
R. Ubar et al.: Environment for the analysis of functional self-test quality in digital systems 151

Proceedings of the Estonian Academy of Sciences,  
2014, 63, 2, 151–162 

doi: 10.3176/proc.2014.2.05 
Available online at www.eap.ee/proceedings 

 
 
 

 
 

 

Environment  for  the  analysis  of  functional  self-test  quality   
in  digital  systems 

 
Raimund Ubar*, Sergei Kostin, Helena Kruus, Margit Aarna, and Sergei Devadze 

 
Department of Computer Engineering, Tallinn University of Technology, Akadeemia tee 15a, 12618 Tallinn, Estonia 
 
Received 3 February 2014, revised 24 March 2014, accepted 25 March 2014, available online 20 May 2014 
 
Abstract. Dependability of computer architectures has become one of the most important engineering concerns. One of the 
possibilities to increase the dependability is to develop architectures with dedicated self-test capabilities which allow achieving 
high quality of testing in terms of fault coverage. We propose a new methodology for Built-in Self-Test (BIST), which combines 
the inherent functionality of the architecture with a small amount of pre-generated test data stored in the memory, and uses for 
monitoring of the test process a restricted number of test points, configured as a set of signature analysers. Contrary to the 
traditional scan-path based logic BIST, the proposed solution does not need additional hardware for test pattern generation, and 
will not have any impact on the working performance of the system. On the other hand, testing at normal working conditions 
allows exercising the system on-line and at-speed, facilitating the detection of dynamic faults like delays and crosstalks to achieve 
high test quality. The new self-test method is free from the negative aspect of over-testing, compared to the traditional logic BIST 
approaches. A method is presented to generate optimized test data for selected test routines, and to choose minimum set of test-
points for response analysis. A tool framework is proposed to emulate self-testing architectures, and to carry out fault simulation 
for evaluating the test quality in terms of fault coverage. 
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1. INTRODUCTION 
* 
Computer architectures and embedded processors are 
used in a wide range of application areas, from enter-
tainment (smart phones, portable game consoles), to 
professional equipment (palmtops, digital cameras), and 
control systems in various fields (automotive, industry, 
telecommunications). Safety constraints in many of 
these areas require periodically checking whether the 
computing system is still correctly running, or if it is 
affected by a fault [1]. 

The technology advancements impose new challenges 
to testing systems-on-chip as device geometries shrink, 
and deep-submicron delay defects are becoming more 
prominent requiring more accurate tests than before [2]. 
Therefore testing of digital systems in dynamics by so-
called at-speed testing has become a must. However, as 
the speed of microprocessors has reached GHz ranges, 
at-speed testing is increasingly difficult with traditional 
external test equipment. 
                                                                 
*  Corresponding author, raiub@pld.ttu.ee 

The increasing size and complexity of micropro-
cessor architectures directly reflects in more demanding 
test generation and application strategies. Modern 
designs implementing complex architectures, pipelined 
and superscalar designs have been demonstrated to be 
random pattern resistant [1]. Use of scan chains has 
proven to be often inadequate, producing overhead [3], 
excessive power dissipation during test [4] or leading to 
overtesting and yield loss [5]. 

A lot of research has been carried out to relieve the 
burden of external testers by introducing system self-test 
approaches like hardware-based Built-in Self-Test (BIST) 
[6] or Software-Based Self-Test techniques (SBST) [1,7]. 

In logic BIST [6], typical functions of external 
testers like test generation and response analysis are 
carried out on-chip, so that the tester should not handle 
high-speed signals externally and its role should remain 
only to send the test signals to the chip under test, and to 
receive the pass/fail signals. For example, scan-based 
and logic BIST solutions such as [8] relax the require-
ments on testers and considerably reduce the overall 
testing cost. 
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An increasingly popular solution to this challenge is 
based on developing suitable test programs, forcing the 
processors to execute them, and to check the produced 
results. This methodology, SBST [1,7] is particularly 
suitable for being applied at the end of manufacturing 
and in the field as well, to detect the occurrence of 
faults, caused by environmental stresses and intrinsic 
aging in embedded systems.  

The question is whether a self-test sequence, running 
in the system, can adequately exercise its hardware com-
ponents satisfying the targeted fault coverage require-
ments. Achieving the test quality target requires a proper 
test sequence generation, which is the focus of the 
current paper. It should also be pointed out that the 
quality of a test is measured not only by its fault 
coverage, but also by its code size, hardware overhead, 
and by the test execution time. The goal of the paper is 
to propose an approach, which combines the ideas of 
traditional logic BIST and processor based SBST to 
improve the test quality at less hardware overhead and 
avoiding performance loss compared to the traditional 
self-test approaches. We call this approach Functional 
BIST (FBIST), since the proposed scheme of BIST will 
use the inherent functionality of the circuit under test 

The rest of the paper is organized as follows. In 
Section 2, an overview about the state-of-the-art of self-
test techniques is given, Section 3 introduces a general 
scheme of the proposed functional self-testing archi-
tecture, followed in Section 4 by the framework of its 
synthesis. Section 5 describes a methodology for high-
level Design for Testability (DFT) to improve the fault 
coverage of FBIST, and Section 6 presents an experi-
mental low-level testability analysis set-up. Experi-
mental results are presented in Section 7, and Section 8 
concludes the paper. 

