
Proceedings of the Estonian Academy of Sciences,
2013, 62, 1, 16–26

doi: 10.3176/proc.2013.1.03
Available online at www.eap.ee/proceedings

Interleaving human and search-based software architecture design

Sriharsha Vathsavayi∗, Hadaytullah, and Kai Koskimies

Department of Software Systems, Tampere University of Technology, Korkeakoulunkatu 1, P.O. Box 553, 33101 Tampere, Finland

Received 21 August 2011, revised 7 April 2012, accepted 25 October 2012, available online 20 February 2013

Abstract. An approach for semi-automated design of software architecture is proposed. The approach makes use of a search-based
architecture synthesis technique exploiting genetic algorithms. An interactive process of software architecture design is proposed,
where the automatic search-based generation of architectural fragments interleaves with the decisions of a human architect. To
support such a process, tool mechanisms are proposed and implemented. The approach is studied using a sample system, whose
architecture is designed following the interactive process model.

Key words: software architecture, genetic algorithms, semi-automated, tool support.

1. INTRODUCTION

Computer-aided design (CAD) has been a well-
established technology in various fields of manufacturing
for decades. However, traditionally CAD tools provide
a fairly low level of intelligence and automation: they
could be often characterized by customized drawing
tools rather than tools helping the designer to come up
with a solution for the design problem at hand. Once
the design has been completed, the tool can often assist
in the production of the actual artifact according to
the design. In contrast, the step from requirements to
design is less understood and, consequently, lacking tool
support. This is particularly the situation in software
engineering, where various computer-aided software
engineering (CASE) tools and application generators
provide management and automation facilities for
different activities in the software engineering lifecycle,
but hardly any support for producing a design solution
from requirements. Interestingly, in other areas of
technical design, fairly advanced tools exist for
automated generation of complex design based on rules,
patterns, and constraints (e.g. CityEngine [1]). Is
software design inherently so difficult that it cannot be
(even partially) automated, or is software development
just a so immature discipline that the regularities of
the design are not yet sufficiently well understood for
building tools?

The problem of automated (or semi-automated)
software architecture design has attracted increasing
research interest in recent years. Basically, there are
two main approaches: one can either (i) encode the
human architectural reasoning and architectural design
rules into a tool, or (ii) encode the properties of a good
architecture into a tool and let the tool find an optimal (in
terms of the goodness properties) candidate in the search
space. In both cases, there are two options: the tool
can assume human interaction and involvement during
the construction of the architecture, or it can work in
principle autonomously.

The former approach leads more naturally to a tool
that is used interactively: the tool assumes a design
process that is similar to the human architect’s mental
model, and can therefore be easily aligned with human
involvement. The latter approach, in contrast, leads more
naturally to an autonomous tool, since the search process
employed by the tool can be (and probably is) completely
incomprehensible for the architect. In that case, the
only way the architect can interact with the tool is to
change the input of the tool (for example, the definition
of “goodness”), and restart the tool with the new input.

A good example of the first approach is the SEI
Architecture Expert (ArchE), a semi-automated assistant
for architecture design [2]. In this tool, the design
knowledge is codified as a reasoning framework that is
applied to direct the design process. Using the reasoning

∗ Corresponding author, sriharsha.vathsavayi@tut.fi



S. Vathsavayi et al.: Interactive software architecture design 17

framework, the tool proposes different tactics to improve
the design in certain aspects, and the architect can
select tactics which the tool applies, resulting in a new
architecture. The challenge in this approach is to make
the reasoning framework intelligent enough to cope with
all possible design situations that may arise. On the other
hand, since this is an interactive approach, occasional
failure of the tool is not really a problem if the tool can
nevertheless handle most of the typical situations.

The latter approach requires no understanding of
the design process, but on the other hand, it requires
a definition of a “good” architecture. This is the
challenge and potential weakness of the latter approach,
as even human architects easily disagree on what is a
“good” architecture. On the other hand, if a satisfactory
definition can be found, this approach leads to a fairly
straightforward automation, as the design is effectively
transformed into a search problem.

