G in the model 
  For t=tmin...tmax 
   mCurrent = m0 ; tnow = t 
   xCurrent = Z(mCurrent)  
  Repeat  
   If tnow >  tmax then  
    Exit 
   End if 
   Value = xCurrent at Φ(mCurrent,tnow)  
   mCurrent = mCurrent

Value 

   tnow = tnow+Δt
 

   Until mCurrent ∉ Mterm 
   Assign xG = xCurrent at time-step tnow 
  End for /* t= tmin...tmax */ 
 End for 
End AssertionCheck 

Figure 3.20. Algorithm 2. Assertion checking based on THLDDs 
 

This step is preceded by executing Algorithm 1 (Figure 3.19) from the previous 
subsection which calculates the simulation trace (i.e. values of variables at the 
HLDD nodes during the simulation time). This trace is a starting point for assertion 
checking. This step is formally explained by Algorithm 2 in Figure 3.20. It takes 
into account temporal information at the nodes and has an exit condition in order to 
avoid eternal loops that are due to the cyclic nature of the general case of THLDDs.  

tmax

time step

tj tk 

Δt 

tmin tcurr 

Figure 3.21. THLDD time windows in assertion checking 
 

Figure 3.21 shows an example of time windows for a THLDD graph converted 
from a two-operator PSL assertion two_win: assert always(next_a(j to 
k)(x)). Here the light-gray time window limited by tmin and tmax belongs to always. 
The dark-gray time window belongs to next_a. It is dynamic (moving along the 
time axe), denoted by Δt=∀{j,...,k}, with size tk-tj and relative to tcurr, which is the 
current position in time. Normally, depending on its complexity, a THLDD has one 
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static and several dynamic time windows that can overlap. The next subsection 
(Subsection 3.4.3) provides a discussion on time window dependencies and 
possible transformations.  

A general flow of the HLDD-based assertion checking process is given in 
Figure 3.22. The input data for the first step (simulation) are HLDD model 
representation of the design under verification and stimuli. This step results in 
simulation trace stored in a text file. The second step (checking) uses this data as 
well as the set of THLDD assertions as input. The output of the second step is the 
assertions checking results that include both information about the assertions 
coverage and validity.  

Figure 3.22. HLDD-based assertion checking process flow 
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The validity state (i.e. CHECKING or FAIL or PASS) of the monitored 

assertions is stored for every time step. That allows further analyzing which 
combinations of stimuli and DUV states have caused assertions violations and 
passes. This data also implicitly contains information about the monitored 
assertions coverage (i.e. assertion activity: active or inactive) by the given stimuli 
(testbench). A lower than expected assertions coverage may warn about 
insufficient stimuli. 

The process of DUV assertions-based verification with the HLDD-based 
approaches presented in this chapter is performed according to the common ABV 
flow.  
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3.4.3 THLDD assertions checking timing issues 

As it was stated in Subsection 3.2.3 the temporal extension for HLDD model 
proposed in this thesis supports 2 basic and a number of derivative temporal PSL 
constructs (please refer to Subsections 3.2.1 and 3.2.3). A wide set of complex 
temporal relationships is obtainable by means of this main constructs and special 
values for the upper bounds of the time range (i.e. event(xc) and  tend).  In this 
subsection we will discuss in more detail temporal relationships in THLDD graphs 
and especially their treatment during assertions checking by HLDDsim.  

PSL operator next_e has a constraint application determined by the rules of PSL 
simple subset (see Subsection 2.2.3). Namely it is not allowed to have a temporal 
operand. Operator next_a does not have such a constraint and can embrace both 
next_a and next_e temporal operators as its operands.  

 
Let us consider two possible cases of next_a and next_e combinations of 

embracement depth equal to 2.  

The first case when operator next_a embraces another instance of next_a is 
shown in Figure 3.23a. Here a PSL property win_P1: next_a[k to l](next_a[m 
to n](x)) (where (k:=4) < (l:=12) , (m:=2) < (n:=7) are integers and x is a 
Boolean property) is considered. The first dynamic time window is relative to the 
time step 0 (it does not float further because there is no PSL invariance operator 
always), it starts at time step k and lasts till time step l. The second dynamic time 
window is dynamically relative to the time steps in the range from k to l, starts at 
the mth and lasts till the nth time step from the reference point. The gray rectangles 
(A-H) in Figure 3.23a denote the set of these time windows. The property win_P1 

Figure 3.23. Overlapping of time windows for next_a + next_a combination 
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will be satisfied only in case if the Boolean property x will hold at all time steps in 
the range {tk+m, ... , tl+n}. Some of the time windows A-I overlap, for example at 
time step tl the validity of sub-property x is checked 5 times, i.e. within time 
windows B, C, D, E, F. The property P1 can be substituted by functionally 
equivalent win_P2: next_a((k+m) to (l+n))(x).  Figure 3.23b shows the 
single time window of property win_P2. A set of dynamic time windows of 
property win_P1 can be represented by a single time window and therefore this 
property can have a flattened representation. However, the proposed substitution 
may lead to a certain loose of potential debug information, i.e. the information 
about in which of the overlapping time windows in particular the violation has 
happened. 
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F                    

            E        

      D              

C                    
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A                    
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Figure 3.24. Overlapping of time windows for next_a + next_e combination 
 

The second case is when operator next_a embraces operator next_e is shown in 
Figure 3.24. Here a PSL property win_P3: next_a[k to l](next_e[m to n](x)) 
(where (k:=4) < (l:=12) , (m:=2) < (n:=7) are integers and x is a Boolean 
property) is considered. This property also has 9 final time windows A-I, however, 
they cannot be substituted by a single time window or at least a less number of time 
windows. In case if the sub-property x holds at two time steps 10th and 18th marked 
by bold lines in figure, then win_P3 will hold only for the time windows A-D, H-I 
and violate for 3 time windows E, F, G. win_P3 cannot have a flattened 
representation, because it has more than one dynamic time window. Therefore its 
minimal representation is a system of 2 THLDD graphs (optimal partially 
flattened). If the Boolean sub-property x (which is an operand in the considered 
above properties) is complex, then it can cause additional THLDD graphs for 
system-based representation.  

 PSL temporal operator always can be considered as a special case of the first 
basic temporal construct from Figure 3.9 temporal operator next_a. Namely, if we 
use the notion of tend from Subsection 3.2.3, then for a Boolean property x: 

always(x) ≡ next_a(0 to ‘end’)(x) 

62 

 



Therefore, a static time window of a TLHLDD property [tmin ... tmax] defined by 
always can also be considered as a special case of a dynamic window 
Δt=∀{0,...,tend} relative to the starting point of the simulation trace t0.  

In practice, the majority of PSL assertions start with the invariance operator 
always. The external window was introduced for the practical simplification 
purposes. In some sense, PSL can be considered as a “sugaring” for the formal 
logics LTL and CTL. An optimal THLDD-based temporal property representation 
would require initially their optimal formal representation in LTL. However, the 
proposed in this thesis approach is PSL oriented. 

The examples from this subsection demonstrate the necessity of THLDD 
properties with complex temporal relationships to be represented by more than one 
graph.  

3.5 Experimental results 

This section provides experimental results [10]co-auth. of assertion checking 
execution times comparison between the proposed HLDDsimassertions simulator and 
a state-of-the-art commercial tool from a major CAD vendor.  

The experiments were performed with 4 experimental benchmarks.  The first 
one is gcd design from the HLSynth92 benchmarks family [103]. Its VHDL and 
HLDD representations were provided in Figure 2.10 (Clause 2.1.2.4). The 
remaining designs are two from ITC’99 benchmarks family [76],[102],[105] and 
one created in University of Verona.   

Design 
Characteristic, number 

VHDL lines inputs outputs signals HLDD nodes

gcd 75 4 1 8 25 

b00 76 4 2 7 37 

b04 84 6 1 14 58 

b09 102 4 1 9 44 

Figure 3.25. Benchmark characteristics table 
 

The characteristics of the benchmarks are provided in Figure 3.25 and their 
functionality is described below:  

• gcd is a design implementing functionality of a greatest common divisor. 
• b04 is a design implementing functionality to compute minimum and 

maximum. 
• b09 is a design implementing functionality of serial to serial converter. 
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• b00 is a benchmark created in University of Verona. It is specially 
designed to contain hard-to-test branches and addresses their testability / 
verifiability analysis problems. The design contains conditional statements 
where one branch has probability (1 − 1/ 232)of being satisfied, while the 
other has probability (1/ 232). 

A set of 5 realistic assertions has been created for each benchmark. The 
assertions selected for GCD1 are the following: 
p1: assert always(((not ready) and (a = b)) -> next_e[1 to 3](ready)); 

p2: assert always (reset -> next next((not ready) until (a = b))); 

p3: assert never ((a /= b) and ready); 

p4: assert never ((a /= b) and (not ready)); 

p5: assert always( reset -> next_a[2 to 5](not ready)); 

The assertion p1 has been discussed in the previous sections as gcd_ready. Its 
THLDD representations of different types were provided in Figures 3.14c and 3.22. 
THLDD properties of the optimal partially flattened representation type were 
considered in the current experimental setup.  

Design Stimuli Length 
(clocks) 

The proposed approach (HLDDsim) Commercial tool 

Simulation 
Time 

(seconds) 

Checking 
Time 

Total 
Time 

(seconds) 

Total 
Time 

(seconds) (seconds) 

 
Figure 3.26 shows the results of the experiments. Both simulators were supplied 

with the same sequences of realistic stimuli providing a good coverage for the 
assertions. (The stimuli were pre-generated by the appropriate testbenches of the 
DUVs).  The test lengths are shown in the second column of the table. The third 
and fourth columns show the simulation (Algorithm 1, see Section 3.4.1) and 
assertion checking (Algorithm 2, see Section 3.4.2) execution times required for 
the HLDDsimassertions. The fifth (highlighted) and the sixth columns are the total 
execution time taken by the proposed approach and the commercial tool, 

gcd2 
10,000 

100,000 
1,000,000 

0.02 
0.20 
2.07 

0.04 
0.40 
4.87 

0.06 
0.60 
6.94 

0.67 
1.71 

13.52 

0.06 
0.60 

0.79 
1.83 

10,000 
100,000 

0.03 
0.30 

0.03 
0.30 b00 

1,000,000 3.43 2.95 6.38 13.84 

0.08 10,000 0.05 0.03 0.84 
b04 100,000 

1,000,000 
0.54 
5.47 

0.28 
3.61 

0.82 
9.08 

2.21 
19.23 

b09 
10,000 

100,000 
1,000,000 

0.02 
0.22 
2.21 

0.04 
0.39 
4.55 

0.06 
0.61 
6.76 

0.72 
1.74 
12.4 

Figure 3.26. Table of assertion checking execution time comparison 
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respectively. The values in the sixth column include approximately 0.5 sec of 
simulation initialization time for the commercial tool that was impossible to 
exclude from the measurement.  

The both tools have shown the identical responses about the assertion 
satisfactions and violations. Though minor differences in the PSL assertions 
interpretations are possible for different tools, the compared tools interpret PSL in 
identical way. (An example of such difference was provided in [78]).  

The experimental results show the feasibility of the proposed approach and a 
significant speed-up (2 times) in the execution time required for design simulation 
with assertion checking by the proposed approach compared to state-of-the-art 
commercial tool. 

3.6 Verification assertions reuse for manufacturing testing 

In this section we would like to depart from the main topic of the thesis, which 
is HLDD-based approaches for simulation-based verification. Here we propose 
([17],[23])co-auth. directions for the discussed in this chapter verification assertions 
reuse for manufacturing test ([19]-[22],[25] and [26]-[33])co-auth. development to 
enhance its quality.  

The verification assertions contain valuable knowledge and sometimes “insider” 
information about the design’s functionality and implementation. Normally they 
are cleaned out after the verification phase in the design’s synthesizable description 
and the information is lost. The proposed directions for assertions reuse are Test 
Pattern Generation (TPG), embedded Built-In Self-Test (BIST) observability 
improvement and Design for Testability (DfT) enhancement. Figure 3.28 repeats 
the typical design development flow presented in Figure 3.1 and shows the main 
directions for assertions reuse. 

Several approaches for a variation of BIST for combinational circuits called 
Hybrid BIST (the stimuli consists of both pseudorandom and deterministic test 
patterns) have been proposed in ([28] - [35])co-auth.. Some approaches for 
manufacturing test TPG proposed in ([21],[22] )co-auth. consider fault models which 
represent physical defects behaviour more accurately than the traditional stuck-at 
fault model.  

The approaches presented in ([26],[27])co-auth. consider test pattern generation for 
sequential circuits based on design’s properties, however the properties themselves 
were not automatically obtained and required comprehensive study of the design’s 
under test functionality. In this section we propose to extract this information 
partially from verification assertions and assumptions. 
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Figure 3.28. Design development flow (simplified) with assertions reuse 

As it has been mentioned in Subsection 3.1.4, there are a number of approaches 
proposed for aiming hardware checkers creation from assertions meant for 
prototype verification/validation by emulation (a development flow phase standing 
before mass-production). A few research groups propose to use verification 
assertions for manufacturing testing. However they have several limitations and 
focused only on test pattern generation by the synthesized checkers. The 
approaches do not consider other aspects of test plan development and usually lead 
to large area overhead. In this section we propose a wider range of manufacturing 
test plan development areas where assertions can be reused. 