 
 

2.  STATE-OF-THE-ART  OF  SELF-TEST  
TECHNIQUES 
 

In traditional logic BIST, test pattern generation is 
mostly performed by Linear Feedback Shift Registers 
(LFSR) [6], cellular automata [9], or multifunctional 
registers like BILBO (Built-in Logic Block Observer) 
[10] to apply pseudorandom patterns to the Circuit 
Under Test (CUT) and to analyse its output responses. 

Unfortunately, many circuits contain Random-
Pattern-Resistant (RPR) faults which limit the fault 
coverage that can be achieved by using traditional BIST, 
based on pseudorandom patterns. They demand as well 
very long test sequences and long test application times 
in addition to increased area overhead. Improvements 
have been achieved by modifying the CUT by either 
inserting test points [11–13], using Weighted Pseudo-
random Sequences (WPS) [14], or by redesigning CUT 
to improve fault coverage [15]. The drawback of these 

techniques is that they generally involve additional logic 
to circuitry that can degrade performance.  

Another method to improve fault coverage is to use 
“mixed mode” or hybrid approaches [16–22], where 
pseudorandom data are combined with deterministic 
ones to improve detection of RPR faults, and compared 
to WPS less additional hardware is required. The 
pseudorandom and deterministic data may be combined 
in different ways like using ROM compression [16], 
LFSR reseeding [14] either by bit-flipping [17] or bit-
fixing [18], multi-polynomial scheme [19], or embed-
ding deterministic patterns [20]. 

However, in most of these approaches the archi-
tecture is extremely tailored to the CUT, and any change 
in the CUT requires re-synthesis of the complete BIST 
hardware. Another drawback of traditional BIST is the 
use of special hardware for test pattern generation on 
chip, which causes area overhead and performance 
degradation. 

To overcome these problems, FBIST methods have 
been proposed which exploit specific functional units like 
adders, multipliers, Arithmetic Logic Units (ALU) or 
processor cores for on-chip pseudorandom test generation 
and test response evaluation [21–24]. These units are 
available in data-path architectures used in traditional 
general purpose processors and in digital signal proces-
sing units. The term FBIST describes a test method to 
control functional modules so that they generate a test set, 
which targets structural faults within other parts of the 
system. 

Usually these ALU-based FBIST methods are called 
Arithmetic BIST (ABIST), since they essentially adopt 
the additive congruential generation scheme of pseudo-
random numbers [25]. ABIST, along with the 
accumulator-based response compaction scheme [26] 
facilitates the BIST strategy for high-performance data 
path architectures that use the functionality of existing 
hardware, is entirely integrated with CUT, and results in 
at-speed testing with no performance degradation and 
with little area overhead.  

The drawback of using ABIST is the same as is with 
traditional LFSR based BIST – selected test pattern 
sequences are not capable to detect all RPR faults, which 
in turn may lead to low fault coverage. In Fig. 1, a range 
of all possible and different patterns, generated by a BIST, 
starting with the first pattern 1P  up to the last one of the 
cycle nP  in a pseudorandom order, is shown. For LFSR 
with length m  the number of all different patterns in this 
range will be 2 1.m −  Because of the huge number of 
patterns the BIST is able to generate, a smaller window 
with length 2mN <<  will be typically used, which how-
ever is not able to cover specific patterns needed for 
detecting RPR faults. The latter remain outside of the 
window. 
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Fig. 1. Random-pattern-resistant faults detection problem. 
 
 
Software Based Self-Test as another special case of 

FBIST is an approach that has gained increasing 
acceptance for testing processor cores and using pro-
cessors for testing other components in Systems-on-
Chip (SoC) [27–31]. SBST moves the test functions also 
from external testers to on-chip resources whereas the 
test patterns are produced by the processors, using their 
native instructions. Usually, in this approach, the test 
programs and associated test data are first, loaded into 
on-chip memories, and subsequently, these test pro-
grams are executed by the processor at actual/full speed 
(at-speed). 

The positive features of the SBST technique that 
have supported its introduction into a typical micro-
processor test flow are: non-intrusiveness (no need for 
any processor modification), no extra power consump-
tion compared to the normal operation mode, at-speed 
testing (at the processor’s actual speed) which enables 
screening of delay defects that are not observable at 
lower frequencies, and no over-testing compared to  
the scan-path testing approach. Self-test programs 
developed for manufacturing test can be reused in the 
field throughout product lifetime. 

The problem with SBST is still in generation of high 
quality test data – operands to be used by the instruc-
tions which build up the test program. Another problem 
is with observability of test responses. Differently from 
ABIST, where the responses of the tested blocks are 
captured at each clock cycle, in the case of SBST the 
results of the processor instructions as responses of the 
test are registered only in the end of the testing instruc-
tion (in the end of the sequence of microinstructions). 
This may result in a lot of fault masking cases, which 
reduces the fault coverage. 