Several authors have recently studied search-
based software design (for a survey, see [3]). In
general, work in this area is mostly concentrating on
improving the existing design rather than producing an
upfront design based on requirements analysis. For
example, search-based solutions for the problem of
refactoring a design have been proposed by many
authors (e.g., [4]), as well as search-based clustering [5],
subsystem decomposition [6], and class responsibility
assignment [7]. Closer to our work, Amoui et al. [8] use
a genetic approach to improve the reusability of software
by applying architecture design patterns [9] to an existing
architecture. The goal is to find the best sequence of
pattern implementations.

However, as noted above, search-based approaches
are less amenable to interactive working modes, since
the search process itself is a black-box. On the other
hand, an interactive mode would be highly desirable,
as it is unlikely that a fully automated process could
produce truly high-quality architectural designs. Rather,
the tool should assist the architect in the course of the
design, bringing up options, pointing out problems, and
generating partial designs, very much in the style of
ArchE. In this paper, we propose a possible approach
to interactive search-based software architecture design
tool. This proposal is based on our earlier work on
genetic software architecture synthesis [10,11], applying
genetic algorithms as the search technique. The main
contributions of this paper are a characterization of an
interactive search-based design process, a proposal for
the tool mechanisms supporting such a process, and a
small case study demonstrating the potential benefits of
the approach.

We proceed as follows. In the next section we
briefly summarize our basic approach for genetic soft-
ware architecture synthesis and the tool supporting that
approach. In Section 3 we discuss the interactive search-
based design process, and in Section 4 we propose
extensions to the basic tool to enable interactive genetic
synthesis of software architecture. In Section 5 we pre-
sent a case study in which we discuss the application of

the proposed mechanisms. Finally, we conclude with
some remarks on the possible future directions of this
work in Section 6.

2. BACKGROUND

2.1. Genetic software architecture synthesis

Genetic algorithms are based on Darwinian evolution.
In computer science, genetic algorithms are used to
solve difficult problems with large search space [12].
The goal is to find an as good as possible solution
in reasonable time. Each solution is represented as
a chromosome and a collection of them is called a
population. Furthermore, an evolution cycle is com-
posed of generations of chromosomes. Each genera-
tion undergoes a reproduction cycle, where muta-
tions and crossovers are applied to produce new
chromosomes [13]. Selection occurs to select the best
chromosomes of a generation to start off the next genera-
tion. A chromosome with a better fitness value is con-
sidered superior to the others. The fitness value is
calculated using the fitness function.

Our genetic algorithm [11] introduces different
design patterns and architectural styles (called here
collectively patterns) to improve the system’s quality.
The goal is to find the right combination of the patterns
that can improve the system qualities like modifiability,
efficiency, and understandability. The patterns we have
used are Message Dispatcher, Client-server, Mediator,
Façade, Strategy, Adapter, and Template Method [9,14].

An evolution can be started by providing the target
system’s null architecture to the genetic algorithm. The
null architecture is a rudimentary architecture containing
only functional decomposition of the system without
any consideration for the quality attributes (and without
patterns). The null architecture is basically a UML
class diagram of the system. In our approach, the null
architecture can be systematically constructed on the
basis of sequence diagrams that have been refined from
the use cases of the system [10].

Moreover, attributes like frequency of use, execution
time, variability, and call cost can be associated
with each operation in the null architecture. These
optional parameters are used in the fitness function to
facilitate the measuring of modifiability, efficiency, and
understandability. The values for the quality attributes
are calculated using metrics adopted from Chidamber
and Kemerer [15]. Additionally, a weight is also assigned
to each quality attribute to emphasize or reduce its
importance in the fitness function.

The genetic algorithm first converts the null archi-
tecture into a chromosome. Then it generates an initial
population of the architectures by randomly inserting
the patterns. During evolution, mutations and crossovers
are applied to produce new improved architectures.
A mutation actually introduces or removes a pattern
to/from architecture. The mutation probabilities are



18 Proceedings of the Estonian Academy of Sciences, 2013, 62, 1, 16–26

the probabilities given for the application of different
patterns in the architecture, allowing the designer to
favour or suppress the appearance of certain patterns.
The frequency of application of a mutation or crossover
depends on the probability assigned to it.