3.6.1 Assumption-based test generation 

A part of today manufactured ASICs contains scan-chains embedded during 
DfT that increase observability and controllability of the design by providing an 
access to the internal registers. This method allows reaching high fault coverage, 
however it results in over-testing of the core (see e.g. [79]). In other words, it 
covers faults that could never influence the functional behaviour of the circuit thus 
reducing the yield. On the other hand, it has been shown that non-scan testing 
based on pseudorandom test sequences can be highly feasible for several types of 
designs (such as crypto cores as it was proven in [80]). Finally, not all the circuits 

66 

 



may have the embedded scan. The ideas proposed in this section consider non-scan 
sequential circuits. However they can be partially applied to scan circuits as well. 

 
The notion of test cubes is applied for test set representation when several bits 

in the test vectors contain unassigned values X (see Figure 3.29). These bits can be 
assigned to the normal binary values ‘1’ or ‘0’ whether based on some rules or just 
randomly. The X-s add the 3rd dimension to the fully determined 2-dimensional 
test set. 

In case if the test engineer has no prior information about the design’s input data 
dependencies (assumptions) he has to start with a test set filled with all X-s (an 
empty set). The assumptions provide information how to assign a part of the bits in 
the test cube which increases the final test quality and eases the test generation 
process, because the assigned bits reduce the remaining search space exponentially. 
For example if an assumption provides us information that some particular input 
(pin) of the design is its RESET signal, then the test engineer may decide to set its 
value to ‘1’ only once in some sequence of cycles. The assumptions may be much 
more complex and origin from a design specification and its implementation 
(design) phase.  

As it is discussed in Subsection 2.2.2, both assumptions (sometimes referred 
also as environmental constraints) and assertions are design properties. The first 
ones contain information about the design’s environment and therefore its expected 
inputs dependencies while the second ones describe the dependencies of the 
design’s internal signals and outputs [4].  The assumptions can be described 
explicitly by the designer or implicitly follow from some of the given assertions of 
the connected designs or design cores. The latter case is shown in Figure 3.30 and 
known as assumption-assertion dualism [6]. This method allows obtaining a wider 
set of assumptions. 

 

Figure 3.29. Test cube 
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Figure 3.30. Assumption-assertion dualism 
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The final set of the assumptions can be divided in two groups:  

• The first group is the assumptions explicitly assigning a set of bits in the 
test cube. The rest of the undetermined bits should be assigned by 
Pseudorandom or Genetic TPG. Deterministic TPG may be not reasonably 
efficient in this case.  

• The second group representing a set of more complex rules not suitable for 
straightforward bits assignment is meant for an appropriate Deterministic 
TPG constraints representation. The both groups of the assumptions should 
be utilized for the maximum efficiency. 

The main difference of the proposed approach from the one described in 
([26],[27])co-auth. is the formal source and format of the assumptions. 

3.6.2 Assertion-based BIST 

Another possible application of the information provided by verification 
assertions is Built-In Self-Test (BIST) ([26]-[33])co-auth. response analyzer 
observability enhancement. The BIST has been proven to be an efficient approach 
for manufacturing testing. However in case of non-scan circuits its main bottleneck 
is observability. The mentioned in the state-of-the-art approaches for hardware 
checkers obtained from assertions may find their application in online testing. 
However, they usually consider TPG to be performed offline. We propose to use 
these checkers for BIST observability enhancement. Here also two approaches are 
possible: 

• Assertion-based checkers act as separate observers in BIST response 
analyzer architecture.  

• Assertions aid building complex controller-based BIST observer. For 
example, one of the task of which would be to inform the analyzer when to 
check and when to stay in “Silence Mode”.  
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The main issue here is the coverage of observability by the existing assertions. 
Therefore, the efficiency of this technique should be very much dependable on the 
particular DUV and the designer’s assertions choice style. 

3.6.3 Assertion-based DfT by test points insertion 

The two main components of design’s testability are observability and 
controllability. The both of them can be significantly improved during DfT phase. 
These improvements usually include minor rearrangements inside the design or 
addition of an extra logic (for example scan-chains as it was mentioned in 
Subsection 3.6.1).  

One of the DfT techniques is test points insertion, when an additional auxiliary 
input or output pin is routed to an internal net of the design. The main drawback of 
this technique is hardware area- and input/output pins overhead. The second ones 
are very costly and increase the significance of this drawback. Therefore, only the 
nets providing good controllability coverage should be chosen. The identification 
of such nets is a very complex task, usually solved by heuristic approaches.  

Figure 3.31. Assertions for test points insertion 

Design  

Assertions

 
We propose to use for test points locations the nets corresponding to the signals 

(operands) from assertions (Figure 3.31). The good candidates for test points’ 
locations are the nets with hard-to-test faults, due to very low controllability. The 
other intent for test point insertion would be a fan-out that provides at once a good 
controllability to a set of middle-level controllability places. Such a test point 
would shorten the test length. The both criteria can be usually satisfied by normal 
assertions, because the assertions reflect the designer’s conception of the most 
significant cornerstones of the design. At the same time it is necessary to note, that 
test points insertion to the sequential circuits may lead at some extend to the same 
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drawback of over-testing as in case of scan-chains insertion mentioned in 
Subsection 3.6.1. 

In this section we have shown that verification assertions, which are normally 
cleaned out after the verification phase in the synthesizable description, can be 
reused for manufacturing testing in several ways. The potential of the first direction 
was proved by experimental results in [27]co-auth., where it was shown that the 
proposed approach of the properties-based random BIST has dramatically 
improved generated test set fault coverage for non-scan design. However, further 
development of the approaches is required and the feasibility of the proposed 
directions must by proven by extensive experimental results. These tasks are 
scheduled for the future work.  

3.7 Chapter summary 

This chapter has discussed simulation-based hardware verification and proposed 
a new approach for HLDD-based assertions checking.  The three main 
contributions of this chapter are the following.  

The first one is a temporal extension for the existing HLDD model. The new 
extended model is aimed at temporal properties expression and named Temporally 
extended High-Level Decision Diagrams (THLDD). The extension supports a set 
of commonly used temporal constructs that can be used to express a wide set of 
possible complex temporal relationships. 

The second contribution is a methodology for direct conversion of assertions 
expressed in Property Specification Language (PSL) to THLDD. The proposed 
hierarchical approach introduces an extendable library of Primitive Property 
Graphs (PPG Library). The components of this library serve as building blocks for 
a complex THLDD property construction.    

The third contribution is HLDD-based simulator HLDDsim modification to 
support THLDDs and assertions checking. This part is supported by discussion of 
properties’ activity time windows and variety of THLDD types.  

The feasibility of the proposed approaches is proven by the presented 
experimental results. 

The chapter has also briefly discussed verification assertions reuse for 
manufacturing testing. 
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Chapter 4 
VERIFICATION COVERAGE 

ANALYSIS 

Hardware verification coverage analysis is aimed to estimate quality and 
completeness of the performed verification. It plays a key role in simulation-based 
verification and aids to find an answer to the important yet sophisticated question 
of when the design is verified enough.  

This chapter discusses a basic classification of verification coverage metrics and 
the main aspects related to their measurement. The main focus is on the structural 
coverage for simulation-based verification as the most widely used today in 
practice.  

The main contribution of this chapter is approaches for HLDD model based 
verification coverage analysis. First, approaches for mapping commonly used 
verification coverage metrics to HLDD-based coverage are proposed. Further, an 
approach employing a hierarchical decision diagrams’ model for the condition 
coverage measurement is presented. Finally, HLDD model manipulations for the 
verification coverage analysis are discussed.  

The HLDD-based verification coverage analysis has a set of advantages 
compared to the commonly used HDL-based methods. In this chapter these 
advantages are discussed in detail and illustrated on a common example design. 
The feasibility and efficiency of the proposed approaches are supported by the 
presented experimental results. 

4.1 Verification coverage overview 

As it has been noticed in Section 3.1 there are two main approaches in design 
verification: formal and simulation-based. Although the notion of verification 
coverage is also applicable for the first one, it is a fundamental part of simulation-
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based verification process. From now on we will consider the notion of verification 
coverage only in frames of the simulation-based verification approach. 

The main purpose of verification coverage is to estimate how well we have 
verified the DUV, in other words the progress of the verification process. The three 
main aspects of simulation-based verification are: 

• Stimuli generation 
• Coverage measurement 
• Response analysis 

In practice, the verification process’s actions aimed at these three aspects can be 
cycled as it is shown in Figure 4.1 (inspired by [5]). 

Stimuli 
generation

Coverage  
measurement 

Response 
analysis 

Figure 4.1. Simulation-based verification in cycle 
 

Once the stimuli are generated the process of DUV simulation takes place. It 
includes verification coverage measurement (assertion checking, if it is assumed by 
the verification plan, takes place at this stage as well). The stage of simulation is 
followed by the response analysis, when the simulation results (e.g. waveform) can 
be compared with the responses of a reference (e.g. the design’s simplified 
implementation or its implementation at a different abstraction level) or somehow 
studied for expected/unexpected behaviour.  

There are three main reasons for new cycle iteration:  

• Independently from the response analysis results, verification coverage value 
determines how thoroughly the DUV was examined. In case, if the value of 
verification coverage is not sufficient (this criterion is discussed further in 
Subsection 4.1.2), then the stimuli should be improved and new cycle iteration 
may be initiated.  
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• The second reason is the case, when the response analysis may have 
discovered an inconsistency in the responses. Further, it has been debugged 
and led to detection of an implementation error (or multiple ones) in the DUV.  
After the errors are corrected, new cycle iteration may be initiated.  

• The third reason is an error in the stimuli (especially if it is a complex 
testbench) detected by the debug process. Then the stimuli are improved and 
new cycle iteration may be initiated.  

A common practice in simulation-based verification is application of (pseudo4-) 
random stimuli or variation of a constraint-random (i.e. (pseudo-) randomly 
generated with regards to DUV’s particular properties) generated on-line during the 
simulation. In this case “stimuli improvement” basically means simulation time 
increase and/or the constraints review.  

4.1.1 Verification coverage classification 

There are two main types of verification coverage: functional and structural 
(books [1],[2],[5] and a state-of-the-art commercial tool reference manual [77]). 
Although [1] singles out a third type parameter coverage, which is a metric for the 
variety of unit’s parameters (e.g. range and depth for a FIFO) examined, we do not 
consider this type of verification coverage separately in this thesis.  

Functional coverage is a metric for DUV’s functionality exercised during its 
simulation. The main advantage of this type of verification coverage is that it relies 
on design’s specification and does not depend on the particular implementation 
under verification. Its measurement is a sophisticated process and it is less used in 
practice for simulation-based verification. Assertion coverage, discussed in the 
following subsection, can be considered as a subset of functional coverage. 

Structural coverage is also commonly referred as code coverage. Its main 
drawback is its quality dependence on the current implementation of the DUV. It 
means that, even an implementation does not include at all a part of the specified 
functionality, its structural coverage can still be 100%. The second drawback [81] 
is that while it is perfectly suitable for software verification (testing) and smaller 
hardware designs it may lack efficiency for covering corner cases of complex 
designs due to their extended concurrent functionality. However, structural 
coverage measurement, as opposed to functional one, is relatively easy to 
implement and therefore it is widely used in practice. The alternative term, i.e. 
code coverage, is widely used because the HDL code is a common representative 
of the design’s structure. Although in the HLDD model-based design 

                                                      
4 It is almost impossible to implement a purely random data generator. However, even available solutions with 
relatively good data randomness are often substituted with more deterministic pseudorandom ones. The main 
advantage of the latter ones is the reproducibility of the generated data. 
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representation the structure of a design is described by graphs, in this chapter we 
will still refer to structural coverage as code coverage.  

Code coverage in its turn can be separated to several more narrowly defined 
practically used coverage metrics, such as statement coverage, branch coverage, 
toggle coverage, (FSM) state coverage, data flow, condition coverage and others. 
Section 4.2 describes in details the listed above code coverage metrics and 
proposes an approach for their analysis based on the HLDD model. 

4.1.2 Sufficiency of verification coverage 

The criterion of sufficiency (i.e. minimum acceptable) for hardware verification 
coverage metrics is very much dependant on a particular verification plan.  

The methodology of code coverage measurement is very much developed in 
software testing discipline. A lot of research has been performed in this area in 
software testing before this topic became vital in hardware verification (due to 
DUVs’ complexity increase). There are many similarities in the problems of code 
coverage measurement and some of the existing solutions can be reused from the 
former discipline. In the area of software testing there are known [106] several 
standards for software quality such as DO-178B [82] for software used in airborne 
systems and [83], [84]. The second one [83] recommends full statement coverage 
or full branch coverage, depending on the criticality of the object. Please consider 
Figure 4.2, where DO-178B states a sequence of coverage combinations depending 
on the software product target application criticality in increasing order (the terms 
are adapted for the hardware verification terminology). 