In this paper we propose a functional BIST, which 
combines clock cycle based response collection as used 
in hardwired ABIST with software based flexibility to 
extend the restricted application area of ABIST from 
specific data-path architectures to a larger class of 
processor architectures. The clock cycle based observa-
tion technique allows to avoid fault masking, and 
selecting proper instruction sequences supported by 

properly generated test data allows to achieve higher 
fault coverage. The clock cycle based test response 
observation is carried out using built-in Signature 
Analysers (SA). The places for inserting SA flip-flops 
will be found by profiling of test programs or micro-
programs of testing instructions to find out the most 
frequently visited nodes in CUT. This helps to capture 
maximum amount of information from the test process 
and to achieve high fault coverage. 

Another novelty is to combine test program genera-
tion with testability improvement regarding RPR faults 
by inserting optimized set of test points into the hard-
ware. The combination of test data generation with DFT 
improvement allows to explore different trade-offs 
between testing cost and quality. Differently from 
[27,28], the sequences of component test patterns are not 
needed to store in the chip, they will be generated on-
line by the resources of the system. At the same time, at-
speed testing guarantees high fault coverage. 

 
 

3.  GENERAL  SCHEME  OF  THE  FUNCTIONAL  
BIST 
 

The main idea of the proposed FBIST concept includes 
the use of activated on-chip functional processes as test 
pattern generators for a selected CUT and monitoring 
the behaviour of CUT by a Multiple Input Signature 
Analyser (MISR). MISR is the only additional hardware 
needed for the implementation of FBIST. The func-
tionality of the processor is used to apply the test 
patterns to each component at-speed. The tests are 
delivered by processor instructions and unfolded by 
microinstructions from local control units. 

Consider a data-path of a processor in Fig. 2 with 
ALU as a CUT. The data path consists of a register 
block for temporary storing of the data, which  
 

 

 
 

Fig. 2. Functional BIST of a digital system. 
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participates in the operation carried out in ALU. For 
example, during the operation of fractional number 
division the register block will store the dividend, 
divisor, all intermediate results of division, the quotient, 
and the counter of cycles needed for controlling the 
whole process of division. The input data from the 
register block and the control signals from the control 
unit are interpreted as input test patterns for CUT. The 
output data from ALU sent back to the register block 
and the status signals as feedback to the control unit as 
the most frequently visited nodes during the tested 
operation are interpreted as responses of CUT, and are 
registered in MISR. 

As the result of N  clock cycles of the division 
operation, N  functional test patterns are generated on-
line, and consequently, N  responses of ALU will be 
compressed in the MISR, which is monitoring the whole 
division process. The whole microinstruction level test 
process is launched by a division instruction, which 
includes two operands – the dividend and divisor. 

Differently from the known approaches, where the 
instructions are regarded as test patterns and the results 
of the instructions are regarded as test responses, in the 
proposed case all the input patterns of CUT during each 
clock cycle of the instruction are regarded as test 
patterns with immediate monitoring of the responses of 
CUT in each cycle by MISR. As the result, we have 
achieved a multiplication effect of N  times in the 
number of test patterns when moving the test access 
from the instruction level to the microinstruction level. 
Denote by L  the number of bits in the data operands 

(dividend and divisor), and by l  the number of bits on 
the inputs of ALU. Then the reduction in the test data 
volume to be stored in the memory through the 
compression of test data in the described FBIST scheme 
is equal to 2 .R Nl L=  

In this scheme, the functional patterns produced 
directly on the inputs of ALU have the similar role as 
pseudorandom test patterns in classical BIST schemes. 
To improve the fault coverage of FBIST, the same 
operation can be carried out with different operands. The 
problem to be solved is the choice of the best operands 
to minimize the length of the whole test procedure. 
Similarly to the pseudorandom test, the functional test 
patterns may not be able to cover random-pattern-
resistant faults, which limit the fault coverage that can 
be achieved with the pure functional BIST approach. 
However, the possibility of repeating the same (division) 
program with different operands gives the possibility to 
exercise different windows of pseudorandom patterns as 
explained in Fig. 1 to target the RPR faults. Another 
possibility to improve the fault coverage is to use DFT 
approach, i.e., to insert additional test points whereas the 
observation test points can be integrated with MISR. 

 
 

4.  FUNCTIONAL  BIST  SYNTHESIS  
FRAMEWORK 
 

In Fig. 3, the methodology and framework are shown for 
generating  functional BIST for  processor  architectures,  

 
 

 
 

Fig. 3. Functional BIST synthesis methodology for a digital system.



R. Ubar et al.: Environment for the analysis of functional self-test quality in digital systems 155

which uses the inherent functionality of the processor 
(i.e. instruction set or selected working routines) for 
implementing test programs. The goal of the framework 
is to partition the hardware into components to be tested 
(i.e. into a set of CUT), to generate for each CUT the 
test data for the related test program to be stored in the 
memory, and to improve the testability of CUT to 
achieve higher fault coverage of testing. 