The elite of a population is used as the basis for the
next population. This process keeps going until the last
generation is reached. The best architecture of the last
generation is the proposed solution.

2.2. Darwin tool

We have built Darwin tool [16,17] to facilitate the use
of genetic software architecture synthesis. The tool has
been implemented as an Eclipse [18] plug-in, providing
necessary user interface controls for setting the various
parameters and views to examine the results.

In order to create the null architecture and to see
the final proposal, Darwin has been fully integrated
with a UML-based CASE tool called UML2Tool [19].
Furthermore, using UML2Tool’s use case diagram
editor, a user can even start her work from scratch. She
can start by identifying abstract use cases and then pro-
cess them into more refined use cases. These refined use
cases can then be grouped into subsystems to form the
initial null architecture in the UML2Tool’s class diagram
editor.

Darwin’s user interface also includes Mutation
and Weights views to view/modify mutation/crossover
probabilities and the quality attributes weights. These
values can also be modified during an evolution and
the changes are immediately in effect. Moreover, the
parameter values (associated with operations) can also
be modified before starting the evolution.

In Settings view, a user can set the total number of
generations and population and elite sizes. A user can
also choose the method for the calculation of overall
fitness of a generation. There are two options for it, either
averaging elite’s fitness values or selecting the fitness of
the best individual in the generation. Choosing an option
depends on what kind of fitness (i.e., either fitness of the
best individual or average fitness of the best individuals)
of a generation the user wants to observe. The overall
fitness of a generation is drawn as the fitness graph during
an evolution.

An evolution can be started, paused, stopped, or
resumed using the buttons provided on the user interface.
Moreover, during an evolution Darwin shows the fitness
values as a graph, called Fitness Graph, in real time. It
is useful because the user can immediately see the effect
of different input parameters, probabilities, and weights
on the graph. Furthermore, Darwin’s Generation view
provides a list of all individuals in a selected generation,
allowing the user to study a particular generation in more
detail. Finally, a Sequence Diagram view is added to
Darwin for giving sequence diagrams that are used to
derive the null architecture. An open source case tool
Papyrus [19] is used for realizing the sequence diagram
view.

3. INTERACTIVE SEARCH-BASED SOFTWARE
ARCHITECTURE DESIGN PROCESSES

The interactive search-based design approach involves
a human architect in the genetic architecture synthesis.
This kind of interactive, semi-automated architecture
design process can be exploited in various development
scenarios. Here we will more closely explore two
general cases: the interactive, incremental development
of software architecture from scratch, and the revision of
an existing architecture due to changed requirements.

3.1. Incremental semi-automatic architecture
generation

The idea of incremental, semi-automated architecture
development is based on the assumption that architecting
involves a great number of “routine” decisions that an
automated search-based process can guess, but also some
more intricate decisions that only a human architect can
make. In the case of a problem having multiple design
options, the architect uses the solution which she has
used previously [20]. Thus, the benefits of automated
and manual architecting can be combined by letting the
architect interfere with the automated process.

The workflow of the incremental architecture
generation is presented in Fig. 1. The process starts
with gathering requirements as use cases. The use
cases are then refined into sequence diagrams, which can
be systematically transformed into the null architecture
of the system [21]. An initial architecture proposal is
produced by applying genetic architecture synthesis on
the null architecture. More detailed information about
generating architecture proposal using genetic archi-
tecture synthesis is presented in Hadaytullah et al. [16].

The software architect then observes that some
parts of the architecture proposal are suboptimal, and
she makes manual corrections into the architecture.
Modifications can be made either by adding or removing
patterns from the architecture. In addition to modifica-
tions, the architect can freeze patterns. As genetic
architecture synthesis applies patterns randomly, it is
possible that some patterns may not appear in the
resulting architectural proposals. For example, in a
distributed system a dispatcher is necessary, but genetic
architecture synthesis may produce proposals without a
dispatcher. To avoid this, the architect can introduce
the dispatcher and freeze it, implying that the dispatcher
will be retained in the architecture during the automated
architecture generation.

