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Abstract. The soliton interactions of Manakov soliton trains subjected to composite external potentials are modelled by the
perturbed complex Toda chain (PCTC). The model is applied to several classes of potentials, such as: (i) harmonic, (ii) periodic,
(iii) ‘wide well’-type potentials, and (iv) inter-channel interactions. We demonstrate that the potentials can change the asymptotic
regimes of the soliton trains. Our results can be implemented, e.g., in experiments on Bose–Einstein condensates and can be used
to control the soliton motion. In general, our numerical experiments demonstrate that the predictions of complex Toda chain (CTC)
(respectively PCTC) match very well the Manakov (respectively perturbed Manakov) model numerics for long-time evolution,
often much longer than expected. This means that both CTC and PCTC are reliable dynamical models for predicting the dynamics
of the multisoliton trains of the Manakov model in adiabatic approximation. This extends our previous results on scalar soliton
trains to the Manakov trains with compatible initial parameters.
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1. INTRODUCTION

The Gross–Pitaevski (GP) equation and its multicomponent generalizations are important tools for analysing
and studying the dynamics of the Bose–Einstein condensates (BEC), see the monographs [11,15,24], the
review papers [3,4,14], and the numerous references therein. Among them we mention [5,6,12,19,21,22,29];
for physical relevance and applications see [17,23,31]. In the 3-dimensional case these equations can be
analysed only numerically. For the quasi-one-dimensional BEC the GP equations reduces either to the
scalar nonlinear Schrödinger equation (NLSE) perturbed by the external potential V (x):

i
∂u
∂ t

+
1
2

∂ 2u
∂x2 + |u|2u(x, t) =V (x)u(x, t), (1)

or to the Manakov model (MM) [18], perturbed not only by V (x)

i⃗ut +
1
2

u⃗xx +(⃗u†, u⃗)⃗u(x, t) =V (x)⃗u(x, t)+ c1σ1⃗u(x, t), (2)
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but also by the interchannel interaction c1 ̸= 0. Here the vector function u⃗ = (u1,u2)
T and u⃗† = (u∗1,u

∗
2) is

hermitian conjugate to u⃗. Then (⃗u†, u⃗) is the scalar product of u⃗† and u⃗, σ1 =

(
0 1
1 0

)
.

The analytical approach to the N-soliton interactions was proposed by Zakharov and Shabat [20,30] for
the scalar NLSE. They calculated the asymptotics of the exact N-soliton solution for t →±∞, assuming that
all solitons move with different velocities. As a result, they proved that both asymptotics are sums of N one-
soliton solutions with the same sets of amplitudes and velocities. The effects of the interaction were shifts
in the relative centre of masses and phases of the solitons. The same approach, however, is not applicable to
the MM, because the asymptotics of the soliton solution for t →±∞ do not commute.

The N-soliton interactions in the adiabatic approximation for the MM (V (x) = 0) can be modelled by
CTC [10]. When V (x) ̸= 0, a perturbed CTC (PCTC) is derived for several types of potentials: i) harmonic,
ii) periodic, and iii) shallow wide well type potentials; see [8,16,28] and literature, cited there and also for
the inter-channel interactions.

Below we will consider also the effects of potentials of the form:

Vhp =V2x2 +V1x+V0 +Acos(Ωx), V (x) =
N

∑
s=0

csVs(x), with Vs = sech2(x− xs), (3)

which are wells (resp. humps) for cs < 0 (resp. cs > 0). We will also consider wide well-like potentials

V1ww(yi,yf) =
∫ yf

yi

cVs(x)dxs = c[tanh(x− yf)− tanh(x− yi)], (4)

and well-in-well potentials like V2ww = cV1ww(y′i,y
′
f)+ cV1ww(yi,yf) with y′i ≪ yi and y′f ≫ yf (Fig. 1).