In the general case, CUT can be specified by pro-
filing the test programs to find out the most frequently 
visited nodes in the hardware exercised by the test 
program. These nodes will serve as the best places for 
inserting MISR. In a particular case, different well 
defined subcircuits or components of the data-path like 
adders, multipliers and ALU can serve as CUT and the 
outputs of these CUT will be used to place MISR. 

The framework consists of the following tools: test 
program profiler, data path simulator, fault simulator, 
test operands generator, and design for testability 
advisor. 

The goal of the test program profiler is to find out in 
the system the best observation places to capture 
maximum amount of information from the test process 
for achieving as high fault coverage as possible. 

The data path simulator is used for finding the 
functional test pattern sequences applied to the inputs of 
CUT, and is produced by the given sequence of test 
instructions with related test operands. The fault 
simulator is used for measuring the quality of the 
sequence of functional test patterns. If the quality of test 
is not satisfied, it will be extended by selecting addi-
tional test instructions or operands. Such a modification 
of the test program will be repeated till the test quality is 
satisfied. 

The bottleneck of the whole process of BIST 
synthesis is the speed of the fault simulator, since it is 
used for evaluating the test programs and test data in the 
process of searching best solutions. The second role of 
the fault simulator is to evaluate the decisions for insert-
ing test points to improve the testability. We updated our 
fault simulator, developed in [32], to cover the needs of 
the described BIST synthesis framework. The experi-
mental results of using the simulator are presented in 
Section 7.4. 

For generating test operands, the methods of random 
search or genetic algorithms can be used. In this paper, 
we have used a genetic test operand generator based  
on using the Java Genetic Algorithms Package 
(JGAP) [33]. 

 
 

5. IMPROVEMENT  OF  THE  TESTABILITY 
 

The blocks in the subsystems may contain RPR faults, 
which are difficult to detect with selected self-test sub-
routines, and the generated test data. We call these 

blocks as difficult testable ones. To improve the test-
ability of the subsystem we have two possibilities: to 
improve either observability or controllability. For this 
purpose proper test points should be inserted. Examples 
of improving the testability in a given subsystem are 
shown in Fig. 4. 

Assume that there are a not well observable Block 1, 
and a not well controllable Block 2 in the subsystem. SA 
is for collecting the response signals from the subsystem 
under test. A dedicated test signal T is used for 
switching the system into the test mode, e.g., to 
reconfigure selected registers or flip-flops into signature 
analyser, and to allow specific test related control over 
the subsystem. 

Insertion of a test point OP allows making the 
Block 1 directly observable in SA, whereas the test point 
CP is inserted for dedicated control over a selected input 
of the Block 2. In the normal work, test signal T is low 
to select the upper channel of the multiplexer for direct 
connecting the Block 1 with Block 2, whereas in the test 
mode, signal T will switch the input of Block 2 to the 
lower channel of MUX for sending the control signal CP 
to Block 2. The control signal can be generated in 
different ways from other parts of the subsystem, e.g., 
from the Block 1. 

To minimize the cost of hardware needed for 
improving the testability of CUT, the number of test 
points to be inserted either for observation or control 
should be minimized. The minimum set of test points 
should be selected on the basis of not detected faults. 

To each node of CUT a weight can be assigned, 
measured by the amount of information it provides 
about not detected faults. The nodes with highest 
weights can be selected as test points. 

The amount of information in general case can be 
measured as entropy: 

 

2 2log (1 ) log (1 ),I p p p p= − − − −             (1) 
 

where p  is the probability that a message is chosen 
from all possible choices in the message space. In our 
case, the message space consists of two messages: either 
at the given test point a not detected fault can be 
detected or no faults can be detected at this test point. 

Assume, that the Blocks 1 and 2 in Fig. 4 are the 
only blocks in the subsystem. Assume also that the  
 
 

Block 1 Block 2MUX

CP

OP

T

SA

 
Fig. 4. Insertion of test points into a subsystem. 
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Block 1 contains 1,n  and the Block 2 contains 2n  
undetected faults. Then, for calculating I  for the output 
of Block 1 we have in the formula (1): 

 

1

1 2

.
n

p
n n

=
+

                             (2) 

 

Example 1. Consider a subsystem in Fig. 5 consisting 
of 4 blocks 1, 2, 3, and 4, which contain 4, 12, 28, and 
20 undetected faults, respectively. For the outputs of the 
blocks we will have the probabilities: 

 

1 2 3 44 64 0.0625, 16 64 0.25, 0.5, 1,p p p p= = = = = =  
 

and the corresponding amounts of information 
 

1 2 2

2 3 4

0.0625log 0.0625 0.9375log 0.9375 0.325,

0.8, 1, and 0.

I

I I I

= − − =

= = =
 

 

This result suggests to select as the first test point the 
output of the Block 3 with 3 1,I =  since on the output of 
it, if made directly observable, exactly half of the 
undetected faults can be detected. 

