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Abstract. An ordered algebra is called a sup-algebra if its underlying poset is a complete lattice and its operations are compatible
with joins in each variable. In this article we study quotients and subalgebras of sup-algebras. We show that the congruence lattice
of a sup-algebra is isomorphic to the lattice of its nuclei and dually isomorphic to the lattice of its meet-closed subalgebras. We
also prove that the lattice of subalgebras of a sup-algebra is isomorphic to the lattice of its conuclei.
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1. PRELIMINARIES

Various quantale-like structures (quantales, locales, quantale modules, quantale algebras, unital quantales,
etc.) have been studied for decades and they have useful applications in algebra, logic, and computer
science ([7,8]). There are a number of results for which the proofs are very similar for different structures.
This suggests that perhaps those results could be obtained in a uniform way that is similar to how universal
algebra gives a framework for studying algebraic structures. This approach was used by Resende in [6],
where the author calls a quantale-like analogue of a universal algebra a sup-algebra, and followed in [5].
Our aim in this text is to develop this nice idea further. Although in [6] many-sorted sup-algebras are
considered, we restrict ourselves to the one-sorted case (as was also done in [5]).

In this paper we will study the relationships between nuclei and congruences and between conuclei and
subalgebras of sup-algebras, using an approach that is similar to the one used in [10] for the case of quantale
algebras. We will also generalize a well-known representation theorem of quantales to the sup-algebra
setting. Our point of view is that a sup-algebra is an ordered algebra with a ‘very good’ order structure.

Definition 1 ([1]). Let Ω be a type. An ordered Ω-algebra (or simply an ordered algebra) is a triplet
A = (A,ΩA,6A) comprising a poset (A,6A) and a set ΩA of operations on A (for every k-ary operation
symbol ω ∈ Ωk there is a k-ary operation ωA ∈ ΩA on A) such that all the operations ωA are monotone
mappings, where monotonicity of ωA (ω ∈ Ωk) means that

a1 6A a′1 ∧ . . .∧ak 6A a′k =⇒ ωA(a1, . . . ,ak)6A ωA(a′1, . . . ,a
′
k)

for all a1, . . . ,ak,a′1, . . . ,a
′
k ∈ A.
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Definition 2 (cf. Def. 2.2.1 of [6]). Let Ω be a type and let A = (A,ΩA,6A) be an ordered Ω-algebra. We
say that A is a sup-Ω-algebra if the poset (A,6) is a complete lattice and

ωA(a1, . . . ,ai−1,
∨

M,ai+1, . . . ,an) =
∨
{ωA(a1, . . . ,ai−1,m,ai+1, . . . ,an) | m ∈ M}

for every n ∈ N, ω ∈ Ωn, i ∈ {1, . . . ,n}, a1, . . . ,ai−1,ai+1, . . . ,an ∈ A, and M ⊆ A.

Remark 3. For the whole paper, we fix a type Ω and instead of sup-Ω-algebras we simply speak about
sup-algebras.

Definition 2 covers a large variety of quantale-like structures. For example, the following structures are
sup-algebras for some specific type Ω:
(1) quantales,
(2) unital quantales ([7], Definition 2.1.4),
(3) prequantales ([7], Definition 2.4.2),
(4) locales (frames) ([7], Definition 1.2.1),
(5) quantale modules ([8], Definition 4.1.1),
(6) quantale algebras ([9]),
(7) involutive quantales ([4], Definition 1.1.9),
(8) continuous semirings that are complete lattices ([3], Definition 3),
(9) S-quantales, where S is a posemigroup or a pomonoid ([11], Definition 3).

2. HOMOMORPHISMS AND SUBHOMOMORPHISMS

Definition 4. Let A and B be sup-algebras. A mapping f : A → B is a homomorphism of sup-algebras if f
preserves all basic operations and joins.

Remark 5. We point out that a homomorphism of sup-algebras has to preserve also nullary operations.
Thus a homomorphism f : A → B of unital quantales has to preserve the identity element, f (1A) = 1B.
Also, any homomorphism of sup-algebras preserves the smallest element of the lattice (as the join of the
empty family).

Definition 6. Let A ,B be ordered Ω-algebras. We say that a monotone mapping f : A → B is a
subhomomorphism if

ωB( f (a1), . . . , f (an))6 f (ωA(a1, . . . ,an))

for every n ∈ N, ω ∈ Ωn, a1, . . . ,an ∈ A, and

ωB 6 f (ωA)

for every ω ∈ Ω0.