The modified architecture is then subjected to
genetic architecture synthesis. The genetic algorithm
tries to improve the architecture without modifying the
frozen patterns. The resulting architecture proposals con-
tain frozen patterns plus new patterns inserted by the
genetic algorithm. The process of the architect modify-
ing the resulting architecture proposals and applying
genetic architecture synthesis can be repeated until



S. Vathsavayi et al.: Interactive software architecture design 19

Fig. 1. Incremental architecture generation work flow.

a satisfied architecture is produced. We will study a
concrete example of this type of process in Section 5.

3.2. Changing requirements

A system often undergoes some changes during the
maintenance phase due to changed requirements. Here
we are particularly interested in a situation where some
quality requirements of the system change. For example,
future evolution scenarios of the system may imply that a
certain subsystem, or some parts in that subsystem, needs
to be more modifiable. The genetic approach [10] allows
specifying even individual operations that are possibly
subject to changes in the future, so that the fitness
function will take into account solutions supporting
the modifiability of that operation. Another case could
be that the performance of some subsystem turns out
to be suboptimal, and the architecture needs to be
revised to fix that. In both cases, the architect can
then give the necessary input to the search-based tool,
specifying the new quality requirements. In addition,
the architect freezes those parts of the architecture
that are not related to the changed requirements. Then
the genetic architecture synthesis is applied on the
architecture. In addition to frozen parts, the resulting
architecture proposal contains solutions addressing new
requirements. Finally, the architect can accept or reject
the proposal.

4. TOOL SUPPORT

We have extended Darwin with three new mechanisms to
support architect involvement in the genetic architecture
synthesis. The first mechanism is the ability to take the
existing architecture as input, introducing the capability
of applying genetic architecture synthesis on an existing
architecture. The existing architecture can be either an

architecture designed by the architect, which contains
predefined architectural decisions or an architecture
proposal produced by genetic architecture synthesis. To
realize this mechanism, an architecture view (as shown
in Fig. 2) is added to Darwin. The architecture view is a
class diagram editor realized using UML2Tool, allowing
the manual insertion of patterns. It can be used to
introduce an existing architecture as input to the genetic
architecture synthesis. The genetic architecture synthesis
uses the given input architecture as a seed and tries
to improve the architecture by adding new solutions.
In addition to the architecture, the requirements of the
system under design also have to be provided. The
sequence diagram view can be used to give requirements.
The capability of giving the existing architecture as input,
together with the integration with a UML class diagram
editor, makes it possible for the architect to construct
the architecture incrementally, adding or removing some
patterns after genetic architecture synthesis, continuing
the genetic architecture synthesis with the revised
architecture, making again some manual editing, etc.

The second mechanism is freezing patterns in the
architecture. It allows the architect to fix the patterns,
which she wants to retain in the genetic architecture
synthesis. The architecture view contains controls for
freezing a pattern. The exact way of freezing a pattern
depends on the type of the pattern. If a class intro-
duces the pattern, the corresponding class is frozen
(for example Strategy), but in the case of a dispatcher,
the links between the dispatcher and the classes that
communicate with the dispatcher are frozen.

For example, consider an architecture (shown in
Fig. 3a) in which two classes A and B use the message
dispatcher to communicate with each other. The architect
wants to apply genetic architecture synthesis on the
architecture, but wants the dispatcher communication
between the two classes to persist. Then she can
freeze the connection links between the dispatcher and
classes A and B. The proposal that resulted from genetic



20 Proceedings of the Estonian Academy of Sciences, 2013, 62, 1, 16–26

Fig. 2. Darwin user interface (architecture view with frozen patterns).