The Manakov soliton train is a special solution of the Cauchy problem for Eq. (2) with the initial
condition

u⃗(x, t = 0) =
N

∑
k=1

uk(x, t = 0)⃗nk, uk(x, t) =
2νkeiϕk

cosh(zk)
, (5)

where

zk = 2νk(x−ξk(t)), ξk(t) = 2µkt +ξk,0, ϕk =
µk

νk
zk +δk(t), δk(t) = 2(µ2

k +ν2
k )t +δk,0, (6)

µk are initial velocities, νk are initial amplitudes, δk,0 are initial phases, and ξk,0 are initial positions of the
soliton.

Fig. 1. Graph of the two-level external potential V2ww ≡ cV1ww(−16,16)+ cV1ww(−3,3), c =−0.01 from Eq. (4) (cyan line) and
the initial configuration of three-soliton envelopes located at ξk =−8+8(k−1), k = 1,2,3 and the modules of the first (solid) and
second (dashed) components of u⃗.
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The polarization vectors n⃗k =
(
nk,1eiβk ,nk,2e−iβk

)T
are normalized by the conditions

⟨⃗n†
k , n⃗k⟩ ≡ n2

k,1 +n2
k,2 = 1, (7)

where n⃗†
k stands for the hermitian conjugate quantity ⟨⃗n†

k |= (n1,∗
k ,n2,∗

k ). The adiabatic approximation holds
true for both equations if the soliton parameters satisfy [13]:

|νk −ν0| ≪ ν0, |µk −µ0| ≪ µ0, |νk −ν0||ξk+1,0 −ξk,0| ≫ 1, (8)

for all k, where ν0 =
1
N ∑N

k=1 νk, and µ0 =
1
N ∑N

k=1 µk are the average amplitude and velocity, respectively. In
fact we have two different scales:

|νk −ν0| ≃ ε1/2
0 , |µk −µ0| ≃ ε1/2

0 , |ξk+1,0 −ξk,0| ≃ ε−1/2
0 ,

where ε0 ≃ 8ν0r0e−2ν0r0 and r0 is the distance between the neighbouring solitons.
Following Karpman and Solov′ev [13], we derive a dynamical system for the soliton parameters which

describes their interaction. Using the approach by Anderson and Lisak [1,2], this idea was generalized to
N-soliton interactions of scalar NLSE solitons [10] and then to the MM [5,7,9].

The paper is organized as follows. In Section 2 we formulate the PCTC model describing the N-soliton
train in external potentials (harmonic, periodic, and wide wells). We also treat the inter-channel interactions.
In Section 3 we compare the numerical solutions of the perturbed MM equation with the solution of the
relevant PCTC and find a very good description for several important configurations of the soliton trains.
We end with conclusions and briefly discuss further problems to be solved.

2. THE EFFECTS OF THE EXTERNAL POTENTIALS – THEORETICAL ASPECTS

It is well known that the scalar soliton trains in external potentials are modelled by the PCTC [5,10,28].
The MM is treated similarly to the scalar NLSE. According to [5], CTC, describing the evolution of the
trains of Manakov solitons must be modified by attaching the scalar products of the relevant polarization
vectors to the exponential factors. The modifications needed to account for the external potentials, due to
the normalization condition (7) in fact must coincide with the ones for the scalar case. As a result we obtain
the following PCTC system:

dλk

dt
=−4ν0

(
eqk+1−qk (⃗n†

k+1, n⃗k)− eqk−qk−1 (⃗n†
k , n⃗k−1)

)
+Mk + iNk,

dqk

dt
=−4ν0λk +2i(µ0 + iν0)Ξk − iXk,

dn⃗k

dt
= O(ε), (9)

qk =−2ν0ξk + k ln(4ν2
0 )− i(δk +δ0 + kπ −2µ0ξk), λk = µk + iνk, δ0 =

1
N

N

∑
k=1

δk. (10)

The integrals, characterizing the effect of the perturbations, are:

Nk =−1
2

∞∫
−∞

dzk

coshzk
Im

(
V (yk)uke−iϕk

)
, Mk =

1
2

∞∫
−∞

dzk sinhzk

cosh2 zk
Re

(
V (yk)uke−iϕk

)
, (11)