Remark 7. In the case when A ,B are quantales (unital quantales), a mapping f : A → B with such
a property is called a closed map of quantales (respectively, a closed unital map of quantales; see
Definition 2.3.2 in [7]).

From the definitions it follows that every homomorphism of sup-algebras is a subhomomorphism. The
composite of two homomorphisms (subhomomorphisms) is a homomorphism (resp. subhomomorphism),
and the identity transformation of a sup-algebra is both a homomorphism and a subhomomorphism. Hence
one may consider the category of sup-algebras where morphisms are subhomomorphisms, or its subcategory
where morphisms are homomorphisms. It is easy to see that the following result holds.

Proposition 8. Isomorphisms in the category of sup-algebras and their homomorphisms are precisely
surjective homomorphisms that are order-embeddings.
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In a standard way, every poset can be considered as a category, and monotone mappings between
posets can be considered as functors. In such a category coproducts are joins. Since a sup-algebra
homomorphism f : A → B preserves all joins, it follows by the adjoint functor theorem that it has a right
adjoint f∗ : B → A . In particular,

f (a)6 b ⇐⇒ a 6 f∗(b), (2.1)

a 6 f∗( f (a)), and f ( f∗(b))6 b (2.2)

for all a ∈ A, b ∈ B.
The following result is a generalization of Proposition 2.3.3 in [8].

Proposition 9. Let A ,B be sup-algebras, and let f : A → B be a homomorphism of sup-algebras. Then
f∗ : B → A is a subhomomorphism.

Proof. It is clear that f∗ is order-preserving. To prove the inequality

ωA( f∗(b1), . . . , f∗(bn))6 f∗(ωB(b1, . . . ,bn))

for n ∈ N, ω ∈ Ωn, b1, . . . ,bn ∈ B, due to (2.1) it is sufficient to show that the inequality
f (ωA( f∗(b1), . . . , f∗(bn)))6 ωB(b1, . . . ,bn) holds. Since f preserves operations, from (2.2) it follows that

f (ωA( f∗(b1), . . . , f∗(bn))) = ωB( f ( f∗(b1)), . . . , f ( f∗(bn)))6 ωB(b1, . . . ,bn).

If ω ∈ Ω0, then f (ωA) = ωB implies that ωA 6 f∗(ωB) by (2.1). �

3. NUCLEI

Nuclei play an important role in the theories of quantale-like structures. This section is dedicated to the
basic properties of nuclei of sup-algebras.

Definition 10. (cf. [6], Def. 2.2.5). A closure operator j on a sup-algebra A is a nucleus if it is a
subendomorphism of A .

Each homomorphism of sup-algebras induces a nucleus.

Lemma 11 ([6], Proposition 2.2.9). If f : A → B is a homomorphism of sup-algebras, then j = f∗ f is a
nucleus on A .

The next result follows from Lemma 2.2.6 of [6].

Lemma 12. If j is a nucleus on a sup-algebra A , then

j (ωA(a1, . . . ,an)) = j (ωA(a1, . . . ,ai−1, j(ai),ai+1, . . . ,an))

for every n ∈ N, ω ∈ Ωn, i ∈ {1, . . . ,n}, a1, . . . ,an ∈ A. Hence

j (ωA(a1, . . . ,an)) = j (ωA( j(a1), . . . , j(an))) .

We denote by Nuc(A ) the set of all nuclei on a sup-algebra A . Define a partial order on Nuc(A ) by
pointwise ordering. If j is a nucleus on A , then we put

A j := {a ∈ A | j(a) = a}.

By Proposition 2.2.8(4) in [6],
j 6 k in Nuc(A )⇐⇒ Ak ⊆ A j.
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The following result is a consequence of Proposition 2.2.8 in [6].

Proposition 13. Let A be a sup-algebra. Then Nuc(A ) is a complete lattice.

Our next aim is to find out which subsets of A are equal to some subset A j for a nucleus j on a sup-
algebra A .

Elementary translations on a sup-algebra A are the mappings of the form
ωi := ωA(a1, . . . ,ai−1,− ,ai+1, . . . ,an) : A → A, where n ∈ N, ω ∈ Ωn, i ∈ {1, . . . ,n} and
a1, . . . ,ai−1,ai+1, . . . ,an are some fixed elements of A. Since an elementary translation ωi preserves joins, it
has a right adjoint, which we denote by ω∗

i : A → A, satisfying

ωi(a)6 b ⇐⇒ a 6 ω∗
i (b), (3.1)

for all a,b ∈ A, and also
ωi(ω∗

i (a))6 a and b 6 ω∗
i (ωi(b)). (3.2)

Lemma 14. If j is a nucleus on a sup-algebra A , then j(ω∗
i (b))6 ω∗

i ( j(b)) for every b ∈ A.