Fig. 3. Freezing dispatcher connection: (a) before genetic architecture synthesis, (b) after genetic architecture synthesis.

architecture synthesis retains the frozen connection links.
In addition, the genetic algorithm may use the dispatcher
for communication between classes C and D as shown in
Fig. 3b, which were directly communicating previously.
To distinguish between frozen patterns and other parts
of the architecture, the frozen patterns are shown with
dark grey in Fig. 2 (Strategy pattern ROOMTEMP and
the dispatcher are frozen).

The third mechanism is to withdraw patterns from
the architecture. The architect can avoid unwanted
patterns completely by giving them probability 0. How-
ever, sometimes an architect may just want to express
that a certain pattern suggested by the genetic algorithm

in a certain context is not appropriate. For this purpose,
the architecture view contains controls to mark certain
patterns appearing in the architecture as unwanted. A
context can be a subsystem, a class or an operation where
a pattern can be applied. For example, an architecture
emphasizing modifiability may contain many instances
of Strategy and Template Method patterns, but this
complicates the architecture and in many cases the
proposed variability may be actually unnecessary. Then
the architect can mark the unnecessary patterns as
unwanted, and these patterns will not appear in those
contexts in subsequent evolution.



S. Vathsavayi et al.: Interactive software architecture design 21

5. CASE STUDY: SEMI-AUTOMATED
ARCHITECTURE GENERATION

In this case study, our aim is to produce architecture
using the incremental architecture generation process
and examine the quality of the produced architecture. We
used an embedded system called e-home as the target
system. E-home is an imaginary control system for a
computerized home. It has interfaces for controlling
various home devices, like the coffee machine, drapes,
audio, heating devices, etc. To simplify the study, we
will here concentrate on two subsystems of e-home,
drape and temperature control. Although this case study
is fairly limited, it is sufficiently realistic to expose
the major characteristics, advantages, and drawbacks of
our approach. We will also present results of a small
experiment which suggest that the incremental software
architecture synthesis is competitive with good software
engineering students.

In the first iteration an architecture proposal is
generated from requirements. In our approach, this
means the construction of the null architecture from the
functional requirements expressed as use cases. Let us
assume that the use cases for this system consist of
changing room temperature and moving drapes. These

use cases are then refined into sequence diagrams. A
sequence diagram for temperature control is shown in
Fig. 4. The sequence diagrams are transformed into a
class diagram depicting the null architecture as shown
in Fig. 5. This transformation is done by the Darwin tool.
The operations can be given properties describing their
expected characteristics (sensitiveness to changes, call
frequency, time consumption). In this case we anticipate
that for the operation settemproom the sensitiveness
to changes is medium, call frequency is high, and
time consumption is low. Such characterizations are
not mandatory, but help the genetic algorithm to come
up with good solutions. The next step is to set the
genetic parameters and execute the genetic algorithm.
The mutation and crossover probabilities found after
some experimentation are applied to the algorithm.
The modifiability sub-fitness is slightly weighed over
other sub-fitnesses to produce modifiable architectures.
The algorithm is executed for a population size of
100 individuals and 250 generations. As a result, the
algorithm produces a set of architecture proposals. The
architecture produced for the best individual is shown in
Fig. 6. The classes related to the introduced patterns are
darkened. Note that the classes that have been generated
due to new inserted patterns are named according to the
pattern involved.

Fig. 4. Sequence diagram for temperature control of the e-home system.



22 Proceedings of the Estonian Academy of Sciences, 2013, 62, 1, 16–26

Fig. 5. Null architecture for the e-home system.

Fig. 6. Architecture proposal resulting after the first iteration.

As can be seen from Fig. 6, classes ROOMTEMP(1)
and DRAPEMOTOR are communicating with their
client dependencies HEATER and DRAPE through the
message dispatcher. The architect decides that it is
sensible to use the dispatcher also for other communica-
tion. The architecture is modified such that class Control

also uses the message dispatcher for communicating
with classes ROOMTEMP(1) and DRAPE. Further, the
architect freezes the dispatcher connections between
Control and its client dependencies, and Strategy class
ROOMTEMP. The next step is to apply the genetic
algorithm on the modified architecture. The genetic



S. Vathsavayi et al.: Interactive software architecture design 23

algorithm is executed with the same parameters as used
in the first iteration, although the genetic algorithm could
be applied with varying mutation probabilities and fitness
weights to obtain architecture proposals with varying
quality. Generated architecture proposals retained the
frozen solutions, but other solutions have also been
inserted into the architecture by the genetic algorithm.
The architecture of the best individual produced by the
genetic algorithm is presented in Fig. 7. As can be seen,
the Strategy pattern and dispatcher are retained, and new
Adapter patterns are introduced into the architecture.

