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Abstract. The method based on 2D Reynolds-averaged Navier–Stokes equations has been employed for the simulation of upward 
turbulent particulate cylindrical pipe flows of different diameters for a constant flow Reynolds number. This approach was supplied 
with appropriate closure equations which took into account all pertinent forces and effects that exerted influence on gas and particles: 
the particle–particle, particle–wall, and particle–turbulence interactions; gravitation, viscous drag, and lift forces; and turbulence 
modulation. The finite volume technique was applied to the numerical solution of the governing equations. The results show the 
effect of the mass loading on the radial distributions of the longitudinal velocity lag, the turbulence modulation, and particle 
concentration. In particular, the two-way coupling of turbulence with the given particles raises simultaneously the velocity lag 
between gas and particles, originating from direct impact of turbulence on particle motion, and turbulence attenuation by the particles. 
The radial distributions of longitudinal particle velocity and mass concentration become flatter for higher flow mass loading. 
 
Key words: vertical pipe, particulate flow, terminal velocity, turbulence modulation, flow mass loading. 
 
 
INTRODUCTION 
 
Particulate flows in pipes have numerous engineering applications ranging from pneumatic conveying 
systems to coal gasifiers and chemical reactor design and are one of the most thoroughly investigated 
subjects in the area of multiphase flows. These flows are very complex and influenced by various physical 
phenomena, such as particle–turbulence and particle–particle interactions, deposition, by gravitational and 
viscous drag forces, particle rotation, and lift force. 

Numerous theoretical and experimental researches (e.g. Pfeffer et al., 1966; Tsuji and Morikawa, 1982; 
Michaelides, 1983, 2006; Tsuji et al., 1984; Davies, 1987; Gore and Crowe, 1989; Squires and Eaton, 
1990; Yuan and Michaelides, 1992; Cabrejos and Klinzing, 1994; Gidaspow, 1994; Yarin and Hetsroni, 
1994; Cao and Ahmadi, 1995; Crowe and Gillandt, 1998; Crowe, 2000; Sommerfeld, 2003; Kartushinsky 
and Michaelides, 2004; Kartushinsky et al., 2009a, 2009b, 2011) deal with various aspects of the 
behaviour of gas and solid particles in particulate pipe flows. 

The present study focuses on the effect of variation of the pipe diameter for a constant Reynolds 
number applied to vertical particulate turbulent pipe flows. The numerical investigation discussed here 
examined in detail the effects of direct and indirect particle–turbulence interaction (no-coupling and 
coupling) and gravity for various flow mass loadings. Additionally, the viscous drag force and the Magnus 
and Saffman lift forces are also taken into account. The presented numerical model makes use of the two-
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fluid model (Elghobashi and Abou-Arab, 1983; Rizk and Elghobashi, 1989; Deutsch and Simonin, 1991; 
Simonin, 1991; Reeks, 1992) and the Reynolds-averaged Navier–Stokes (RANS) approach (Kartushinsky 
et al., 2009a, 2009b) applied to gas and solid particles. 

Within the frame of the two-fluid model, the gas and the particles are considered as two coexisting phases 
that span the entire flow domain (Kartushinsky et al., 2009a, 2009b). Therefore, in order to describe the flow 
of the particulate phase within the two-fluid model, the presented model implements the RANS approach. 
This approach is the most general and frequently used in modelling, its closure equations have been verified 
by numerous experiments, and the boundary conditions are easy to determine. The given modelling employs 
the model by Crowe (2000). It is the most relevant model to account for mechanisms of a turbulence 
modulation caused by particles, since it includes both the turbulence enhancement and its attenuation by 
particles. The inter-particle collisions are another mechanism accounting for capture properties of turbulent 
particulate pipe flows, which has been modelled, e.g., by Kartushinsky and Michaelides (2004). These two 
models enable comprehensive mathematical simulation of the two-phase upward pipe flow. 

The presented model allows covering 100 and more calibers of a pipe flow. This is the main advantage 
over the numerical models based, for example, on direct numerical simulation codes (e.g., Marchioli et al., 
2003), that handle usually with a short pipe length up to 10–20 calibers with imposing the upper limit for 
the flow Reynolds number. 