Ξk =− 1
4ν2

k

∞∫
−∞

dzk zk

coshzk
Im

(
V (yk)uke−iϕk

)
, Dk =

1
2νk

∞∫
−∞

dzk (1− zk tanhzk)

coshzk
Re

(
V (yk)uke−iϕk

)
, (12)

where yk = zk/(2ν0)+ξk and Xk = 2µkΞk+Dk. Obviously these integrals vanish when the external potential
is not present. Along with PCTC we must take into account also the evolution of the polarization vectors.
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For the potentials, described above we found that the evolution of the |⃗nk⟩ is of the order of ε . Also the
evolution of the scalar products (⃗n†

k+1, n⃗k) will deviate from their initial values by terms of the order of ε .
But (⃗n†

k+1, n⃗k) multiply exponentially small terms whose modules |eqk+1−qk | ≃ ε . Therefore the evolution of
the polarization vectors can be neglected and we replace the scalar products (⃗n†

k+1, n⃗k) by their initial values.
Note that Nk, Mk, Ξk and Pk depend only on the parameters of the kth soliton; i.e., they are ‘local’ in k.

2.1. Harmonic and periodic potentials

For the class of harmonic and periodic potentials (3) we have (see, for example [5,8,9]):

Nk[u] = 0, Mk[u] =− 1
4νk

(V1 +2V2ξk)+
πAΩ2

8νk sinhZk
sin(Ωξk +Ω0),

Ξk[u] = 0, Dk[u] =−1
2

V (ξk)+
π2V2

96ν2
k
− π2AΩ2

16ν2
k

coshZk

sinh2 Zk
cos(Ωξk +Ω0),

(13)

where Zk = Ωπ/(4νk).

2.2. Wide well-like potentials

The ‘narrow’ sech-like potentials Vs, Eq. (3) have been treated in [8,9] with the result

Mk = 2csνkP(∆k,s), Nk = 0, Ξk = 0, Dk = csR(∆k,s), (14)

where ∆k,s = 2ν0ξk − ys and the integrals describing the interaction of the solitons are equal to:

P(∆) =
∆+2∆cosh2(∆)−3sinh(∆)cosh(∆)

sinh4(∆)
, R(∆) =

∆sinh(2∆)− (2∆2 +3)sinh2(∆)−3∆2

2sinh4(∆)
. (15)

The shallow but wide well-like potentials (4) (Fig. 2) are obtained by integrating over ∆:

P0(∆) =
sinh(∆)−∆cosh(∆)

sinh3(∆)
, R0(∆) =

e−∆ sinh2(∆)+∆2 cosh(∆)−2∆sinh(∆)
2sinh3(∆)

. (16)

Then Mk and Dk in Eq. (14) must be replaced by

M0,k = 2c0νk [P0(zk − yf)−P0(zk − yf)] , D0,k =
c0

2ν0
[R0(zk − yf)−R0(zk − yf)] . (17)

2.3. Interchannel interactions. Linear coupling

The interchannel interactions, called also linear coupling between the components of u⃗, are treated
analogously and also lead to PCTC, in which the evolution of the polarization vectors depends on c1 as
follows:

i
∂nk,1

∂ t
− c1νknk,2 +O(ε) = 0,

(18)

i
∂nk,2

∂ t
− c1νknk,1 +O(ε) = 0.
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Fig. 2. The functions P and R for a single sech-potential centered at the origin, and for potential V1ww(−16,16).

