John-Tagore Tevet

CONSTRUCTIVE PRESENTATION OF THE GRAPHS: A SELECTION OF EXAMPLES

CONTENTS

INTRODUCTION 2
ATTRIBUTES OF CONSTRUCTIVE PRESENTATION 3

1. BISYMMETRIC GRAPHS 5
1.1. All the bisymmetric structures with 4 to 20 vertices 5
1.2. Bisymmetry and strong regularity 9
2. GRAPHS WITH A SMALLER SYMMETRY 16
2.1. Mono-symmetric structures 17
2.2. Poly- or multi-symmetric structures 21
3. NON-TRANSITIVE GRAPHS 26
3.1. Locally- or partially symmetric structures 26
3.2. 0 -symmetric structures 29
CONCLUSION 31
REFERENCES 31

INTRODUCTION

Abstract

Constructive presentation of the graphs designed for recognition the structure, its symmetry properties (orbits), attributes, changes, successions and systems of the graphs, be founded on special concepts and be realized by corresponding algorithms. It constitutes a structure semiotic approach to the graphs. Structure of a graph mean there a complete invariant of isomorphic graphs and semiotics be expressed as a sign system of local invariants, that present the structure in a constructive form. There are presented 34 examples with corresponding propositions and comments.

To date the graph theory, in spite of variety of the problems and approaches, has been dominated by a certain "Königsberg attitude" with its emphasis on walks, paths, cycles, directed, Eulerian- and Hamiltonian graphs and in the flows in theirs. Unfortunately remain the aspects of structural, systemic and symmetry properties to the background.

We take the interests for:
(i) What is the structure?
(ii) What is the symmetry of structure?
(iii) What are the attributes of structure?
(iv) What are the changes of structure?
(v) What is a system of structures?
(vi) What is the semiotics of structure?

Graphs are constructive objects that can be treated on various aspects. Layers of conceptualization have enlarged our understanding to their complexity. However, attempts to find the "truth" about graphs remain contentious. Presented application of semiotic testing may be an innovative response to what J. Mayer [1976] noted as the introverted condition of graph theory and give it new intellectual state. It is a usual discovery of the graphs.

Structure semiotics no be interested in directed-and multigraphs, walks, traversability, flows, planarity, colorability, coverings, specters etc. At the same time by the structural approach of the graphs arise any specific research objects.

The foundations of constructive presentation are explained by a system of specific definitions and conceptions (see 'Structure Semiotic Approach to the Graphs' pp 2-9 by (PDF) http://ester.nlib.ee/ or www.graphs.ee pp 1-8. The conceptions are developed to corresponding algorithms for opening in a simple way the structure and its attributes (see pp 24-30 or 36-40 correspondingly).

The selection of examples with comments and propositions express there the processing results of algorithms, where give much attention to symmetry properties, particularly to bisymmetry of structure. As a rule, we recognize the structural attributes of the graphs, such as:

1) Structure of a graph and its complement in constructive form.
2) Orbits of vertices and vertex pairs of structure and its complement.
3) Symmetry signs and kinds of structure, such as complete-, bi-, mono-, polyi-, local- and 0 -symmetry.
4) Valences and valence regularity (i.e. custom regularity).
5) Distances and distance regularity, where all the vertices have on the equal distance $-\boldsymbol{d}$ an equal number \boldsymbol{m} vertices.
6) Girths and girth regularity, where all the vertices belong to some girth with equal perimeter ($\mathbf{+ d + 1}$) an equal number $\boldsymbol{p} \geq 1$ times.
7) Cliques and clique regularity, where all the vertices belong to a clique with equal power \boldsymbol{n}; we take structure n-clique-regular also then, if the some vertices belong to $(n+a)$-clique, because n-clique is its sub-clique.
8) Strong regularity, that mean a state ($k, \boldsymbol{a}, \boldsymbol{b}$), where each adjacent pair of k-valence-regular structure has $\boldsymbol{a} \geq 0$ common adjacent vertices and each disadjacent pair $\boldsymbol{b} \geq 1$ common adjacent vertices.
9) Partitions, such as bipartite, tripartite etc and the lists of parts.
10) Orbit structures as real parts of a structure and its complement, i.e. partial structures whose edges correspond to pair signs of a fixed pair orbit of the structure.
11) Adjacent structures, i.e. greatest substructures and smallest superstructures of the structure, where their number cancel to the number of pair orbits N.
12) Structural measures, i.e. values by diversity of structural attributes.

The examples are selected so, that all the essential structural properties of symmetric and non-symmetric graphs are presented.

ATTRIBUTES OF CONSTRUCTIVE PRESENTATION

On the structural aspect is a graph only a list of adjacent vertices or adjacent matrix. The „figures" or „diagrams" of graphs are there presented in minimum. The aim is to present the essence of graph structure. For opening structural attributes is suitable to treat the structure with its complement together. For structural research elaborated two algorithm-complete: A) Structure algorithm and B) System algorithm. There be limited with explaining the input (initial data) and output (processing results) of structure algorithm.

INPUT: List of adjacent vertices L of a graph.
STRUCTURE ALGORITHM: 1) Forming the list of adjacent vertices of complement. 2) Identification the local invariants, i.e. pair signs of pair graphs and their lexicographical ordering to the form of sign matrix W. 3) Recognition the essential attributes. 4) Forming the lists of adjacent vertices of pair graphs.

OUTPUT: Sign matrix \boldsymbol{W}, that open the structure with exactness up to isomorphism with corresponding attributes together and recognize all the structural attributes in canonical.

Introductive example in standard form with shorts explanations.
Graph-structure G282 (7.6.24) and its complement G1203 (7.15.24). The ordering number of graph corresponds to its number in Graph Atlas, the number in brackets to its number in the system of structures with 7 -vertices.

INPUT: List of adjacent vertices L of graph G282: 1 - 2, 3, 7;
2-1, 3;
3-1, 2;
4-5, 6;
5-4;
6-4;
7 - 1;
OUTPUT 1: Pair signs and sign matrix \boldsymbol{W} with u - and s-signs of graph G282 and its complement:

$$
A:-2.3 .2 ; B:-0.2 .0 ; C:+1.2 .1 ; D:+2.3 .3 .
$$

1	\| $2 \mid$	3	3	4		41	51	i		k		
1	\| 4	2	3	5		$6 \mid$	7		ABCD		12345	
0	\|-B		D	D	- B	-B	B\|	C	1	0312	1	00201
0		-B	-B	C		C	-B	4	0420	2	00020	
		0	D	-B		B	- A	2	1302	3	10100	
		$0 \mid$	-B	-	B\|	- $A \mid$	3	1302	3	10100		
			0	-	A	-B\|	5	1410	4	01000		
					01	-B\|	6	1410	4	01000		
						01	7	2310	5	10000		

$$
\begin{aligned}
& \text { A:-2.6.12; B:-2.6.10; C:-2.5.7; } \\
& \text { D:+2.3.3; E:+2.4.5; F:+2.4.6; G:+2.5.8; H:+2.5.9; I:+2.6.11; J:+3.7.15. }
\end{aligned}
$$

Pair signs: Pair sign $\pm \boldsymbol{d} . \boldsymbol{n} . \boldsymbol{q}$ open: $\boldsymbol{- d}$ - distance between vertices or the length of path, \boldsymbol{n} - number of vertices in pair graph, \boldsymbol{q} - number of edges in pair graph. Pair sign -0.2 .0 is disconnecting sign and $\boldsymbol{+ 1 . 2 . 1}$ a path link sign. $+\boldsymbol{d}>1$ is girth sign, that open the collateral distance between adjacent vertices, where $\boldsymbol{d}+1$ is the length of girth, for example, $+\boldsymbol{d}=\mathbf{2}$ is 3-girth- or triangularity sign. Sign +2.3 .3 on 3-clique-, +2.4 .64 -clique sign (if after to $+2^{\text {le }}$ the \boldsymbol{n} and \boldsymbol{q} correspond to conditions of n-clique), $\boldsymbol{J}:+3.7 .15$ is 4 -girth sign, where the $\boldsymbol{n}=7$ vertices and $\boldsymbol{q}=15$ adjacent vertices of
pair graph $\boldsymbol{g} \subset \boldsymbol{G}$ belong to 4-girths. If \boldsymbol{n} equal to the number of vertices and \boldsymbol{q} to the number of edges in graph \boldsymbol{G}, as now, then it is complete pair sign.
$\underline{\boldsymbol{u} \text {-signs: }} \operatorname{Sign} \boldsymbol{u}_{i}=\boldsymbol{u}_{i 1}, \ldots, \boldsymbol{u}_{i p}, \ldots, \boldsymbol{u}_{i \boldsymbol{P}}$, whose elements $\boldsymbol{u}_{i p}$ are by pair signs, d.n. $\boldsymbol{q}_{1}<\ldots<$ d.n. $\boldsymbol{q}_{p}<\ldots<$ d.n. $\boldsymbol{q}_{\boldsymbol{P}}$, lexicographically ordered presents their corresponding number in the row $\boldsymbol{W}_{\boldsymbol{i}}$ of sign matrix, is \boldsymbol{u}-sign of vertex $\boldsymbol{v}_{i j} \boldsymbol{u}$-signs are presented in the column $A B C D . .$. of matrix W.
 $\boldsymbol{W}_{\boldsymbol{k}}$ of vertex $\boldsymbol{v}_{\boldsymbol{i}}$ is \boldsymbol{s}-sign of vertex $\boldsymbol{v}_{\boldsymbol{i}} . S$-signs are presented in the column 12345 of matrix \boldsymbol{W}.

Vertex orbits: Vertex $\boldsymbol{v}_{\boldsymbol{i}}$ orbits $\boldsymbol{\Omega} \boldsymbol{V}_{\boldsymbol{k}}$ are presented in column \boldsymbol{k} of matrix \boldsymbol{W}.
Pair orbits: Pair $\boldsymbol{v}_{\boldsymbol{i}} \boldsymbol{v}_{\boldsymbol{j}}$ orbits $\boldsymbol{\Omega} \boldsymbol{R}_{\boldsymbol{n}}$ are presented in the intersection $\boldsymbol{W}_{\boldsymbol{k} \boldsymbol{i}, \boldsymbol{k} j}=\boldsymbol{W}_{\boldsymbol{k} \boldsymbol{i}} \cap \boldsymbol{W}_{\boldsymbol{k} j}$ of decomposed sign matrix \boldsymbol{W}. For example, in the partial matrix $W_{1.3}$ is by sign \boldsymbol{D} is opened a two-element orbit of adjacent pairs 1-2 and 1-3, and in the partial matrix $W_{3.4}$ by sign $-B$ a four-element orbit of disadjacent pairs.

OUTPUT 2: Common invariants and measures of structure and its complement:

Symmetry	$\|V\|$	$\|R\|$	K	N	$S V V$	$S V$	$S R V$	$H R$	$S R$	aut	PS
Local-symmetry	$\mathbf{7}$	$\mathbf{2 1}$	$\mathbf{5}$	$\mathbf{1 2}$	$\mathbf{1}^{3} \mathbf{2}^{2}$	0.204	$\mathbf{1}^{5} 2^{6} 4^{1}$	1.035	$\mathbf{0 . 2 1 7}$	4	$156 / 7752$

$|\boldsymbol{V}|$ - number of vertices; $|\boldsymbol{R}|$ - number of vertex pairs; \boldsymbol{K} - number of vertex orbits; \boldsymbol{N} - number of pair orbits.
Symmetry signs: SVV - sign of vertex symmetry, where large numbers \mathbf{N} present the powers of vertex orbits and small upper numbers ${ }^{\mathbf{N}}$ the number of vertex orbits; $\boldsymbol{S R V}$ - sign of pair symmetry, where large numbers \mathbf{N} present the power of pair orbits and small upper numbers ${ }^{\mathbf{N}}$ the number of pair orbits.

Measures: $S V$ - value of vertex symmetry, $0 \leq S V \leq 1 ; \boldsymbol{H R}$ - value of inner diversity or information capacity; $\boldsymbol{S R}$ - value of pair symmetry, $0 \leq S R \leq 1$; aut - number of automorphisms; PS - existence probability.

OUTPUT 3: Distinguishing invariants and measures of structure and its complement:

\boldsymbol{G}	$\|E\|$	\boldsymbol{k}	\boldsymbol{N}^{+}	\boldsymbol{N}^{-}	\boldsymbol{P}	$\boldsymbol{C L}$	$\boldsymbol{M C}$	$\boldsymbol{D M}$	$\mathbf{S E V}$	$\boldsymbol{S E}$	$\boldsymbol{D E G}$	$\boldsymbol{C P X}$	TRA	BRA	$\boldsymbol{p r o}$
$\mathbf{2 8 2}$	6	2	4	8	4	3	3	2	$\mathbf{1}^{\mathbf{2}} \mathbf{2}^{\mathbf{2}}$	0.256	$\mathbf{1}^{\mathbf{3}} \mathbf{2}^{\mathbf{3}} \mathbf{3}^{\mathbf{1}}$	2.924	0.500	0.500	p
$\mathbf{1 2 0 3}$	15	1	8	4	10	4	4	2	$\mathbf{1}^{\mathbf{3}} \mathbf{2}^{\mathbf{4}} \mathbf{4}^{\mathbf{1}}$	0.273	$\mathbf{3}^{\mathbf{1}} \mathbf{4}^{\mathbf{3}} \mathbf{5}^{\mathbf{3}}$	3.623	0.933	0	h

$|\boldsymbol{E}|$ - number of edges; \boldsymbol{k} - number of components; \boldsymbol{N}^{+}- number of edge- or pair(+)orbits; \boldsymbol{N} - number of "non-edge"or pair(-)orbits; $\boldsymbol{C L}$ - largest clique; $\boldsymbol{M C}$ - largest girth; $\boldsymbol{D M}$ - diameter.

Symmetry sign: SEV - sign of edge symmetry, where large numbers \mathbf{N} present the power of edge orbits and small upper numbers ${ }^{\mathrm{N}}$ the number of edge orbits.

Valence sign: $\mathbf{D E G}$ - where large numbers \mathbf{N} present the valence of edges and small upper numbers ${ }^{\mathbf{N}}$ the number of edges with valence \mathbf{N}.

Measures: SE - value of edge symmetry, $0 \leq \boldsymbol{S E} \leq 1$; $\boldsymbol{C P X}$ - structural complexity, that depend from the numbers of structural attributes; TRA - triangularity, $0 \leq \boldsymbol{T R A} \leq 1 ; \boldsymbol{B R A}$ - branching, $0 \leq \boldsymbol{B R A} \leq 1 ;$ pro - special properties.

A main property of the structure is its symmetry and the examples are arranged by symmetry properties of structure. We begin at presentation the transitive or vertex symmetric structures. Usually take the transitive graphs as certain cases of regular cubic, quartic, quintic etc graphs. All the vertices of a transitive structure belong to one vertex orbit and we call these to vertex symmetric structures. Among all the graphs are they very exceptional. Extreme case of they is complete symmetry, which are present as complete- and empty graphs. Transitive or vertex symmetric structures divide by numbers of pair(-)- and pair(+)orbits to three different classes: 1) bisymmetric structures, having only one pair(+)- and one pair(-)orbit; 2) mono-symmetric structures, having one pair(+)- and several pair(-)orbit; 3) poly- or multisymmetric structures, having several pair(+)- and several pair(-)orbit. Non-transitive structures have any vertex orbits and divide by numbers of vertex orbits to two different classes: 4) locally- or partially symmetric structures, where the number of vertex orbits is less than the number of vertices; 5) $\mathbf{0}$-symmetric structures, where the number of vertex orbits is equal to the number of vertices.

1. BISYMMETRIC GRAPHS

Bisymmetry mean in the framework of transitivity coexistence the edge- and ,,non-edge" symmetry that are very extreme cases. The complement of bisymmetric graph is also bisymmetric. They have only two adjacent structures - an adjacent sub-structure and an adjacent super-structure. Their number of automorphisms is large but sign matrix simple. The bisymmetric graphs we treat more profoundly.

1.1. All the bisymmetric structures with $\mathbf{4}$ to $\mathbf{2 0}$ vertices

The smallest bisymmetric graph is with 4 vertices. There exist only one 4 -vertices bisymmetric graph pair.
Example 1. Graph B4-2, its complement B4-4 and their processing results in the form of pair signs, sign matrices with u-signs and corresponding measures:

1	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	\mathbf{i}	$A B$	deg
0	B	$-A$	$-A$	1	21	1
	0	$-A$	$-A \mid$	2	21	1
		0	B	3	21	1
			$0 \mid$	$\mathbf{4}$	21	1

A:-2.4.4; B:+3.4.4.

SRV	HR	SR	aut
$\mathbf{2 1}^{1} 4^{1}$	0.2764	$\mathbf{0 . 6 4 4 8}$	$\mathbf{8}$

Comments: a) Graph B4-2 consist of two component 2-clique (see pair sign +1.2.1), it is 2-clque regular, i.e. all the vertices belong to a 2-clique. b) Its complement B4-4 is bipartite, where its parts correspond to the cliques of B4-2. In present case is B4-4 also bi-clique. c) The pair sign +3.4 .4 of complement B4-4 explain that it is 4-girth regular, i.e. all the vertices belong to a $(+\boldsymbol{d}+1=3+1=) 4$-girth.

There exist only one bisymmetric graph with 5 vertices.
Example 2. Graph B5-5, its complement B5-5C and their processing results in the form of pair signs, sign matrices with u-signs and corresponding measures:

$A:-2.3 .2 ;$						$B:+4.5 .5$.	
1	2	3	$\mathbf{4}$	$\mathbf{5}$	\mathbf{i}	$A B$	deg
0	B	$-A$	$-A$	B	1	22	2
	0	B	$-A$	$-A \mid$	2	22	2
		0	B	A	3	22	2
			0	B	4	22	2
				0	5	22	2

$A:-2.3 .2 ;$							$B:+4.5 .5$.
1	2	3	$\mathbf{4}$	$\mathbf{5}$	\mathbf{i}	$A B$	deg
0	$-A$	B	B	$-A \mid$	1	22	2
	0	$-A$	B	B	2	22	2
		0	$-A$	B	3	22	2
			0	$-A \mid$	4	22	2
				$0 \mid$	5	22	2

SRV	HR	SR	aut
5^{2}	0.3010	0.6990	10

Comments: a) Graph B5-5 is self-complemented, i.e. its complement B5-5C is isomorphic with B5-5 or they structures are identical. This expressed by identity of pair signs and equivalency of sign matrices. b) Pair sign +4.5 .5 means, that it is a 5-girth, i.e. it is 5-girth regular.