Level Effect of  
System Failure 

100% 
statement 
coverage 

100% 
branch 

coverage 

100% 
condition 
coverage 

E No effect - - - 

D - - - Minor 

Major  - C - 

  - B Hazardous 

Catastrophic    A 

Figure 4.2. DO-178B: minimal acceptable code coverage for software testing  
 

There exists a standard also developed by RTCA and named DO-254 [85], 
which is a counterpart to the DO-178B, but aiming hardware used in avionics. 
None of the above-mentioned standards for both software testing and hardware 
verification determine a general minimal numerical threshold for a sufficient 
coverage. Normally, the decision which coverage value is satisfactory depends on a 
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particular verification plan. The coverage value is considered more informative in 
comparison with the values of other iterations of measurement.  

The numerical value of coverage metric is a ratio of an amount of its executed 
units to the amount of the total units of this metric. The hits of the units’ executions 
are usually counted and a particular metric can contain a requirement for a 
threshold number of hits for the units to be counted. The approaches proposed in 
this chapter always consider hits counting and the threshold value equal to 1, if it is 
not stated otherwise.  

Verification coverage analysis allows directing the effort of stimuli generation 
to the crucial parts of the DUV and warns if particular stimuli improvement 
activities do not give any increase in terms of verification coverage, i.e. do not 
actually provide for any benefit. The strategy for design verification process 
evaluation based on the verification coverage measurement results is known as 
Coverage-Driven Verification (CDV) [5]. 

4.1.3 Assertion coverage 

As it is emphasized in [5], the notion of assertion coverage has several 
meanings (similar to the notion of assertion checking diversity, discussed in Clause 
3.1.3.1). The first option is its usage to refer to the ratio of number of assertions to 
the number of lines in the HDL code (or any other metric of design implementation 
size, e.g. number of nodes in corresponding HLDDs). An alternative term for this 
ration is assertion density. The second option is association of this notion with the 
amount of functionality implemented by assertions. However, in frames of this 
thesis we use the notion of assertion coverage for the information about the 
assertions evaluation, i.e. activity/inactivity and pass/fail times. 

The assertions can be classified by their purpose of application: checking or 
coverage. This classification only partially correlates with division of assertions to 
safety (i.e. something should never happen) and liveness (i.e. something should 
eventually happen) ones. Checking assertions usually inserted to detect assertions 
violation, in other words to they are aimed at capturing an undesired event. At the 
same time, coverage assertions report expected behaviour. The second type of 
assertions can be emphasized by PSL verification directive cover instead of assert. 
Loosely, speaking the directives in this case only influence the way how the 
simulator will process the assertion evaluation results (e.g. just store to file or take 
an immediate action such as warning or maybe even simulation interruption).  

The approach discussed in Chapter 3 and HLDDsim do not currently support 
other than assert PSL verification directives, and process all the assertions in the 
same way, i.e. store their evaluation results to a file for further analysis and debug 
process. However, the classification of the assertions into checking and coverage 
ones is important for coverage-driven verification strategy. The improvement of 
stimuli can be motivated not only by insufficient code coverage, but also by 
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insufficient assertion coverage. For the second case, the coverage of coverage 
assertions is more important than coverage of checking assertions. The situation 
when some of the latter ones were not activated may only signal about the 
correctness of the DUV.  

In assertions-based verification the assertion coverage measurement may be 
used as addition to or instead of the structural verification coverage measurement 
stage. However, it is necessary to keep in mind that if an error is discovered and the 
DUV was corrected before another iteration of the cycle (Figure 4.1), the assertions 
should be re-examined beforehand. Unlike the verification coverage constituents 
that are parts of the implementation and that have been directly changed with the 
DUV’s modification, the assertions may require a separate effort for their explicit 
modification. For example, the modified DUV could have eliminated a signal 
monitored in some of its assertions.  

The assertion coverage can be considered as a subset of functional coverage. Its 
measurement implementation referred as HLDD-based assertion checking was 
discussed in details in the previous chapter. The rest of this chapter will consider 
only code coverage part of the verification coverage. 

4.2 HLDD-based analysis of code coverage  

In this section six traditional code coverage metrics mentioned in Subsection 
4.1.1, i.e. statement coverage, branch coverage, toggle coverage, state coverage, 
data flow coverage and condition coverage, are proposed to be analyzed based on 
the HLDD model. The proposed analysis ([15],[16])co-auth. is more efficient 
compared to the standard HDL approaches due to the nature of the HLDD model. 
Once a correct mapping of coverage metric to HLDDs is created, the coverage 
measurement overhead during design simulation is significantly reduced.  

Let us consider a common example design CovEx. Its behavioural RTL VHDL 
representation (only the functional segment) is provided in Figure 4.3. There are 
three columns with numerical values to the left from the VHDL code. The third 
column Ln. is basically the line number, while the other two are explained further.  

The variables’ names in CovEx follow the following unification rules: {V- an 
output variable; cS - a conditional statement; D- a decision; T- a terminal node; C- 
a condition}.Correspondingly, cS‘x’_D‘y’ is the yth decision for the xth conditional 
statement, V‘x’_T‘y’ is a yth possible value (terminal node) for the xth output 
(variable), etc. Please note, that the condition cS3_C is equal to condition cS6_C 
(they correspond to the same signal in the design), this is discussed further in 
Section 4.3. 

The HLDD representation of the example design CovEx is provided in Figure 
4.4. It consists of 2 graphs for the variables V1 and V2 correspondingly. All the 
nodes and edges in the HLDD representation are numbered, where the edges’ 
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numbers are underlined. The nodes of the HLDD graphs correspond to both 
conditional and assignment statements, while edges correspond to decisions. The 
statements’ keywords are emphasized by bold in the VHDL representation of 
CovEx (Figure 4.3).  

4.2.1 Statement coverage mapping 

The statement coverage is a ratio of statements executed during simulation to 
the total number of statements under the given set of stimuli 
([1],[2],[5],[106],[77]).  

This metric has several variations. For example line coverage [5], which counts 
lines as opposed to statements. It is more HDL coding style dependant and less 
accurate than the statement coverage, which counts several statements separately 
even if they are on the same line.  

An observation that once a control statement is executed then a group of the 
following statements is usually executed as well has lead to introduction of block 
coverage. Here dividing lines for blocks are branching statements (see next 
subsection) and several other statements such as wait and loop [1]. Although block 
coverage can be consider an advanced version of statement coverage, in practice 
usually exactly statement coverage metric is used (e.g. [77]). In our approach, 
application of block coverage is more complicated then statement coverage due to 
the system-based representation of a DUV by HLDDs. The statements form one 
HDL block can be contained in different HLDD graphs and therefore may require 
an effort for their (virtual) grouping back.  

Please consider the VHDL description of the CovEx design presented in Figure 
4.3. Here the third column of the numbers (Ln.) shows the line numbers, i.e. 
constituents of the line coverage metric. The numbers from first column (Stm.) 
correspond to the lines with statements (both conditional and assignment). While, 
depending to the coding style the number of lines may vary (e.g. lines 2 and 3 may 
be placed to the end of the first line), the number of statements remains constant. 
The 3 lines from 4 to 6 can represent one “block”, in case of block coverage 
measurement. 

The statement coverage metric has a straightforward mapping to HLDD-based 
coverage ([15],[16])co-auth.. It maps directly to the ratio of nodes mCurrent traversed 
during the HLDD simulation presented in Algorithm 1 (Subsection 3.4.1) to the 
total number of the HLDD nodes in the DUV’s representation. As an example, the 
20 HLDD nodes of the two graphs in Figure 4.4 correspond to the 18 statements of 
the VHDL segment. Covering all nodes in a HLDD model (i.e. full HLDD node 
coverage) corresponds to covering all statements in the respective HDL. Please 
note that some of the HDL statements have duplicated representation by the HLDD 
nodes. This is due to the fact that in HLDD-based design representation the 
diagrams are normally generated for each data variable separately. For example, 
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Figure 4.3. The VHDL file functional segment of an example design CovEx 

Stm. Dcn. Ln. A functional segment CovEx of an VHDL file.

 
1* 

   
1 if (cS1_C1 or cS1_C2)  

then 
 

1* 
 

2  
    case cS2_C is  3 

4 
2* 

    when cS2_C_W1 =>  
        V2 <= V2_T1; 

2*  
5 3 

4 
 

 
 

3 
        if (cS3_C)     -- where, cS3_C = cS6_C 6 

7         then  
            V1 <= V1_T2; 8 5  
        else  9 

10 
 

6 
 

4 
 
 

            V1 <= V1_T1;  
        end if; 11 
    when cS2_C_W2 =>  12 

13 
 5* 

        V2 <= V2_T1; 
        if (cS4_C1 and ((not cS4_C2) or cS4_C3))  

7 
8 
 

 
 

6 
14 

        then  15 
16             V1 <= V1_T3; 

        else  
9  

17  
10 

 

7 
 
 

            V1 <= V1_T1;  18 
19         end if; 

    when cS2_C_W3 =>  20  8* 
        V1 <= V1; 21 

22 
11 
12 

 

 
 

9 
        if 5_C1 and cS5_C1)     (cS
        then  23 
            V2 <= V2_T2; 24 

25 
13  

        else   
14 

 

10 
 
 

            V2 <= V2_T1;  26 
27 
28 

        end if; 
    end case;   
else  29  

15 
16 

11* 
 
 

    V2 <= V2_T2; 
    if (cS6_C)         -- where, cS3_C = cS6_C 

30 
31 

    then  32  12 
        V1 <= V1_T2; 
    else  

33 
34 

17 
 

18 

 
13 

        V1 <= V1_T1;  37 
36 
37 

    end if;  
end if; 

consider statements 1 and 2 emphasized by subscript asterisk character ‘*’ in Figure 
4.3 and by additional subscript indexes in Figure 4.4. They are represented twice 
by the nodes of both variables V1 and V2 graphs, and therefore there are 20 HLDD 
nodes in total. 

4.2.2 Branch coverage mapping 

The branch coverage metric reports the ratio of branches in the control flow 
graph of the code that are traversed under the given set of stimuli. The conditional 
statements of HDL code are if- and case- statements. The branch coverage 
indicates separately evaluations of the statements if and elsif to ‘true’ and ‘false’ as 
well as evaluations of case statement to all of its solutions. This metric is also 
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known as decision coverage, especially in software testing [106], all-edge 
coverage and arc coverage. In a typical application of branch coverage 
measurement, the number of every decision’s hits is counted. Note, that the full 
branch coverage comprises full statement coverage. 

Conditional statements create different paths of execution over time.  Path 
coverage reports the ratio of paths in the control flow graph executed during 
simulation under the given stimuli to the total amount of possible paths. This 
metric is more stringent compared to branch coverage. However, its main 
disadvantage is that the number of paths grows exponentially with the number of 
conditional statements. Therefore, it is rarely used in practice for reasonably large 
real designs.  

Figure 4.4. HLDD representation of the example design CovEx 
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Similar to the statement coverage, branch coverage also has very clear 
representation ([15],[16])co-auth. in HLDD model. It is the ratio of every edge eactive 
activated in the simulation process presented by Algorithm 1 (Subsection 3.4.1) to 
the total number of edges in the corresponding HLDD representation of the DUV.  

Please consider the VHDL segment in Figure 4.3. Here, the second column 
(Dcn.) numbers all 13 branches (aka decisions) of the code. The edges in the 
HLDD graphs provided in Figure 4.4 represent these branches and are marked by 
the corresponding numbers (underlined). Covering all edges in a HLDD model (i.e. 
full HLDD edge coverage) corresponds to covering all branches in the respective 
HDL. Please note that some of the HDL branches also have duplicated 
representation by the HLDD edges. This is due to the same reason as with HLDD 
nodes. While several conditional statements appear in the graphs of both variables 
(V1 and V2), some of their decisions do too. These decisions in the CovEx example 
design are 1, 2, 5, 8, 11 (Figures 4.3 and 4.4), i.e. decisions of cS1 and cS2. They 
are marked by ‘*’ in Figure 4.3 and by additional subscript indexes in Figure 4.4. 

We will refer to statement and branch coverage as base coverage metrics. These 
metrics cover the constituents of decision diagrams, i.e. nodes and edges. Also, the 
majority of the other coverage metrics employ them in some way.  

4.2.3 Toggle coverage mapping 

The toggle coverage metric, depending on its implementation, reports how 
many times each design signal, variable (or sometimes each bit of a register, or a 
bus) toggles, i.e. changes its state from ‘1’ to ‘0’ and vice versa under the given set 
of stimuli. Some code coverage measurement aided simulators measure in addition 
the toggles to and from ‘X’ (undefined) and ‘Z’ (tristate) values.  