In fact, if we keep only terms of the order of ε in PCTC, we can drop also the terms νk −ν0 ≃
√

ε in the
evolution of |⃗nk⟩ and replace νk by ν0. Then the solution of (18) is

n⃗k(t) = (cos(c1ν0t)11− isin(c1ν0t)σ1)⃗nk(0). (19)

Since we assumed the constant c1 to be real, this means that: i) (⃗n†
k(t), n⃗k(t)) = (⃗n†

k(0), n⃗k(0)) = 1, i.e., the
unit norm of each of the polarization vectors is preserved, and ii) i ∂

∂ t (⃗n
†
k+1(t), n⃗k(t)) = 0, i.e.,

(⃗n†
k+1(t), n⃗k(t)) = (⃗n†

k+1(0), n⃗k(0))+O(ε). (20)

As a result, we can replace the scalar products of the PCTC by their initial values in the case of inter-
channel interactions as well. Note that if we treat only purely inter-channel interactions, we obtain pure
CTC, since all the additional integrals Nk, Mk, Ξk, Dk vanish. This is compatible with the fact that a change
of variables takes away the inter-channel interactions (see [26] and literature cited there).

3. CTC AND THE ASYMPTOTIC REGIMES OF N-SOLITON TRAINS

The main advantage of the CTC is that it is an integrable dynamical model and admits the Lax representation
L̇ = [B,L]. This allows one to predict the asymptotic behaviour of the solitons [10]. The CTC has N
complex-valued integrals of motion provided by the eigenvalues ζk = κk + iηk, k = 1, . . . ,N of L. One can
show that Re ζk determine the asymptotic velocities of the solitons. Thus three types of asymptotic regimes
are possible: asymptotically free regime (AFR) when κk ̸= κ j for k ̸= j, i.e., all the asymptotic velocities
are different [6,10]; bound state regime (BSR) when κ1 = · · · = κN = 0. All soliton envelopes move with
the same mean asymptotic velocity; mixed asymptotic regimes (MAR) when one or more groups of soliton
envelopes move with the same mean asymptotic velocity; then they would form one (or more) bound state(s)
and the rest of the particles will have free asymptotic motion.

The PCTC take into account the effects of external potentials. Generically they are not integrable and
do not admit Lax representation. In order to solve them we use reliable numerical methods based on a fully
implicit conservative difference scheme [26] for MM and Runge–Kutta procedure for PCTC [28]. Our main
aim here is to find out soliton configurations which, due to the external potential, result in transition from
one asymptotic regime to another. A typical choice of initial soliton parameters used below is:

µk(0) = 0, νk(0) =
1
2
, ξk+1(0)−ξk(0) = r0, δk+1(0)−δk(0) = π, θk+1(0)−θk(0) =

π
8
, k = 1, . . . ,5,

(21)
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which ensures that the solitons go into AFR. The predictions of the MM are plotted in Figs 3 to 6 in solid,
while the CTC and PCTC – in dashed.

3.1. Harmonic and periodic potentials

It is natural to expect that every harmonic potential will always constrain the AFR into a bound state regime.
This can be viewed in Figs 3 and 4. The initial parameters of the 5-soliton train given by Eq. (21) ensures
AFR (see the left panel of Fig. 3). The motion on the right panel is a periodic one. Here the center
of mass of the soliton train at time t = 0 is ξ0(0) = 0 and coincides with the minimum of the potential
V (x) = 0.000036x2. Therefore the central soliton remains at rest, while the other solitons oscillate slightly
around their initial positions.

The situation on the right panel of Fig. 4 is different, because the minimum of the potential V (x) =
0.000036(x+ 15)2 is shifted with respect to ξ0(0). The motion is again a periodic one, but now it is ξ0(t)
that oscillates. Indeed, we can sum up all the equations in the PCTC and derive the following approximate
system for the centre of mass ξ0 = 1/N ∑N

k=1 ξk of the soliton train:

∂ µ0

∂ t
=− V1

4ν0
− V2

2ν0
ξ0(t),

∂ξ0

∂ t
= 2µ0(t),

∂ν0

∂ t
= 0. (22)

Fig. 3. Five-soliton train with initial parameters given by (21) with r0 = 8, ξk(0) =−24+8k, k = 1, . . . ,5 and V (x) = 0 (left panel);
the same soliton train but with potential V (x) = 0.000036x2 (right panel).