Among 6-vertices graphs exist there two pairs of bisymmetric graphs.
Example 3. Graph B6-3, its complement B6-12 and their processing results in the form of pair signs, sign matrices with u-signs and corresponding measures:

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6} \mid$	\mathbf{i}	$A B$	deg
\mid	0	B	$-A$	$-A$	$-A$	$-A \mid$	$\mathbf{1}$	41
	0	B	$-A$	$-A$	$-A \mid$	$\mathbf{2}$	41	1
		0	B	$-A$	$-A \mid$	3	41	1
			0	B	$-A \mid$	$\mathbf{4}$	41	1
				0	$B \mid$	$\mathbf{5}$	41	1
					$0 \mid$	$\mathbf{6}$	41	1

A:-2.6.12;					B:+2.4.5.			deg
1	12	3	4	5	6	i	$A B$	
0	- -	B	B	B	B	1	14	4
	\bigcirc	-A	B	B	B	2	14	4
		0	- -	B	B	3	14	4
			0	- A	B	4	14	4
				0	- A	5	14	4
					0]	6	14	4

SRV	HR	SR	aut
$\mathbf{3}^{1} 1 \mathbf{2}^{\mathbf{1}}$	0.2173	$\mathbf{0 . 8 1 5 2}$	48

Comments: a) Graph B6-3 consist of three component 2-clique, it is 2-clique regular. b) Complement B6-12 is threepartite, where its parts correspond to the 2-cliques of B6-3. It is a part-clique, exactly 3-part-clique or tri-clique. c) From pair sign +2.4 .5 be conclude, that it is 3 -girth- or -clique regular, i.e. all the vertices belong to a triangel.

Example 4. Graph B6-6, its complement B6-9 and their processing results in the form of pair signs, sign matrices with u-signs and corresponding measures:

A:-0.2.0;					B: +2.3.3.			deg
1	2	3	4	5	6	i	$A B C$	
0	- A	B	-A	B	- A	1	32	2
	0	- -	B	- A	$B \mid$	2	32	2
		\bigcirc	-A	B	- A	3	32	2
			\bigcirc	- A	B	4	32	2
				\bigcirc	- $A \mid$	5	32	2
					01	6	32	2

$$
A:-2.5 .6 ; B:+3.6 .9 .
$$

$$
\begin{array}{rrrrrrrrrr}
\mid 1 & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} \mid & \mathbf{i} & A B & \text { deg } \\
\hline \mid & 0 & B & -A & B & -A & B \mid & \mathbf{1} & 23 & 3 \\
& 0 & B & -A & B & -A \mid & 2 & 23 & 3 \\
& & 0 & B & -A & B \mid & 3 & 23 & 3 \\
& & & 0 & B & -A \mid & 4 & 23 & 3 \\
& & & & 0 & B \mid & \mathbf{5} & 23 & 3 \\
& & & & & 0 \mid & \mathbf{6} & 23 & 3
\end{array}
$$

SRV	HR	SR	aut
$\mathbf{6}^{1} \mathbf{9}^{1}$	0.2923	$\mathbf{0 . 7 5 1 5}$	$\mathbf{7 2}$

Comments: a) Graph B6-6 consist of two component 3-clique, it is 3-clique regular. Consequently, the complement B6-9 is bipartite, where its parts correspond to 3-cliques of B6-6. It is also a bi-clique. b) Pair sign +3.6 .9 is a complete invariant and B6-9 is 4-girth regular, i.e. all its vertices belong to 4 -girth.

Among graphs with 7 vertices bisymmetric structures no exist. „Almost bisymmetric" is a 7 -girth with its complement, they have three pair orbits and are mono-symmetric. Now we can they present only by sign matrices that contain all the data about structure.

Example 5. Processing results of graph M7-7 and its complement M7-14 in the form of pair signs, sign matrices with u-signs and corresponding measures:

$$
A:-3.4 .3 ; B:-2.3 .2 ; C:+6.7 .7 .
$$

$$
A:-2.5 .7 ; B:+2.3 .3 ; C:+2.4 .5 .
$$

11	2	3	4	5	6	7	i	ABC	deg
0	-B	- A	C	C	- A	-B	1	222	2
	\bigcirc	- B	- A	C	C	- A	2	222	2
		\bigcirc	- B	- A	C	C	3	222	2
			0	- B	- A	C	4	222	2
				\bigcirc	- B	- A	5	222	2
					0	-B	6	222	2
						\bigcirc	7	222	2

1	2	3	4	5	6	7	i	ABC	deg
0	C	B	- A	- A	B	C	1	222	4
	0	C	B	- A	- A	B	2	222	4
		\bigcirc	C	B	- A	- A	3	222	4
			0	C	B	- A	4	222	4
				0	C	B	5	222	4
					0	C	6	222	4
						$0 \mid$	7	222	4

SRV	HR	SR	aut
$7^{1} 14^{1}$	0.2764	0.7909	14

Comments: a) From complete pair sign +6.7 .7 conclude, that graph $\mathbf{M} 7-7$ really constitute a 7 -girth. b) As the distances between vertices are differ $-d=2$ and $-d=3$, then exist two pair(-)orbits $-A$ and $-B$ and the structure of graph is mono-, in present case edge- or $(+)$ symmetric. c) Structure of the complement M7-14 consist of 3-girths and is also monosymmetric, exactly „non-edge"- or (-)symmetric.

Among transitive graphs with 8 vertices are bisymmetric only 2-and 4-clique-regular structures with their complements.

Example 6. Processing results of graph B8-4 and its complement B8-24 in the form of pair signs, sign matrices with u signs and corresponding measures:

$$
A:-0.2 .0 ; B:+1.2 .1 .
$$

$$
A:-2.8 .24 ; B:+2.6 .13 .
$$

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	\mathbf{i}	$A B$	$\mathbf{d e g}$
0	\mathbf{B}	$-A$	$-A$	$-A$	$-A$	$-A$	$-A \mid$	$\mathbf{1}$	61	1
	0	$-A$	$-A$	$-A$	$-A$	$-A$	$-A \mid$	$\mathbf{2}$	61	1
		0	\mathbf{B}	$-A$	$-A$	$-A$	$-A \mid$	$\mathbf{3}$	61	1
			0	$-A$	$-A$	$-A$	$-A \mid$	$\mathbf{4}$	61	1
				0	\mathbf{B}	$-A$	$-A \mid$	$\mathbf{5}$	61	1
					0	$-A$	$-A \mid$	$\mathbf{6}$	61	1
						0	B	$\mathbf{7}$	61	1
							$0 \mid$	$\mathbf{8}$	61	1

$S R V$	$H R$	$S R$
$4^{1} 24^{1}$	0.1781	0.8769

Comments: a) Graph B8-4 consist of four component 2-clique, it is 2-clique-regular. Consequently, the complement B8-24 is four-partite, where its parts correspond to 2-cliques of B8-4. b) Complement B8-24 constitute a quadro-clique and is 4-clique-regular, i.e. all its vertices belong to 4-clique.

Example 7. Processing results of graph B8-12 and its complement B8-16 in the form of pair signs, sign matrices with u-signs and corresponding measures:

$$
A:-0.2 .0 ; B:+2.4 .6 . \quad A:-2.6 .8 ; B:+3.8 .16 .
$$

1	2	3	4	5	6	7	81	i	$A B$	deg	1	2	3	4	5	6	7	8	i	$A B$	deg
0	B	B	B	- A	- A	- A	- ${ }^{\text {\| }}$	1	43	3	0	-A	- A	- A	B	B	B	B	1	34	4
	0	B	B	- A	- A	- A	- A \|	2	43	3		\bigcirc	- A	- A	B	B	B	B	2	34	4
		0	B	- A	- A	- A	-A\|	3	43	3			0	- A	B	B	B	B	3	34	4
			0	- -	- A	- A	- $A \mid$	4	43	3				0	B	B	B	B	4	34	4
				0	B	B	$B \mid$	5	43	3					0	- -	- A	- A	5	34	4
					0	B	$B \mid$	6	43	3						0	- -	- -1	6	34	4
						\bigcirc	B	7	43	3							\bigcirc	- A	7	34	4
							$0 \mid$	8	43	3								01	8	34	4

SRV	HR	SR
$\mathbf{1 2}^{\mathbf{1}} \mathbf{1 6}^{\mathbf{1}}$	0.2966	$\mathbf{0 . 7 9 0 6}$

Comments: a) Graph B8-12 consist of two component 4-clique, it is 4-clique-regular. Consequently, the complement B8-16 is bipartite, where its parts correspond to 4 -cliques of B8-12. It is also a bi-clique. b) Pair sign +3.8 .16 is a complete invariant and B8-16 is 4-girth-regular, i.e. all its vertices belong to 4-girth.

Now we can to formulate some Propositions:
Proposition 1. The complement of a graph that consist of \boldsymbol{r} component \boldsymbol{n}-clique (n-clique-regular), is \boldsymbol{r}-partite, where the power of parts is \boldsymbol{n}, i.e. it is n-part- regular.
Comment: This mean, that disconnected component n-cliques change to the parts of its complement, where the number \boldsymbol{r} of n-cliques equal to number of parts and the power \boldsymbol{n} of n-cliques equal to power of parts.

Proposition 2. The first pair sign of a graph with component cliques is sign of non-connectivity - 0.2 .0 and the other is clique sign.
Comment: The clique sins are $\mathbf{+ 1 . 2 . 1}$ (2-clique) or +2.3 .3 (3-clique) or +2.4 .6 (4-clique) or +2.5 .10 (5 -clique) etc.
Proposition 3. Induced on the ground of component n-cliques connected bisymmetric structure constitute ar-clique that contain cliques with power \boldsymbol{r}, i.e. it is on \boldsymbol{r}-clique regular.
Comment: Bi-clique is 2-clique-regular, tri-clique is 3-clique-regular etc. All the r-cliques we call Reval cliques.
Proposition 4. We call the r-cliques by their number of parts correspondingly to bi-, tri-, quadro-, quinta-, sexta-, septa-, octa-, nona-, deca-, undeca- etc -clique.
Comments: After there presented structures exist following bisymmetric structures:
two bisymmetric structures with 9 vertices that induced by component 3 -cliques correspondingly to a triclique;
four bisymmetric structures with 10 vertices that induced by component 2- and 5-cliques correspondingly to quinta- and bi-cliques;
eight bisymmetric structures with 12 vertices that induced by component 2 -, 3-, 4 - and 6-cliques correspondingly to sexta-, quadro-, tri- and bi-cliques;
four bisymmetric structures with 14 vertices that induced by component 2-, 7-cliques correspondingly to septaand bi-cliques;
four bisymmetric structures with 15 vertices that induced by component 3-, 5-cliques correspondingly to quinta- and tri-cliques;
six bisymmetric structures with 16 vertices that induced by component 2-, 4- and 8 -cliques correspondingly to octa, quadro- and bi-cliques;
eight bisymmetric structures with 18 vertices that induced by component 2-, 3-, 6- and 9-cliques correspondingly to nona-, sexta-, tri- and bi-cliques;
eight bisymmetric structures with 20 vertices that induced by component $2-, 4-, 5$ - and 10 -cliques correspondingly to deca-, quinta-, quadro- and bi-cliques;
etc.
Proposition 5. Bi- or 2-partite structure is 4-girth-regular, i.e. its pair(+)sign begin with +3 .
Proposition 6. The number of edges \boldsymbol{E} of a \boldsymbol{r}-clique equal to $\boldsymbol{E}=\boldsymbol{n}^{2} \boldsymbol{r}(\boldsymbol{r}-1): 2$
Comment: It is the lawfulness, it is simply recognized by deg-column of sign matrix.

Example 8. Still one example on a r-clique: Processing results of graph B18-108 as complement of B18-45 which consist of three component 6 -cliques. Their pair signs, sign matrices with u-signs and corresponding measures:
A:-2.14.60; B:+2.8.13.

SRV	HR	SR
$45^{1} 108^{2}$	0.2631	$\mathbf{0 . 8 7 9 6}$

Comments: a) Graph B18-108 is tri-partite with parts $\mathbf{1 , 2 , 7 , 8 , 1 3 , 1 4 ; ~ 3 , 4 , 9 , 1 0 , 1 5 , 1 6}$ and $\mathbf{5 , 6 , 1 1 , 1 2 , 1 7 , 1 8}$ and also a triclique and 3 -clique regular. b) Consequently, its complement B18-45 consist of three component 6 -clique which correspond to parts of B18-108 and is 6-clique regular.

1.2. Bisymmetry and strong regularity

A graph \boldsymbol{G} said strongly regular with parameters $(k, \boldsymbol{a}, \boldsymbol{b})$ if it is a k-regular incomplete graph such that any two adjacent vertices have exactly $\boldsymbol{a} \geq 0$ common neighbours and any two non-adjacent vertices have $\boldsymbol{b} \geq 1$ common neighbours. Existence in bisymmetric structure exactly two pair signs, $-\boldsymbol{d} . \boldsymbol{n}_{\mathbf{1}} \cdot \boldsymbol{q}$ and $+\boldsymbol{d} . \boldsymbol{n}_{\mathbf{2}} \cdot \boldsymbol{q}$, mean that by $\pm \boldsymbol{d}=2$ has each disadjacent vertex pair exactly \boldsymbol{n}_{1} common neighbours and each adjacent vertex pair \boldsymbol{n}_{2} common neighbours.

Proposition 7. All the bisymmetric graphs are also strongly regular, but no on the contrary.
Comment: The numbers $\boldsymbol{n}_{\boldsymbol{1}}$ and $\boldsymbol{n}_{\mathbf{2}}$ of common neighbours can be stay constant also by existence more that two pair signs, i.e. by mono-, multi- and local symmetries. Consequently, strongly regular graphs can be also mono-, multi- and partial symmetric.

After bisymmetric graphs that are induced by component n-cliques there exists also some well-known bisymmetric and strongly regular graphs.

Example 9. Processing results of graph B9-18 and its complement B9-18C in the form of pair signs, sign matrices with u-signs and corresponding measures:
A:-2.4.4; B:+2.3.3.

1	2	3	4	5	6	7	8	91	i	$A B$	deg	1	2	3	4	5	6	7	8	91	i
0	B	B	B	B	-A	- A	- A	- -1	1	44	4	0	-	- A	-A	- A	B	B	B	B	1
	0	B	- A	- A	B	B	- A	$-A \mid$	2	44	4		0	- -	B	B	-A	- A	B	B	2
		0	- -	- A	-A	- A	B	B	3	44	4			0	B	B	B	B	- A	- $A \mid$	3
			0	B	- A	B	B	-A	4	44	4				0	- -	B	- A	- A	$B \mid$	4
				0	B	- A	- A	$B \mid$	5	44	4					0	- A	B	B	- $A \mid$	5
					0	B	- A	B	6	44	4						\bigcirc	-	B	- A \|	6
						0	B	-A	7	44	4							0	- A	$B \mid$	7
							0	$B \mid$	8	44	4								0	- $A \mid$	8
								01	9	44	4									$0 \mid$	9

SRV	$H R$	$S R$
$\mathbf{1 8}^{\mathbf{2}}$	0.3010	0.8066

Comment: Structure B9-18 is self-complemented and 3-clique- or 3-girth-regular bisymmetric and strongly regular, which consist in six 3-girths so, that each vertex belong to two different 3-girths but each edge to one 3-girth.

Example 10. Processing results of graph $\mathbf{B 1 0} \mathbf{- 1 5}$ and its complement $\mathbf{B 1 0 - 3 0}$ in the form of pair signs, sign matrices with u-signs and all the corresponding invariants, measures and comments:

A:-2.3.2; B:+4.10.15.													A:-2.6.12; B:+2.5.8.												
1	2	3	4	5	6	7	8	9	10	i	$A B$	deg	1	2	3	4	5	6	7	8	9	10	i	$A B$	deg
\bigcirc	B	- A	- A	B	B	- A	- A	- A	- A	1	63	3	\bigcirc	- A	B	B	- A	- A	B	B	B	B	1	36	6
	0	B	- A	- A	- A	B	- A	- A	- A	2	63	3		\bigcirc	- -	B	B	B	- A	B	B	B	2	36	6
		\bigcirc	B	- A	- A	- A	B	- A	$-A \mid$	3	63	3			\bigcirc	- A	B	B	B	- A	B	B	3	36	6
			\bigcirc	B	- A	- A	- A	B	- A	4	63	3				0	- A	B	B	B	- A	B	4	36	6
				0	- A	- A	- A	- A	B	5	63	3					\bigcirc	B	B	B	B	-A\|	5	36	6
					\bigcirc	- -	B	B	$-A \mid$	6	63	3						\bigcirc	B	- A	- A	B	6	36	6
						0	- A	B	B	7	63	3							\bigcirc	B	- A	- $A \mid$	7	36	6
							0	- -	B	8	63	3								0	B	$-A \mid$	8	36	6
								\bigcirc	- A	9	63	3									\bigcirc	B	9	36	6
									01	10	63	3										0\|	10	36	6

Common invariants and measures of graph and its complement:

Symmetry	$\|V\|$	$\|R\|$	K	N	SVV	SV	SRV	HR	SR	aut
Bisymmetry	10	45	1	2	10^{1}	1.000	$\mathbf{1 5}^{1} 30^{1}$	0.2764	$\mathbf{0 . 8 3 2 8}$	120

Distinguishing invariants and measures:

\boldsymbol{G}	$\|E\|$	\boldsymbol{K}	\boldsymbol{N}^{+}	\boldsymbol{N}^{-}	\boldsymbol{P}	$\boldsymbol{C L}$	$\mathbf{M C}$	$\boldsymbol{D M}$	$\mathbf{S E V}^{+}$	$\boldsymbol{S E}^{+}$	TRA	$\boldsymbol{B R A}$
B10-15	15	1	1	1	2	2	5	2	$\mathbf{1 5}^{\mathbf{1}}$	1.000	0	0
B10-30	30	1	1	1	2	4	4	2	$\mathbf{3 0}^{1}$	1.000	1.000	0

Comments: a) Structure B10-15 appears to well-known Petetrsen graph. b) On structural aspect is Petersen graph unique and recognizable by its complete pair sign +4.10 .15 (its 10 vertices form 15 adjacent pairs that belong to 5girths). Another graph with such pair sign no exist. c) Characteristic properties of Petersen graph are bisymmetry, strongly-, 5-girth-, 2-distance- and 3-valence regularity. d) By Graph Atlas belong Petersen graph to regular, connected cubic graphs (p 127, C27), symmetric cubic graphs (p 167, with Heawood's graph), (3,5)-cage-graphs (p 271) and to snark-graphs (p 276, Sn1). e) By Graph Atlas p 263: Cages are regular graphs of given girth with minimum vertices; specifically, a (k, g)cage is a k-regular graph of girth g with the minimum number of vertices. \mathbf{f}) Complement of Petersen graph B10-30 is bisymmetric, strongly-, 4-clique-, 2-distance- and 6-valence-regular.