The resulting architecture can be further improved
by repeating the second iteration on the architecture
(with further modifications). As can be seen from the
resulting proposal, class UI uses class ROOMTEMP
directly. It is modified such that class UI uses class
ROOMTEMP through message dispatcher, and then the
Strategy class ROOMTEMP(1) and dispatcher connec-
tion between UI and ROOMTEMP are frozen. The
genetic algorithm is again executed with the same para-
meters as used in the first iteration. The resulting archi-
tecture proposal of the best individual is shown in Fig. 8.
As can be seen, class UI communicates now through the
message dispatcher and new patterns are introduced into
the architecture. The second iteration can be repeated
until a satisfied architecture is produced. This kind of

iteration process with manual involvement in the genetic
architecture synthesis can produce better architectures.
However, the architecture in Fig. 8 is already quite close
to what a good human architect might design.

The resulting architecture proposal was evaluated
against two different architecture proposals designed
manually for the e-home system. These architecture
proposals were the best proposals (judged on the
basis of their evaluations as exam answers) designed
by engineering students from a software architecture
course at Tampere University of Technology (TUT). The
students were given essentially the same information that
is used as input for the genetic architecture synthesis.
In addition, students were given a brief explanation of
the purpose and functionality of the system. They were
asked to design the architecture for the system, using
only the same architecture styles (message dispatcher
and client-server) and design patterns (Façade, Mediator,
Strategy, Adapter, Template Method) that were available
for genetic architecture synthesis. On average, it took
students 40 min to produce a design. The time consumed
for generating the resulting architecture proposal was
about 5 min, which includes the time consumed for
modifying the architecture and freezing the decisions
(3 min), and executing all the three iterations (2 min).

Fig. 7. Architecture proposal resulting after the second iteration.



24 Proceedings of the Estonian Academy of Sciences, 2013, 62, 1, 16–26

Fig. 8. Architecture proposal resulting after re-iterating the second iteration.

The student architecture proposals (S1, S2) together
with the resulted architecture proposal (R) were
presented for three software engineering experts in the
TUT faculty. The experts were senior teachers or PhD
students with great experience in software architectures.
The solutions were edited in such a way that it was
not possible for the experts to know which solution
was synthesized. The experts were asked to order
the solutions according to the overall quality of the
architecture. Two experts ordered the solutions as (R,
S1, S2) and the third expert ordered as (R, S2, S1).

We also performed some experiments to see how
the inclusion of manual knowledge affects the fitness
graph. Here we used an evolution with two periods. The
first period generates architectures from requirements
using the genetic architecture synthesis, whereas the
second period uses the semi-automated architecture
design approach. We utilized a population size of 100
individuals and 250 generations for both the periods.
The curves are averages of ten test runs. Mutation
probabilities and fitness weights are given after some
experimentation. The calculated fitness value for
a generation is the average of fitnesses of 10 best
individuals of the generation. The average fitness graph
generated for the tests is presented in Fig. 9. The fitness
increases linearly after the first period, and jumps to a

considerably higher level after the manual step, as can
be expected. Note that an increase in the population size
would increase the fitness, as big populations have better
possibilities of having more good individuals. Similarly,
an increase in the number of generations also increases
the fitness, as individuals have more generations to
evolve. However, the change in the fitness is not radical
(for more information, see [11]).