 
The design for testability may consist of several 

steps. After each step of the improvement either of the 
observability or of the controllability, the amounts of 
information for the nodes of the circuit should be 
recalculated to find the next best place for inserting a 
test point. 

Consider in Fig. 6 a subsystem, which contains 
undetectable faults in all three blocks. Assume that all 
the faults in Block 1 can be detected if the block is made 
directly observable. On the other hand, assume that the 
Blocks 1 and 2 will still both contain undetectable faults  
 

 

 
Fig. 5. Subsystem of 4 blocks with undetected faults. 

 
 

 
Fig. 6. Subsystem of 3 blocks with untested faults. 

if the Block 2 was made directly observable. In this 
case, we have to improve the controllability of the 
Block 2. If now all the faults in Blocks 1 and 2 will be 
detectable on the output of Block 2, the problem with 
Blocks 1 and 2 is solved. However, if the faults in 
Block 1 remain still not detected through Block 2, we 
have to make the output of Block 1 directly observable 
or improve its input controllability. 

Now we have to test again the full system. If Block 3 
will still contain undetectable faults, we have to improve 
its controllability. If after that the Block 2 will still have 
undetected faults, it must be done directly observable. 

To summarize, after finding a test point TP with the 
highest amount of information about the undetected 
faults in CUT, we have, first, to solve the testability 
problem in the part of CUT, which feeds the test point 
TP, as explained above on the basis of Fig. 6. 
Thereafter, we have to recalculate the probabilities and 
information quantities for the remaining part of CUT, 
find the best place for the next test point and repeat the 
procedure. 

 
 

6.  EXPERIMENTAL  TESTABILITY  ANALYSIS  
SET-UP 
 

Exploration of testability improvement solutions is a 
very costly procedure, since it needs a lot of design 
modifications and evaluation of each modification by 
measuring its testability with fault simulation which 
itself is a time consuming procedure. We developed an 
experimental set-up for testability analysis which con-
siderably speeds up the exploration procedure. 

The set-up consists of two tables: simulation table 
(ST) and fault table (FT). They will be created for the 
given circuit by fault simulating the given test pattern 
set. This set-up will be the basis for design explorations 
in search for the optimum testability. Instead of direct 
circuit modifications, we simulate the circuit indirectly 
by modifying only ST, and instead of the fault simula-
tion of the whole new modified circuit, we simulate only 
this part of the circuit, which is influenced by the 
injected circuit change. 

 

Example 2. Consider the circuit in Fig. 7 which repre-
sents the smallest member of the ISCAS’85 benchmark 
suite [34]. The test, applied to the inputs of the circuit, 
consists of a set of 5 test patterns. The results of 
simulation and fault simulation are depicted in Tables 1 
and 2, respectively. The columns in both tables cor-
respond to the 15 nodes jw  in the circuit (including 
5 inputs and 2 outputs), and the rows i  correspond to 
the 5 test patterns .iT  

The entries ( , )c i j  in Table 2 mean the following: 
( , ) 0,c i j =  if the test pattern iT  detects the stuck-at fault 

0;jw ≡   ( , ) 1,c i j =    if  the  test  pattern  iT   detects  the  
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Fig. 7. ISCAS circuit c17. 

 
 

Table 1. Simulation table ST 
 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 1 0 0 1 1 0 1 1 1 1 0 1 1 0
1 1 1 0 1 1 0 1 1 1 0 0 1 1 1
1 1 0 0 1 1 0 0 1 1 1 1 1 0 0
0 0 1 1 0 1 1 1 1 0 1 0 0 1 1
0 0 0 0 0 1 1 0 1 0 1 1 0 1 1

 
 

Table 2. Fault table FT 
 

 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 X X 1 1 X X 1 0 0 0 0 1 X 0 1
2 0 0 0 1 X X X 0 0 X 1 1 X 0 0

3 X X 1 X X X 1 1 X 0 0 0 0 1 1
4 1 X X X 1 0 0 X X 1 X X X 0 0

5 X X X X X 0 0 X X 1 X X 1 0 0
& 0 & 1 1 0 & & 0 & & & & & &

 
 
stuck-at fault 1;jw ≡  ( , ) X,c i j =  if the test pattern iT  
does not detect any fault at the node .jw  The last row 
with entries js  in the fault table summarizes information 
in the columns in the following way: ( ) 0,s j =  if there 
is at least one entry ( , ) 0c i j =  in the column ,j  and no 
entry ( , ) 1;c i j =  ( ) 1,s j =  if there is at least one entry 

( , ) 1c i j =  in the column ,j  and no entry ( , ) 0;c i j =  
( ) &,s j =  if there is at least one entry ( , ) 0c i j =  and at 

least one entry ( , ) 1,c i j =  and finally, ( ) X,s j =  if all 
entries in the column are ( , ) X.c i j =  

Assume, these 5 test patterns form the whole test set 
applied to the circuit during a test program activated in 
the system. From FT we see that 5 faults 1 1,w ≡  

3 0,w ≡  4 0,w ≡  5 1,w ≡  and 8 1w ≡  are not detected by 
the given test, which gives the fault coverage only 
83.3% (25 stuck-at faults from 30 are detected). 