We know, that the number of connected, 4 -valence-regular graphs is 265 , among this only two transitive. Bisymmetric and strongly regular graphs with 11 vertices no exist. We were shown, that among graphs with 12 vertices are eight bisymmetric and strongly regular graph. A. Titov [1976] was fixed one bisymmetric structure with 13 vertices.

Example 11. Processing results of graph B13-39 and its complement B13-39C in the form of pair signs, sign matrices with u-signs and all the corresponding invariants, measures and comments:

Common invariants and measures of graph and its complement:

Symmetry	$\|V\|$	$\|R\|$	K	\boldsymbol{N}	SVV	SV	SRV	HR	SR
Bisymmetry	$\mathbf{1 3}$	$\mathbf{7 8}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{1 3}^{\mathbf{1}}$	1.000	$\mathbf{3 9}^{2}$	0.3010	$\mathbf{0 . 8 4 0 9}$

\boldsymbol{G}	$\|E\|$	\boldsymbol{k}	\boldsymbol{N}^{+}	\boldsymbol{N}^{-}	\boldsymbol{P}	$\boldsymbol{C L}$	MC	$\boldsymbol{D M}$	$\mathbf{S E V}^{+}$	SE $^{+}$	TRA	BRA
B13-39, B13-39C	39	1	1	1	2	3	3	2	$\mathbf{3 9}^{1}$	1.000	1.000	0

Comments: From equivalence of sign matrices conclude, that structure B13-39 is self-complemented. b) B13-39 is bisymmetric, strongly-, 3-clique- or 3-girth-, 2-distance- and 6-valence regular.

The next graph B16-40 is constructed by Greenwood-Gleason as in any 3-colouring of the edges of the \mathbf{K}_{16} without monochromatic triangles, the set of edges of each colour from this graph. It called also Clebish graph.

Example 12. Processing results of graph B16-40 and its complement B16-80 in the form of pair signs, sign matrices with u-signs and all the corresponding invariants, measures and comments:
A:-2.4.4; B:+3.10.13.

1	2	3	4	5	6	7	8	9	101	111	12	131	14	15	16	i	AB	deg
0	B	- A -	-A	B	-A	- A	B	-A	-A -	-A	B	-A -	-A	B	-A	1	105	5
	0	B -	-A -	- A	- A	B	-A	-A	B -	-A -	-A	-A	B	- A	-A	2	105	5
		0	B	- A	B	-A	-A	B	- -	- A	B	-A -	- A	- A	- ${ }^{\text {\| }}$	3	105	5
			0	B	- A	- A	B	- -	- A	B -	-A	-A	B	-A	- A	4	105	5
				\bigcirc	B	-A	-A	-A	B -	- A -	-A	B -	- A	-A	-A	5	105	5
					\bigcirc	B	-A	-A	- -	-A -	-A	- -1	- A	B	B	6	105	5
						0	B	-A	- A	B -	-A	B	- A	- A	- ${ }^{\text {\| }}$	7	105	5
							0	B	-A -	- A -	-A	- A -	- A	- A	B	8	105	5
								0	B	-A -	- A	B	- A	B	- ${ }^{\text {\| }}$	9	105	5
									0	B -	-A	- A -	- A	- A	B	10	105	5
										0	B	- A -	- A	B	- ${ }^{\text {\| }}$	11	105	5
											0	B -	- A	- A	B	12	105	5
												0	B	- A	- -1	13	105	5
													0	B	B	14	105	5
														0	- ${ }^{\text {\| }}$	15	105	5
															$0 \mid$	16	105	5

A:-2.8.24; B:+2.8.22.

Common invariants and measures of graph and its complement:

Symmetry	$\|V\|$	$\|R\|$	K	N	SVV	SV	SRV	HR	SR
Bisymmetry	$\mathbf{1 6}$	$\mathbf{1 2 0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{1 6}^{1}$	1.000	$\mathbf{4 0}^{1} 80^{1}$	0.2762	$\mathbf{0 . 8 6 7 0}$

Distinguishing invariants and measures:

\boldsymbol{G}	$\|\boldsymbol{E}\|$	\boldsymbol{k}	\boldsymbol{N}^{+}	\boldsymbol{N}^{-}	\boldsymbol{P}	$\boldsymbol{C L}$	$\mathbf{M C}$	$\boldsymbol{D M}$	$\mathbf{S E V}^{+}$	$\boldsymbol{S E}^{+}$	TRA	$\boldsymbol{B R A}$
B16-40	40	1	1	1	2	2	4	2	$\mathbf{4 0}^{\mathbf{1}}$	1.000	0	0
B16-80	80	1	1	1	2	5	3	2	$\mathbf{8 0}^{\mathbf{1}}$	1.000	1.000	0

Comments: a) The bisymmetric and strongly regular structure $\mathbf{B 1 6 - 4 0}$ is correspondingly to pair $(+)$ sign +3.10 .13 (complete invariant of pair graph) 4-girth regular, that mean partiting. This appear to 4-partite with incompletely connected parts on 4-elementical bases. b) It is no quadroclique. c) The parts are variety, where, for example one variant is $\mathbf{A}=\mathbf{5 , 8 , 1 2 , 1 5 ;} \mathbf{B}=\mathbf{3 , 7 , 1 0 , 1 4 ;} \mathbf{C = 1 , 4 , 9 , 1 6}$; and $\mathbf{D}=\mathbf{2 , 6 , 1 1 , 1 3}$:

	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}
\mathbf{A}	0	4	6	10
\mathbf{B}		0	10	6
\mathbf{C}			0	4
\mathbf{D}				0

d) From 4-elemintic parts of B16-40 conclude the 4-clique regularity of variety cliques of complement B16-80. e) On the other hand, in case of each vertex of B16-40 its 5 adjacent vertices no have between themselves adjacencies (edges), from which conclude also a 5-clique-regularity of complement B16-80. We can in B16-80 to fix 16 different 5-cliques, such as (beginning at the adjacent vertices of first vertex of $\mathbf{B 1 6 - 4 0}$) $\mathbf{2 , 5 , 8 , 1 2 , 1 5} ; \mathbf{1 , 3 , 7 , 1 0 , 1 4} ; \ldots$ to ending with $\mathbf{6 , 8 , 1 0 , 1 2 , 1 4}$.

Among from B. Weisfeiler [1976] constructed strongly regular graphs exists also some bisymmetric.
Example 13. Pair- and u-signs with general invariants and measures of Weisfeiler's transitive strongly regular graph B15-45 and its complement B15-60:

$$
A:-2.5 .6 ; B:+2.3 .3 . \quad u=8.6 \quad A:-2.6 .11 ; B:+2.6 .12 . \quad u=6.8 .
$$

SRV	HR	SR
$45^{1} 60^{1}$	0.2966	0.8533

Comments: a) Structure B15-45 is 3-clique- or -girth-regular. b) Complement B15-60 is 5-clique-regular.
Example 14. Pair- and u-signs with general invariants and measures of Weisfeiler's transitive strongly regular graph B16-48 and its complement B16-72:

$$
A:-2.4 .4 ; B:+2.4 .6 . \quad u=9.6 \quad A:-2.8 .18 ; B:+2.6 .11 . \quad u=6.9 .
$$

SRV	HR	SR
$\mathbf{4 8}^{\mathbf{1}} \mathbf{7 2}^{\mathbf{1}}$	0.2923	$\mathbf{0 . 8 5 9 4}$

Comment: Structure B16-48 and its complement B16-72 are 4-clique regular.
Example 15. Pair- and u-signs with general invariants and measures of Weisfeiler's transitive strongly regular graph B17-68 and its complement B17-68C:

$$
A:-2.6 .11 ; B:+2.5 .7 . \quad u=8.8 \quad A:-2.6 .11 ; B:+2.5 .7 . \quad u=8.8 .
$$

$S R V$	$H R$	$S R$
$\mathbf{6 8}^{2}$	0.3010	$\mathbf{0 . 8 5 8 9}$

Comment: Structure B17-68 is self-complemented and 3-clique- or 3-girth-regular.
Some bisymmetric structures with more than 20 vertices.
Example 16. Pair- and u-signs with general invariants and measures of Weisfeiler's transitive strongly regular graph B21-105 and its complement B21-105C:

$$
A:-2.6 .12 ; B:+2.7 .17 . \quad u=10.10 \quad A:-2.8 .15 ; B:+2.5 .7 . \quad u=10.10 .
$$

SRV	HR	SR
$\mathbf{1 0 5}^{2}$	0.3010	$\mathbf{0 . 8 7 0 4}$

Comment: Structure B21-105 is 6-clique-regular, its complement B21-105C is 3-clique-regular.
Example 17. Pair- and u-signs with general invariants and measures of Weisfeiler's transitive strongly regular graph B25-100 and its complement B25-200:

$$
\begin{aligned}
& A:-2.4 .4 ; B:+2.5 .10 . u=16.8 \quad A:-2.14 .60 ; B:+2.11 .37 . u=8.16 . \\
& \qquad \begin{array}{|c|c|c|}
\hline S R V & H R & S R \\
\hline 100^{1} 200^{1} & 0.2764 & 0.8884 \\
\hline
\end{array}
\end{aligned}
$$

Comment: Structure B25-100 and its complement B25-200 are 5-clique-regular.
Example 18. Pair- and u-signs with general invariants and measures of transitive strongly regular Paulus' graph B25150 and its complement B25-150C:

$$
A:-2.8 .19 ; B:+2.7 .14 . \quad u=12.12 \quad \text { A:-2.8.19; } B:+2.7 .14 . \quad u=12.12 .
$$

SRV	$H R$	$S R$
150^{2}	0.3010	$\mathbf{0 . 8 7 8 5}$

Comment: Structure B25-150 (Paulus graph) is self-complemented and 5-clique-regular.
Between graphs with 21 and 25 vertices exist also many bisymmetric and strongly regular structures with 21,22 and 24 vertices that are induced by structures that consist of component cliques. For example there exist twelve bisymmetric structures with 24 vertices that are induced by 2-, 3-, 4-, 6-, 8- and 12-cliques to dudeca-, octa-, sexta-, quadro-, tri- and bi-cliques correspondingly.

Example 19. Pair- and u-signs with general invariants and measures of transitive strongly regular Schläfli's graph B27135 and its complement B27-216:

$$
A:-2.7 .10 ; B:+2.3 .3 . \quad u=16.10 \text { A:-2.10.40; } B:+2.12 .51 . \quad u=10.16 .
$$

SRV	HR	SR
$135^{1} 216^{1}$	0.2894	0.8863

Comment: Structure B27-135 is 3-clique-regular, its complement B27-216 is clique-regular.
More larges, with 40 vertices, bisymmetric and strongly regular structures are constructed by Netshepurenko et al [1990].

Example 20. Common pair- and u-signs with general invariants and measures of transitive strongly regular Netshepurenko's graphs B40A-240 and B40B-240:

$$
-A:-2.6 .8 ;+B:+2.4 .6 . \quad u=27.12 \quad-A:-2.20 .144 ;+B:+2.20 .142 . \quad u=12.27 .
$$

SRV	HR	$\boldsymbol{S R}$
$240^{1} 540^{1}$	0.2681	$\mathbf{0 . 9 0 7 3}$

Comments: a) Identity of characteristics of structures B40A-240 and B40B-240 mean their coincidence of symmetry properties. b) The structures are 4-clique regular, where 4-cliques are connected. c) There can be rare 4-partite structures with 10 -element parts, which is not quadro-cliques, that must contain 600 edges, but there exist only 240 . d) B40A-240 and B40B-240 are constructed for isomorphism testing that on structural aspect take place by local sign matrices of second degree pair graphs.

Therefore, bisymmetric structures must be also strongly regular. In Graph Atlas [1998] exist among 70 transitive structures with to 20 vertices only 5 bisymmetric.

As we seen, are the conditions of bisymmetry simples. But what these mean still?

Proposition 9. Existence only the two pair signs, pair(-)- and pair(+)sign in bisymmetric structure mean the identity of all its pair $(-)$ structures and identity of all its pair $(+)$ structures.
Comment: If the intersections of all the disadjacent vertices, i.e. pair(-)graphs are isomorphic and the collateral intersections of all the adjacent vertices, i.e. pair $(+)$ graphs are isomorphic, then it constitute a bisymmetric structure. Bisymmetry is more strict condition than strong regularity, where the lasts can be appear also to mono-, multi- or even locally symmetric.

So we are recognized 75 bisymmetric structures with 4 to 40 vertices, mainly on the ground of componentic cliques induced structures. The results of Petersen B10-15, Titov B13-39, Weisfeiler B15-45 et al, Greenwood-Gleason (or Clebish) B16-40, Paulus B25-150, Schläfli B27-135 and Netshepurenko et al B40-240 in the realm of bisymmetry are random coincides, because the first be interested on valence-regularity, other on self-complementary, third on strong regularity, fourth on colour-conjecture, others on isomorphism testing etc.

Example 21. Conclusive table of all there treated bisymmetric and strongly regular structures.
There, \mathbf{c} - components, \mathbf{p} - partition, \mathbf{r} - number of components or parts, \mathbf{n} - power of components or parts:

Nr	Notation	deg	SRV	SR	Comp/part		Regularity	Commentary	Pair signs	
					r	n			Pair(-)	Pair(+)
1	$\begin{aligned} & \hline \text { B4-2 } \\ & \text { B4-4 } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 2 \\ & \hline \end{aligned}$	$2^{1} 4^{1}$	0.6448	2c	2	2-clique		-0.2.0	+1.2.1
2					2p	2	4-girth	2-bi-clique	-2.4.4	+3.4.4
3	B5-5	2	5^{2}	0.6990	1c	5	5-girth	Selfcomplem.	-2.3.2	+4.5.5
4	$\begin{aligned} & \hline \text { B6-3 } \\ & \text { B6-12 } \end{aligned}$	$\begin{aligned} & 1 \\ & 4 \end{aligned}$	$3^{1} 12^{1}$	0.8152	3c	2	2-clique		-0.2.0	+1.2.1
5					3p	2	3-clique	2-tri-clique	-2.6.12	+2.4.5
6	$\begin{aligned} & \hline \text { B6-6 } \\ & \text { B6-9 } \end{aligned}$	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	$6^{1} 9^{1}$	0.7515	2c	3	3-clique	-	-0.2.0	+2.3.3
7					2p	3	4 -girth	3-bi-clique	-2.5.6	+3.6.9
8	$\begin{aligned} & \text { B8-4 } \\ & \text { B8-24 } \end{aligned}$	$\begin{aligned} & 1 \\ & 6 \end{aligned}$	$4^{1} 24^{1}$	0.8769	4c	2	2-clique		-0.2.0	+1.2.1
9					4p	2	4-clique	2-quadro-clique	-2.8.24	+2.6.13
10	$\begin{aligned} & \hline \text { B8-12 } \\ & \text { B8-16 } \end{aligned}$	$\begin{aligned} & 3 \\ & 4 \end{aligned}$	$12^{1} 16^{1}$	0.7906	2c	4	4-clique		-0.2.0	+2.4.6
11					2p	4	4-girth	4-bi-clique	-2.6.8	+3.8.16
12	$\begin{aligned} & \text { B9-9 } \\ & \text { B9-27 } \end{aligned}$	$\begin{aligned} & 2 \\ & 6 \end{aligned}$	$9^{1} 27^{1}$	0.8431	3c	3	3-clique	-	-0.2.0	+2.3.3
13					3p	3	3-clique	3-tri-clique	-2.8.21	+2.5.7
14	B9-18	4	18^{2}	0.8066	3p	3	3-girth	Selfcomplem.	-2.4.4	+2.3.3
15	$\begin{aligned} & \hline \text { B10-5 } \\ & \text { B10-40 } \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 8 \\ & \hline \end{aligned}$	$5^{1} 40^{1}$	0.9084	5c	2	2-clique		-0.2.0	+1.2.1
16					5p	2	5-clique	2-quinta-clique	-2.10.40	+2.8.25
17	$\begin{aligned} & \hline \text { B10-15 } \\ & \text { B10-30 } \end{aligned}$	$\begin{aligned} & 3 \\ & 6 \end{aligned}$	$\mathbf{1 5}^{1} 30^{1}$	0.8328	1c	10	5-girth	Petersen gr.	-2.3.2	$\underline{+4.10 .15}$
18					1c	10	4-clique	-	-2.6.12	+2.5.8
19	$\begin{aligned} & \hline \text { B10-20 } \\ & \text { B10-25 } \\ & \hline \end{aligned}$	$\begin{aligned} & 4 \\ & 5 \end{aligned}$	$20^{125}{ }^{1}$	0.8196	2c	5	5-clique	-	-0.2.0	+2.5.10
20					2p	5	4-girth	5-bi-clique	-2.7.10	$\underline{+3.10 .25}$
21	$\begin{aligned} & \hline \text { B12-6 } \\ & \text { B12-60 } \end{aligned}$	$\begin{gathered} 1 \\ 10 \end{gathered}$	$6^{1} 60^{1}$	0.9273	6 c	2	2-clique		-0.2.0	+1.2.1
22					6p	2	6-clique	2-sexta-clique	-2.12.60	+2.10.41
23	$\begin{aligned} & \hline \text { B12-12 } \\ & \text { B12-54 } \end{aligned}$	$\begin{aligned} & \hline 2 \\ & 9 \end{aligned}$	$12^{1} 54^{1}$	0.8868	4 c	3	3-clique	-	-0.2.0	+2.3.3
24					4p	3	4-clique	3-quadro-clique	-2.11.45	+2.8.22
25	$\begin{aligned} & \text { B12-18 } \\ & \text { B12-48 } \end{aligned}$	$\begin{aligned} & 3 \\ & 8 \end{aligned}$	$18^{1} 48^{1}$	0.8601	3c	4	4-clique	-	-0.2.0	+2.4.6
26					3p	4	3-clique	4-tri-clique	-2.10.32	+2.6.9
27	$\begin{aligned} & \hline \text { B12-30 } \\ & \text { B12-36 } \end{aligned}$	$\begin{aligned} & 5 \\ & 6 \end{aligned}$	$30^{1} 36^{1}$	0.8355	2c	6	6-clique	-	-0.2.0	+2.6.15
28					2p	6	4-girth	6-bi-clique	-2.8.12	$\underline{+3.12 .36}$
29	B13-39	6	39^{2}	0.8409	1c	13	3-clique	Selfcomplem.	-2.5.7	+2.4.5
30	$\begin{aligned} & \hline \text { B14-7 } \\ & \text { B14-84 } \\ & \hline \end{aligned}$	$\begin{gathered} \hline 1 \\ 12 \end{gathered}$	$7^{1} 84^{1}$	0.9399	7c	2	2-clique	-	-0.2.0	+1.2.1
31					7p	2	7-clique	2-septa-clique	-2.14.84	+2.12.61
32	$\begin{aligned} & \text { B14-42 } \\ & \text { B14-49 } \end{aligned}$	$\begin{aligned} & \hline 6 \\ & 7 \end{aligned}$	$42^{1} 49^{1}$	0.8470	2c	7	7-clique	-	-0.2.0	+2.7.21
33					2p	7	4-girth	7-bi-clique	-2.9.14	$\underline{+3.14 .49}$
34	$\begin{aligned} & \text { B15-15 } \\ & \text { B15-90 } \end{aligned}$	$\begin{gathered} 2 \\ 12 \\ \hline \end{gathered}$	$15^{1} 90^{1}$	0.9119	5c	3	3-clique	-	-0.2.0	+2.3.3
35					5p	3	5-clique	3-quinta-clique	-2.14.78	+2.11.46
36	$\begin{aligned} & \hline \text { B15-30 } \\ & \text { B15-75 } \end{aligned}$	$\begin{gathered} \hline 4 \\ 10 \end{gathered}$	$30^{17} 5^{1}$	0.8711	3c	5	5-clique	-	-0.2.0	+2.5.10
37					3p	5	3-clique	5-tri-clique	-2.12.45	+2.7.11
38	$\begin{aligned} & \text { B15-45 } \\ & \text { B15-60 } \end{aligned}$	$\begin{aligned} & \hline 6 \\ & 8 \\ & \hline \end{aligned}$	$45^{1} 6{ }^{1}$	0.8533	1c	15	3-clique	Weisfeiler	-2.5.6	+2.3.3
39					1c	15	5-clique	-	-2.6.11	+2.6.12
40	$\begin{aligned} & \text { B16-8 } \\ & \text { B16-112 } \end{aligned}$	$\begin{gathered} 1 \\ 14 \end{gathered}$	$8^{1} 112^{1}$	0.9488	8 c	2	2-clique	-	-0.2.0	+1.2.1
41					8p	2	8-clique	2-octa-clique	-2.16.112	+2.14.85