In the current implementation ([15],[16])co-auth., the toggle coverage analysis 
based on HLDD model does not have any particular advantages caused by HLDD 
model application. It implies similar counters as HDL simulators do.  

4.2.4 State coverage mapping 

State coverage, also known as FSM coverage [5], implies several variations of 
the DUV’s finite state machine behaviour analysis for the given set of stimuli. In 
this thesis we consider the following two of them: 

• The first approach is to analyze which states were visited during the 
simulation and count the number of the visits (hits).  

• The second approach is to analyze the amount of fired transitions from one 
state to another. 

A support for the state coverage measurement requires from a appropriate HDL 
tool ability to identify and extract the DUV’s FSM from its RTL HDL description. 
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As it has been shown in Clauses 2.1.2.3 and 2.1.2.4 the HLDD-based 
representation of a RTL design clearly distinguishes graphs for separate variables 
including the state variable. Please consider Figures 2.8 and 2.10 for example. 

The first approach (from the listed above) for the state coverage measurement 
maps to the HLDD-based measurement of the coverage for the terminal nodes 
(assignments) in the state variable’s graph. The second approach maps to the 
HLDD edges based measurement of sub-paths between the current state node and 
terminal nodes coverage (please consider Figures 2.8 and 2.10). HLDD-based 
analysis of the state coverage implies the advantages of base coverages metrics 
HLDD-based analysis. 

4.2.5 Data flow coverage mapping  

Data flow coverage metric ([86],[106]) reports covered and uncovered sub-
paths from data variables’ assignments to their subsequent references (for the given 
set of stimuli). It can be considered as a simplified for calculation yet powerful 
variation of the path coverage metric (please see the Subsection 4.2.2). The main 
advantage of the data flow metric is its direct relevance to the actual design data 
flow. For example, in case if we have the full branch coverage for a particular 
DUV/stimuli pair, it does not guarantee the sub-path between a DUV’s variable 
assignment and its reference (use) to be covered. Therefore, data flow coverage 
provides for an extra potential of corner cases misbehaviour (implementation 
errors) discovery. However, the analysis of this metric based on HDL design 
representations has high complexity and, therefore, it is rarely used. 

On the other hand, HLDD-based design representation contains separate graphs 
for each variable and signal of the design. Full data flow coverage of a design maps 
to the coverage of all single paths from terminal nodes to the root nodes separately 
in all variables’ HLDD sub-graphs. Data flow coverage HLDD-based analysis 
strictly requires HLDD model of the reduced typed and partitioned by variable. 
These requirements are discussed in Section 4.4.  

4.2.6 Condition coverage mapping  

Condition coverage metric ([5],[106]) reports the number of times each Boolean 
sub-expression, separated by logical operators or and and, in a conditional 
statement causes the complete conditional statement to evaluate to one of the 
decisions (e.g. ‘true’ or ‘false’ values) under the given set of stimuli. It differs from 
the branch coverage, by the fact that in the branch coverage only the final decision 
determining the branch is taken into account. In case, if we have n conditions 
joined by logical and operators in a logical expression of a conditional statement, it 
means that the probability of evaluating the statement to the decision ‘true’ is 1/2n 
(considering pure random stimuli for the condition values). Calculation of the 
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condition coverage based on HDL representation is a sophisticated multi-step 
process. However, the condition coverage metric allows discovering information 
about many corner cases of the DUV.  

The approach for HLDD-based analysis of condition coverage is proposed and 
described in detail in Section 4.3.  

4.3 A hierarchical approach for HLDD-based condition 
coverage analysis 

In this section we propose an approach for HLDD-based condition coverage 
analysis. The approach is based on a hierarchical DUV representation where the 
conditional statements with complex logical expressions (normally represented by 
single nodes in HLDD graphs) are representation by BDDs. A brief introduction to 
this hierarchical representation was shown in Figure 2.9 (Clause 2.1.2.4). Please 
note that the BDD graphs for expanded conditional statements use the alternative 
description style presented in Subsection 2.1.1 (Figure 2.1c). 

Let us consider the example design CovEx provided in Figures 4.3 and 4.4. It 
contains 6 conditional statements cS1-cS6, repeated in Figure 4.5.  

cS3: if (cS3_C) then cS3_D1 else cS3_D2;   -- where, cS3_C = cS6_C 

cS4: if (cS4_C1 and ((not cS5_C2) or cS5_C3))then cS4_D1 else cS4_D2; 

cS5: if (cS5_C1 and cS5_C2) then cS5_D1 else cS5_D2; 

cS6: if (cS6_C) then cS6_D1 else cS6_D2;   -- where, cS3_C = cS6_C 

cS2: case (cS2_C)  when cS2_C_W1: cS2_D1;  
 when cS2_C_W2: cS2_D2;  
 when cS2_C_W3: cS2_D3; 

cS1: if (cS1_C1 or cS1_C2) then cS1_D1 else cS1_D2; 

Figure 4.5. The conditional statements of CovEx 
 

The design contains 3 conditional statements with single conditions. They are 
equivalent statements cS3 and cS6 and cS2 with a non-Boolean single condition. 
Moreover, the case- conditional statements always contain a single, usually, non-
Boolean condition (in case of a Boolean condition it has two decisions and can be 
substituted by an if- conditional statement). A BDD expansion graph for a 
conditional statement with a single condition has the same number of edges as the 
number of terminal nodes, and therefore does not contain any additional 
information compared to the pure HLDD-based representation of this statement. In 
other words the condition coverage for a HLDD with conditional statements nodes 
containing only single conditions is equivalent to its branch coverage. The 
conditional statements cS1, cS4 and cS5 contain complex logic expressions with 
multiple conditions. 
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Figure 4.6. BDD-expanded multi-condition conditional statements of CovEx 

The BDD-based expanded representations for all conditional statements of 
CovEx design are provided in Figure 4.6. Here the terminal nodes are marked by 
background colours according to different decisions for better readability. These 6 
graphs can be considered as sub-graphs representing “virtual” variables (because 
they are not real variables of the CovEx VHDL representation) cS1-cS6. Thus, 
together with the two HLDD graphs for variables V1 and V2 from Figure 4.4 these 
sub-graphs compose design’s hierarchical DD representation, which is a BDD-
aided HLDD. 

The complete (i.e. not system-based) hierarchical DD graph for the variable V2 
of CovEx design is provided in Figure 4.7.  

The full condition coverage metric maps to full coverage of terminal nodes of 
the BDD graphs from the system-based hierarchical DD representation during the 
complete system simulation with the given stimuli. The size of the items list for 

83 

 



this coverage metric is  where ncS is the number of conditional statements 

and nci is the number of conditions in the ith conditional statement.  

∑
=

cS
ic

n

i

n

1

2

In case if we measure the amount of covered terminal nodes for all complete 
hierarchical DD graphs (an example of such graph for V2 of CovEx is provided in 

Figure 4.7. Complete HLDD graph with expanded conditional statements for V2  
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Figure 4.7) of the design, we will get a combination of the data flow and condition 
coverage metrics (data flow/condition coverage). This metric is adequately 
stringent for hardware simulation-based verification and has relatively good ratio 
of stringency and calculation overhead. The obvious advantage of this combination 
is that the enhancement of data flow coverage by the condition coverage metric 
adds the competence of the DUV’s structure coverage in an orthogonal axis. An 
analog for this coverage, however less stringent one, is the popular [106] in 
software testing Modified Condition Decision Coverage (MC/DC) metric.  

The main advantage of the proposed approach is low computational overheads 
for condition coverage and data flow/condition coverage analysis. Once the 
system-based- (for condition coverage) or complete- (for dataflow/condition 
coverage) hierarchical DD is constructed, the analysis for an every given stimuli 
set is evaluated in a straightforward manner by the same tool (HLDDsimcoverage).  

The size of the DDs with the expanded conditional statements may grow 
exponential to the number of conditions and therefore there is significant increase 
of the memory consumption. However, the length of the average sub-path from the 
root to terminal nodes grows linear to the number of the conditions. Therefore, 
since the simulation time of a HLDD has a linear dependency to the average sub-
path from the root to terminal nodes, it will grow only linearly with respect to the 
number of conditions. 

4.4 HLDD model reduction manipulations for code coverage 
analysis 

In this section we propose [16]co-auth. to distinguish three types of HLDD 
representation according to their compactness, and with consideration of the HLDD 
reduction rules. These rules are similar to the reduction rules for BDDs [40] 
presented in Subsection 2.1.1 and can be generalized as follows (the differences are 
underlined): 

HLDD reduction rule1: Eliminate all the redundant nodes whose all edges point 
to an equivalent sub-graph. 

HLDD reduction rule2: Share all the equivalent sub-graphs. 

The three representation types in the increasing order of compactness are:  
• Full tree HLDD contains all control flow branches of the design. 
• Reduced HLDD is obtained by application of the HLDD reduction rule 1 to 

the full tree representation. This HLDD representation is still a tree-graph. 
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• Minimized HLDD is obtained by application of both HLDD reduction rules 1 
and 2 to the full tree representation. This representation is no longer a tree.  

The presented in Figure 4.4 HLDD representation for the example design 
CovEx is of the reduced type. Figures 4.8 and 4.9 present the full tree and 
minimized HLDD representations for the same design, correspondingly.  

A less compact HLDD representation contains more items, i.e. nodes and edges. 
It means it requires more memory for the data structure storage and possibly longer 

Figure 4.8. The full tree HLDD representation for the CovEx design 
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simulation time, if the average sub-path from the root to terminal nodes becomes 
longer. However, it is potentially capable to represent the design’s structure more 
accurately and therefore the coverage measurement may be more accurate as well. 
In fact, this dependency is not “linear” and particular HLDD representation types 
may be more convenient or not suitable at all for particular application.  

It has been shown in [16]co-auth. (please see also Section 4.5) that analysis results 
for the base code coverage metrics, i.e. statement and branch coverages, performed 
on reduced HLDDs is more stringent that the ones with the minimized HLDDs. 
Moreover, compared to HDL-based analysis the reduced HLDD-based results are 
always more stringent, while minimized HLDD-based ones are often less. 
However, it is necessary to note that the direct comparison to HDL is not very 
accurate due to its dependency to the coding style. 

At the same time the performance of the base coverage metrics analysis based 
on reduced and minimized HLDD model is equivalent due to the fact that both 
models have the same average length of sub-paths from the root to terminal nodes. 
Compared to the full tree HLDD representation, the reduced HLDD model usually 
has significant performance improvement while the accuracy of the design’s 
structure representation remains the same for the base code coverage metrics.  

Figure 4.9. The minimized HLDD representation for the CovEx design 
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The conclusions for application of the three types of the HLDD representations 
compactness for the structural coverage base metrics’ analysis are the following: 

• The minimized HLDDs provide the most compact design representation, and, 
therefore, it has the lowest memory requirements. However, a possibility of 
coverage stringency loss should be considered for the structural coverage 
analysis based on this type of DUV’s representation.  

• The reduced HLDDs require more memory, but they do not lose in coverage 
metrics’ stringency. The simulation speed compared to the minimized HLDDs 
remains the same. 

• The full tree HLDDs-based coverage analysis is slower and does not provide 
any gain in the stringency of the considered metrics, compared to the reduced 
HLDDs-based one. However, this representation type may be required for an 
accuracy lossless analysis of several other coverage metrics. A comprehensive 
analysis of these metrics is scheduled as a future work. 

As it was discussed on the previous section the measurement of the condition 
coverage is performed on the hierarchical DD model employing both HLDD model 
and BDDs for expanded conditional statements representation. For this analysis we 
assume reduced HLDD model and full tree type of the BDD representations. 
Toggle and data flow and state coverage metrics are also proposed to be analyzed 
based on reduced HLDDs.  

Please note, that the correct analysis of the condition and data flow and state 
coverage metrics may involve also other HLDD manipulations discussed in Clause 
2.1.2.3 (Figure 2.7). It is the correct partitioning of the HLDDs.  

• The data flow coverage analysis requires strict partitioning by variables, i.e. 
exactly one graph for every variable or signal. In case of the data 
flow/condition coverage the expanded conditional statements must be 
contained in the compete hierarchical DD (Figure 4.7). 

• The pure condition coverage analysis requires separation of the BDD graphs 
representing conditional statements. The resulting design representation must 
be system-based .  

• The state coverage analysis accepts partitioning by variables and strictly 
requires a separate graph for the DUV’s state variable.  

The proposed in this chapter approaches and statements are supported by 
experimental results presented in the next section. 
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4.5 Experimental results 

This section provides experimental results ([15],[16])co-auth. for the proposed 
HLDD-based verification coverage analysis approaches. First, the experimental 
results present information for the comparison of the proposed approaches 
implemented as HLDDsimcoverage with a state-of-the-art commercial tool from a 
major CAD vendor. Second, the comparisons are performed for verification 
coverage measurements based on different HLDD model representation types. 