The utilized two-fluid model with adoption of the original collisional closure model by Kartushinsky 
and Michaelides (2004) together with the applied numerical method has been verified and validated in our 
previous research (Kartushinsky et al., 2009a, 2009b) by comparison of numerical results with the existing 
experimental data by Tsuji et al. (1984). In the given study, the effect of variation of the pipe diameter (or 
transport velocity) at a constant Reynolds number is numerically investigated in the particulate turbulent 
flow. This is a step forward for analysing the external effect, namely, the flow configuration rather than 
the internal effect with variation of the parameters of the flow. 
 
 
MATERIALS  AND  METHODS 
 

Model  description 
 
The sketch of the computational flow domain is shown in Fig. 1, where u  is the gas average velocity, GF  
is gravity, DF  is the aerodynamic drag force, LRF  is the lift force arising from particle rotation (the 
Magnus lift force), sω  is the angular velocity of a particle. 
 
 

 
 

Fig. 1. Upward turbulent particulate flow in a pipe. 
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It is assumed that the particulate phase is polydispersed and composed of several known mass frac-
tions. These fractions can be of single material density and characterized by equivalent particle diameter 
of the fraction .δ  According to Kartushinsky and Michaelides (2004), in the given formulation of the 
governing equations that follows, three solid fractions are assumed to be present. It is assumed that the 
aerodynamic forces, such as the drag, lift forces, and gravity, act on all the particulate fractions. 

 
Governing equations for the 2D RANS model 
The model is based on the time-averaged Navier–Stokes equations (RANS method), without any 
simplifications, such as the boundary layer simplifications. The vertical pipe flows are 2D unless the study 
of rotating flows. 

A short presentation of the governing equations written for the axisymmetric channel case is as 
follows. 
 
1. Continuity equation for the gas phase: 

 

( ) 0,u rv
x r r

∂ ∂+ =
∂ ∂

                                                                  (1) 

 

where u  and v  are the longitudinal and radial velocity components of the gas phase. 
 
2. Longitudinal linear momentum equation for the gas phase: 
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where t tν ν ν= +%  is effective viscosity, which is the sum of turbulent and laminar viscosities, while tν  is 
calculated following the Boussinesq eddy-viscosity concept; p  is pressure; α  is the mass concentra-
tion of particles; r su u u= −  and r sv v v= −  are the relative velocities of particles along the longitudinal 
and radial directions, respectively. Here DCτ τ′ ′=  is the particle response time that specifies  
the drag, defined by the expression 0.6871 0.15ReD sC′ = +  for the non-Stokesian regime (Schiller  
and Naumann, 1933). The particle Reynolds number and Stokesian particle response time are defined as 

2 2Res r r rV u vδ ν δ ν= = +
r

 and 2 (18 ),pτ ρ δ ρν=  respectively. 0.5( )s v x u rΩ ω= − ∂ ∂ − ∂ ∂  is the 
angular velocity slip, with sω  being the angular velocity of the given particle fraction. The coefficient of 
the Magnus lift force MC  is calculated according to Crowe et al. (1998); ρ  and pρ  are the physical 
densities of air and the particle material, respectively. 
 
3. Radial linear momentum equation for the gas phase: 

 

2
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where sF  is the coefficient for the Saffman lift force, which is due to the local shear of the flow; it is given 
for finite values of the particle Reynolds numbers by correction of Mei (1992). 
 
4. Turbulence kinetic energy equation for the gas phase: 
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where k  and sk  are the turbulence kinetic energy of the gas- and dispersed phases, respectively. The 
hybrid dissipation rate hε  is calculated for the two-phase flow via hybrid turbulence length scale defined 
as harmonic average of the integral length scale of single-phase flow and inter-particle spacing (Crowe, 
2000). 
 
5. Continuity equation for the particulate phase: 
 

( ) ( ) 0,s su r v
x r r

α α∂ ∂+ =
∂ ∂

% %                                                          (5) 
 

where su%  and sv%  are the longitudinal and radial components of the drift particle velocity of the given 
fraction, given by the expressions ( ) ln ,x

s s t cu u D D xα= − + ∂ ∂%  ( ) ln .r
s s t cv v D D rα= − + ∂ ∂%  Here tD  is 

the coefficient of turbulent diffusion of particles, which is calculated by the model of Zaichik and 
Alipchenkov (2005). The pseudoviscosity diffusion coefficients along x  and r  directions ,x r

cD  stem from 
the particle collisions (Kartushinsky and Michaelides, 2004). 
 
6. Momentum equation in the longitudinal direction for the particulate phase: 
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where g  is gravitational acceleration. 
 