42	B16-24 B16-96	3 12	$24^{1} 96{ }^{1}$	0.8955	$\begin{aligned} & \hline 4 c \\ & 4 p \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	4-clique 4-clique	4-quadro-clique	$\begin{gathered} \hline-0.2 .0 \\ -2.14 .78 \end{gathered}$	$+\frac{+2.4 .6}{+2.10 .33}$
44	$\begin{aligned} & \hline \text { B16-40 } \\ & \text { B16-80 } \\ & \hline \end{aligned}$	$\begin{gathered} \hline 5 \\ 10 \end{gathered}$	$40^{1} 80^{1}$	0.8670	4p	4	4-girth	Greenwood	-2.4.4	+3.10.13
45					1c	16	5-clique	-	-2.8.24	+2.8.22
46	$\begin{aligned} & \text { B16-48 } \\ & \text { B16-72 } \end{aligned}$	69	$48^{172}{ }^{1}$	0.8594	1c	16	4-clique	Weisfeiler	-2.4.4	+2.4.6
47					1c	16	4-clique	-	-2.8.18	+2.6.11
48	$\begin{aligned} & \hline \text { B16-56 } \\ & \text { B16-64 } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 7 \\ & 8 \end{aligned}$	$56^{1} 64^{1}$	0.8557	2c	8	8-clique		-0.2.	+2.8.28
49					2p	8	4-girth	8-bi-clique	-2.10.10	+3.16.64
50	B17-68	8	$68{ }^{2}$	0.8589	1c	17	3-clique	Selfcomplem.	-2.6.11	+2.5.7
51	$\begin{aligned} & \hline \text { B18-9 } \\ & \text { B18-144 } \end{aligned}$	$\begin{gathered} \hline 1 \\ 16 \end{gathered}$	$9^{18} 144^{1}$	0.9555	9 c	2	2-clique		-0.2.0	+1.2.1
52					9p	2	9-clique	2-nona-clique	-2.18.144	+2.16.113
53	$\begin{aligned} & \hline \text { B18-18 } \\ & \text { B18-135 } \\ & \hline \end{aligned}$	$\begin{gathered} \hline 2 \\ 15 \\ \hline \end{gathered}$	$18^{1} 135^{1}$	0.9280	6c	3	3-clique		-0.2.0	+2.3.3
54					6 p	3	6-clique	3-sexta-clique	-2.17.120	+2.14.79
55	$\begin{aligned} & \hline \text { B18-45 } \\ & \text { B18-108 } \end{aligned}$	$\begin{gathered} 5 \\ 12 \end{gathered}$	$45^{1} 108{ }^{1}$	0.8796	3 c	6	6-clique		-0.2.0	+2.6.15
56					3p	6	3-clique	6-tri-clique	-2.14.60	+2.8.13
57	$\begin{aligned} & \text { B18-72 } \\ & \text { B18-81 } \end{aligned}$	$\begin{aligned} & \hline 8 \\ & 9 \end{aligned}$	$72^{1} 81^{1}$	0.8626	2c	9	9-clique		-0.2.0	+2.9.36
58					2p	9	4-girth	9-bi-clique	-2.11.18	$\underline{+3.18 .81}$
59	$\begin{aligned} & \hline \text { B20-10 } \\ & \text { B20-180 } \end{aligned}$	$\begin{gathered} 1 \\ 18 \end{gathered}$	$10^{1} 180^{1}$	0.9607	10c	2	2-clique		-0.2.0	+1.2.1
60					10p	2	10-clique	2-deca-clique	-2.20.180	+2.18.45
61	$\begin{aligned} & \text { B20-30 } \\ & \text { B20-160 } \end{aligned}$	$\begin{gathered} 3 \\ 16 \end{gathered}$	$30^{1} 160^{1}$	0.9169	5c	4	4-clique		-0.2.0	+2.4.6
62					5p	4	5-clique	4-quinta-clique	-2.18.128	+2.14.73
63	$\begin{aligned} & \hline \text { B20-40 } \\ & \text { B20-150 } \end{aligned}$	$\begin{gathered} \hline 4 \\ 15 \\ \hline \end{gathered}$	$40^{1} 150^{1}$	0.9019	4c	5	5-clique		-0.2.0	+2.5.10
64					4p	5	4-clique	5-quadro-klikk	-2.17.105	+2.12.46
65	$\begin{aligned} & \hline \text { B20-90 } \\ & \text { B20-100 } \end{aligned}$	$\begin{gathered} 9 \\ 10 \end{gathered}$	$\mathbf{9 0}^{1} 100^{1}$	0.8682	2 c	10	10-clique		-0.2.0	+2.10.45
66					2p	10	4-girth	10-bi-clique	-2.12.20	+3.20.100
67	$\begin{aligned} & \text { B21-105 } \\ & \text { B21-105 } \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	105^{2}	0.8704	1c	21	6-clique	Weisfeiler	-2.6.12	+2.7.17
68					1c	21	3-clique		-2.8.15	+2.5.7
69	$\begin{aligned} & \text { B25-100 } \\ & \text { B25-200 } \end{aligned}$	$\begin{gathered} 8 \\ 16 \end{gathered}$	$100^{1} 200{ }^{1}$	0.8884	1c	25	5-clique	Weisfeiler	-2.4.4	+2.5.10
70					1c	25	5-clique	-	-2.14.60	+2.11.37
71	B25-150	12	$150{ }^{2}$	0.8785	1c	25	5-clique	Selfcomplem.	-2.8.19	+2.7.14
72	$\begin{aligned} & \hline \text { B27-135 } \\ & \text { B27-216 } \end{aligned}$	$\begin{aligned} & 10 \\ & 16 \end{aligned}$	$135{ }^{1} 21{ }^{1}$	0.8863	1c	27	3-clique	Schläfli	-2.7.10	+2.3.3
73					1c	27	clique	-	-2.10.40	+2.12.51
74	$\begin{aligned} & \hline \text { B40-240 } \\ & \text { B40-540 } \\ & \hline \end{aligned}$	$\begin{aligned} & 12 \\ & 27 \\ & \hline \end{aligned}$	$240{ }^{1} 540{ }^{1}$	0.9073	1c	40	4-clique	Netshepurenko	-2.6.8	+2.4.6
75					1c	40	clique	-	-2.20.144	+2.20.142

Comments: a) All the presented graph-structures are bisymmetric and also strongly regular. b) Underlined binary signs are complete invariants of corresponding structures, these embrace all the vertices and vertex pairs of the structure and characterize only they.

Proposition 10. Pair(+)sign of bi-clique and pair(-)sign of 2-r-clique are complete invariats of structure.
Materials about strongly regular graphs be find in the internet sufficiently. Become evident, that the „strong-regularics" no are on unanimity. The lists of strongly regular graphs are only partially coincided, these are short.

An excerpt from a traditional lists of strongly regular graphs (http//poeple.csse.uwa.edu.au/gordon/remote/srgs/):

Nr	Parameters	Our nr.	Our register
1	$(5,2,0,1)$	$\mathbf{3}$	B5-5
2	$(9,4,1,2)$	$\mathbf{1 4}$	B9-18
3	$(10,3,0,1)$	$\mathbf{1 7}$	B10-15
4	$(13,6,2,3)$	$\mathbf{2 9}$	B13-39
5	$(15,6,1,3)$	$\mathbf{3 8}$	B15-45
6	$(16,5,0,2)$	$\mathbf{4 4}$	B16-40
7	$(16,6,2,2)$	$\mathbf{4 6}$	B16-48
8	$(17,8,3,4)$	$\mathbf{5 0}$	B17-68
9	$(21,10,3,6)$	$\mathbf{6 7}$	B21-105
10	$(21,10,5,4)$	mono	M21-105
11	$(25,8,3,2)$	$\mathbf{6 9}$	B25-100
12	$(25,12,5,6)$	$\mathbf{7 1}$	B25-150

13	$(26,10,3,4)$	-	-
14	$(27,10,1,5)$	$\mathbf{7 2}$	B27-135
15	$(40,12,2,4)$	$\mathbf{7 4}$	$\mathbf{B 4 0 - 2 4 0}$

A question. Where stay the strongly regular and bisymmetric \boldsymbol{r}-cliques from our list!?
They were presented also structures to 999 vertices, though the lasts are only one:

16	$(999,448,172,224)$	-	-

Example 22. We can simply to induce some bisymmetric and strongly regular graphs with 999 vertices:

| Nr | Notation | deg | \|E| | SR | Regularity | Commentary | (+)signs |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | B999-2 | 2 | 999 | | 3-clique | 333 componentical 3-cliques | +2.3.3 |
| 2 | B999-996 | 996 | 497502 | 0.9989 | 333-clique | 333 3-elementic parts 3-tricent-triginta-tri-clique | ? |
| 3 | B999-8 | 8 | 3996 | | 9-clique | 111 componentical 9-cliques | +2.9.36 |
| 4 | B999-990 | 990 | 494505 | 0.9979 | 111-clique | 111 9-elementic parts 9-cent-undeca-clique | ? |
| 5 | B999-110 | 110 | 54945 | | 111-clique | 9 componentical 111-cliques | +2.111.6105 |
| 6 | B999-888 | 888 | 443556 | 0.9736 | 9-clique | 9 111-elementic parts 111-nona-clique | ? |
| 7 | B999-332 | 332 | 165832 | | 333-clique | 3 componentical 333-cliques | +2.333.55278 |
| 8 | B999-666 | 666 | 332667 | 0.9515 | 3-clique | $\begin{gathered} 3 \text { 333-elementic parts } \\ \text { 333-tri-clique } \\ \hline \end{gathered}$ | ? |

Comments: a) The names of \boldsymbol{r}-cliques can be surely to criticize, but others I no find. b) All the \boldsymbol{r}-cliques are correct and connected graphs.

A conclusion. Bisymmetry to distinguish oneself from mono- and multi-symmetry or transitivity by its notable symmetry properties.

2. GRAPHS WITH A SMALLER SYMMETRY

Symmetry of the vertex transitive structure depends from number of pair orbits. More than two pair orbits have monoand poly-symmetric structures. There we can to demonstrate also on orbit structures and adjacent structures.

Proposition 11. Structure, whose edges correspond to pair signs of a fixed orbit $\boldsymbol{\Omega} \boldsymbol{R}_{\boldsymbol{n}}$ of the structure is a orbit structure $\boldsymbol{G}_{\boldsymbol{n}}$. Orbit structure by pair $(+)$ signs is a partial structure of the structure, orbit structure by pair(-)signs is a partial structure of the complement.
Comments: a) The number of possible orbit structures equal to the number of pair orbits. b) The high degree orbit structures are orbit structures of an orbit structure. c) An orbit structure can be coincides with its initial structure.

On the structural aspect are elementary changes of graph structure expressed in the form of a greatest subgraph $\boldsymbol{G}^{\text {sub }}{ }_{\text {max }}$, obtainable by removing a connection $\boldsymbol{G}-\boldsymbol{e}_{i j}$ and/or in the form of a smallest supergraph $\boldsymbol{G}^{u p{ }^{\text {p }}}{ }_{\min }$, obtainable by adding a connection $\boldsymbol{G}+\boldsymbol{e}_{i j}$. By def 2 we call greatest subgraph to adjacent subgraph $\boldsymbol{G}^{\text {low }}$ and smallest supergraph to adjacent supergraph $G^{u p p}$. Correspondingly to conception 7 represent the adjacent graphs, obtained by strict disjunctive removing or adding all the edges of pair orbit $\boldsymbol{\Omega} \boldsymbol{R}_{\boldsymbol{n}}$ an adjacent structure $\boldsymbol{G}^{a d j}{ }_{n}$.
 correspond an adjacent substructure $\boldsymbol{G S}^{\text {low }}{ }_{n}$ and to pair(-)orbit, $\boldsymbol{\Omega} \boldsymbol{R}_{n}{ }^{-}$an adjacent superstructure $\boldsymbol{G S}^{\text {upp }}{ }_{n}$.
Comments: a) The number N of adjacent structures equal to the number of pair orbits of a graph. b) The transition- or morphism probability $\boldsymbol{P F}_{\boldsymbol{n}}$ of initial structure to corresponding adjacent structure depend from the power of pair orbits and the sum of adjacent and/or disadjacent vertex pairs in structure.

In case of connected n-clique regular bisymmetric structures are the concrete partial n-cliques indeterminacy. In case of no bisymmetric structures are the concrete cliques recognizable by its clique signs. In any cases can be clique signs exist in implicit form, i.e. there exist pair signs, which are similar to clique signs.

Proposition 13. If in the sign matrix W there exist implicit clique signs then for recognition the cliques must be open the local sign matrices $\boldsymbol{W}_{i j}$ of pair graphs $\boldsymbol{g}_{i j}$ of corresponding similar pair signs $+\boldsymbol{d n} \boldsymbol{q}_{i j}$.
Comment: As a rule, are the clique signs in a local sign matrix $W_{i j}$ expressed in explicit form.

2.1. Mono-symmetric structures

Mono-symmetric structures have one pair(+)- and several pair(-)orbit and on the contrary. If mono-symmetric structure has one pair $(+)$ orbit, then we call it $(+)$ - or edge-symmetric where its complement has one pair $(-)$ orbit and we call it (-)or "non-edge"-symmetric. Usually no differentiate mono-symmetry at bisymmetry and these together both are treated as edge transitive graphs.

Example 23. Processing results of mono-symmetric graph M14-21 and its complement M14-70 in the form of pair signs, sign matrices with u-signs and all the corresponding invariants, measures and comments:

A:-2.10.36; B:+2.8.22; C:+2.9.30.