Although this case study was small, it demonstrates
the advantages and disadvantages of semi-automated
search-based architecture design. The first iteration
requires the specification of use cases as sequence
diagrams (and, effectively, deciding the functional
decomposition of the system) and some genetic
parameters, but after that the architecture proposals are
produced in seconds, and the architect can judge the
sensibility of a given architecture instead of creating one
herself. In this case, the required interaction input from
the designer is limited to few manual corrections and
freezing actions. Naturally the quality of the final result
depends heavily on the quality of human interference.
Still, the results of the small experiment suggest that,
with very little human interaction, architectural solutions
comparable to those produced by senior software
engineering students can be achieved.



S. Vathsavayi et al.: Interactive software architecture design 25

Fig. 9. Average fitness graph for ten test runs.

6. CONCLUDING REMARKS

We have demonstrated how interleaving search-based
automated software architecture synthesis and manual
intervention can combine the best parts of automated
design and human design, speeding up the construction
of an architecture that is close to the quality of a human-
designed architecture. This approach can be supported by
three extensions to a search-based (genetic) architecture
synthesis technique: allowing the existing architectures
to be used as input for the search process, allowing
the freezing of certain parts of the input architecture,
and allowing marking unwanted patterns from the
architecture.

In our approach, the architect expresses the key
functional requirements as use cases which are presented
as sequence diagrams between the major units of the
system, and the quality requirements as weights of
certain quality attributes. In addition, the space of
possible architectures is determined by a repository of
patterns (mutations) available for the genetic algorithm.
Since a pattern usually supports certain quality attributes
at the cost of weakening others, the pattern repository
is critical for the method. Ideally, the patterns in the
repository should support various quality attributes, so
that the genetic algorithm can pick those which fit
the given requirements. An interesting topic for future
research would be to construct a dynamically expanding
pattern repository which is able to adopt new patterns
when a designer makes a decision to apply a particular
pattern that is not yet in the repository.

Obviously, more extensive case studies involving
realistic systems are needed to validate the approach.
However, even with the fairly modest case study in
this paper, the results are encouraging. The approach
retains the main benefits of the automated approach,
while avoiding the problem of generating “theoretically”
good solutions which, however, fail to satisfy the human
expert. The fact that a proposal produced by the genetic
algorithm is not optimal by human standards is not
really a problem in this approach: the architect can
decide which parts in the architecture are good, freeze
them, make possibly other corrections, and resubmit the
revised architecture to the automated process. A notable
advantage of the automated part is that the produced
proposal may suggest fresh, viable solutions that the
architect, restricted by her previous experiences, would
not even think of. This is particularly beneficial if the tool
exploits a large, growing knowledge base of architectural
patterns.

We see this work as a first step towards the practical
usage of search-based approaches in software archi-
tecture design. Applying the proposed approach on a
practical example and evaluating the architecture pro-
posals against the architecture proposals designed by the
professionals are our first priorities when considering
future work. An intriguing possibility would be to com-
bine our approach with the deterministic approach of
ArchE [2]: our incremental generation technique could
be integrated with the interactive process of ArchE, so
that the architect could make the modifications to the
architecture guided by the architecture knowledge frame-
work of ArchE.



26 Proceedings of the Estonian Academy of Sciences, 2013, 62, 1, 16–26

ACKNOWLEDGEMENT

This work is a part of the Darwin project, funded by the
Academy of Finland.

REFERENCES

1. Parish, Y. I. H. and Muller, P. Procedural modeling of
cities. ACM SIGGRAPH 2001, Los Angeles, August
2001, 301–308.

2. Diaz-Pace, A., Kim, H., Bass, L., Bianco, P., and
Bachmann, F. Integrating quality-attribute reasoning
frameworks in the ArchE design assistant. In
Proceedings of the 4th International Conference
on Quality of Software-Architectures: Models and
Architectures. Springer LNCS, 2008, 171–188.

3. Räihä, O. A survey on search-based software design.
Computer Sci. Rev., 2010, 4, 203–249.

4. Quaum, F. and Heckel, R. Local search-based refactoring
as graph transformation. In Proceedings of the 1st
Symposium on Search-Based Software Engineering.
2009, 43–46.