The experiments were carried with the benchmarks presented in Section 3.6 
gcd, b00, b04, b09 and also 3 other benchmarks from the ITC’99 benchmarks 
family [76],[102],[105] b01, b02 and b06. 

• b01 is a design implementing functionality a finite state machine that 
compares serial flows 

• b02 is a design implementing functionality of a finite state machine that 
recognizes binary-coded decimal numbers 

• b06 is a design implementing functionality of an interrupt handler 

 
Design 

 

Coverage measurement time overhead, (%) 

Commercial  
HDL simulator HLDDsim 

b00 28.0 1.0 

b04 32.2 0.9 

b09 78.9 4.3 

gcd 31.7 3.2 

Figure 4.10. Coverage analysis penalty: traditional vs HLDD 
 

The comparative experiments between the HLDD-based code coverage analysis 
tool HLDDsimcoverage and a state-of-the-art commercial HDL simulation tool from a 
major CAD vendor have been presented in [15]co-auth.. Their results have shown that 
the time overhead of verification coverage measurement in the popular commercial 
tool environment is much higher than in the case of HLDD-based approach. When 
HLDDs have coverage measurement time overhead in a range of 1% to 4%, the 
commercial simulator uses from 28% up to 78% extra time for coverage 
measurement (see Figure 4.10).  
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Design 
Number of nodes Number of edges 

min red. f.tree min red. 

b01 30 57 267 52 62 

b02 16 26 48 24 24 

b06 47 116 440 83 111 

b09 44 69 125 62 64 

Figure 4.11. Characteristics of different HLDD manipulations 
 

Figure 4.11 presents the characteristics [16]co-auth. of the different HLDD 
representations introduced in Section 4.4. The columns min, red. and f.tree show 
the number of nodes and edges in minimized, reduced and full tree HLDD model 
representations, respectively. As it can be seen from the figure, around 45-80 % of 
nodes were removed by the reduction step from the initial HLDD full tree. Further 
40-60 % of nodes were eliminated by the minimization step. 

Design Stimuli, 
(vectors)  

Statement coverage, (%) Branch coverage, (%) 

red. HLDD min. HLDD VHDL red. HLDD min. HLDD VHDL 

b01 
14 86.0 100 93.8 74.2 84.6 88.9 

23 96.5 100 100 90.3 100 100 

b02 
10 92.3 100 96.3 91.7 91.7 93.8 

14 100 100 100 100 100 100 

b06 
11 80.2 100 85.5 79.3 89.2 87.5 

52 98.3 100 100 98.2 100 100 

b09 
23 87.0 100 100 85.9 87.1 100 

33 100 100 100 100 100 100 

Figure 4.12. Comparison of code coverage analysis results 
 

Figure 4.12 shows the comparison results [16]co-auth. of the base code coverage 
metrics analysis based on reduced HLDDs, minimized HLDDs and a state-of-the-
art commercial HDL simulation tool from a major CAD vendor using the same set 
of input stimuli for all three models. As it can be seen from the experiments, the 
reduced HLDD model always achieves the best (i.e. most stringent results) of all 
three. The minimized HLDD has the poorest outcome for statement coverage and 
traditional HDL simulator is the weakest for measuring branch coverage in most 
cases. However, as it has been noticed earlier, the comparison to HDL can be 
slightly inaccurate due to coding style variations. 
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4.6 Chapter summary 

This chapter has discussed the notion of verification coverage together with its 
classification for simulation-based hardware verification. The main focus of the 
chapter was structural coverage that is also known as code coverage. Several 
practically used metrics of this coverage have been described and approaches for 
their HLDD-based analysis have been presented. One of them is an approach for 
condition coverage measurement that employs hierarchical decision diagrams 
consisting of HLDDs and BDD-based representations of the conditional 
statements. The chapter also discusses how the accuracy and performance of 
HLDD-based coverage analysis depend of the HLDD model’s reduction 
manipulations.  

The HLDD-based structural verification coverage analysis has the following 
main advantages: 

• HLDD can be generated or manipulated further in accordance with its target 
application for particular coverage metric analysis. 

• All coverage metrics’ measurements and analysis are performed by the same 
tool HLDDSimcoverage. 

• HLDD-based analysis has a better performance than HDL-based one due to, 
first, faster HLDD-based simulation and, second, lower percentage ratio for 
the measurement overhead.  

• The proposed HLDD-based coverage metrics are more stringent than HDL-
based ones and therefore allow discovering more corner cases and assessing 
stimuli more precisely.  

The HLDD-based verification coverage analysis approaches also consider 
observability coverage [15]co-auth. that is not discussed in this thesis.  
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Chapter 5 
CONCLUSIONS AND 

FUTURE WORK 

This thesis has presented several approaches addressing simulation-based 
hardware verification issues. The approaches target assertion checking and 
structural coverage measurement and exploit advantages of high-level decision 
diagrams design representation model.  

This chapter summarizes the thesis and points out open problems and 
interesting directions for future work. 

5.1 Conclusions 

5.1.1 Contributions 

The contribution of this thesis is twofold: 

A new approach for HLDD-based assertions checking 

• A temporal extension for the existing HLDD mode. The new extended model 
is aimed at temporal properties expression and named Temporally extended 
High-Level Decision Diagrams (THLDD). The extension supports a set of 
commonly used temporal constructs that can be used to express a wide set of 
possible complex temporal relationships. 

• A methodology for direct conversion of assertions expressed in Property 
Specification Language (PSL) to THLDD. The proposed hierarchical 
approach introduces an extendable library of Primitive Property Graphs (PPG 
Library). The components of this library serve as building blocks for a 
complex THLDD property construction.    
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• An approach for HLDD-based assertion checking. A modification of the 
existing HLDD-based simulator (HLDDsim) was proposed to support 
THLDDs and assertion checking. This part was supported by explanations of 
temporal issues and different varieties of THLDD properties. 

The feasibility of the proposed approaches was proven by the presented 
experimental results. A minor contribution includes discussions of verification 
assertions reuse for manufacturing testing. 

A new approach for HLDD-based coverage analysis 

• An approach for mapping traditional verification structural coverage metrics 
to HLDD-based coverage. In addition to the base code coverage metrics such 
as statement and branch coverage, the approach considers also more 
sophisticated ones, including FSM and data flow coverage metrics.  

• An approach for condition coverage analysis. The approach employs a 
hierarchical decision diagrams model consisting of HLDDs and BDD-based 
representations of the conditional statements. 

• An approach for HLDD model manipulations targeted to different aspects of 
verification coverage analysis.  

The feasibility of the proposed approaches was proven by the presented 
experimental results. 

5.1.2 Advantages 

The main advantages of the proposed HLDD-based approaches for simulation-
based verification are outlined in the following: 

 The proposed approaches rely on a homogeneous hardware verification flow 
based on High-Level Decision Diagrams (HLDD) design representation 
model. Once an appropriate input objects’ representation is created the 
analysis is performed by the same tool HLDDSim.  

 HLDD-based analysis has a better performance than HDL-based one due to, 
first, faster HLDD-based simulation and, second, lower percentage ratio 
overheads for both assertion checking the coverage measurement processes.  

 THLDD model is capable to represent complex temporal properties and 
supports a wide set of PSL language.  

 HLDD can be generated or manipulated further in accordance with its target 
application for particular coverage metric analysis. 
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5.2 Future work 

In this section we outline a few issues which can be considered further in order 
to improve and advance the approaches proposed in this thesis: 

HLDD-based assertions checking: 

• The presented approach, including its all three constituents (i.e. the model, 
PSL to THLDD properties conversion methodology and assertion simulation-
based checking process), supports a wide set of PSL language. The supported 
part is close to the PSL simple subset and it is a powerful instrument to 
express the majority of practical temporal properties. However, in our future 
work we would like to target the remaining PSL FL LTL operators and add a 
support for SERE. The extension should necessarily include the support for 
the strong version of the PSL operators. As soon as the HLDD-based design 
representation finds its application in formal verification, the supported 
language subset should support CTL and full LTL as opposed to currently 
targeted PSL FL LTL simple subset.  

• The proposed approach for HLDD-based assertion checking implies 2-step 
process. First the DUV simulation trace for the given stimuli is calculated. 
Second the assertions are evaluated based on the simulation trace. This 
approach is convenient in the most of the cases, but in some situations (e.g. 
very long simulations) the dynamic assertion checking may be preferable. Its 
support may be addressed by HLDDsim modification. 

• In this thesis we have drawn a number of ideas for verification assertions 
reuse for manufacturing testing. The proposed ideas are scheduled for further 
development and integration with the previously performed research in the 
area of manufacturing testing.  

HLDD-based coverage analysis: 

• In this thesis we have briefly proposed a new approach for data flow coverage 
metric analysis based on HLDD model. This metric seems very attractive in 
terms of DUV’s structure representation accuracy. At the same time its 
mapping to HLDD coverage has obvious convenience. A comprehensive 
analysis of this metric application and detailed development of an appropriate 
approach for its measurement are other attractive directions for future work. 

• The proposed HLDD-based verification coverage analysis assumes structural 
coverage (aka code coverage). This coverage type is widely applied in 
practice, however it has several drawbacks. The latter ones are partially caused 
by the extended concurrency of the state-of-the-art complex designs 
functionality. Therefore, a comprehensive verification plan for such designs is 
preferred to include functional coverage analysis. At present it is partially 
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supported in the HLDD-based verification flow by assertion coverage 
analysis. However, as a longer term future work we see application of more 
comprehensive coverage models for functional coverage HLDD-based 
analysis.  

In general:  

• More comprehensive experimental results with additional benchmarks would 
be beneficial. For this purpose we plan to try large complex real-life industrial 
designs. 

• Further development of the presented tools from HLDD-based verification 
flow is relevant. Here the target is stand-alone reliable tool set that is 
convenient to use.  

• In this thesis we have considered simulation-base hardware verification. It is 
widely used in practice and capable to handle large state-of-the-art designs. 
However, a number of verification issues are more reasonable to address by 
formal verification approach. We also consider to our research efforts towards 
its support by HLDD-based verification flow. 

 

Finally, the presented research has paved the way for future development of 
HLDD model application in hardware functional verification. This thesis has 
revealed not only advantages of this approach but also its potential for the future. 
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Appendix A 
PPG LIBRARY 

This appendix describes the extendable Library of Primitive Property Graphs 
(PPGs) and is a part one of the main contributions of this thesis. The section 
consists of the following parts. First, the format of ppg.lib file used for THLDD 
properties Constructor (see Section 3.3.3) is given. Then a set of supported 
operators is provided, where each operator is presented by its  

a) PSL notation based on PSL Standard IEEE 1850 [92]  
b) THLDD graph in AGM format (refer to Appendix B) 
c) THLDD graph graphic portrayal 
d) the operator related notes 
The supported set of PSL operators was discussed in Sections 2.2 and 3.3. 

Loosely speaking, the library mostly includes PSL FL operators of LTL style (vs. 
SERE style). It conforms with the PSL simple subset rules and supports weak 
versions (vs. strong) of the operators. Several FL operators such as abort and 
next_event_e/next_event_a are not included in this version. PSL operators’ 
precedence together with their classification was presented in Figure 2.17 (Clause 
2.2.2.1). The PPG Library is constantly developing which leads to the extension of 
the supported operators set. Many PSL operators have an equivalent expression by 
means of other operators. 

A.1 Format of the ppg.lib file 

There are 2 types for operand_type available in ppg.lib file format.  

• BOP – Boolean OPerand, may consist of   
a) Boolean type signal (primary I/O or internal) 
b) Boolean expression, processed by HLDD constructor as VHDL 

Boolean expression (e.g. comparison operators “<”, “>=”, etc.) 
c) Boolean operator, processed  THLDD Constructor (e.g. logical and) 
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• TOP – Temporal OPerand is a complex operand that contains a temporal 
operator (also includes BOP) 

Figure A.1.1 shows the template for the ppg.lib file. 

; PPG Library file 

; Version: yy.mm.dd 
; Notes: plain text with notes about the current version 
 
operators 
{ 

List of all described in this file operators together with operands types 
The operators appear in the precedence order. 

} 
 

operator_name(operand_type){ 
 operator graph in the AGM format 
} 

Figure A.1.1 ppg.lib file template 
 

The THLDD graphs representing PSL operators have the same precedence as 
the original operators. The precedence is specified by the IEEE-1850 [92]. The 
THLDD Constructor obtains this information related to the supported operators 
from the ppg.lib file’s operators section.  