Common invariants and measures of graph and its complement:

Symmetry	$\|V\|$	$\|R\|$	K	N	SVV	SV	SRV	HR	SR	aut
Mono-symmetry	14	$\mathbf{9 1}$	$\mathbf{1}$	$\mathbf{3}$	14^{1}	1.000	$\mathbf{2 1}^{1} \mathbf{2 8}^{1} \mathbf{4 2}^{1}$	0.4594	$\mathbf{0 . 7 6 5 5}$	336

Distinguishing invariants and measures:

\boldsymbol{G}	$\|E\|$	\boldsymbol{k}	\boldsymbol{N}^{+}	\boldsymbol{N}^{-}	\boldsymbol{P}	$\boldsymbol{C L}$	$\mathbf{M C}$	$\boldsymbol{D M}$	$\mathbf{S E V}^{+}$	$\mathbf{S E}^{+}$	TRA	$\boldsymbol{B R A}$
M14-21	21	1	1	2	3	2	6	3	$\mathbf{2 1}^{\mathbf{1}}$	1.000	0	0
M14-70	70	1	2	1	3	7	3	2	$\mathbf{2 8}^{\mathbf{1}} \mathbf{4 2}^{\mathbf{1}}$	0.7935	1.000	0

Comments: a) Structure M14-21 appears to well-known Heawood graph. b) On structural aspect is Heawood graph unique and recognizable by its complete pair sign +5.14 .21 (its 14 vertices form 21 adjacent pairs that belong to 6 girths). Other graph with such pair sign no exist. c) Characteristic properties of Heawood graph are (+)symmetry, 6-girth-, 2-, 3-distance- and 3-valence regularity. d) From 6-girth regularity conclude partitionig, it appear to bi-partite where its parts in present case divide to vertices with even numbers and vertices with odd numbers. e) By Graph Atlas belong Heawood graph to regular, connected cubic- (p 144, C621), symmetric cubic- (p 167, with Petersen graph) and also to (3,6)-cage graphs (p 271). f) Complement of Heawood graph M14-70 is (-)symmetric, 7-clique-, 2-distanceand 10-valence regular where the connected 7-cliques correspond to parts of M14-21. g) Heawood graph M14-21 and its complement M14-70 divide to three orbit structures (by orbits A, B and C correspondingly). Orbit-structure by orbit $-A$ of Heawood graph (with pair signs $-A:-3.10 .16 ;-B:-2.2 .4, C:+3.8 .10$) is also bipartite and coincide with the orbitstructure by orbit \boldsymbol{B} of complement M14-70. Orbit-structure by $-B$ of Heawood graph (with pair signs $-A:-0.2 .0$, $B:+2.7 .21$) is bisymmetric, consist of two 7 -clique components and coincide with orbit-structure by \boldsymbol{C} of complement M14-70. h) Heawood graph has $13 \times 14: 2=91$ adjacent graphs, among this 21 adjacent sub- and 70 adjecent supergraphs. As the isomorphic graphs express one structure, then has Heawood graph one adjacent sub-structure with morphism probability $\boldsymbol{P F}=21 / 21=1$ and two adjacent super-structures with morphism probabilities $\boldsymbol{P F}=28 / 70=2 / 5$ and $\boldsymbol{P F}=42 / 70=3 / 5$ correspondingly.

Example 24. Pair- and u-signs with general invariants and measures of Weisfeiler's transitive strongly regular but mono-symmetric graph M16-48 and its complement M16-72:

$$
\begin{gathered}
A:-2.4 .5 ; B:-2.4 .4 ; B:+2.4 .5 . \quad A:-2.8 .19 ; B:+2.6 .10 ; C:+2.6 .11 . \\
u=6.3 .6
\end{gathered}
$$

$S R V$	$H R$	$S R$
$\mathbf{2 4}^{1} \mathbf{4 8}^{2}$	0.4581	0.7796

Comments: a) Orbit-structure by $-A$ of M16-48 is isomorphic with structure self and orbit-structure by $-B$ is bisymmetric and isomorphic with our structure B16-24 (see nr. 42 in table). b) Graph M16-48 is 3-clique-, 2-distanceand 6-valence regular. с) Complement M16-72 is 4-clique-, 2-distance- and 9-valence regular.

Example 25. Processing results of mono-symmetric graph M16-32 and its complement M16-88 in the form of pair signs, sign matrices with u-signs and all the corresponding invariants, measures and comments:

$$
A:-4.16 .32 ; B:-3.8 .12 ; C:-2.4 .4 ; D:+3.8 .10 .
$$

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	i	ABCD	deg
\bigcirc	- -	D	B	C	B	D	-A	D	-A	D	B	D	B	D	-A\|	1	4416	11
	\bigcirc	-A	D	B	C	B	D	- A	D	- A	D	B	D	B	D \mid	2	4416	11
		\bigcirc	- A	D	B	C	B	D	- A	D	- A	D	B	D	B	3	4416	11
			\bigcirc	- -	D	B	C	B	D	- A	D	- A	D	B	D	4	4416	11
				\bigcirc	- A	D	B	D	B	D	- A	D	- A	D	B	5	4416	11
					\bigcirc	- A	D	B	D	B	D	- A	D	- A	D	6	4416	11
						\bigcirc	- A	D	B	D	B	D	- A	D	-A\|	7	4416	11
							\bigcirc	- A	D	B	D	B	D	- A	D	8	4416	11
								\bigcirc	B	D	- A	C	- A	D	B	9	4416	11
									\bigcirc	B	D	- A	C	- A	D	10	4416	11

\odot	B	D	$-A$	\boldsymbol{C}	$-A \mid$	11	4416	11
	0	B	D	$-A$	C	12	4416	11
	0	B	D	$-A \mid$	13	4416	11	
		0	B	D	14	4416	11	
			0	B	15	4416	11	
				0	16	4416	11	

Common invariants and measures of graph and its complement:

Symmetry	$\|V\|$	$\|R\|$	K	N	SVV	SV	SRV	HR	SR
Mono-symmetry	$\mathbf{1 6}$	$\mathbf{1 2 0}$	$\mathbf{1}$	$\mathbf{4}$	$\mathbf{1 6}^{\mathbf{1}}$	1.000	$\mathbf{8}^{1} \mathbf{3 2}^{\mathbf{2}} \mathbf{4 8}^{\mathbf{1}}$	0.5437	$\mathbf{0 . 7 3 8 5}$

Distinguishing invariants and measures:

\boldsymbol{G}	$\|E\|$	\boldsymbol{k}	\boldsymbol{N}^{+}	\boldsymbol{N}^{-}	\boldsymbol{P}	$\boldsymbol{C L}$	$\mathbf{M C}$	$\boldsymbol{D M}$	$\mathbf{S E V}^{+}$	$\mathbf{S E}^{+}$	TRA	$\boldsymbol{B R A}$
M16-32	32	1	1	3	4	2	4	4	$\mathbf{3 2}^{\mathbf{1}}$	1.000	0	0
M16-88	88	1	3	1	4	8	3	2	$\mathbf{8}^{\mathbf{3}} \mathbf{3 2}^{\mathbf{1}} 4 \mathbf{4 8}^{\mathbf{1}}$	0.8467	1.000	0

Comments: a) Structure M16-32 appears to known hypercube graph. Hypercube is one from miscellaneous regular graphs, selected for their interesting properties. It is the four-dimensional cube, which is regular of degree 4. b) Characteristics properties of hypercube graph are (+)symmetry, 4-girth-, 4-, 3-, 2-distance- and 4-valence regularity. c) Complement M16-88 is (-)symmetric, triangular, 2-distance- and 11-valence regular. d) From 4-girth regularity $(+3.8 .10)$ conclude its partiting. It appear to bipartite where its parts in present case consists on vertices with even numbers and vertices with odd numbers. e) As hypercube is bipartite, but no bi-clique, then its complement M16-88 consist of two connected 8 -clique, where the cliques correspond to parts of hypercube. Thus, the complement is 8 -clique-regular. f) The number $N=4$ of pair orbits, i.e. also the number of orbit- and adjacent structures, and their powers coincide by hypercube and its complement. g) Orbit by $-A$ of $\mathbf{M 1 6 - 3 2}$ correspond to orbit by $+C$ of M16-88; orbit by $-B$ of M16-32 correspond to orbit $+\boldsymbol{B}$ of complement; orbit by $-C$ of hypercube correspond to orbit by $+\boldsymbol{D}$ of its complement; orbit by $+\boldsymbol{D}$ of hypercube correspond to orbit by $-A$ of M16-88. h) Hypercube and its complement divide to four orbit structures. Orbit structure by $-A$ of M16-32 with pair signs $-A:-0.2 .0, \boldsymbol{B}:+\mathbf{1 . 2 . 1}$ is bisymmetric, 2clique regular and coincide with orbit structure by $+\boldsymbol{C}$ of complement. Orbit structure by $-B$ of M16-32 with pair signs $-A:-4.16 .32 ;-B:-3.8 .12 ;-C:-2.4 .4 ;$ D:+3.8.10 is isomorphic with hypercube self. Orbit structure by $-C$ of M16-32 with pair signs $-A:-2.8 .24 ;-B:-0.2 .0 ; C:+2.6 .13$ consist of two components (with even and odd numbers) is triangular and 2-distance regular and appear isomorphic with orbit structure by $-D$ of Möbius-Kantor graph. i) Hypercube has one adjacent sub-structure and three adjacent super-structures with morphism probabilities $\boldsymbol{P F}_{\boldsymbol{D}}=32 / 32=1$ and $\boldsymbol{P} \boldsymbol{F}_{\boldsymbol{A}}=8 / 88=1 / 11, \boldsymbol{P F}_{\boldsymbol{B}}=32 / 88=4 / 11, \boldsymbol{P F}_{\boldsymbol{C}}=48 / 88=6 / 11$ correspondingly.

Example 26. Processing results of mono-symmetric graph M20-30 and its complement M20-160 in the form of pair signs, sign matrices with u-signs and all the corresponding invariants, measures and comments:

$$
-A=-5.20 .30 ;-B=-4.8 .9 ;-C=-3.4 .3 ;-D=-2.3 .2 ;+E=+4.8 .9 .
$$


```
-A=-2.16.102; +B=+2.14.78; +C=+2.14.79; +D=+2.15.89.
```

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	201	i	ABCCD	deg
	- A	D	B	C1	B	D	-A	D	B	C1	C2	C1	B	D	D	B	B	D	-A	1	36316	16
	0	- A	D	B	B	D	D	B	C1	C2	C1	B	D	-A	D	B	C1	B	D	2	36316	16
		\bigcirc	- A	D	D	-A	D	B	B	C1	B	B	D	D	B	C1	C2	C1	B	3	36316	16
			0	-A	D	D	B	C1	B	B	D	D	-A	D	B	B	C1	C2	C1	4	36316	16
				\bigcirc	- A	D	B	B	D	D	- A	D	D	B	C1	B	B	C1	C2	5	36316	16
					0	-A	D	D	-A	D	D	B	B	C1	C2	C1	B	B	C1	6	36316	16
						0	-A	D	D	B	B	C1	B	B	C1	C2	C1	B	B	7	36316	16
							\bigcirc	- A	D	B	C1	C2	C1	B	B	C1	B	D	D	8	36316	16
								0	-A	D	B	C1	C2	C1	B	B	D	- A	D	9	36316	16
									0	- A	D	B	C1	C2	C1	B	D	D	B	10	36316	16
										\bigcirc	- A	D	B	C1	B	D	- A	D	B	11	36316	16
											\bigcirc	- -	D	B	B	D	D	B	C1	12	36316	16
												\bigcirc	-A	D	D	-A	D	B	B	13	36316	16
													\bigcirc	- A	D	D	B	C1	B	14	36316	16
														\bigcirc	- -	D	B	B	D	15	36316	16
															0	-	D	D	-A\|	16	36316	16
																0	-A	D	D	17	36316	16
																	\bigcirc	- A	D	18	36316	16
																		0	-A\|	19	36316	16
																			© \|	20	36316	16

Common invariants and measures of graph and its complement:

Symmetry	$\|V\|$	$\|R\|$	K	N	$S V V$	$S V$	$S R V$	$H R$	$S R$
Mono-symmetry	20	190	1	5	$\mathbf{2 0}^{1}$	1.000	$\mathbf{1 0}^{1} 30^{2} 60^{2}$	0.6366	$\mathbf{0 . 5 0 2 2}$

Distinguishing invariants and measures:

\boldsymbol{G}	$\|E\|$	\boldsymbol{K}	\boldsymbol{N}^{+}	\boldsymbol{N}^{-}	\boldsymbol{P}	$\boldsymbol{C L}$	$\mathbf{M C}$	$\mathbf{D M}$	$\mathbf{S E V}^{+}$	$\mathbf{S E}^{+}$	TRA	$\boldsymbol{B R A}$
$\mathbf{M 2 0 - 3 0}$	30	1	1	4	5	2	5	5	$\mathbf{3 0}^{\mathbf{1}}$	1.000	0	0
$\mathrm{M} 20-160$	160	1	4	1	5	8	3	2	$\mathbf{1 0}^{\mathbf{1}} \mathbf{3 0}^{\mathbf{1}} \mathbf{6 0}$		0.5590	1.000

Comments: a) Structure M20-30 appears to well-known dodecahedra graph. b) Characteristic properties of dodecahedra graph are (+)symmetry, 5-girth-, 5-, 4-, 3-, 2-distance- and 3-valence regularity. c) Complement M20-160 is (-)symmetric, 2-distance- and 16-valence regular. d) In the sign matrix of complement no exist explicit clique signs, but local sign matrices of pair graphs by $+\boldsymbol{B}:+2.14 .78$ of complement contain 8 -clique signs +2.8 .28 . By corresponding local sign matrices $W_{1.4}, W_{5.9}, W_{3.16}, W_{6.13}$ and $W_{5.8}$ can be recognize all the partial 8-cliques of the general 8-clique of M20-160:

| I= | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| :---: |
| I | \bullet | | | \bullet | | | \bullet | | | \bullet | | \bullet | | | \bullet | | \bullet | | \bullet | |
| II | | \bullet | | | \bullet | | \bullet | | \bullet | | \bullet | | | \bullet | | | \bullet | | | \bullet |
| III | \bullet | | \bullet | | | \bullet | | | \bullet | | | \bullet | | \bullet | | \bullet | | \bullet | | |
| IV | | \bullet | | \bullet | | \bullet | | \bullet | | | \bullet | | \bullet | | | \bullet | | | \bullet | |
| V | | | \bullet | | \bullet |

e) Consequently, M20-160 is 8-clique-regular, where all its partial 8 -cliques are intersected by edges of $\mathbf{C 2}$:

$\mathbf{i - j =}$	$1-12$	$2-11$	$3-18$	$4-19$	$5-20$	$6-16$	$7-17$	$8-13$	$9-14$	$10-15$
Partial-clique	I	II	III	I	II	III	I	IV	II	I
Partial-clique	III	IV	\mathbf{V}	IV	\mathbf{V}	IV	II	V	III	\mathbf{V}

f) Number $N=5$ of pair orbits, i.e. also of orbit- and adjacent-structures, and their powers coincide by dodecahedra and its complement. Orbit by $-A$ of M20-30 correspond to orbit by $+\boldsymbol{C 2}$ of M20-160; orbit by $-B$ of M20-160 correspond to orbit $+\boldsymbol{C} 1$ of complement; orbit by $-C$ of dodecahedra correspond to orbit by $+\boldsymbol{B}$ of its complement; orbit by $-D$ of M20-30 correspond to orbit by $+\boldsymbol{D}$ of $\mathbf{M 2 0 - 1 6 0}$; orbit by $+\boldsymbol{E}$ of dodecahedra correspond to orbit by $-A$ of $\mathbf{M 2 0 - 1 6 0} . \mathbf{g}$) Orbit structure by $-A$ of $\mathbf{M 2 0}-30$ with pair signs $-A:-0.2 .0, \mathbf{B}:+1.2 .1$ is bisymmetric, 2-clique regular and consist of 10 components. h) Pair signs of orbit structure by $-B$ of dodecahedra coincide with pair signs of it self and this orbit structure is isomorphic with dodecahedra. i) Orbit structure by $-C$ of $\mathbf{M 2 0 - 3 0}$ with pair signs $-A:-3.14 .30,-B:-2.4 .4$, -$C:-2.3 .2, D:+2.4 .6$ is (+)symmetric and 4-clique- and 3-distance regular. j) Orbit structure by $-D$ of M20-30 with pair signs $-A:-3.14 .30,-B:-2.4 .4, \mathrm{D}:+2.3 .3$ is $(+)$ symmetric and 3-clique- and 3-distance regular. \mathbf{k}) Graph M20-30 has 19×20:2=190 possible adjacent graphs, among this 160 adjacent super- and 30 adjacent sub-graphs. As isomorphic adjacent graphs constitute an adjacent structure, then it has four adjacent super-structure and one adjacent substructure. 1) Adjacent structure are partially- or locally symmetric, where the morphism probability by $-A$ to adjacent
super-structure equal to $\boldsymbol{P F}=10 / 160=1 / 16$ and reconstruction probability to $\boldsymbol{P F}{ }^{\prime}=1 / 159$; probability by $-B$ to $\boldsymbol{P F}=30 / 160=3 / 16$ and reconstruction to $\boldsymbol{P F},=1 / 159$; probabilities by $-C$ and $-D$ to $\boldsymbol{P F}=60 / 160=3 / 8$ and reconstruction to $\boldsymbol{P F} \boldsymbol{F}^{\prime}=1 / 159$. Morphism probability by $+\boldsymbol{E}$ to corresponding adjacent sub-structure equal to $\boldsymbol{P F}=30 / 30=1$.

2.2. Poly- or multi-symmetric structures

Poly- or multi-symmetric structures have several pair(+)- and several pair(-)orbit ΩR_{n} and are usually treated as vertex transitive graphs. On structural aspect have these, as a rule, more pair orbits, i.e. more pair signs, that in case of monosymmetric structures. Thus, there can be arise need to complementary identification the vertex pairs.

In case many graphs can be obtain a matrix with "complementary pair signs" also by multiplication an adjacency matrix \boldsymbol{E} of graph with itself up to certain degree $\boldsymbol{E}^{\boldsymbol{n}}$. To with, by exponentiation to certain degree increase the number of different "pair signs" to certain number, that stay constant.

Proposition 14. For obtaining the "complementary pair signs: 1) To form the adjacent matrix \boldsymbol{E}. 2) Multiple it with itself $\boldsymbol{E} \times \boldsymbol{E} \times \boldsymbol{E} \times \ldots=\boldsymbol{E}^{\boldsymbol{n}}$ and fix in case of each degree \boldsymbol{n} the number \boldsymbol{p} of received different "pair signs", which as rule enlarge. 3) If \boldsymbol{p} more no enlarge, then to stop the multiplication and to fix the lasts products $\boldsymbol{E}^{\boldsymbol{n}}$ and $\boldsymbol{E}^{\boldsymbol{n + 1}}$.
Comments: a) The elements of last product (degree) $\boldsymbol{E}^{\boldsymbol{n}}$ are complements for corresponding elements (pair signs) of sign matrix W. b) Unfortunately such "complementary pair signs" \boldsymbol{E}^{n} no works by strongly regular and some others graphs.