To improve the quality of the given test, we may 
improve the testability of the circuit by inserting test 
points in a similar way as we did at the higher level in 
Section 5. 

It is easy to see that in this example it is not possible 
to test the faults 3 0,w ≡  4 0,w ≡  5 1,w ≡  and 8 1w ≡  by 

adding test points for observing the values on the 
outputs of faulty gates, because the faults at the inputs of 
the gates cannot propagate through the gates by the 
given test patterns. For example, the nodes 5 and 8 have 
during all the test patterns continuously the value 1 (see 
the columns 5 and 8 in Table 1), which means that the 
faults 5 1w ≡  and 8 1w ≡  are never activated (to activate 
a fault 1jw ≡  we need to apply on the node the opposite 
value 0).jw =  The conclusion of the described case is: 
we have to improve the controllability of the related 
gates. 

To minimize the number of test points needed we 
have to start to exercise with multiplexers at the nodes 
closest to the inputs, taking into account the fact that 
after making a node jw  controllable, the subsequent 
nodes, having a path from ,jw  may get controllable as 
well. This is the case with the given circuit. After 
making the node 3w  controllable, the nodes 4 ,w  5 ,w  
and 8w  will be controllable as well, and all the faults at 
the nodes 3 ,w  4 ,w  5 ,w  and 8w  will be detected. The 
only not detectable fault is now 1 1.w ≡  This fault can be 
detected by making the output of the gate, i.e. the node 
10 observable. After inserting the two test points, the 
fault coverage of the given test set will be 100%. 

Experimental results of DFT for more complex 
circuits are presented in the next section. 

 
 

7. EXPERIMENTAL  CASE  STUDIES 
 

We have carried out experiments with synthesis of 
functional BIST for two data-paths: (1) restoring 16-bit 
integer divider, and (2) non-restoring 16-bit signed 
integer divider. The goal of the experiments was to 
design a FBIST by improving the testability of a system 
with as few added test points as possible. The experi-
ments were carried out for two approaches: random and 
genetic generation of test operands. 

 
7.1. Experiments  with  restoring  integer  divider 

 
The data path of the system consists of 3 registers, cycle 
counter and 16-bit ALU as the CUT. ALU has 53 inputs 
and 17 outputs. To improve the testability, 4 test points 
were inserted which were connected via XOR gate to a 
single additional output. Test operands were found by 
random search. The shortest test with 100% fault 
coverage, which was found, consists of 3 operands 
which produce 197 direct input patterns to ALU. 

Table 3 illustrates the test coverage as the function of 
the number of test operands used by the instruction. For 
each number of operands, 1000 random experiments 
were carried out for finding the best combination of 
operands, and the average, best and worse results are 
shown. The same experiments are illustrated as well in 
Fig. 8. 
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Table 3. Fault coverages of test sequences 
 

Fault coverage, % Number of 
operands Average Best Worse 

1 87.88     93.76 63.68 
2 95.04     98.65 85.85 
3 97.58 100 90.74 
4 98.63  93.86 
5 99.19  95.53 
6 99.49  96.46 
7 99.65  97.92 
8 99.72  98.34 
9 99.77  97.81 
10 99.82  98.54 
 

 
 

 
Fig. 8. Fault coverage as the function of test length. 

 
 
Figure 9 demonstrates statistically how fast it would 

be to generate for the circuit a test with 100% fault 
coverage by pure random search. 1000 experiments 
were carried out, and in each experiment random 
operands were added to the test till the 100% fault 
coverage was achieved. Frequency means how many 
times from 1000 random experiments the 100% fault 
coverage was achieved for the given number of 
operands. 

 
 

 
 

Fig. 9. Frequency ranges of random test lengths. 
 

7.2. Experiments  with  non-restoring  divider 
 

In this experiment the operands were generated by 
genetic test operand generator. 

To have an understanding about the difficulty of 
generating high quality test operands, an experiment was 
carried out with 10 000 and 100 000 random samples, 
and the fault coverage for each test operand was 
measured. The 10 best results are included in Table 4. In 
Table 5, the results of comparing the random and 
genetic test operand generation approaches are depicted. 

Whereas in Table 4 we were measuring the fault 
coverage for independently generated random 1-operand 
experiments then in Table 5 we were interested in 
getting the best final fault coverage with as less as 
possible number of operands. In the best experiment the 
first operand chosen randomly happened to be with very 
low fault coverage 76.17%, compared to the high fault 
coverage numbers in Table 4. However, the subsequent 
random sequence of the next 4 operands increased the 
cumulative fault coverage up to the maximum value 
99.77, achieved by the random approach. 

In case of the genetic algorithm, the shortest 100% 
test generated included 4 operands. However, by adding 
a single additional test point to improve the testability of 
the circuit, it was possible to reduce the number of 
operands up to three, as in the case of the restoring 
divider. 