Figure A.1.2 shows an example of a truncated ppg.lib file with two PPGs. 
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; PPG Library file 
; Version: 08.07.03 
; Notes: This is a truncated version with 2 PPGs 
  
operators 
{ 
    BOP -> TOP; 
    next[n] TOP; 
} 
 
BOP -> TOP { 
    STAT# 5 Nods, 6 Vars, 1 Grps, 2 Inps, 1 Outs, 3 Cons 
     
    VAR#    0:    (i____)    "BOP"    <1:0> 
    VAR#    1:    (i____)    "TOP"    <1:0> 
 
   ;terminal node constants 
    VAR#    2:    (c____)    "FAIL"    <1:0>    VAL = 0 
    VAR#    3:    (c____)    "PASS"    <1:0>    VAL = 1 
    VAR#    4:    (c____)    "CHECKING"    <1:0>    VAL = 2 
 
   ;property PPG 
    VAR#    5:    (o____)    "PROPERTY"    <1:0> 
    GRP#    0:    BEG = 0, LEN = 5 ----- 
        0    0:    (n___) (0=>4 1=>1 2=>4)    V = 0 "BOP"    <1:0> 
        1    1:    (n___) (0=>2 1=>3 2=>4)    V = 1 "TOP"    <1:0> 
        2    2:    (____) (    0    0)        V = 2 "FAIL"    <1:0> 
        3    3:    (____) (    0    0)        V = 3 "PASS"    <1:0> 
        4    4:    (____) (    0    0)        V = 4 "CHECKING"    <1:0> 
} 
 
next[k] TOP { 
    STAT# 4 Nods, 5 Vars, 1 Grps, 1 Inps, 1 Outs, 3 Cons 
 
    VAR#    0:    (i____)    "TOP"    <1:0> 
 
   ;terminal node constants 
    VAR#    1:    (c____)    "FAIL"    <1:0>    VAL = 0 
    VAR#    2:    (c____)    "PASS"    <1:0>    VAL = 1 
    VAR#    3:    (c____)    "CHECKING"    <1:0>    VAL = 2 
 
   ;property PPG 
    VAR#    4:    (o____)    "PROPERTY"    <1:0> 
    GRP#    0:    BEG = 0, LEN = 4 ----- 
        0    0:    (n___) (0=>1 1=>2 2=>3)    V = 0 "TOP"    <1:0> @k 
        1    1:    (____) (    0    0)        V = 1 "FAIL"    <1:0> 
        2    2:    (____) (    0    0)        V = 2 "PASS"    <1:0>     
        3    3:    (____) (    0    0)        V = 3 "CHECKING"    <1:0> 
} 

Figure A.1.2. An example of ppg.lib file 
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A.2 Set of the supported operators 

A.2.1 always 

a) PSL notation: FL_Property ::= always FL_Property 
Example:   P: always(TOP); 
Explanation: 
An “always” property holds in the current cycle of a given path iff the FL 
Property that is the operand holds at the current cycle and all subsequent 
cycles. 

b) THLDD graph in AGM format 

 

always TOP { 
    STAT# 4 Nods, 5 Vars, 1 Grps, 1 Inps, 1 Outs, 3 Cons 
     
    VAR#    0:    (i____)    "TOP"    <1:0> 
 
   ;terminal node constants 
    VAR#    1:    (c____)    "FAIL"    <1:0>    VAL = 0 
    VAR#    2:    (c____)    "PASS"    <1:0>    VAL = 1 
    VAR#    3:    (c____)    "CHECKING"    <1:0>    VAL = 2 
 
   ;property PPG 
    VAR#    4:    (o____)    "PROPERTY"    <1:0> 
    GRP#    0:    BEG = 0, LEN = 4 ----- 
        0    0:    (n___) (0=>1 1=>2 2=>3) V = 0 "TOP" <1:0> @[0 to END]_a 
        1    1:    (____) (    0    0)    V = 1 "FAIL"    <1:0> 
        2    2:    (____) (    0    0)    V = 2 "PASS"    <1:0>     
        3    3:    (____) (    0    0)    V = 3 "CHECKING"    <1:0> 
} 

c) THLDD graph portrayal: 

 
d) Notes: 

None. 

  P "always(TOP)" 
[tmin = 0;  tmax = tend ] 

FAIL PASS

TOP

CHK.
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A.2.2 never 

a) PSL notation: FL_Property ::= never FL_Property 
Example:   P: never(BOP); 
Explanation: 
A “never” property holds in the current cycle of a given path iff the FL 
Property that is the operand does not hold at the current cycle and does not 
hold at any future cycle. 

b) THLDD graph in AGM format 

 
c) THLDD graph portrayal: 

 
d) Notes: 

The operand of a “never” operator is BOP because of the PSL simple subset 
requirements. It is allowed to be a Sequence, but Sequences are not currently 
supported. According to good practice of PSL application (refer to [4]), logical 
implication “->” within an operand of “never” is rarely used. Normally it 
should be substituted by “and”, or a combination of “always” and negation 
“not” operators should be used instead of “never”. 

  P "never(BOP)" 
[tmin = 0;  tmax = tend ] 

FAIL PASSCHK.

BOP

never BOP { 
    STAT# 4 Nods, 5 Vars, 1 Grps, 1 Inps, 1 Outs, 3 Cons 
     
    VAR#    0:    (i____)    "BOP"    <1:0> 
 
   ;terminal node constants 
    VAR#    1:    (c____)    "FAIL"    <1:0>    VAL = 0 
    VAR#    2:    (c____)    "PASS"    <1:0>    VAL = 1 
    VAR#    3:    (c____)    "CHECKING"    <1:0>    VAL = 2 
 
   ;property PPG 
    VAR#    4:    (o____)    "PROPERTY"    <1:0> 
    GRP#    0:    BEG = 0, LEN = 4 ----- 
        0    0:    (n___) (0=>2 1=>1 2=>3) V = 0 "BOP" <1:0> @[0 to END]_a 
        1    1:    (____) (    0    0)    V = 1 "FAIL"    <1:0> 
        2    2:    (____) (    0    0)    V = 2 "PASS"    <1:0>     
        3    3:    (____) (    0    0)    V = 3 "CHECKING"    <1:0>  
} 
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A.2.3 Logical implication 

a) PSL notation: FL_Property ::= FL_Property -> FL_Property 
Example:   P: (BOP -> TOP); 
Explanation: 
A logical implication property holds in a given cycle of a given path iff: 
- The FL Property that is the left operand does not hold at the given cycle, or 
- The FL Property that is the right operand does hold at the given cycle. 

b) THLDD graph in AGM format 

 
c) THLDD graph portrayal: 

 
d) Notes: 

The left-hand side operand of a logical implication is BOP because of the PSL 
simple subset requirements.  

  P "(BOP) -> (TOP)"

FAIL PASSCHK.

BOP TOP 

BOP -> TOP { 
    STAT# 5 Nods, 6 Vars, 1 Grps, 2 Inps, 1 Outs, 3 Cons 
     
    VAR#    0:    (i____)    "BOP"    <1:0> 
    VAR#    1:    (i____)    "TOP"    <1:0> 
 
   ;terminal node constants 
    VAR#    2:    (c____)    "FAIL"    <1:0>    VAL = 0 
    VAR#    3:    (c____)    "PASS"    <1:0>    VAL = 1 
    VAR#    4:    (c____)    "CHECKING"    <1:0>    VAL = 2 
 
   ;property PPG 
    VAR#    5:    (o____)    "PROPERTY"    <1:0> 
    GRP#    0:    BEG = 0, LEN = 5 ----- 
        0    0:    (n___) (0=>4 1=>1 2=>4)    V = 0 "BOP"    <1:0> 
        1    1:    (n___) (0=>2 1=>3 2=>4)    V = 1 "TOP"    <1:0>         
        2    2:    (____) (    0    0)    V = 2 "FAIL"    <1:0> 
        3    3:    (____) (    0    0)    V = 3 "PASS"    <1:0>     
        4    4:    (____) (    0    0)    V = 4 "CHECKING"    <1:0>  
} 

112 

 



A.2.4 Logical iff 

a) PSL notation: FL_Property ::= FL_Property <-> FL_Property 
Example:   P: (BOP1 <-> BOP2); 
Explanation: 
A logical “iff” property holds in a given cycle of a given path iff: 
- Both FL properties that are operands hold at the given cycle, or 
- Neither of the FL properties that are operands holds at the given cycle. 

b) THLDD graph in AGM format 

 
c) THLDD graph portrayal: 

 
d) Notes: 

Both operands of a logical “iff” are BOP because of the PSL simple subset 
requirements.  

  P "(BOP1) <-> (BOP2)" 

FAIL PASSCHK.

BOP1 BOP2BOP2

BOP1 <-> BOP2 { 
    STAT# 6 Nods, 6 Vars, 1 Grps, 2 Inps, 1 Outs, 3 Cons 
     
    VAR#    0:    (i____)    "BOP1"    <1:0> 
    VAR#    1:    (i____)    "BOP2"    <1:0> 
 
   ;terminal node constants 
    VAR#    2:    (c____)    "FAIL"    <1:0>    VAL = 0 
    VAR#    3:    (c____)    "PASS"    <1:0>    VAL = 1 
    VAR#    4:    (c____)    "CHECKING"    <1:0>    VAL = 2 
 
   ;property PPG 
    VAR#    5:    (o____)    "PROPERTY"    <1:0> 
    GRP#    0:    BEG = 0, LEN = 6 ----- 
        0    0:    (n___) (0=>1 1=>2 2=>5)    V = 0 "BOP1"    <1:0> 
        1    1:    (n___) (0=>4 1=>3 2=>5)    V = 1 "BOP2"    <1:0>         
        2    2:    (n___) (0=>3 1=>4 2=>5)    V = 1 "BOP2"    <1:0>         
        3    3:    (____) (    0    0)    V = 2 "FAIL"    <1:0> 
        4    4:    (____) (    0    0)    V = 3 "PASS"    <1:0>     
        5    5:    (____) (    0    0)    V = 4 "CHECKING"    <1:0> 
} 
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A.2.5 Logical not 

a) PSL notation: FL_Property ::= NOT_OP FL_Property 
Example:   P: not(BOP); 
Explanation: 
A logical “not” property holds in a given cycle of a given path iff the FL 
property that is the operand does not hold at the given cycle. 

b) THLDD graph in AGM format 

 
c) THLDD graph portrayal: 

 
d) Notes: 

The operand of a logical “not” operator is BOP because of the PSL simple 
subset requirements. 

  P "not(BOP)" 
 

FAIL PASSCHK.

BOP

not BOP { 
    STAT# 4 Nods, 5 Vars, 1 Grps, 1 Inps, 1 Outs, 3 Cons 
     
    VAR#    0:    (i____)    "BOP"    <1:0> 
 
   ;terminal node constants 
    VAR#    1:    (c____)    "FAIL"    <1:0>    VAL = 0 
    VAR#    2:    (c____)    "PASS"    <1:0>    VAL = 1 
    VAR#    3:    (c____)    "CHECKING"    <1:0>    VAL = 2 
 
   ;property PPG 
    VAR#    4:    (o____)    "PROPERTY"    <1:0> 
    GRP#    0:    BEG = 0, LEN = 4 ----- 
        0    0:    (n___) (0=>2 1=>1 2=>3)    V = 0 "BOP"    <1:0> 
        1    1:    (____) (    0    0)    V = 1 "FAIL"    <1:0> 
        2    2:    (____) (    0    0)    V = 2 "PASS"    <1:0>     
        3    3:    (____) (    0    0)    V = 3 "CHECKING"    <1:0> 
}

114 

 



A.2.6 Logical and 

a) PSL notation: FL_Property ::= FL_Property AND_OP FL_Property 
Example:   P: (TOP1 and TOP2); 
Explanation: 
A logical “and” property holds in a given cycle of a given path iff the FL 
properties that are operands both hold at the given cycle. 

b) THLDD graph in AGM format 

 
c) THLDD graph portrayal: 

 
d) Notes: 

None. 

  P "(TOP1) and (TOP2)"

FAIL PASSCHK.

TOP1 TOP2 

TOP1 and TOP2 { 
    STAT# 5 Nods, 6 Vars, 1 Grps, 2 Inps, 1 Outs, 3 Cons 
 
    VAR#    0:    (i____)    "TOP1"    <1:0> 
    VAR#    1:    (i____)    "TOP2"    <1:0> 
 
   ;terminal node constants 
    VAR#    2:    (c____)    "FAIL"    <1:0>    VAL = 0 
    VAR#    3:    (c____)    "PASS"    <1:0>    VAL = 1 
    VAR#    4:    (c____)    "CHECKING"    <1:0>    VAL = 2 
 
   ;property PPG 
    VAR#    5:    (o____)    "PROPERTY"    <1:0> 
    GRP#    0:    BEG = 0, LEN = 5 ----- 
        0    0:    (n___) (0=>2 1=>1 2=>4)    V = 0 "TOP1"    <1:0> 
        1    1:    (n___) (0=>2 1=>3 2=>4)    V = 1 "TOP2"    <1:0>         
        2    2:    (____) (    0    0)    V = 2 "FAIL"    <1:0> 
        3    3:    (____) (    0    0)    V = 3 "PASS"    <1:0>     
        4    4:    (____) (    0    0)    V = 4 "CHECKING"    <1:0> 
} 
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A.2.7 Logical or 

a) PSL notation: FL_Property ::= FL_Property OR_OP FL_Property 
Example:   P: (BOP or TOP); 
Explanation: 
A logical “or” property holds in a given cycle of a given path iff at least one of 
the FL properties holds at the given cycle. 

b) THLDD graph in AGM format 

 
c) THLDD graph portrayal: 

 
d) Notes: 

One of the operands of a logical “or” is BOP because of the PSL simple subset 
requirements.  