Example 27. Processing results of poly-symmetric graph P15-45 and its complement P15-60 in the form of pair signs, sign matrices with u-signs and all the corresponding invariants, measures and comments:

$-A=-2.6 .12 ;$					$-B=-2.4 .5 ;$				$-C=-2.3 .2$			$+D=+2.4 .5 ;$			$+E=+2.5 .7$.		
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	i	ABCDE	deg
0	D	-C	-B	D	E	-A	-C	-C	- A	E	D	-B	-C	D	1	22442	6
	\bigcirc	D	- C	-B	D	E	- A	- C	- C	- A	E	D	-B	$-C \mid$	2	22442	6
		\bigcirc	D	-C	-B	D	E	- A	- C	-C	- A	E	D	-B\|	3	22442	6
			\bigcirc	D	-C	-B	D	E	- A	-C	- C	- A	E	D	4	22442	6
				\bigcirc	D	- C	-B	D	E	- A	- C	- -	- A	E	5	22442	6
					\bigcirc	D	- C	-B	-D	E	- A	-C	- C	-A	6	22442	6
						\bigcirc	D	- C	- B	D	E	- A	- -	$-C \mid$	7	22442	6
							\bigcirc	D	- C	-B	D	E	- A	$-C \mid$	8	22442	6
								\bigcirc	D	-C	- B	D	E	-A\|	9	22442	6
									0	D	-C	-B	D	$E \mid$	10	22442	6
										\bigcirc	D	-C	-B	D	11	22442	6
											\bigcirc	D	-C	$-B \mid$	12	22442	6
												0	D	$-C \mid$	13	22442	6
													\bigcirc	D	14	22442	6
														01	15	22442	6

1	2	3	4	5	6	7	8	9	110	1011	111	121	131	14	15	i		ABCDE	deg
0	-B	C	D	-B -	-A	E	C	C	C	E -	-A -	- B	D	C	-B	1		24422	8
	0	-B	C	D -	- B	-A	E	c	c	c	E	-A	- B	D	c	2		24422	8
		0	-B	c	D	- B	-A		E	c	c	E	- A	-B	D	3		24422	8
			0	-B	C	D	- B	- A	A	E	c	C	E	-A	- B	4		24422	8
				0	-B	C	D	- B	-	- A	E	C	C	E	- A	5		24422	8
					0	-B	C	D	D -	- ${ }^{\text {- }}$	-A	E	C	C	E	6		24422	8
						0	-B	C	C D	D -	- -	- A	E	c	c	7		24422	8
							0	-B	-	C	D	-B -	-A	E	C	8		24422	8
								0	$0-B$	-	C	D	-B	-A	E	9		24422	8
											-B	C	D	-B	- A	10		24422	8
												-B	C	D	- B	11		24422	8
													-B	C	D	12		24422	8
														-B	C	13		24422	8
															-B	14		24422	8
															\bigcirc	15		24422	8

Common invariants and measures of graph and its complement:

Symmetry	$\|V\|$	$\|R\|$	K	N	SVV	SV	SRV	HR	SR	aut
Poly-symmetry	15	105	1	5	15^{1}	1.000	$\mathbf{1 5}^{3} 30^{2}$	0.5523	$\mathbf{0 . 7 2 6 7}$	60

Distinguishing invariants and measures:

\boldsymbol{G}	$\|E\|$	\boldsymbol{k}	\boldsymbol{N}^{+}	\boldsymbol{N}^{-}	\boldsymbol{P}	$\boldsymbol{C L}$	$\mathbf{M C}$	$\boldsymbol{D M}$	$\mathbf{S E V}^{+}$	$\mathbf{S E}^{+}$	TRA	$\boldsymbol{B R A}$
$\mathbf{P 1 5 - 4 5}$	45	1	2	3	5	3	3	2	$\mathbf{1 5}^{1} \mathbf{3 0}^{\mathbf{1}}$	0.8307	1.000	0
$\mathbf{P 1 5 - 6 0}$	60	1	3	2	5	5	3	2	$\mathbf{1 5}^{\mathbf{3}} \mathbf{3 0}^{\mathbf{1}}$	0.7366	1.000	0

Comments: a) Graph P15-45 and its complement P15-60 are triangular and 2-distance-regular. b) Complement P1560 has clique sign $D=+2.5 .10$, that mean existence of 5 -clique. It appear to 5 -clique-regular, which consist of three disjoint partial-5-cliques:

| Nr. | Clique signs D | | |
| :---: | :---: | :---: | :---: | Partial-5-cliques.

c) Pair graphs of $\mathbf{P 1 5 - 6 0}$, that correspond to pair signs $+\boldsymbol{C}$ and $+\boldsymbol{E}$ contain edges, which make the partial-5-cliques connected between themselves. d) The number $N=5$ of pair orbits, i.e. also number of orbit- and adjacent structures, and their powers coincide by $\mathbf{P 1 5 - 4 5}$ and $\mathbf{P 1 5 - 6 0}$. e) Orbit by $-A$ of $\mathbf{P 1 5 - 4 5}$ correspond to orbit by $+\boldsymbol{E}$ of $\mathbf{P 1 5 - 6 0}$; orbit by $-B$ of $\mathbf{P 1 5 - 4 5}$ correspond to orbit $+\boldsymbol{D}$ of complement; orbit by $-C$ of $\mathbf{P 1 5 - 4 5}$ correspond to orbit by $+\boldsymbol{C}$ of its complement; orbit by $+\boldsymbol{D}$ of $\mathbf{P 1 5 - 4 5}$ correspond to orbit by $-B$ of complement; orbit by $+\boldsymbol{E}$ of $\mathbf{P 1 5 - 4 5}$ correspond to orbit by $-A$ of $\mathbf{P 1 5 - 6 0}$. f) Orbit structure by $-A$ of $\mathbf{P 1 5 - 4 5}$ with pair signs $-A:-2.3 .3,-B:-0.2 .0, \mathrm{C}:+4.5 .5$ is $(+)$ symmetric, 5 -girth regular and consist of three component 5 -girths and is isomorphic with orbit graph by $-B . \mathbf{g}$) Orbit structure by $-C$ of $\mathbf{P 1 5 - 4 5}$ with pair signs $-A:-3.10 .14,-B:-2.4 .4,-C:-2.3 .2, \boldsymbol{D}:+3.6 .7$ is $(+)$ symmetric and 3partite (where the parts correspond to partial cliques of $\mathbf{P 1 5 - 4 5}$) and is isomorphic with orbit graph by $+\boldsymbol{D}$. h) Orbit structure by $+\boldsymbol{E}$ of $\mathbf{P 1 5 - 4 5}$ with pair signs $-A:-0.2 .0, \mathrm{~B}:+2.3 .3$ is bisymmetric and consist of five 3 -clique components. i) Poly-symmetric P15-45 has $14 \times 15: 2=105$ possible adjacent graphs, i.e. to orbits by $-A$ and $-B$ corresponds 15 isomorphic adjacent super-graphs, to -C 30 adjacent super-graphs, to $+\boldsymbol{D} 30$ isomorphic adjacent sub-graphs and to $+\boldsymbol{E}$ correspond 15 isomorphic adjacent sub-graphs. Thus, graph P15-45 has 3 adjacent super- and 2 adjacent substructures. \mathbf{j}) Adjacent structures of $\mathbf{P 1 5 - 4 5}$ are locally symmetric, where the morphism probabilities by $-A$ ja $-B$ are $\boldsymbol{P F}=15 / 60=1 / 4$ and reconstructing probabilities $\boldsymbol{P F}{ }^{\prime}=1 / 61$; morphism probability by $-C$ is $\boldsymbol{P F}=30 / 60=1 / 2$ and reconstruction probability $\boldsymbol{P} \boldsymbol{F}^{\prime}=1 / 61$; by $+\boldsymbol{D}$ are corresponding values $\boldsymbol{P F}=30 / 45=2 / 3$ and $\boldsymbol{P F} \boldsymbol{\prime}=1 / 44$, by $+\boldsymbol{E}$ probabilities $\boldsymbol{P F}=15 / 45=1 / 3$ and $\boldsymbol{P F} \boldsymbol{F}^{\prime}=1 / 44$ correspondingly.

Example 28. Processing results of poly-symmetric graph P24-36. It is presented in the form of complemented pair signs, complete sign matrix with u-signs and all the corresponding invariants, measures and comments.

By Graph Atlas it is a regular, connected cubic graph, remarked by $\mathbf{C t 3 6}$ (p 162). On structural aspect it is a structure with implicit pair signs, i.e. its first degree pair signs no recognize all the pair orbits. For specification the pair signs there exist two ways: 1) to form by first degree pair signs corresponding sign graphs (as orbit structure by Proposition 2-11) and to operate complementary with their pair signs; 2) to use the multiplicative pair signs by Proposition 14.

The first degree pair signs $\boldsymbol{d n} \boldsymbol{q}_{i j}$, their notations \boldsymbol{p}, corresponding pair signs $\boldsymbol{d n} \boldsymbol{q}_{i j}{ }^{\boldsymbol{p}=\boldsymbol{A}}$ and $\boldsymbol{d n q} \boldsymbol{q}_{i j}{ }^{\boldsymbol{p}=\boldsymbol{F}}$ of sign graphs, their notations \boldsymbol{p}^{*} and $\boldsymbol{p}^{* *}$, ordering numbers \boldsymbol{n} of corresponding orbits, and, multiplicative pair signs $\boldsymbol{e}_{i j}{ }^{6} \cdot \boldsymbol{e}_{i j}{ }^{7}$ by products of adjacent matrices $\boldsymbol{E}^{*}=\boldsymbol{E}^{\boldsymbol{6}}+\boldsymbol{E}^{7}$ (where 6 and 7 are the degrees of matrices).

$\mathrm{dnq}_{i j}$	p	$\mathbf{d n q}_{i j}{ }^{p=-A}$	p^{*}	$d n q_{i j}{ }^{p=-F}$	P**	n	$\boldsymbol{e}_{i j}{ }^{6} \cdot \boldsymbol{e}_{i j}{ }^{7}$
-5.18.23	-A	+23.24.24	- A	-5.10.12	A1	1	0.108
				-5.8.8	A2	2	0.107
-4.9.10	-B	-8.9.8	-B	-4.7.7	B	3	42.0
-4.8.8	-C	-12.13.12	-C	-2.4.4	C	4	32.0
-4.7.7	- D	-10.11.10	-D	-2.3.2	D	5	33.0
-3.8.9	-E	-11.12.11	-E	-3.10.12	E	6	0.243
-3.6.6	-F	-7.8.7	-F1	+3.4.4	F1	7	0.191
				+5.8.10	F2	8	0.201
		-5.6.5	-F2	+3.4.4	F3	9	0.173

-3.4.3	-G	-5.6.5	-G1	-3.8.10	G1	10	0.150
		-3.4.3	-G2	-3.6.6	G2	11	0.139
				-3.4.3	G3	12	0.130
-2.3.2	-H	-6.7.6	-H1	-6.20.26	H1	13	65.0
		-4.5.4	-H2	-4.7.7	H2	14	75.0
		-2.3.2	-H3	-2.3.2	H3	15	84.0
+5.10.12	I	-9.10.9	I	-3.6.6	I	16	0.239
+5.12.15	J	-9.10.9	J	-3.4.3	J	17	0.248
+5.14.18	K	-11.12.11	K	-5.8.8	K	18	0.258

Specified sign matrix W^{*} :

For each row of sign matrix we obtain next u-sign:

$-A 1$	$-A 2$	$-B$	$-C$	$-D$	$-E$	$-F 1$	$-F 2$	$-F 3$	$-G 1$	$-G 2$	$-G 3$	$-H 1$	$-H 2$	$-H 3$	\mathbf{I}	J	K
1	1	2	1	2	1	1	1	1	1	1	1	2	2	2	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$

Common invariants and measures of graph P24-36 and its complement P24-240:

Symmetry	$\|V\|$	$\|R\|$	K	N	SVV	SV	SRV	HR	SR
Poly-symmetry	24	276	1	18	24^{1}	1.000	$\mathbf{1 2}^{13} 24^{5}$	1.2308	0.4957

Distinguishing invariants and measures of P24-36 and its complement P24-240:

\boldsymbol{G}	$\|\boldsymbol{E}\|$	\boldsymbol{k}	\boldsymbol{N}^{+}	\boldsymbol{N}^{-}	\boldsymbol{P}	$\boldsymbol{C L}$	$\boldsymbol{M C}$	$\boldsymbol{D M}$	$\mathbf{S E V}^{+}$	$\boldsymbol{S E}^{+}$	TRA	$\boldsymbol{B R A}$
$\mathbf{P 2 4 - 3 6}$	36	1	3	15	18	2	6	5	$\mathbf{1 2}^{\mathbf{3}}$	0.6934	0	0
$\mathbf{P 2 4 - 2 4 0}$	240	1	15	3	18	12	3	2	$\mathbf{1 2}^{\mathbf{1 0}} \mathbf{2 4}^{\mathbf{5}}$	0.5166	1.000	0

Comments: a) Graph $\mathbf{P 2 4 - 3 6}$ is 6-girth-, 5-, 4-, 3-, 2-distance- and 3-valence regular, its complement $\mathbf{P} 24-240$ is triangular, 2-distance- and 20-valence regular. b) From 6-girth regularity conclude its bipartite with parts, in present case, on vertices with even numbers and odd numbers. c) As P24-36 is bipartite, but not bi-clique, then its complement $\mathbf{P 2 4 - 2 4 0}$ consist of two connected 12 -clique, i.e. it is 12-clique regular, where its cliques correspond to parts of $\mathbf{P} 24-36$. d) $23 \times 24: 2=276$ vertex pairs form 18 pair orbits, among theirs 240 disadjacent vertex pairs form 15 pair(-)orbits, where orbits by $-A 1,-A 2,-C,-E,-F 1,-F 2,-F 3,-G 1,-G 2$, and $-G 3$ have 12 elements and orbits by $-B,-D,-H 1,-$ $H 2$, and $-H 3$ have 24-elements. e) 36 adjacent vertex pairs of $\mathbf{P} 24-\mathbf{3 6}$ form three pair(+)orbits, where $\boldsymbol{+ I},+\boldsymbol{J}$ and $+\boldsymbol{K}$ have 12 elements. f) The number of orbit- and adjacent structures is $N=18$ and their powers coincide by $\mathbf{P 2 4 - 3 6}$ and $\mathbf{P 2 4 - 2 4 0}$, where the orbit structures by $-A 1,-A 2,-C,-E,-F 1,-F 2,-F 3,-G 1,-G 2,-G 3, \boldsymbol{I}, \boldsymbol{J}$, and \boldsymbol{K} of $\mathbf{P 2 4 - 3 6}$ (with pair signs $-A:-0.2 .0 ;+B:+1.2 .1$) are bisymmetric and 2-clique regular and themselves isomorphic. Orbit structures by
$-B,-D,-H 1,-H 2$ and $-H 3$ constitute various girths. g) Graph P24-36 has 15 adjacent super-structures and 3 adjacent sub-structures.

Example 29. Processing results of poly-symmetric graph P20A-50 and P20B-50 in the form of initial (implicit) and complemented (explicit) pair signs, sign matrix with u-signs and all the invariants, measures and comments.
These similar graphs, with original notations $R_{5,4}(2.2)$ and $R_{5,4}(4)$, was constructed by Valdo Praust especially for testing the structure recognition method. These, as preceding (Example 28) have also implicit pair signs, where for specification necessary to use sign graphs or multiplicative pair signs. In present case used the lasts.

Common pair signs of P20A-50 and P20B-50:

$$
A:-3.8 .10 ; B:-3.6 .7 ; C:-2.4 .4 ; D:-2.3 .2 ; E:+2.4 .6 ; ~ F:+3.8 .16 .
$$

By degree 5 of adjacent matrix $\boldsymbol{E}^{\boldsymbol{5}}$ of P20A-50 obtained specified pair signs and corresponding sign matrix with u-signs:

Initial pair signs	0	$-A$	$-B$	$-C$		$-D$	\boldsymbol{E}		\boldsymbol{F}
Multiplicative pair signs \boldsymbol{e}^{5}	180	125	110	165	160	80	231	233	210
Complete notation	0	$-A$	$-B$	$-C 1$	$-C 2$	$-D$	$\boldsymbol{E 1}$	$\boldsymbol{E 2}$	\boldsymbol{F}

By degree 7 of adjacent matrix \boldsymbol{E}^{7} of P20B-50 obtained specified pair signs and corresponding sign matrix with u-signs:

Initial pair signs	0	$-A$	$-B$		$-C$			$-D$	\boldsymbol{E}		\boldsymbol{F}
Mult. Pair signs $\boldsymbol{e}^{\boldsymbol{r}}$	4410	3437	3276	3277	4081	4088	4011	3010	4831	4803	4445
Complete notation	0	$-A$	$-B 1$	$-B 2$	$-C 1$	$-C 2$	$-C 3$	$-D$	$\boldsymbol{E 1}$	$\boldsymbol{E 2}$	\boldsymbol{F}

Common invariants and measures:

Symmetry	$\|\boldsymbol{V}\|$	$\|\boldsymbol{R}\|$	$\|E\|$	\boldsymbol{k}	\boldsymbol{N}^{+}	\boldsymbol{K}	$\boldsymbol{C L}$	MC	$\boldsymbol{D M}$	$\mathbf{S V V}$	$\boldsymbol{S V}$	SEV $^{+}$	$\boldsymbol{S E}^{+}$	TRA	$\boldsymbol{B R A}$
Poly-symm.	$\mathbf{2 0}$	$\mathbf{1 9 0}$	$\mathbf{5 0}$	$\mathbf{1}$	$\mathbf{3}$	$\mathbf{1}$	4	4	3	$\mathbf{2 0}^{1}$	1.000	$\mathbf{1 0}^{\mathbf{1}} \mathbf{2 0}^{2}$	0.7303	0.250	0

Distinguishing invariants and measures:

\boldsymbol{G}	\boldsymbol{N}	\boldsymbol{P}	$\boldsymbol{S R V}$	$\boldsymbol{H R}$	$\boldsymbol{S R}$
P20A-50	8	8	$\mathbf{1 0}^{\mathbf{1}} \mathbf{2 0}^{\mathbf{5}} \mathbf{4 0}^{\mathbf{2}}$	0.8668	$\mathbf{0 . 6 1 9 6}$
P20B-50	10	10	$\mathbf{1 0}^{\mathbf{1}} \mathbf{2 0}^{\mathbf{9}}$	0.9936	$\mathbf{0 . 5 6 4 0}$