 
 

Table 4. Best fault covers for single operands 
 

Fault coverage, % Best selected 
operands 10 000 samples 100 000 samples 

1 83.29 84.46 
2 83.18 84.46 
3 83.06 84.11 
4 82.94 84.00 
5 82.94 83.76 
6 82.83 83.76 
7 82.83 83.64 
8 82.83 83.64 
9 82.83 83.64 
10 82.71 83.52 

 
 

Table 5. Comparison of test synthesis methods 
 

Genetic approach Number of 
operands 

Random 
approach Without DFT With DFT 

1 76.17     83.29     83.29 
2 95.09     97.76     97.76 
3 97.78     99.53 100 
4 98.71 100  
5 99.77   
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Table 6. Parameters of genetic experiments 
 

Experi-
ment No. 

Evolu-
tions 

Popula-
tion 

Test 
points 

Coverage, 
% 

Time,
 s 

 1 50 250 4 99.53 495 
 2 100 250 4 99.53 1003 
 3 50 500 2 99.76 1024 
 4 50 1000 3 99.65 1876 
 5 70 1000 1 99.88 2500 

 
 
To minimize the number of test points, and to 

demonstrate the possibility of trade-off between hard-
ware cost, test synthesis time and fault coverage, several 
experiments with the genetic algorithm were carried out. 
The columns 2–6 in Table 6 mean, the numbers of 
evolutions, the population size, the numbers of test 
points needed for adding into the circuit to achieve 
100% fault coverage with 3-operand tests, the fault 
coverage achieved by genetic algorithm without adding 
test points, and the time in seconds used for test 
synthesis by using the genetic algorithm, respectively. 
The 5th experiment shows that we need only a single 
added test point to achieve 100% fault coverage with 3-
operand test. 

 
7.3. Impact  of  design  for  testability 

 
In this section we present the results of experiments to 
demonstrate the impact of improving the testability on 
the fault coverage and on the diagnosability of circuits. 

In Table 7, it is shown how the fault coverage can be 
improved for the given test pattern set by inserting test 
points. Circuits from the following benchmark families 
were exercised: ISCAS’85 [34], ISCAS’89 [35], and 
ITC’99 [36] are listed in column 1. 

 
 

Table 7. Improvement of fault coverage by DFT 
 

Circuit characteristics Improvement of fault 
coverage with DFT 

Circuit Input Out-
put 

Nodes TP FC, 
% before

FC, 
% after

c1908 33 25 866 5 99.48 99.88 
c2670 233 140 1 313 65 88.65 98.67 
c3540 50 22 1 648 59 95.54 100 
c5315 178 123 2 712 16 98.89 100 
c7552 207 108 3 552 51 94.09 98.27 
s9234 247 250 3 637 135 92.19 98.6 
s1320 700 790 5 228 72 98.19 99.97 
s15850 611 684 6 075 182 94.20 98.93 
s35932 1 763 2 048 19 547 17 88.5 99.99 
bo5 35 70 1 332 153 77.52 97.37 
b12 126 127 1 535 3 99.77 100 
b14 277 299 11 858 93 92.76 99.41 
b15 485 519 11 749 152 88.78 99.84 

The main characteristics of circuits as the numbers of 
inputs, outputs, and nodes of the circuits are given in the 
columns 2, 3, and 4, respectively. The number of 
inserted test points TP is given in column 5 and the 
comparison of fault coverage FC before and after insert-
ing test points are depicted in columns 6 and 7. The  
high number of needed test points is explained by the 
width of the circuit (number of inputs). The high number 
of inputs leads to the high number of faults, which can 
be made testable only by independent individual test 
points. 

The goal of these experiments was not to achieve 
100% fault coverage, rather to investigate the 
dependence of the increase in fault coverage on the 
number of test points. To generate a 100% test needs a 
time costly deterministic test pattern generation. To be 
able to carry out multiple steps of evaluation of the DFT 
results in the step-by-step test point insertion, we used a 
fast random test pattern generation. This was sufficient 
to demonstrate the efficiency of chosen test points in 
terms of improved fault coverage.  

In Table 8 and Fig. 10, it is shown how the diagnos-
ability of CUT can be improved by inserting test points. 
Diagnosability is measured as the average diagnostic 
resolution (the number of suspected indistinguishable 
faults in case a CUT has failed). 

 
 

Table 8. Improvement of diagnosability by DFT 
 

TP c2670 c5315 c6288 c1908 c1355 c3540 AVRG

0 18.4 17.3 68.0 51.0 111.3 12.9 46.5 
5 15.3 11.0 51.4 37.2 71.2 11.1 32.9 
10 13.9 7.9 41.8 24.9 43.1 9.2 23.5 
15 13.2 7.3 37.3 20.5 34.6 7.5 20.1 
20 10.2 7.1 30.0 16.4 30.0 7.1 16.8 

 
 

 
 

Fig. 10. Improvement of diagnosability by DFT. 
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7.4. Experimental  data  of  the  fault  simulator 
 

To carry out the experimental work of fault coverage 
analysis and evaluation of the efficiency of test points 
insertion, we updated our fault simulator [32]. 