 

  P "(BOP) or (TOP)" 

FAIL PASSCHK.

BOP TOP 

BOP or TOP { 
    STAT# 5 Nods, 6 Vars, 1 Grps, 2 Inps, 1 Outs, 3 Cons 
     
    VAR#    0:    (i____)    "BOP"    <1:0> 
    VAR#    1:    (i____)    "TOP"    <1:0> 
 
   ;terminal node constants 
    VAR#    2:    (c____)    "FAIL"    <1:0>    VAL = 0 
    VAR#    3:    (c____)    "PASS"    <1:0>    VAL = 1 
    VAR#    4:    (c____)    "CHECKING"    <1:0>    VAL = 2 
 
   ;property PPG 
    VAR#    5:    (o____)    "PROPERTY" <1:0> 
    GRP#    0:    BEG = 0, LEN = 5 ----- 
        0    0:    (n___) (0=>1 1=>3 2=>4)    V = 0 "BOP"    <1:0> 
        1    1:    (n___) (0=>2 1=>3 2=>4)    V = 1 "TOP"    <1:0>         
        2    2:    (____) (    0    0)    V = 2 "FAIL"    <1:0> 
        3    3:    (____) (    0    0)    V = 3 "PASS"    <1:0>     
        4    4:    (____) (    0    0)    V = 4 "CHECKING"    <1:0> 
}} 
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A.2.8 next 

a) PSL notation: FL_Property ::= next[Number](FL_Property) 
Example:   P: next[k](TOP); 
Explanation: 
A next[n] property holds in a given cycle of a given path iff: 
- There is not an kth next cycle or 
- The FL property that is the operand holds at the kth next cycle 

b) THLDD graph in AGM format 

 

next[k] TOP { 
    STAT# 4 Nods, 5 Vars, 1 Grps, 1 Inps, 1 Outs, 3 Cons 
 
    VAR#    0:    (i____)    "TOP"    <1:0> 
 
   ;terminal node constants 
    VAR#    1:    (c____)    "FAIL"    <1:0>    VAL = 0 
    VAR#    2:    (c____)    "PASS"    <1:0>    VAL = 1 
    VAR#    3:    (c____)    "CHECKING"    <1:0>    VAL = 2 
 
   ;property PPG 
    VAR#    4:    (o____)    "PROPERTY" <1:0> 
    GRP#    0:    BEG = 0, LEN = 4 ----- 
        0    0:    (n___) (0=>1 1=>2 2=>3)    V = 0 "TOP"    <1:0> @k 
        1    1:    (____) (    0    0)    V = 1 "FAIL"    <1:0> 
        2    2:    (____) (    0    0)    V = 2 "PASS"    <1:0>     
        3    3:    (____) (    0    0)    V = 3 "CHECKING"    <1:0> 
}  

c) THLDD graph portrayal: 

 
d) Notes: 

- The number “k” should be positive integer and statically computable. However, “k” is 
allowed to take value END (see Subsection 3.2.3) in frames of this approach. Value ‘0’ 
for “k” is generally allowed, “next[0](TOP)” means TOP holds at the current cycle. 
- Property “next(TOP)” is equivalent to the property “next[1](TOP)”. 
- Property “next[k](TOP)” can also be expressed as “next_a[k to k](TOP)”;  for BOP 
“next[k](BOP)” is also expressible by “next_e[k to k](BOP)”. 

  P "next[ k ](TOP)" 
[ Δt = k ] 

FAIL PASS

TOP

CHK.
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A.2.9 next_a 

a) PSL notation: FL_Property ::= next_a[finite_Range](FL_Property) 
Example:   P: next_a[j to k](TOP); 
Explanation: 
A next_a[j to k] property holds in the current cycle of a given path iff the FL 
property that is the operand holds at all cycles between the jth and kth next cycle, 
inclusive. (If not all those cycles exist, then the FL Property that is the operand 
holds on as many as do exist.) 

b) THLDD graph in AGM format 

 

next_a[j to k] TOP { 
    STAT# 4 Nods, 5 Vars, 1 Grps, 1 Inps, 1 Outs, 3 Cons 
 
    VAR#    0:    (i____)    "TOP"    <1:0> 
 
   ;terminal node constants 
    VAR#    1:    (c____)    "FAIL"    <1:0>    VAL = 0 
    VAR#    2:    (c____)    "PASS"    <1:0>    VAL = 1 
    VAR#    3:    (c____)    "CHECKING"    <1:0>    VAL = 2 
 
   ;property PPG 
    VAR#    4:    (o____)    "PROPERTY"    <1:0> 
    GRP#    0:    BEG = 0, LEN = 4 ----- 
        0    0:    (n___) (0=>1 1=>2 2=>3) V = 0 "TOP"  <1:0>  @[j to k]_a 
        1    1:    (____) (    0    0)    V = 1 "FAIL"  <1:0> 
        2    2:    (____) (    0    0)    V = 2 "PASS"  <1:0>     
        3    3:    (____) (    0    0)    V = 3 "CHECKING"    <1:0> 
} 

c) THLDD graph portrayal: 

 
d) Notes: 

- Both bounds of the range “j” and “k” must be positive integers and statically 
computable, where “j”<= “k”.  
- The value of number “j” is allowed to be ‘0’. In this case the property TOP that is 
operand of “next_a[ 0 to k ](TOP)” holds starting from the current cycle and for the 
next “k” cycles.   
- The right bound “k” is allowed to take value END (see Subsection 3.2.3) in frames of 
this approach. 

  P "next_a[ j to k ](TOP)" 
[ Δt = { j,...,k } ]∀

FAIL PASS

TOP

CHK.
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A.2.10 next_e 

a) PSL notation: FL_Property ::= next_e[finite_Range](FL_Property) 
Example:   P: next_e[j to k](BOP); 
Explanation: 
A next_e[j to k] property holds in the current cycle of a given path iff: 
- There are less than “j” next cycles following the current cycle, or 
-  There is some cycle between the ith and jth next cycle, inclusive, where the FL 
property that is the operand holds. 

b) THLDD graph in AGM format 

 

next_e[j to k] BOP { 
    STAT# 4 Nods, 5 Vars, 1 Grps, 1 Inps, 1 Outs, 3 Cons 
 
    VAR#    0:    (i____)    "BOP"    <1:0> 
 
   ;terminal node constants 
    VAR#    1:    (c____)    "FAIL"    <1:0>    VAL = 0 
    VAR#    2:    (c____)    "PASS"    <1:0>    VAL = 1 
    VAR#    3:    (c____)    "CHECKING"    <1:0>    VAL = 2 
 
   ;property PPG 
    VAR#    4:    (o____)    "PROPERTY" <1:0> 
    GRP#    0:    BEG = 0, LEN = 4 ----- 
        0    0:    (n___) (0=>1 1=>2 2=>3) V = 0 "BOP"  <1:0> @[j to k]_e 
        1    1:    (____) (    0    0)    V = 1 "FAIL"    <1:0> 
        2    2:    (____) (    0    0)    V = 2 "PASS"    <1:0>     
        3    3:    (____) (    0    0)    V = 3 "CHECKING"    <1:0> 
} 

c) THLDD graph portrayal: 

 
d) Notes: 

- Both bounds of the range “j” and “k” must be positive integers and statically 
computable, where “j”<= “k”.  
- The value of number “j” is allowed to be ‘0’. In this case the property BOP that is 
operand of “next_e[ 0 to k ](BOP)” holds either in the current cycle or in one of  the 
next “k” cycles. The right bound “k” is allowed to take value END (see Subsection 
3.2.3) in frames of this approach.  
- The operand of a “next_e” operator is BOP because of the PSL simple subset 
requirements.  

  P "next_e[ j to k ](BOP)" 
[ Δt = { j,...,k } ]∃

FAIL PASS

BOP

CHK.
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A.2.11 next_event  

a) PSL notation: FL_Property ::=  
   next_event(Boolean)[positive_Number](FL_Property) 
Example:   P: next_event(BOP)[ k ](TOP); 

Explanation: 
A “next_event[k]” property holds in the current cycle of a given path iff: 
- The Boolean expression that is the operand does not hold at least “k” times, starting 
at the current cycle, or 
- The Boolean expression that is the operand holds at least “k” times, starting at the 
current cycle, and the FL Property that is the operand holds at the “kth” occurrence of 
the Boolean expression. 

b) THLDD graph in AGM format 

 

next_event BOP[k] TOP { 
    STAT# 4 Nods, 6 Vars, 1 Grps, 2 Inps, 1 Outs, 3 Cons 
    VAR#    0:    (i____)    "TOP"    <1:0> 
    VAR#    1:    (i____)    "BOP"    <1:0> 
   ;terminal node constants 
    VAR#    2:    (c____)    "FAIL"    <1:0>    VAL = 0 
    VAR#    3:    (c____)    "PASS"    <1:0>    VAL = 1 
    VAR#    4:    (c____)    "CHECKING"    <1:0>    VAL = 2 
   ;property PPG 
    VAR#    5:    (o____)    "PROPERTY" <1:0> 
    GRP#    0:    BEG = 0, LEN = 4 ----- 
        0    0:    (n___) (0=>1 1=>2 2=>3) V = 0 "TOP" <1:0> @ k*event BOP 
        1    1:    (____) (    0    0)    V = 2 "FAIL"    <1:0> 
        2    2:    (____) (    0    0)    V = 3 "PASS"    <1:0>     
        3    3:    (____) (    0    0)    V = 4 "CHECKING"    <1:0> 
} 

c) THLDD graph portrayal: 
P "next_event (BOP)[ k ](TOP)"

[ Δt = k·event(BOP)+1 ] 

 
d) Notes: 

- The number “k” must be a statically computable positive integer, where k ≥ 1. 
- Property “next_event(BOP)(TOP)” is equivalent to “next_event(BOP)[1](TOP)”. 
- The formula “next_event(‘true’)(TOP)” is equivalent to the formula “next[0](TOP)”. 
Similarly, if “BOP” holds in the current cycle, then “next_event(BOP)(TOP)” is 
equivalent to “next_event(‘true’)(TOP)” and therefore to “next[0](TOP)”. However, 
none of these is equivalent to “next(TOP)”.  

FAIL PASS

TOP

CHK.

120 

 



A.2.12 until 

a) PSL notation: FL_Property ::= (FL_Property) until (FL_Property) 
Example:   P: (TOP)until(BOP); 
Explanation: 
An “until” property holds in the current cycle of a given path iff: 
- The FL property that is the left operand holds forever, or 
- The FL property that is the right operand holds at the current cycle or at some 
future cycle, and the FL property that is the left operand holds at all cycles up 
to, but not necessarily including, the earliest cycle at which the FL Property 
that is the right operand holds. 

b) THLDD graph in AGM format 

 

TOP until BOP { 
    STAT# 4 Nods, 6 Vars, 1 Grps, 2 Inps, 1 Outs, 3 Cons 
    VAR#    0:    (i____)    "TOP"    <1:0> 
    VAR#    1:    (i____)    "BOP"    <1:0> 
   ;terminal node constants 
    VAR#    2:    (c____)    "FAIL"    <1:0>    VAL = 0 
    VAR#    3:    (c____)    "PASS"    <1:0>    VAL = 1 
    VAR#    4:    (c____)    "CHECKING"    <1:0>    VAL = 2 
   ;property PPG 
    VAR#    5:    (o____)    "PROPERTY" <1:0> 
    GRP#    0:    BEG = 0, LEN = 4 ----- 
      0    0:    (n___) (0=>1 1=>2 2=>3) V = 0 "TOP" <1:0> @[0 to  
                                                           event BOP -1]_a 
      1    1:    (____) (    0    0)    V = 2 "FAIL"    <1:0> 
      2    2:    (____) (    0    0)    V = 3 "PASS"    <1:0>     
      3    3:    (____) (    0    0)    V = 4 "CHECKING"    <1:0> 
} 

c) THLDD graph portrayal: 
P "(TOP) until (BOP)" 

[ Δt = 

 
d) Notes: 

- The same PPG but with the time window “Δt=∀{ 0,...,event(BOP)}” corresponds to 
the PSL operator “(TOP)until_(BOP)” 
- The right hand side operand of a “until” operator is BOP because of the PSL simple 
subset requirements.  