Comments: a) Graph P20A-50 differ at P20B-50 from general symmetric properties, in present case from the number of pair(-)orbits but coincide with (+)symmetric properties. b) Both graphs are 4-clique-, 4-girth-, 3-, 2-distance- and 5valence regular. 4-clique regularity expressed by existence there of five 4-cliques. c) Both graphs have 3 pair(+)orbits, with powers $\boldsymbol{E} 1-20, \boldsymbol{E} 2-20$ and $\boldsymbol{F}-20$ correspondingly. d) Graph P20A-50 has 5 pair(-)orbits with powers in case by $-A,-C 2,-D-20$ elements and by $-B,-C 1-40$ elements. e) Complement P20A-120 has pair signs $-A:-2.14 .68$, $-B:-$ 2.12.47, $C:+2.10 .35, D:+2.10 .36, E:+2.11 .44, F:+2.12 .48$ and is triangular, 5 -clique- and 14 -valence regular. f) Graph P20B-50 has 7 pair(-)orbits with powers 20 . g) On the ground of \mathbf{d} and \mathbf{e} can be make conclusions about orbitand adjacent structures. h) Interest can be have orbit structures with more that 2-valences. 2-valences orbit-structures constitute only various girths and their samples. i) Graph P20A-50 has orbit structures by $-B$ and $-C 1$ that are 4valences.
j) Orbit structure by $-B$ of $\mathbf{P 2 0 A - 5 0}$ noted here by M20-40. Its processing results and comments:

$$
A:-5.18 .32 ; B:-4.8 .12 ; C:-3.6 .8 ; D:-2.6 .8 ; E:-2.4 .4 ; F:+3.8 .12 .
$$

k) Orbit structure M20-40 is (+)symmetric, 5-partite, 4-girth-, 5-, 4-, 3- and 2-distance regular. Complement M20-40 is (-)symmetric, 7-clique- and 2-distance regular. I) The five parts of M20-40 correspond to 4-cliques of P20A-50 and these are: I - with vertices $\mathbf{1 , 2 , 3 , 4 ;} \mathbf{I I} \mathbf{- 5 , 6 , 7 , 8} ; \mathbf{I I I} \mathbf{- 9 , 1 0 , 1 1 , 1 2 ;} \mathbf{I V}-\mathbf{1 3 , 1 4 , 1 5 , 1 6} ; \mathbf{V}-\mathbf{1 7 , 1 8 , 1 9 , 2 0}$. Part I is connected with parts IV and V; II - with parts III and V; III - with parts II and IV; IV - with parts I and III; V - with parts I and II. In principle can be the parts in pair wise added, for example parts I and II to composite part A, parts IV and V to composite part B where part III appear to part C. m) Orbit structure M20-40 coincide with the corresponding orbit structure by pair $(+)$ sign of complement P20A-50 and appear isomorphic with orbit structure by -Cl of P20A-50.
n) The characteristics of orbit structure M20-40:

| \|V| | \|R| | \|E] | K | N | N^{+} | SVV | SV | SRV | HR | SR | SEV ${ }^{+}$ | $\boldsymbol{S E}{ }^{+}$ | TRA | BRA |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 20 | 190 | 40 | 1 | 6 | 1 | 20^{1} | 1.000 | $10^{1} 20^{2} 40^{4}$ | 0.843 | 0.630 | 40^{1} | 1.000 | 0 | 0 |

3. NON-TRANSITIVE GRAPHS

Almost all the graphs are non-transitive. These have any vertex orbits and divide by numbers of vertex orbits to two different classes: locally- or partially symmetric structures, where the number of vertex orbits is less than the number of vertices, and, $\mathbf{0}$-symmetric structures, where the number of vertex orbits is equal to the number of vertices. There enlarge the role of u - and s-signs for decomposing the sign matrices to vertex orbits. Decrease the role of symmetry properties, orbit structures and regularities.

Proposition 15. Decomposing the sign matrix W begin at lexicographical decomposing the rows (and columns) by u signs to classes $\boldsymbol{W}_{\boldsymbol{k}}$. It continued with the decomposing in each framework of $\boldsymbol{W}_{\boldsymbol{k}}$ the rows (and columns) by s-signs to complementary classes $\boldsymbol{W}_{\boldsymbol{k}^{*}}$. Repeat last up to complementary decomposing no arise.

The notation of non-transitive graphs is different.

3.1. Locally- or partially symmetric structures

In locally symmetric structures there exist symmetry properties only in framework of vertex orbits.
Proposition 16. Adjacent structures of a vertex transitive, i.e. bi-, mono- or poly-symmetric, structure are locally symmetric.

Example 30. Processing results the adjacent structures of well-known bi-symmetric Peteresen graph, that are presented in the form of pair signs, decomposed by u - and s-signs matrices W and all the invariants, measures and comments.

By removing at Petersen graph (B10-15) an edge $i, j=4,5$ is obtained its adjacent sub-structure $\mathbf{L 1 0 - 1 4}$:

$$
A:-4.10 .14 ; B:-3.6 .6 ; C:-2.3 .2 ; D:+4.7 .8 ; E:+4.9 .12 ; F:+4.10 .14 .
$$

By adding to Petersen graph (B10-15) an edge $i, j=4,6$ is obtained its adjacent super-structure $\mathbf{L 1 0 - 1 6}$:
A:-2.4.4; B:-2.3.2; C:+2.3.3; D:+3.4.4; E:+4.10.16.

1 1\|	21	31	4	4	4	4	5					orb	s1	s2	
210	7	9	1	3	5	8	4	6		i	ABCDE		1234	12345	
$\begin{array}{r}0-B \\ 0 \\ \hline\end{array}$	E	-B	E	E	-B	-B	-B	-B		2	06003	1	1020	01020	3
	E	- B	-B	-B	E	E	-B	-B		10	06003	1	1020	01020	3
	0)	E	-B	-B	- B	-B	-B	-B		7	06003	2	2100	20100	3
		$0 \mid$	-B	-B	-B	-B	C	C		9	06201	3	1002	01002	3
			0	-B	D	-B	-A	D		1	15021	4	1011	10011	3
				0	-B		D	-A		3	15021	4	1011	10011	3
					\bigcirc	-B\|	D	-A		5	15021	4	1011	10011	3
						01	-A	D		8	15021	4	1011	10011	3
							0	C		4	23220	5	0121	00121	
										6	23220	5	0121	00121	4

Common invariants and measures:

Symmetry	$\|V\|$	$\|R\|$	k	BRA
Local-symmetric	10	45	1	0

Distinguishing invariants and measures:

\boldsymbol{G}	$\|E\|$	\boldsymbol{K}	\boldsymbol{N}	$\boldsymbol{S V V}$	$\boldsymbol{S V}$	$\boldsymbol{S R V}$	$\boldsymbol{H R}$	$\boldsymbol{S R}$	TRA
L10-14 (sub)	$\mathbf{1 4}$	$\mathbf{3}$	$\mathbf{9}$	$\mathbf{2}^{1} \mathbf{4}^{2}$	0.5419	$\mathbf{1}^{1} \mathbf{2}^{1} \mathbf{4}^{\mathbf{3}} \mathbf{6}^{1} \mathbf{8}^{3}$	0.8939	$\mathbf{0 . 4 5 9 3}$	0
L10-16(sup)	16	$\mathbf{5}$	16	$\mathbf{1}^{2} \mathbf{2}^{2} \mathbf{4}^{1}$	0.3612	$\mathbf{1}^{3} \mathbf{2}^{5} \mathbf{4}^{8}$	1.1582	$\mathbf{0 . 2 9 9 4}$	0.188

\boldsymbol{G}	\boldsymbol{N}^{+}	\mathbf{N}^{-}	\mathbf{P}	$\mathbf{C L}$	MC	DM	SEV $^{+}$	SE
L10-14(sub)	3	6	6	2	5	4	$\mathbf{2}^{\mathbf{1}} \mathbf{4}^{\mathbf{1}} \mathbf{8}^{\mathbf{1}}$	0.6379
L10-16(sup)	7	9	5	3	5	2	$\mathbf{1}^{\mathbf{2}} \mathbf{2}^{\mathbf{3}} \mathbf{4}^{\mathbf{2}}$	0.3437

Comments: a) Exactly these same structures (sub and sup) are obtainable by operating with an arbitrary edge on Petersen graph. b) Adjacent sub-structure of Petersen graph has 3 vertex- and 9 pair orbits. Its adjacent super-structure has 5 vertex- and 16 pair orbits and its symmetry value $\boldsymbol{S R}$ is smaller. c) From 5-girth regularity of Petersen graph is in L10-14 remained 14/15 or 93\%, but in L10-16 7/15 or 47\%. The first is ,more petersenical". d) Reverse pair orbit, that reconstruct the Petersen graph place in partial matrix $\boldsymbol{W}_{3.3}$ of $\mathbf{L 1 0 - 1 4}$ by sign $-A$; reconstructing probability $\mathbf{P F} \boldsymbol{\prime}^{\prime}=1 / 31$. Reverse pair orbit of L10-16 place in partial matrix $\boldsymbol{W}_{5.5}$ in the form of $\operatorname{sign} \mathbf{C}$; reconstructing probability $\boldsymbol{P F} \boldsymbol{\prime}=1 / 16$. e) Adjacent sub-structure L10-14 is a common adjacent super-structure of 3 initial structures and a common adjacent substructure of 6 initial structures. Adjacent super-structure $\mathbf{L 1 0}-16$ is a common adjacent super-structure of 7 initial structures and common adjacent sub-structure of 9 initial structures.

Example 31. Processing results of Brinkman graph L21-42 and its complement L21-168, that are presented in the form of pair signs, decomposed by u - and s-signs matrices W and all the invariants, measures and comments.

Brinkman conjectured in 1970 that for all $k \geq 2$ and $g \geq 3$ there are (k, k, g)-graphs, that is, k-chromatic k-regular of girth at least g. Brinkman graph is a (4,4,5)-graph (Bollobas, 1998, p 175, Fig. V, 14).
$A:-3.10 .12 ; B:-3.8 .9 ; C:-3.6 .6 ; D:-2.3 .2 ; E:+4.13 .19 ; F:+4.14 .19 ; G:+4.14 .21$.

A:-2.15.87; B:+2.13.64; C:+2.13.65; D:+2.13.66; E:+2.14.74; F:+2.14.75; G:+2.14.76.

1	1	1	1	1	1	1\|	2	2	2	2	2	2	21	3	3	3	3	3	3	31			Orb	s	
2	3	9	10	17	18	21\|	1	5	6	13	14	19	20\|	4	7	8	11	12	15	16	i	ABCDEFG		123	deg
0	E	E	-A	- A	F	F	- A	- A	F	F	F	F	D	G	G	F	F	C	C	B	2	4121282	1	457	16
	0	- A	E	F	- A	F	- A	F	- A	F	F	D	F	G	F	G	C	F	B	C	3	4121282	1	457	16
		\bigcirc	F	E	F	- A	F	-A	F	- A	D	F	F	F	G	C	G	B	F	C	9	4121282	1	457	16
			\bigcirc	F	E	- A	F	F	- A	D	- A	F	F	F	C	G	B	G	C	F	10	4121282	1	457	16
				\bigcirc	- A	E	F	F	D	- A	F	- A	F	C	F	B	G	C	G	F	17	4121282	1	457	16
					0	E	F	D	F	F	- A	F	- A	C	B	F	C	G	F	G	18	4121282	1	457	16
						0	D	F	F	F	F	- A	- A	B	C	C	F	F	G	G	21	4121282	1	457	16
							0	F	F	E	E	C	C	B	- A	- A	F	F	G	G	1	4121282	2	565	16
								0	E	F	C	E	C	- A	B	F	- A	G	F	G	5	4121282	2	565	16
									\bigcirc	C	F	C	E\|	- A	F	B	G	- A	G	F	6	4121282	2	565	16

Common invariants and measures:

Symmetry	$\|V\|$	$\|R\|$	K	N	$S V V$	$S V$	$S R V$	$H R$	$\boldsymbol{S R}$
Local-symmetric	$\mathbf{2 1}$	$\mathbf{2 1 0}$	$\mathbf{3}$	$\mathbf{2 0}$	$\mathbf{7}^{\mathbf{3}}$	0.6391	$\mathbf{7}^{12} \mathbf{1 4}^{\mathbf{7} 2 \mathbf{2 8}^{\mathbf{1}}}$	1.2564	$\mathbf{0 . 4 5 9 0}$

Distinguishing invariants and measures:

\boldsymbol{G}	$\|\boldsymbol{E}\|$	\boldsymbol{k}	\boldsymbol{N}^{+}	\boldsymbol{N}^{-}	\boldsymbol{P}	$\boldsymbol{C L}$	$\boldsymbol{M C}$	$\boldsymbol{D M}$	$\mathbf{S E V}^{+}$	$\boldsymbol{S E}^{+}$	TRA	$\boldsymbol{B R A}$
$\mathbf{L 2 1 - 4 2}$	42	1	4	11	7	2	5	3	$\mathbf{7}^{\mathbf{2}} \mathbf{1 4}^{\mathbf{2}}$	0.6443	0	0
$\mathbf{L 2 1 - 1 6 8}$	168	1	16	4	7	7	3	2	$\mathbf{7}^{10} \mathbf{1 4}^{5} \mathbf{2 8}^{\mathbf{1}}$	0.4812	1.000	0

Comments: a) Graph $\mathbf{L 2 1 - 4 2}$ is 5-girth-, 2-, 3-distance- and 4-valence regular. Complement $\mathbf{L 2 1 - 1 6 8}$ is triangular, 2-distance- and 16-valence regular. The pair signs of $\mathbf{L 2 1 - 4 2}$ are specified by its complement $\mathbf{L 2 1 - 1 6 8}$. b) 7-clique of L21-168 is expressed in sign matrix as the vertices $1,5,6,13,14,19,20$ of second vertex orbit. If to remove the 7 -clique at L21-168, then remain a bi-clique with parts $4,7,8,11,12,15,16$ and $2,3,9,10,17,18,21$. It stands to reason that must be remove also the inner-parts edges in partial matrices $W_{1.1}$ and $W_{3.3}$. c) Data about the number and powers of pair orbits of L21-42 and L21-168 contain in symmetry signs SRV and SEV ${ }^{+}$. d) From sign matrix can be read out, that Bri has $\mathbf{4}$ adjacent sub-structures with morphism probabilities $\quad \boldsymbol{P F}=7 / 42=1 / 6, \quad P F_{2}=14 / 42=1 / 3, \quad P F_{3}=14 / 42=1 / 3$, and $\boldsymbol{P F}_{4}=7 / 42=1 / 6$ correspondingly. Fixed is also existence of 16 adjacent super-structures.

Example 32. Processing results of a Weisfeiler graph $\mathbf{L 2 5 - 1 5 0}$ and its complement $\mathbf{L 2 5 - 1 5 0 C}$ in the form of pair signs, decomposed by u - and s-signs sign matrix and all the corresponding invariants, measures and comments.

$$
A:-2.8 .20 ; B:-2.8 .19 ; C:-2.8 .18 ; D:+2.7 .13 ; E:+2.7 .14 ; F:+2.7 .15 .
$$

Common invariants and measures:

Symmetry	$\|V\|$	$\|R\|$	\boldsymbol{K}	\boldsymbol{N}	SVV	SV	SRV	$\boldsymbol{H R}$	$\boldsymbol{S R}$
Local-symmetric	$\mathbf{2 5}$	$\mathbf{3 0 0}$	$\mathbf{1 5}$	$\mathbf{1 5 4}$	$\mathbf{1}^{5} \mathbf{2}^{10}$	0.1723	$\mathbf{1}^{20} \mathbf{2}^{128} \mathbf{4}^{6}$	2.1576	$\mathbf{0 . 1 2 9 0}$

Distinguishing invariants and measures:

\boldsymbol{G}	$\|E\|$	\boldsymbol{k}	\boldsymbol{N}^{+}	\boldsymbol{N}^{-}	\boldsymbol{P}	$\boldsymbol{C L}$	$\boldsymbol{M C}$	$\boldsymbol{D M}$	$\mathbf{S E V}^{+}$	$\boldsymbol{S E}$	TRA	BRA
$\mathbf{L 2 5 - 1 5 0}$	150	1	80	74	6	4	3	2	$\mathbf{1}^{12} \mathbf{2}^{67} \mathbf{4}^{\mathbf{1}}$	0.1310	1.000	0
$\mathbf{L 2 5 - 1 5 0 C}$	150	1	74	80	6	4	3	2	$\mathbf{1}^{8} \mathbf{2}^{64} \mathbf{4}^{5}$	0.1494	1.000	0

Comments: a) Graph L25-150 [Weisfeiler,1976, p 166(1)] and its complement L25-150C are strongly regular, triangular, 4-clique-, 2-distance- and 12-valence regular. b) B. Weissfeiler was an uncommon who has interested in orbits. He was constructed any strongly regular graphs, among this also self-complemented and 0 -symmetric, that be grounded on these same pair signs. c) Only with six pair signs is 25×25 sign matrix by u - and s-signs be decomposed to 15 vertex orbits and to 115 partial matrices $\boldsymbol{W}_{\text {ki,kj}}$. d) 150 "disadjacent pairs" of $\mathbf{L 2 5 - 1 5 0}$ form 74 pair(-)orbits, where A form a two-element orbit, by $-B$ formed 33 orbits, i.e. 4 one-elements and 29 two-elements orbits, by $-C$ formed 40 orbits, among this 4 one-elements, 31 two-elements and 5 four-elements orbits. e) 150 adjacent pairs of $\mathbf{L 2 5 - 1 5 0}$ form 80 pair $(+)$ orbits, where by $+\boldsymbol{D}$ formed 2 one-element orbits, by $+\boldsymbol{E}$ formed 32 orbits, among this 4 one-elements, 27 two-elements and 1 four-elements orbits, and by $+\boldsymbol{F}$ formed 46 orbits, among this 6 one- and 40 two-elements orbits. f) Thus, graph L25-150 has 80 adjacent sub- and 74 adjacent super-structures, in case of $\mathbf{L 2 5 - 1 5 0 C}$ is it opposed. \mathbf{g}) Also the sign graphs can be have there interest.

3.2. 0 -symmetric structures

Opening the 0 -symmetric structures have sense only in case of a concrete problem. Next 0 -symmetric graph $\mathbf{0 1 5 - 8 3}$ is induced from L. Võhandu for maximum clique recognition.