Table 9 presents the characteristics of the fault 
simulator which was accommodated for the needs of 
FBIST synthesis framework. The experiments were 
carried out for the benchmark circuits of ISCAS’85 [34], 
and the full-scan versions of ISCAS’89 [35] and 
ITC’99 [36] (column 1) to be compared with two state-
of-the-art commercial fault simulators C1 and C2 from 
major CAD vendors (columns 3, 4), and the developed 
new simulator (column 5). Fault simulation times in 
seconds were calculated for the sets of random 10 000 
patterns. The experiments were run on a 1.5 GHz 
UltraSPARC IV+ workstation using SunOS 5.10 operat-
ing system. 

 
 

8. CONCLUSIONS 
 

We introduced a new approach to design self-testing 
processor architectures, which uses the inherent func-
tionality of the given system for on-line test pattern 
generation. The approach does not need to store high 
volume test data in the processor memory. Instructions 
of the processor are used for launching the hardware 
components oriented test procedures whereas the test 
patterns applied to the selected CUT are generated on-
line and observed by MISR. In general case, the best 
places for MISR are selected by profiling the test 
processes to determine the most frequently visited nodes 
in the tested subsystem, to get the maximum information 
when observing the test run.  

 
 

Table 9. Speed characteristics of fault simulator 
 

Simulation time, s Circuit No. of 
gates C1 C2 New 

c2670 883 2.2 24 0.4 
c3540 1 270 7.4 43 0.9 
c5315 2 079 5.6 57 0.8 
c6288 2 384 27.8 284 7.4 
c7552 2 632 8.1 88 1.2 
s13207 3 214 5.6 70 2.0 
s15850 3 873 12.1 111 2.7 
s35932 12 204 23.6 390 5.7 
s38417 9 849 31.4 310 7.0 
s38584 13 503 23.2 320 6.4 
b14 9 150 49.2 N/A 14.5 
b15 8 877 39.1 N/A 26.6 
b17 31 008 117.7 N/A 77.8 
Average normalized 

run-time 
4.7 43 1 

 

The proposed FBIST combines clock cycle based 
response collection, as used in the hardwired ABIST, 
with software based flexibility to extend the restricted 
application area of ABIST from specific data-path 
architectures to a larger class of processor architectures. 
The clock cycle based test response observation by 
MISR allows to avoid fault masking compared to 
traditional SBST. The dedicated test data (e.g. instruc-
tion operands) generation coupled with CUT-oriented 
fault coverage analysis allows to achieve high fault 
coverage.  

Another novelty is to combine test program genera-
tion with testability improvement of the CUT by insert-
ing test points. This combination of test data generation 
with DFT improvement allows to explore different 
trade-offs between testing cost and quality.  

For generating test data (operands) used by test 
instructions, a genetic algorithm was developed to 
achieve the needed high fault coverage. For example, in 
the case of having ALU for the division operation as a 
CUT, we needed only three division operations with a 
single inserted test point to achieve 100% stuck-at fault 
coverage of the responsible for this operation hardware.  

We have created a framework for synthesis of self-
testing processor architectures, supported by design for 
testability advisor and a very efficient fault simulator to 
carry out fast exploration of possible FBIST solutions. 
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Digitaalsüsteemide  funktsionaalse  isetestimise  kvaliteedi  analüüsi  keskkond 
 

Raimund Ubar, Sergei Kostin, Helena Kruus, Margit Aarna ja Sergei Devadze 
 

Digitaalsüsteemide usaldatavusest on saanud üks tähtsamaid inseneriprobleeme. Süsteemide usaldatavuse suurenda-
mise perspektiivseks võimaluseks on projekteerida isetestivaid süsteeme, millega saab testimisseansse reaalajas ja 
õigel töökiirusel läbi viia ning sellega tagada testimise kõrge kvaliteet. Artiklis on kirjeldatud uut isetestimise 
metodoloogiat, mis põhineb süsteemi enda ressursside kasutamisel, millega välditakse vajadust viia süsteemi 
täiendavaid spetsiaalseid testimisvahendeid, nagu see traditsiooniliselt toimub. Saavutatavateks eelisteks on 
testimiseks vajalike lisavahendite minimeerimine ja nende negatiivse mõju välistamine süsteemi töökiirusele. 
Reaalajas töökiirusel testimine võimaldab kasutusel olevate meetoditega võrreldes paremini avastada võimalikke 
dünaamilisi rikkeid, näiteks suurenenud signaaliviiteid, mis kokkuvõttes tõstab testimise kvaliteeti ja tulemuste 
usaldatavust. On välja töötatud meetodid testandmete ja -punktide minimeerimiseks. On kirjeldatud tarkvara-
keskkonda, milles sisalduvad tööriistad võimaldavad emuleerida projekteeritavat isetestivat süsteemi ja analüüsida 
testimiskvaliteeti. 

 
 
 
 
 