Fig. 4. Five-soliton train with initial parameters given by (21) with r0 = 8, ξk(0) = −24 + 8k, k = 1, . . . ,5 and V (x) =
0.000036(x+15)2 (left panel); periodic potential on 5-soliton trains with r0 = 8, V (x) =−0.0060cos(πx/4) (right panel).
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The solution of this system is given by:

ξ0(t) = ξ̃00 cos(z0t)+
2µ00

z0
sin(z0t)− V1

2V2
, µ0(t) = µ00 cos(z0t)− z0

2
ξ̃0(0)sin(z0t), ν0 = ν0(0),

where z0 =
√

V2/ν0, µ00 = µ0(0), and ξ̃0(0) = ξ0(0)+V1/(2V2). The period of the motion is determined
by V2 only and equals 2π

√
ν0/V2. If V (x) = 0.000036(x+ 15)2, we obtain 2π

√
0.5/0.000036 ≃ 740.48

which agrees very well with the left panel of Fig. 4.
The right panel of Fig. 4 demonstrates the stabilizing role of the periodic potentials provided very fine

tuning is achieved. This includes: i) the period of the potential coincides with the distance between the
neighbouring solitons Ω = 2π/r0 and ii) the initial positions of the solitons are located at the minima of the
potential V (x) =−Acos(Ωx). Then, if the potential strength is above some critical value, it will prevail the
soliton repulsion and will pack them into a bound state.

3.2. Wide well-like potentials

Such potentials may be more practical because they do not require the fine tuning as, e.g., the periodic ones.
Even for small intensities they can confine the solitons in their region. On the left panel of Fig. 5 we show 5-
soliton train with initial conditions (21) in a weak but wide well-like potential V (x) =−0.01V1ww(−24,24).
Even such shallow potential converts the asymptotic free regime into a bound state one and the solitons
remain confined in the potential well (shaded region).

On the right panel of Fig. 5 we demonstrate the effects of a shallow well-in-well like potential. We find
that the three central solitons are confined to the deeper well (doubly shadowed region) while the first and
the fifth solitons remain in the shallower well (shadowed region).

3.3. Inter-channel interactions

Here we will pay more attention to the inter-channel effects. The effects will be more evident if we choose
a three soliton configuration with initial parameters:

µk = 0, ν1,3 = ν2 ±0.07, ν2 = 0.5,

δ1 = 0, δ2,3 =±π
2
, θk = θk−1 −

π
10

.
(23)

The predictions of the MM and CTC are in good qualitative agreement (Fig. 6). In the next three figures we
study the effects of the interchannel interactions on this three-soliton train. We plot the numerical solution

Fig. 5. Five-soliton train with initial parameters given by (21) with r0 = 8, ξk(0) = −24 + 8k, k = 1, . . . ,5 with V (x) =
−0.01V1ww(−24,24) (left panel); the same but with V (x) =−0.01(V1ww(−24,24)+V1ww(−12,12)).
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Fig. 6. Three solitons in AFR regime.

of the relevant MM with the initial conditions (23) drawing both components of each of the solitons. One
can see that the amplitudes of the first (solid line) and the second components (dashed line) oscillate, but
keep the normalization condition (7) irrespective of the strength of the inter-channel interaction (Figs 7, 8
and 9).

In Figs 10 and 11 we have plotted the oscillations of the polarization angles for the three solitons and the
oscillations of the amplitudes of each component, respectively. The period is determined by the magnitude
of the coefficient c1 [25]. We can say, that in this case the solitons have ‘breather’-like behaviour. Let us
emphasize that it is possible only when c1 is a real number [26,27]. The breathing behaviour is determined

Fig. 7. Inter-channel interaction of a 3-soliton train with initial parameters as in (23) and c1 = 0.1 for times up to 960.

Fig. 8. Inter-channel interaction of a 3-soliton train with initial parameters as in (23) and c1 = 0.5 for times up to 960.
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Fig. 9. Inter-channel interaction of a 3-soliton train with initial parameters as in (23) and c1 = 1 for times up to 960.