7. Momentum equation in the radial direction for the particulate phase: 
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where 2 ,su′  ,s su v′ ′  2
sv′  are the velocity correlations due to particle collisions and induce momentum swap 

in the longitudinal and radial motions of the given fraction (Kartushinsky and Michaelides, 2004). 
 
8. Angular momentum equation in the longitudinal direction for the particulate phase: 

 

( ) ( )( ) ( ) ,s s s s s s s su r v u r v C
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where s su ω′ ′  and s sv ω′ ′  are the linear-angular velocity correlations of particles due to inter-particle 
collisions calculated according to Kartushinsky and Michaelides (2004). 
 
Boundary conditions for the RANS model 
As inlet boundary conditions, it is assumed that particles enter the previously computed, fully developed 
flow domain of single phase, having the initial longitudinal velocity determined by the lag coefficient. The 
equilibrium outlet boundary conditions were set at the exit cross section 100 ,x D=  i.e. the non-gradient 
derivatives from all velocities of all phases, turbulence kinetic energy, and mass concentration over 
longitudinal coordinate were written according to Kartushinsky et al. (2009b). Since the particulate flow in 
the vertical pipe is considered as axisymmetrical, the non-gradient boundary conditions were set at the 
pipe axis for the longitudinal velocity components of gas and particles, the turbulent energy and particle 
mass concentration. The boundary conditions were set zero at the pipe axis for the radial velocities of both 
phases and the particle angular velocity. The concept of “wall functions” (Pope, 2008) has been applied to 
set the boundary conditions at the wall. While applying the balance of the production and dissipation rate 
of kinetic energy “near the wall” with using the eddy-viscosity concept (Perić and Scheuerer, 1989), it can 
link the friction velocity v∗  and shear stress wτ  through the turbulence kinetic energy as 2

* wv τ ρ= =  
0.5 .c kµ  The computations near the wall were carried out at the half-width of the control volume off the 
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wall. Then, for the longitudinal velocity of the gas phase and for the turbulent energy computed by means 
of its production ,kP  the boundary conditions are as follows: 
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where the empirical constant 0.41;æ =  2y ∆=  (∆  is the width of the control volume). 
The wall boundary conditions for the dispersed phase have taken into account the particle’s velocity 

lag determined through particle–wall interaction (Kartushinsky et al., 2009b). 
 
Numerical  method 
 
The control volume method was applied to solve mass and momentum equations of both phases by using 
the implicit lower and upper matrix decomposition method with flux-blending differed-correction and 
upwind-differencing schemes by Perić and Scheuerer (1989). Calculations were performed in dimensional 
form for all flow regimes. The number of the control volumes varied from 280 000 to 1 120 000, 
corresponding to the increase in the pipe diameter from 30.5 mmD =  to 61 mm,D =  and their size 
remained constant across the pipe flow. 
 
 
RESULTS  AND  DISCUSSION 
 
The numerical results presented in the figures herein have been obtained at a distance of 100x D =  from 
the pipe entrance. At this distance it was reasonable to stipulate that the steady flow conditions had been 
reached and there was no influence of the entrance conditions. The results presented here are mainly 
dimensionless, but some of them are given in dimensional form. Coal particles 250 µm in size (physical 
density 31600 kg/m )pρ =  were used in investigations. The flow mass loading was * 1m =  and 10 kg 
dust/kg air. The applied particles were light enough to respond to turbulent fluctuations of gas. 

The Reynolds number Re was assigned as the constant through all calculations and set equal to 
44.4 10 .×  The pipe diameter D  was 30.5, 45.75, and 61 mm for the gas average velocities 21.6,u =  14.6, 

and 10.8 m/s, respectively. The average longitudinal velocity and turbulence energy radial distributions 
calculated for these three regimes are shown in Figs 2 and 3. 

The following figures show the influence of various force factors on radial distributions of the particle 
velocity lag, particle mass concentration, and turbulence modulation originating from the particles. 
Separately, the effects of the direct (turbulence) and indirect (no-coupling and coupling) particle–
turbulence interactions are analysed, together with the singled-out influence of gravity. 

The longitudinal velocity lag is presented as the ratio of the longitudinal velocity slip ru  between the 
gas and particulate phases to the terminal velocity of particles, ( ) ,s tu u v−  where tv  is the particle 
terminal velocity. 