Example 33. Processing results of graph 015-83 in the form of pair signs, decomposed by u - and s-signs sign matrix, a local sign matrix and all the corresponding invariants, measures and comments.

```
(A:-2.13.66; B:-2.12.57; C:-2.12.53; D:-2.11.49; E:-2.11.46; F:-2.11.45; G:-2.11.44; H:-
2.10.40; I:-2.10.38; J:-2.10.37; K:-2.10.36; L:-2.10.35; M:-2.9.31 N:-2.9.30; 0:-2.9.29;)
    P:+2.7.17; Q:+2.7.18;R:+2.8.24; S:+2.8.25; T:+2.9.28; U:+2.9.29; V:+2.9.30; W:+2.9.31;
        X:+2.9.32; Y:+2.9.34; Z:+2.9.35; AA:+2.10.37;AB:+2.10.38; AC:+2.10.39; AD:+2.10.40;
            AE:+2.10.41; AF:+2.10.42; AG:+2.10.43; AH:+2.11.45; AI:+2.11.46; AJ:+2.11.47;
            AK:+2.11.48; AL:+2.11.49; AM:+2.11.50; AN:+2.12.55; AO:+2.12.56; AP:+2.12.57;
                                    AQ:+2.12.58; AR:+2.13.64; AS:+2.13.65; AT:+2.13.66
```

| \| 1| $2 \mid$ | 31 | 4 | 51 | 61 | 71 | 8 | 9 | 10 | $11 \mid$ | | | | \|15 | | | | Orb |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \|14| 7 | 10\| | 6 | $12 \mid$ | 1\| | 9 | 15 | 13 | 5 | 3 | 4 | \|11| | 2 | 8\| | i | deg | |
| $0 \mid A Q$ | M | AQ | H\| | AG\| | Z | AQ | I | AM | Y | Y | AF\| | AK | \|AK| | 14 | 11 | 1 |
| 0 | G\| | AQ | AC | AL | AD | AT | AA | AS | AJ | AJ | AO\| | AR | AN | 7 | 13 | 2 |
| | 0\| | R \| | P | Q\| | Q | \boldsymbol{U} | P | K | R | R | $0 \mid$ | L | \boldsymbol{U} | 10 | 8 | 3 |
| | | 0] | E | AK | AD | AS | G | AM | AC | AC | AF | AK | AN | 6 | 11 | 4 |
| | | | $0 \mid$ | \boldsymbol{R} | N | AA | V | $X \mid$ | W\| | W\| | \boldsymbol{X} | AC | $F \mid$ | 12 | 10 | 5 |
| | | | | $0 \mid$ | AD | AN | K | AL | E | E | \|AE | AE | \|AD | 1 | 11 | 6 |
| | | | | | $0 \mid$ | AD | P | AD | J | $E \mid$ | D | X | $A B \mid$ | 9 | 10 | 7 |
| | | | | | | 0 | C | AP | AI | AI | AL | AO | AN | 15 | 13 | 8 |
| | | | | | | | 0 | V | $V \mid$ | $V \mid$ | S | V | T | 13 | 10 | 9 |
| | | | | | | | | $0 \mid$ | $B \mid$ | $A B$ | AJ \| | AN | AJ \mid | 5 | 12 | 10 |
| | | | | | | | | | © 1 | AH | \|AB | | AC | \|AB| | 3 | 11 | 11 |
| | | | | | | | | | | 01 | $B \mid$ | \|AC | $\|A B\|$ | 4 | 11 | 12 |
| | | | | | | | | | | | 0\| | \| $\boldsymbol{\prime}$ | $A C \mid$ | 11 | 11 | 13 |
| | | | | | | | | | | | | 0 | A | 2 | 12 | 14 |
| | | | | | | | | | | | | | 0\| | 8 | 12 | 15 |

Main invariants and measures:

Symmetry	$\|V\|$	$\|R\|$	K	N	SVV	SV	SRV	HR	SR
0 -symmetry	$\mathbf{1 5}$	$\mathbf{1 0 5}$	$\mathbf{1 5}$	$\mathbf{1 0 5}$	$\mathbf{1}^{15}$	0	$\mathbf{1}^{105}$	2.0212	$\mathbf{0}$

Specified invariants and measures:

\boldsymbol{G}	$\|E\|$	\boldsymbol{K}	\boldsymbol{N}^{+}	\boldsymbol{N}^{-}	\boldsymbol{P}	$\boldsymbol{C L}$	MC	$\boldsymbol{D M}$	$\mathbf{S E V}^{+}$	$\mathbf{S E}^{+}$	TRA	BRA
$\mathbf{0 1 5 - 8 3}$	83	1	83	22	46	8	3	2	$\mathbf{1}^{83}$	0	1.000	0

Comments: a) Graph 015-83 is 2-distance-regular. b) Explicit clique sign no exist. c) Correspondingly to clique rule to open a pair graph with a large triangular value. Let it is pair graph $\boldsymbol{g}_{7.15}$ with pair sign $\boldsymbol{A T}=+2.13 .66$. d) Processing results of pair graph $\boldsymbol{g}_{7.15}$ of $\mathbf{0 1 5 - 8 3}$ in the form the local sign matrix $\boldsymbol{W}_{7.15}$:
$G:+2.7 .20 ;$
$M:+2.9 .33 ; N:+2.7 .21 ; ~ I:+2.8 .26 ; ~ J:+2.8 .27 ; ~ K:+2.8 .28 ; ~ L:+2.9 .32 ;$
M: $0:+2.9 .35 ; P:+2.10 .41 ; ~$

e) There exist explicit clique signs $\boldsymbol{H}:+2.7 .21$ and $\mathbf{K}:+2.8 .28$. Consequently, in 015-83 exists $\mathbf{7 - c l i q u e}$ and $\mathbf{8 - c l i q u e}$. By corresponding adjacency lists $\boldsymbol{B}_{i j}$ of pair graphs recognize the intersected cliques:

v_{i}	1	2	5	6	7	9	11	12	14	15
7 -clique	\bullet	\bullet	\bullet	-	\bullet	-	\bullet	\bullet	-	\bullet
8 -clique	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	-	-	\bullet	\bullet

f) The complement 015-83C constitute a rare and with smaller cliques structure.

Example 34. Conclusive table of all there treated non-bisymmetric structures, arranged by symmetry measures SR:

Nr	Notation	ExI	SRV	SR	K	N	Regularity	Parts	Commentary
1	M20-30	26	$10^{1} 30^{2} 60^{2}$	0.7900	1	5	νg	-	dodecahedra
2	M20-160						$v d$	-	complement
3	M16-48	24	$24^{1} 48^{1}$	0.7796	1	3	$v d g s$	-	Weisfeiler
4	M16-72						$v d c s$	-	complement
5	M14-21	23	$21^{1} 28^{1} 42^{1}$	0.7655	1	3	$v g$	2	Heawood
6	M14-70						$v d c$	-	complement
7	M16-32	25	$8^{1} 32^{2} 48^{1}$	0.73985	1	4	$v g$	2	hypercube
8	M16-88						v	-	complement
9	P15-45	27	$15^{3} 30^{2}$	0.7267	1	5	$v d c$	-	Kohov
10	P15-60						$v d$	-	complement
11	M20-40	29	$10^{1} 20^{1} 40^{4}$	0.6300	1	6	$v \mathrm{~g}$	5	orbitstructure
12	P20-50a	29	$\mathbf{1 0}^{1} 20^{5} 40^{2}$	0.6196	1	8	$v g c$	-	Praust
13	P20-120						$v t$	-	complement
14	P20-50b	29	$10^{1} 20^{9}$	0.5640	1	10	$\nu g c$	-	Praust
15	P24-36	28	$12^{13} 24^{5}$	0.4957	1	18	$v g$	2	Tevet
16	P24-240						$v d$	-	complement
17	L10-14	30	$1^{11} 2^{1} 4^{3} 6^{1} 8^{3}$	0.4593	3	9	g	-	Petersen-sub
18	L21-42	31	$7^{12} 14^{7} \mathbf{2 8}{ }^{1}$	0.4590	3	20	$v g$	-	Brinkman
19	L21-168						$d t$	-	complement
20	L10-16	30	$1^{3} 2^{5} 4^{8}$	0.2994	5	16	d	-	Petersen-sup
21	L25-150	32	$1^{20} 2^{128} 4^{6}$	0.1290	15	154	$v d s t$	-	Weisfeiler
22	L25-150c						v	-	complement
23	015-83	33	1^{105}	0	15	105	d	-	Võhandu

CONCLUSION

It was story of ,,anew discover" of the graphs, where open the new relationships between structural attributes. On the other hand it is a practical processing and treatment mode of the graphs. We were demonstrated, that all the graphs, little and larges, have such attributes as orbits, adjacent- and sign structures. All the graphs are recognizable in constructive form with exactness up to isomorphism. We can to recognize c - clique-, d - distance-, g - girth-, $s-$ strongly-, v - valence- regularity of graphs, etc.

The selection of examples with comments and propositions express there the processing results of algorithms, where give much attention to symmetry properties, particularly to bisymmetry of structure. The examples are selected so, that all the essential structural properties of symmetric and non-symmetric graphs are presented.

Structural approach differs at custom treatments in following:

- In structural approach has the word "structure" a sure meaning and import.
- Structural treatment of the graphs is concentrated to complete invariant of isomorphic graphs - to sign matrix W^{*}, that is formed by simple initial data.
- Give up from complicated isomorphism testing, it be concealed in simple equivalence of sign matrices.
- Structure and all its attributes, such as paths, circuits, cliques, partition, orbits, symmetry, orbit and adjacent structures, structure systems etc are in a complex and completely recognizable by structural signs or their classes.
- Give up from treatment the symmetry properties by automorphism groups AutG, it replaced with simple treatment the pair signs, that present the local isomorphisms of pair graphs.
- Given an exhaustive classification of symmetry kinds by orbits and their powers.
- Given up from treatment the reconstruction problems by ideology of Ulam conjecture, it is related with elementary changes, i.e. with reverse orbits of adjacent structures.
- A system of structures constitute an ordered complex of adjacent structures..

Do the results of 'structure semiotic' research to graph theory? To this question reply as a rule in this way that: "... any new results about graphs could be regarded as graph theory as long as they shed new light on graphs. The substance is the most important. If you make generalizations just for the sake of generalizations, then most people might not find it too interesting".

But, for all that, what is structure semiotics? Is it a "structure philosophy" that takes to a "cognitional loneliness" or simply a "play on the graphs"? It is clear, that this "play" has a sense and is useful.

REFERENCES

[^0]Mayer, J. Developments recents de la theorie des graphes. - Historia Methematica, 3 (1976), 55-62.
Netshepurenko, M., et al. Нечепуренко, М., и др. Алгоритмы и программы решение задач для графов и сетей. Новосибирск, 1990
Ore, O. Graphs and Their Uses. Random House, N.Y., 1963.
Pemmaraju, S., Sciena, S. Computational Discrete Mathematics: Combinatorics and Graph Theory with Mathematica ${ }^{\circledR}$. Cambrige University Press, 2003.
Petersen, J.J. Die Theorie der rägularen Graphen. Acta Math. 15 (1891), 193-220.
Praust, V. On the reconstruction problem of graphs. (Manuscript in Estonian)), Tallinn, 1995.
Read, R. C., Corneil, D.G. The graph isomorphism disease. J. of Graph Theory, 1 (1977), 339-363.
Read, R. C., Wilson, R. J. An Atlas of Graphs. Oxford University Press, 2004.
Tevet, J. (1984a) Symmetry phenomenon on viewpoint of structurality. - Theory of Organic form. Schola Biotheoretica X, Tartu, 1984, 84-93 (in Estonian).
(1984b) Treatise about the Structure (manuscript). Tallinn, 1984.
(1987) On Combinatorial Determining of Symmetric Attributes, Isomorphism and Reconstructions of Graphs (A deposed paper N7-ES87). Tallinn, 1987, 41 pp.
(1990a) Interpretations on some Graph Theoretical Problems. Tallinn, 1990, 92 pp.
(1991b) On the Discrete Model of Ecological Processes. - Proc. Estonian Acad. Sci. Ecol., 1 (1991), N3, 105-108.
(1999a) Semiotics of Structure: Representation of Structurality on Graphs. S.E.R.R., Tallinn, 1999, 127 pp. (in Estonian).
(1999b) Appendix to Structure's Semiotics: A System of Graphs, their Characteristics and Changes. S.E.R.R., Tallinn, 1999, 95 pp.
(2000) ABC-Book about Structure, System and Signify of Graphs. S.E.R.R., Tallinn, 2000, 95 pp. (in Estonian).
(2001a) Graphs and Semiotics. S.E.R.R., Tallinn, 2001, 97 pp. (in Estonian).
(2001b) Графы стуктуры и структура графов. S.E.R.R., Tallinn, 2001, 17 pp.
(2001c) Semiotic Testing of the Graphs: Principles, Using, Developments. S.E.R.R., Tallinn, 2001, 76 pp.
(2002) Isomorphism and Reconstructions of the Graphs. A Constructive Approach and Development. S.E.R.R., Tallinn, 78 pp.
(2003b) Structure of the Graphs and Graphs of the Structure. S.E.R.R., Tallinn, 2003, pp. 76, (digital issue by http://ester.nlib.ee/)
(2004b) Heuristic Algorithms for Structure Processing of the Graphs. S.E.R.R., Tallinn, 2004, pp. 18.
(2004d) Semiotics of the Structure '04. S.E.R.R., Tallinn, 2004, pp. 40 (in Estonian).
(2004e) Symmetry in the Graphs: S.E.R.R., Tallinn, 2004, pp. 20 (in Estonian).
(2005a) Cliques, Conjugate- and Adjacent Graphs: Reading the Sign Matrix. S.E.R.R., Tallinn, 2005, pp. 26 (in Estonian).
(2005b) System Analysis of the Graphs: Algorithm and Application. S.E.R.R., Tallinn, 2005, pp. 94 (in Estonian).
(2005c) 270 Year Graphs: On the Structure Semiotics Viewpoint. S.E.R.R., Tallinn, 2005, pp. 35 (in Estonian).
(2006a) Structure semiotic approach to the graphs. S.E.R.R., Tallinn, 2006, pp. 47 (digital issue by http://ester.nlib.ee/)
(2007a) A sample of graph-structures. S.E.R.R., Tallinn, 2007, pp. 48 (in Estonian).
(2007b) Semiotics of bisymmetric structures. S.E.R.R., Tallinn, 2007, pp. 18 (in Estonian).
(2007c) Systematic Analysis of the Graphs. 2007, (digital issue by http://ester.nlib.ee/).
Tevet, J., Krasnoshtshokova, R. (1983) Structurality principle - hypothesis or modelling way? - Cell Theory. Schola Biotheoretica IX, Tartu, 1983, 106-117 (in Estonian).
Tevet, J., Lambing, M. (2000b) Visions about skeletons of artworks. - In: Frontiers of Interstanding, Stockholm, 2000, 69-73.
Thulasiraman, K., Swamy, M.N.S. Graphs: Theory and Algorithms. John Wiley \& Sons, 1992.
Titov, V. Титов, В. О симметрии в графах. Вопроссы кибернетики, 15, N2, 1975, 76-109.
Tjuhtin, V., Тюхтин, В., С. Отражение, системы, кибернетика. Наука, Москва, 1972.
Toida, S. Isomorphism of graphs. - Proc. $16^{\text {th }}$ Midwest Symp. Circuit Theory, Waterloo, 1973, XVI.5.1-5.7.
Tutte, W.T. Graph Theory As I Have Known It. Clarendon Press, Oxford, 1998.
Ulam, S. M. A Collection of Mathematical Problems. Wiley, New York, 1960.
Vedenov, M., Kremjanski, V. Веденов, М., Кремянский, В. Принцип структурноси в современной биологий - Современные проблемы теорий познания, Том I, 1970, 205-247.
Võhandu, L. Order of graphs by J-language - A\&A, 5, 51-56, 6, 38-44 (2001) (in Etonian).
Weisfeiler, B. On Construction and Identification of Graphs. - Springer Lect. Notes Math., 558, 1976.
Zykov, А. Зыков, А. Основы теории графов. «Наука», Москва, 1987.

[^0]: Akimov, О. Акимов, O, Е. Дискретная математика: логика, группы, графы. Лаборатория Базовых Знаний, Москва, 2001.
 Berge, C. Theorie des Graphes et Ses Applications. Dunod, Paris, 1958.
 Biggs, N.L. Algebraic Graph Theory. Cambridge University Press, Cambrige, 1974.
 Biggs, N.L., Lloyd, E.K., Wilson, R.J. Graph Theory 1736-1936. Clarendon Press, 1986.
 Bollobás, B. Graph Theory: An Introductory Course. Springer, N.Y., 1979.
 Bollobás, B. Modern Graph Theory. Springer, 1998.
 Chartrand, G., Lesniak, L. Graphs and digraphs. Wadsworth International, Monterery, California, 1986.
 Christofides, N. Graph Theory: An Algorithmic Approach. Academic Press, London, 1975.
 Collatz, L., Sinagowitz, U. Spektren endlicher Graphen. Abh. Math. Sem. Univ. Hamburg, 21 (1957), 63-77.
 Euler, L. Solutio problematis ad geometriam situs pertinentis. - Comment. Academiae Sci. I. Petropolitanae 8 (1736), 128 -140.
 Gati, G. Further annotated bibliography on the isomorphism disease. - J. of Graph Theory, 3 (1979), 95-109.
 Gross, J., Yellen, J. Graph Theory and its Applications. CRC Press, 1999.
 Harary, F. Graph Theory. Addison-Wesley, 1969.
 Hoffman, C. Group-Theoretic Algorithms and Graph Isomorphism. Springer, 1982.
 Ivanov, A. V. Non-rank 3 strongly regular graphs with the 5 -vertex condition. Combinatorica, 9 (1989), N3, 255-260.
 Kohov, V. Кохов, В. А. Исследования по прикладной теории графов. «Наука», 1986, cmp. 97-125.
 Jemeltshev, B., et al. Емелычев,Б. и др. Лекций по теорий графов. «Наука», Москва, 1990.
 König, D. Theorie der endlichen und unendlichen Graphen. Leipzig, Akad. Verlag M.B.H., 1936.
 Mathon, R. Sample graphs for isomorphism testing. - Proc. $9^{t h} S$ - E. Conf. Combinatorics, Graph Theory and Computing, 1980, 499517.