Fig. 10. Adiabatic approximation. Polarization angles (in degrees) of envelopes for c1 = 0.5 as functions of the time.

Fig. 11. Adiabatic approximation. Component amplitudes of breathing soliton envelopes for c1 = 0.5 as functions of the time.

by the solution of additional equations (18) for polarization vectors in PCTC (Fig. 10). Obviously it has
well presented asymptotic behaviour for big times (Fig. 11).

4. CONCLUSIONS

This paper is a natural extension of the results in [8,9,28] where various combinations of different types of
external potentials were considered. In all cases we formulate the nonintegrable PCTC model [7,8], which
has no Lax pair and therefore cannot be used for predicting the asymptotic behaviour of the soliton trains.
One of our main results is to compare the PCTC with the perturbed MM and to demonstrate an excellent
match between them for 5-soliton trains.

Another aspect, complementing our previous studies of PCTC consists in the analysis of inter-channel
interactions. It undoubtedly enriches the phenomenology of the soliton interactions described by this model.
The results are that the inter-channel interaction affects only the evolution of the the polarization vectors.
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However, if the constant c1 is real, the new evolution of n⃗k is an unitary one, preserving the scalar products
(⃗n†

k+1, n⃗k) up to terms of the order of ε1/2. Thus the main effect of the inter-channel interaction is the rotation
of the polarization vectors, or in other words, the ‘breathing’ of the solitons.

A number of other configurations of the soliton trains and external potentials can be treated both
analytically using PCTC and numerically by solving the corresponding perturbed MM. As such we mention
the well-in-well potential in Fig. 1, quartic potentials and various combinations of them. Our experience
shows that the PCTC provides adequate description for a large variety of soliton trains containing from 2
to 9 solitons and going into different asymptotic regimes. Of course, if we pick stronger potentials then the
time of validity of the PCTC diminishes. In our simulations above we have demonstrated that we have very
good match between the two models for times up to 960, which is about 10 times the magnitude of ε−1. Of
course such good matches do not hold true for all choices of the soliton parameters.

Considering the effects of the perturbations one needs a criterium which would ensure that a given
perturbation (resp. given potential) can be considered adiabatically small. Obviously such criterium must
depend not only on V (x) but also on the initial conditions for the soliton train.
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Multisolitonide interaktsioonid välisele liitpotentsiaalile allutatud Manakovi tüüpi
süsteemis

Michail D. Todorov, Vladimir S. Gerdjikov ja Assen V. Kyuldjiev

Solitonide interaktsioonid Manakovi tüüpi solitonide jadas on välise liitpotentsiaali korral modelleeritud
häiritusega kompleksse Toda ahela abil. Käesolevas artiklis vaatleme mitmeid potentsiaalide klasse ja
näitame, et solitonide jada asümptootilised režiimid sõltuvad potentsiaali valikust. Meie saadud tulemusi
saab rakendada näiteks Bose-Einsteini kondensaatidega tehtavatel eksperimentidel või solitonide liikumise
juhtimisel. Meie numbrilised eksperimendid näitavad, et komplekssest Toda ahelast saadavad hinnangud
ühtivad pikkade ajavahemike jooksul väga hästi Manakovi mudeli numbrilise lahenduse tulemustega. Sama
kehtib häiritusega kompleksse Toda ahela ja häiritusega Manakovi mudeli omavahelise sobivuse kohta.
Teisisõnu, nii kompleksne Toda ahel kui ka häiritusega kompleksne Toda ahel on usaldusväärsed dünaa-
milised mudelid selleks, et anda hinnanguid Manakovi mudeli adiabaatilise aproksimatsiooni korral tekkiva
solitonide jada dünaamika kohta. Saadud tulemused on laienduseks meie varem avaldatud tulemustele, kus
on vaadeldud analoogilist probleemi skalaarse solitonide jada korral.