The analysis of the behaviour of the normalized longitudinal velocity lag is shown in Fig. 4 for various 
force factors for 250-µm particles at * 1.m =  If the motion of particles is exposed only by viscous and 
gravitation forces (without the direct effect of turbulence, lift forces, and coupling), the velocity lag 
between two phases approaches the particle terminal velocity occurring in the steady-state flow domain, 
i.e. the ratio r tu v  converges to unity (the curve marked by triangles in Fig. 4). However, as the numerical 
simulation shows, if the motion of particles is exposed by a combined effect of various force factors, the 
normalized longitudinal velocity lag increases above the particle terminal velocity. 
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Fig. 2. Radial distributions of the longitudinal gas velocity in the pipes D = 30.5, 45.75, and 61 mm, Re = 4.4 × 104. 
 

 

 
 

Fig. 3. Radial distributions of the turbulence energy of gas in the pipes D = 30.5, 45.75, and 61 mm, Re = 4.4 × 104. 
 

 

 
 

Fig. 4. Radial distributions of the normalized longitudinal velocity lag for 250 µm coal particles obtained for various flow 
conditions, m* = 1, D = 45.75 mm, Re = 4.4 × 104. 
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Figure 5 shows the effect of the flow mass loading on the normalized longitudinal velocity lag. It is 
evident that increase in the flow mass loading results in reduction of r tu v  almost over the entire cross 
section of the pipe except the near-wall region. 

Diminishing of the normalized longitudinal velocity lag observed for a relatively dense flow ( * 10,m =  
Fig. 5) clearly depicts the tendency of turbulence attenuation by particles, or, in other words, decrease in 
the direct effect of turbulence on particle motion. The ratio between particle size and turbulence integral 
length scale is about 0.1 for the given 250-µm coal particles and, according to Gore and Crowe (1989), 
they attenuate turbulence. This effect becomes stronger with increase in the flow mass loading that results 
in the converging of r tu v  to unity when considering only the effect of gravity (see Fig. 4). 

In order to trace the effect of the flow mass loading on turbulence modulation, let us first examine the 
distribution of the particle mass concentration presented in Fig. 6. As one can see, the growth of the flow 
mass loading attenuates turbulence and makes radial distributions steeper with a more pronounced 
tendency with respect to particle size variation (Kartushinsky and Michaelides, 2004, 2006). 

 
 

 
 

Fig. 5. Radial distributions of the normalized longitudinal velocity lag for 250 µm coal particles obtained for the flow mass 
loadings m* = 1 and 10, D = 45.75 mm, Re = 4.4 × 104. 
 
 

 
 

Fig. 6. Radial distributions of the normalized mass concentration of 250 µm coal particles obtained for the flow mass loadings 
m* = 1 and 10, D = 45.75 mm, Re = 4.4 × 104. 
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Figure 7 explicitly addresses the coupling effect, which was observed for two flow mass loadings, 
* 1m =  and 10. Obviously, a higher mass loading leads to a higher rate of turbulence modulation, i.e., if 

there is turbulence attenuation due to particles, this process is intensified for a higher mass loading. 
The next series of plots (Figs 8–10) show the effect of the pipe diameter for a constant Reynolds 

number on distributions of the normalized velocity lag, particle mass concentration, and turbulence 
modulation. 

Figure 8 shows radial distributions of the normalized longitudinal velocity lag obtained for various pipe 
diameters. One can see that increase in the pipe diameter results in a lower turbulence level (see Fig. 3). 
This, in turn, leads to a smaller velocity lag with less deviation from particle terminal velocity, and, in 
fact, to weaker particle involvement into the turbulent motion. This is proved by the data of Fig. 3, 
showing that a larger pipe diameter corresponds to a lower level of turbulence energy, and, therefore, to a 
lower rate of particle involvement by the gas flow. 
 
 

 
 

Fig. 7. Effect of mass loading on the turbulence modulation by 250 µm coal particles, m* = 1 and 10, D = 45.75 mm, 
Re = 4.4 × 104. 
 

 

 
 

Fig. 8. Radial distributions of the normalized longitudinal velocity lag for 250 µm coal particles in the pipes D = 30.5, 45.75, and 
61 mm, m* = 10, Re = 4.4 × 104. 
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One can see that the effect of the pipe diameter has a tendency to straighten the radial distributions of 
the particle mass concentration (Fig. 9). Increase in the pipe diameter leads to reduction of the ratio 
between particle size and pipe diameter, which results in intensification of particle turbulent diffusion 
causing flattening of distributions of particle concentration (Kartushinsky et al., 2009b). 