∀{ 0,...,event(BOP)-1} ]

FAIL PASS

TOP

CHK.
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A.2.13 before 

a) PSL notation: FL_Property ::= (FL_Property) before (FL_Property) 
Example:   P: (BOP1)before(BOP2); 
Explanation: 
A “before” property holds in the current cycle of a given path iff: 
- Neither the FL Property that is the left operand nor the FL Property that is the 
right operand ever hold in any future cycle, or 
- The FL Property that is the left operand holds strictly before the FL Property 
that is the right operand holds. 

b) THLDD graph in AGM format 

 

BOP1 before BOP2 { 
    STAT# 4 Nods, 6 Vars, 1 Grps, 2 Inps, 1 Outs, 3 Cons 
     
    VAR#    0:    (i____)    "BOP1"    <1:0> 
    VAR#    1:    (i____)    "BOP2"    <1:0> 
   ;terminal node constants 
    VAR#    2:    (c____)    "FAIL"    <1:0>    VAL = 0 
    VAR#    3:    (c____)    "PASS"    <1:0>    VAL = 1 
    VAR#    4:    (c____)    "CHECKING"    <1:0>    VAL = 2 
   ;property PPG 
    VAR#    5:    (o____)    "PROPERTY" <1:0> 
    GRP#    0:    BEG = 0, LEN = 4 ----- 
        0    0:    (n___) (0=>1 1=>2 2=>3) V = 0 "BOP1"   <1:0> @[0 to  
                                                         event BOP2 - 1]_e 
        1    1:    (____) (    0    0)    V = 2 "FAIL"    <1:0> 
        2    2:    (____) (    0    0)    V = 3 "PASS"    <1:0>     
        3    3:    (____) (    0    0)    V = 4 "CHECKING"    <1:0> 
} 

c) THLDD graph portrayal: 
P ""(BOP1) before (BOP2)" 

[ Δt = { 0,...,event(BOP2)-1} ]∃

 
d) Notes: 

- The same PPG but with the time window “Δt=∃{ 0,...,event(BOP)}” corresponds to 
the PSL operator “(BOP1)before_(BOP2)”  
- Both operands of a “before” operator are BOP because of the PSL simple subset 
requirements.  

FAIL PASS

BOP1

CHK.
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Appendix B 
AGM FORMAT 

This appendix describes syntax of AGM file format. This format is used to 
represent the following design representation models proposed and used in TUT: 

• SSBDD 
• HLDD (RTL, TLM and behavioural abstraction levels) 
• THLDD 

This format is not a contribution of this thesis but rather presented here for 
explanatory purposes. Only several minor modifications have been introduced to 
the format to support new THLDD model. 

AGM stands for Alternative Graph model Format. This abbreviation has 
historical roots in the first publications of Prof. Raimund Ubar on topic of decision 
diagrams, where they were referred to as alternative graphs (e.g. [38]). 

AG model format is case sensitive. It is a line-based format where maximum 
line length can be 256 characters. In the following the BNF syntax of AG model 
format is presented. The meta-syntax used obeys the following rules: 

1) Syntactic categories (nonterminals) are printed in italics; literal words, 
characters and constants are enclosed to ‘quotes’. 

2) If a construct is enclosed to [square brackets], it is optional. 
3) If a construct is enclosed to {curly brackets}, it may be repeated zero or 

more times. 
4) A choice is indicated with a vertical bar |. 
5) If a construct is enclosed in <chevrons>, it can occur at most once. 
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B.1 AGM syntax 

ag_model := 
statistics 
mode 
[control_signals] 
ag_description 

statistics :=  
‘STAT#’ natural ‘Nods,’ natural ‘Vars,’ natural ‘Grps,’ natural ‘Inps,’ natural 
‘Outs,’ natural ‘Cons’ [‘,’ natural ’Funs’] [‘,’ natural ’Mems’] [‘,’ natural 
‘C_outs’] 

The natural values reflect the number of nodes, variables, graphs, inputs, 
outputs, constants, functions, memory arrays and control part outputs, respectively. 
The number of functions and memory arrays are meaningful in the high-level 
descriptions. The number of control part outputs is used with the RTL descriptions 
divided into a control part and a datapath only. 

mode := 
‘MODE#’ ‘STRUCTURAL’ | ‘RTL’ | ‘BEHAVIORAL’ | ‘TEMPORAL’ 

Indicates whether a structural gate-level model, a RTL model, a behavioral 
model, or a temporally extended model is being described. RTL and behavioral 
models have the following difference: RTL descriptions contain clocking 
information while behavioral descriptions do not. Other intermediate abstraction 
levels’ models, such as TLM, are logically included in one of these two groups 
depending on the clocking information presence. Temporally extended model is 
used for THLDD representation. It differs from the behavioral mode by presence of 
additional temporal relationships information for properties.  

control_signals := ‘COUT#’ natural {‘,’ natural} 

Shows the variable indexes of control signal variables. Used in RTL 
descriptions partitioned to datapath and control parts. 

ag_description := 

[{input_definition}] 
[{memory_definition}] 
[{constant_definition}] 
[{function_definition}] 
[{control_definition}] 
{graph_variable_definition} 

The definitions are ranged according to the order shown above. There are no 
memory definitions or function definitions in structural gate-level AG models. 
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control_definitions are used only in the RTL descriptions partitioned into control 
and datapath parts. 

input_definition := 
‘VAR#’ var_index ‘:’ ‘(‘ variable_flags ’)’ var_name  var_range 

Defines a primary input of the model. 

memory_definition := 
‘VAR#’ var_index ‘:’ ‘(‘variable_flags’)’ var_name var_range [row_range] 
column_range 
memory_row 
{memory_row} 

Defines a memory array. The optional row_range  is used with two-dimensional 
arrays, and it determines the range of row addresses used in memory. In one-
dimensional arrays, row_range is omitted. In similar way, column_range 
determines the range of column addresses used in the memory variable. 

memory_row := ‘{‘ integer {‘,’ integer} ‘}’ 

Defines the contents of a memory variable. The number of integers in 
memory_row is determined by column_range. 

row_range := mem_range 

Row_range  is used with two-dimensional arrays, and it determines the range of 
row addresses used in memory. In one-dimensional arrays, row_range is omitted. 

column_range := mem_range 

Determines the range of column addresses used in the memory variable. 

mem_range := ‘[‘ integer ‘-’ integer ‘]’ 

In mem_range the first integer must be less than the second one. 

constant_definition := 
‘VAR#’ var_index ‘:’ ‘(‘variable_flags’)’ var_name  var_range ‘VAL’ ‘=’ integer 

Defines a constant. The integer value shows the value of the constant. 

function_definition := 
‘VAR#’ var_index ‘:’ ‘(‘variable_flags’)’ var_name  var_range 
‘FUN#’  function_type  arguments_definition 

Defines an operation or function. 

function_type := identifier 

Shows the type of the operation. 

arguments_definition := ‘(‘ [argument] {‘,’ argument} ’)’ 

Defines the arguments (if any) of an operation. 
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argument := ‘A’argument_index  ‘<=’ argument_variable  range 

The range shows the bit-slice of the variable argument_variable that is used as 
a function argument. 

argument_index := natural 

Shows the index of the function argument. 

argument_variable := natural 

Shows the index of the variable used as the function argument. 

control_definition := 
‘VAR#’ var_index ‘:’ ‘(‘ variable_flags ’)’ var_name  var_range 

+ 

Defines a control signal. Used to define control part output signals of the RTL 
designs partitioned into datapath and control parts. 

graph_variable_definition := 
‘VAR#’ var_index ‘:’ ‘(‘variable_flags’)’ var_name  var_range 
graph_definition 

Defines a variable for which a graph corresponds. 

graph_definition := 
‘GRP#’ graph_index ‘:’ ‘BEG’ ‘=’ natural ‘,’ ‘LEN’ ‘=’ natural ‘-----’ 
node_definition | parallel_node_definition 
{node_definition | parallel_node_definition} 

Defines a graph in the AG model. The ‘BEG=’ construct shows the absolute 
index of the first node in the graph. The ‘LEN=’ construct in turn shows the 
number of nodes in the graph. 

node_definition := 
nod_abs_index nod_index ‘: (‘nod_flags’) (’ successors ‘) V =’ nod_var nod_name 
nod_range 

Defines an AG node. nod_abs_index and nod_index represent the absolute 
(inside the model) and relative (inside the graph) indexes of the node. Construct 
successors shows the successor nodes of current node which are chosen with 
different node values. Index of the variable labeling the node is determined with 
nod_var.  

parallel_node_definition := 
nod_abs_index nod_index ‘: (v___)’ ‘(‘ ‘0’ ‘0’ ‘)’ ‘VEC =’ nod_var_vector 

Defines a terminal node of the FSM graph of RTL description. nod_abs_index 
and nod_index represent the absolute (inside the model) and relative (inside the 
graph) indexes of the node, respectively. Indexes of the variables labeling the node 
are determined with nod_var_vector.  
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nod_var_vector := ‘ ”’ state_value {signal_value} ’ ”’ 

state_value shows the value of the next state. The signal_value constructs show 
the values of the control signals defined in the control_signals construct. 

state_value := natural 

Shows the value of the next state. 

signal_value := ‘0’ | ‘1’ | ‘X’ 

The signal_value constructs show the values of the control signals defined in 
the control_signals construct. 

nod_var := natural[ [ ‘[‘ ‘V’ ‘=’ row_index ’]’ ]  ‘[‘ ‘V’ ‘=’ column_index ’]’ ] 

Shows the index of the variable labeling the node. Optional constructs 
row_index and column_index are used with memory variables labeling the node. 
These constructs determine the indexes of the variables used for addressing rows 
and columns, respectively. 

nod_name := string 

Shows the name of the node. 

nod_range := range 

nod_range determines the bit-slice of the variable that labels the node. AG 
model format allows slices of variables to be used for labeling a node. 

row_index := natural 

Determines the indexes of the variables used for addressing rows of the memory 
variable. 

column_index := natural 

Determines the index of the variable used for addressing columns of the 
memory variable. 

nod_abs_index := natural 

Shows the absolute (inside the model) index of the node. 

nod_index := natural 

Shows the relative (inside the graph) index of the node inside the graph. 

graph_index := natural 

Shows the index of the graph. 

variable_flags := < ‘i’ | ‘m’ | ‘c’ | ‘f’ | ‘o’ | ‘n’ | ’_’ | ‘F’ > {<‘d’> | ‘_’} 

The variable flags have the following interpretation: 
‘i’  - input variable 
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‘m’ - memory variable (RTL, behavioral) 
‘c’ - constant variable 
‘f’ - function variable (RTL, behavioral) 
‘o’ - output variable 
‘d’ - clock cycle delay, e.g. in registers, flipflops. (Gate-level, RTL) 

The following flags are used with RTL descriptions only: 
‘n’ - control part output signal 
‘F’ - FSM graph variable 
‘r’ - reset variable 
‘s’ - state variable 

nod_flags := < ‘i’ | ’_’ > { ‘n’ | ‘v’ | ‘_’} 

The node flags have the following interpretation: 
‘i’  - inverted node (in gate-level descriptions only) 
‘n’ - non-terminal node (RTL, behavioral) 
‘v’ - control part terminal node (RTL)  

successors := 
nonterminal_successors | terminal_successor | boolean_successors 

Construct successors shows the successor nodes of current node which are 
chosen with different node values. 

nonterminal_successors := 
node_values  ‘=>’ successor_index  {node_values  ‘=>’ successor_index } 

This construct shows the indexes of successor nodes which will be selected with 
corresponding node values. (Used with RTL and behavioral models only). 

terminal_successors := ‘0’ ‘0’ 

Terminal nodes are nodes which have no successor nodes. 

boolean_successors:= natural  natural 

This type of construct can be used with Boolean AGs only. The first natural 
number indicates the relative index of the successor node when the value of current 
node is ‘0’, and the second number shows the relative index of the successor node 
when current node is ‘1’, respectively. If the index of the successor node is ‘0’, it 
shows that there is no successor nodes to current node with corresponding value.   

node_values :=  natural { ‘,’ | ‘-’  natural} 

Determines the set of node values that activate the corresponding branch. The 
comma ‘,’ character is used for separating the indexes; the minus sign ‘-‘ is used 
for index ranges, e.g. ‘3-5’, which can be alternatively written as ‘3,4,5’. 

successor_index := natural | ‘X’ 
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If successor_index is a natural number, it shows the index of the successor 
node. Otherwise, if successor_index is ‘X’, it means that the successor is 
undetermined. 

var_index := natural 

Shows the index of the variable. 

var_name := string 

Shows the name of the variable. 

var_range := range 

Shows the bitwidth of the variable. 

range := [ ‘<’ natural ‘:’ natural ‘>’ ] 

Range is a construct for describing bit-vectors. The first natural shows the index 
of the most significant bit and the latter is for the least significant bit, respectively. 
If range is omitted, it will default to ‘<0:0>’. 

string := ‘ ” ’ {character} ‘ “ ’ 

Character can be any character, except newline and double quote ‘ ” ’. 

integer := 
[‘-’]natural  
Any integer number. 
natural  

Natural can be any non-negative number.  

identifier :=  
alphabetic_character{alphabetic_character | digit | ‘_’} 
alphabetic_character :=  ‘A’| …| ’Z’ | ‘a’ | …| ‘z’ 
digit :=  ‘0’ | ‘1’ | …| ‘9’ 
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