5. Harman, M. and Tratt, L. Pareto optimal search based
refactoring at the design level. In Proceedings of
GECCO’07. 2007, 1106–1113.

6. Seng, O., Bauyer, M., Biehl, M., and Pache, G. Search-
based improvement of subsystem decomposition. In
Proceedings of GECCO’05. 2005, 1045–1051.

7. Bowman, M., Brian, L. C., and Labiche, Y. Solving the
Class Responsibility Assignment Problem in Object-
Oriented Analysis with Multi-Objective Genetic
Algorithms. Technical report, Carleton University,
2007.

8. Amoui, M., Mirarab, S., Ansari, S., and Lucas, C. A
GA approach to design evolution using design pattern
transformation. Int. J. Inf. Technol. Intell. Comput.,
2006, 1, 235–245.

9. Gamma, E., Helm, R., Johnson, R., and Vlissides, J.
Design Patterns – Elements of Reusable Object-
Oriented Software. Addison-Wesley, 1995.

10. Räihä, O., Hadaytullah, Koskimies, K., and Mäkinen, E.
Synthesizing architecture from requirements: a
genetic approach. In Relating Software Requirements
and Architecture, Ch 18 (Avgeriou, P., Grundy, J.,
Hall, J. G., Lago, P., and Mistrik, I., eds). Springer-
Verlag, 2011, 307–331.

11. Räihä, O., Koskimies, K., and Mäkinen, E. Genetic
synthesis of software architecture. In Proceedings of
SEAL’08. Springer LNCS, 2008, 565–574.

12. Michalewicz, Z. Genetic Algorithms + Data Structures =
Evolution Programs. Springer, 1992.

13. Mitchell, M. An Introduction to Genetic Algorithms. The
MIT Press, 1996.

14. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P.,
and Stal, M. Pattern-Oriented Software Architecture:
A System of Patterns, vol. 1. John Wiley and Sons,
1996.

15. Chidamber, S. R. and Kemerer, C. F. A metrics suite for
object oriented design. IEEE Trans. Software Eng.,
1994, 20(6), 476–492.

16. Hadaytullah, Vathsavayi, S., Räihä, O., and Koskimies, K.
Tool support for software architecture design with
genetic algorithms. In Proceedings of ICSEA’10.
IEEE CS Press, August 2010, 359–366.

17. Darwin research project WWW site. http://
practise.cs.tut.fi/project.php?project=darwin (last
viewed February 2011).

18. Eclipse WWW site. http://www.eclipse.org (last viewed
February 2011).

19. Eclipse’s Model Development Tools WWW site.
http://www.eclipse.org/modeling/mdt (last viewed
February 2011).

20. Van Heesch, U. and Avgeriou, P. Mature architecting –
a survey about the reasoning process of professional
architects. In Proceedings of the 9th IEEE/IFIP Work-
ing Conference on Software Architecture (WICSA).
IEEE Computer Society, 2011, 260–269.

21. Hadaytullah, Räihä, O., and Koskimies, K. Genetic
approach to software architecture synthesis with work
allocation scheme. In Proceedings of APSEC’10.
IEEE CS Press, 2010, 70–79.

Tarkvara arhitektuuri disain projekteerija otsuste ja masinotsimise vaheldumise kaudu

Sriharsha Vathsavayi, Hadaytullah ja Kai Koskimies

On esitatud poolautomaatne tarkvara arhitektuuri projekteerimise meetod, mille aluseks on geneetiliste algoritmide
tehnika. On kirjeldatud interaktiivset tarkvara arhitektuuri projekteerimise protsessi, kus tarkvara struktuuri fragmen-
tide otsimispõhine süntees vaheldub inimesest projekteerija otsustustega. On välja pakutud ja programmidena reali-
seeritud ka tööriistad, mis seda protsessi toetavad. Meetodi kasutatavuse uurimiseks on artiklis skitseeritud nn tark
kodu (e-kodu) ja kirjeldatud selle juhtimissüsteemi arhitektuuri interaktiivset projekteerimist.