The turbulence modulation caused by particles is shown in Fig. 10 for various pipe diameters at the 
flow mass loading * 10.m =  As one can see, increase in the pipe diameter leads to a lower rate of 
turbulence attenuation. This can be explained based on the analysis of Fig. 3. As it shows, increase in the 
pipe diameter results in decrement of turbulence kinetic energy .k  Since the length scale of energy-
containing eddies is proportional to turbulence kinetic energy 

3
2( ~ ),eL k  the decrement of kinetic energy 

is followed by decrease in the turbulence length scale. This, in turn, causes the growth of the ratio between 
particle size and turbulence length scale, and finally results in a lower rate of turbulence attenuation due to 
particles. 

 
 

 
 

Fig. 9. Radial distributions of the normalized mass concentration for 250 µm coal particles in the pipes D = 30.5, 45.75, and 
61 mm, m* = 10, Re = 4.4 × 104. 
 

 

 
 

Fig. 10. Radial distributions of the turbulence modulation for 250 µm coal particles in the pipes D = 30.5, 45.75, and 61 mm, 
m* = 10, Re = 4.4 × 104. 
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CONCLUSIONS 
 
The two-dimensional RANS numerical approach fitted for upward turbulent particulate pipe flow supplied 
with the appropriate closure equations was applied to the computational investigation of parameters of gas 
and solid particles by the control volume method. The study covered the distance of 100 calibers from the 
pipe entrance. 

The longitudinal velocity lag, turbulent kinetic energy of gas, and particle mass concentration, affected 
by gravity, viscous drag, particle–turbulence, particle–particle, and particle–wall interactions as well as the 
Saffman and Magnus lift forces, were examined for different pipe diameters with holding constant the 
flow Reynolds number for various flow mass loadings. 

The obtained numerical results allow us to draw the following conclusions: 
1. simultaneous effect of turbulence interactions and all force factors impacting on solid particles results 

in substantial excess of the longitudinal velocity lag over the terminal velocity of particles; 
2. increase in the pipe diameter 

– gives rise to a decrease in the relative velocity lag, 
– flattens the radial distributions of particle velocity, 
– induces a decrease in the turbulence attenuation rate, 
– causes flattening of the radial distributions of particle mass concentration; 

3. increase in the flow mass loading causes 
– decrease in the relative velocity lag, 
– increase in the rate of turbulence attenuation, 
– steepening of the radial distributions of particle mass concentration. 

The presented model, with applying a minimum number of assumptions and empiricism, represents a 
more contemporary computational approach in turbulent particulate flow. It is also simpler and uses the 
state-of-the-art modelling and computational techniques, and is more accurate because it does not apply 
approximations. The given method allows computing large particulate flow domains occurring in various 
practical devices. 
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Ülessuunatud  õhktahkete  osakeste  toruvooluse  numbriline  uurimine  Reynoldsi  
kriteeriumi  konstantsetel  väärtustel 

 
Alexander Kartushinsky, Ylo Rudi, Sergei Tisler, Igor Shcheglov ja Alexander Shablinsky 

 
Erineva läbimõõduga ülessuunatud toruvoolusi uuriti Reynoldsi meetodil keskmistatud Navieri-Stokesi 
telgsümmeetrilistel võrranditel põhineva numbrilise meetodiga Reynoldsi kriteeriumi konstantsetel väär-
tustel. Seda võtet kasutati koos sobivate sulgemisvõrranditega, mis arvestavad kõiki gaasile ja osakestele 
mõjuvaid jõude ning efekte: osake-osake, osake-sein, osakese-turbulentsi vastasmõjud, gravitatsioon, 
viskoosne kaasahaaramine ja tõstejõud. Põhivõrrandite arvuliseks lahendamiseks kasutati lõplike ruum-
alade tehnikat. Näidati osakeste kontsentratsiooni mõju kiiruse mahajäämuse, turbulentsi moduleerimise ja 
osakeste kontsentratsiooni pikiprofiilidele. Tulemuste põhjal on väidetud, et turbulentsi ja osakeste oma-
vaheline vastasmõju suurendab faaside kiiruslikku mahajäämust, mis tuleneb turbulentsi otsesest mõjust 
osakeste liikumisele ning viib turbulentsitaseme vähenemisele. Osakeste kiiruse ja kontsentratsiooni 
pikijaotused muutuvad osakeste suuremate kontsentratsioonide juures lamedamaks. 