Proof. Let ωi be as above. Due to (3.1), it is sufficient to show that ωi( j(ω∗
i (b)))6 j(b). This holds because

ωi( j(ω∗
i (b))) = ωA(a1, . . . ,ai−1, j(ω∗

i (b)),ai+1, . . . ,an)

6 ωA( j(a1), . . . , j(ai−1), j(ω∗
i (b)), j(ai+1), . . . , j(an))

6 j (ωA(a1, . . . ,ai−1,ω∗
i (b),ai+1, . . . ,an))

= j(ωi(ω∗
i (b)))

6 j(b). �

The next result generalizes Proposition 3.1.2 of [7].

Proposition 15. If A is a sup-algebra and S ⊆ A, then S = A j for some nucleus j on A if and only if S is
closed under meets and under right adjoints of elementary translations.

Proof. Necessity. Suppose that S = A j for a nucleus j on A . It is easy to see that A j is closed under meets.
By Lemma 14, for s ∈ S, from

ω∗
i (s)6 j(ω∗

i (s))6 ω∗
i ( j(s)) = ω∗

i (s),

we conclude that ω∗
i (s) ∈ S.

Sufficiency. Assume that S is closed under meets and under right adjoints of elementary translations.
Define a mapping j : A → A by

j(a) :=
∧
{s ∈ S | a 6 s}=

∧
(S∩a↑)

for a ∈ A. Then it is routine to check that j is a closure operator. It is clear that S ⊆ A j. Since S is closed
under meets, we also have A j ⊆ S, and thus S = A j. We show that j is a subhomomorphism. To prove the
inequality ω( j(a1), . . . , j(an))6 j(ω(a1, . . . ,an)) it suffices to show that ω( j(a1), . . . , j(an))6 s whenever
s ∈ S and ω(a1, . . . ,an)6 s. Consider such s and denote w1 = ω(−,a2, . . . ,an). Then

ω1(a1)6 s =⇒ a1 6 ω∗
1 (s) ∈ S =⇒ j(a1)6 ω∗

1 (s) =⇒ ω1( j(a1))6 s.

Now let ω2 = ω( j(a1),− ,a3, . . . ,an). Then

ω2(a2)6 s =⇒ a2 6 ω∗
2 (s) ∈ S =⇒ j(a2)6 ω∗

2 (s) =⇒ ω2( j(a2))6 s.

Continuing in this manner we arrive at ω( j(a1), . . . , j(an))6 s, which was needed.
Since j is increasing, ωA 6 j(ωA) for every ω ∈ Ω0. �
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4. QUOTIENTS OF SUP-ALGEBRAS

There are two ways of forming quotients of quantale-like structures: using nuclei or congruences. We will
study how these two approaches are interrelated in the context of sup-algebras.

For a sup-algebra A and a nucleus j on A , the set A j is a complete lattice with respect to the order
inherited from A, where joins are given by

j∨
M = j

(∨
M
)

for every M ⊆ A j. By the construction, A → A j,a 7→ j(a) is a surjective mapping that preserves joins. On
the set A j we define operations by

ωA j(a1, . . . ,an) := j (ωA(a1, . . . ,an)) ,

n ∈ N, ω ∈ Ωn, a1, . . . ,an ∈ A j, and by
ωA j := j(ωA)

if ω ∈ Ω0.
The next result is a corollary of Theorem 2.2.7 in [6].

Proposition 16. For a sup-algebra A and a nucleus j on A , A j is also a sup-algebra with respect to the
order and operations defined above.

We denote the resulting sup-algebra by A j and call it a quantic quotient of A .
In [6], the author considers classes of sup-algebras that are defined using some set E of identities

(equations) as generalizations of usual varieties (although the author does not use the word ‘variety’).
However, in the theory of ordered universal algebras, varieties are given by sets of inequalities (see, e.g. [1]).

An inequality of type Ω is a sequence of symbols t ≤ t ′, where t, t ′ are Ω-terms. We say that t ≤ t ′ holds
in an ordered algebra A if tA ≤ t ′A where tA , t ′A : An → A are the functions on A induced by t and t ′. Of
course, inequalities t ≤ t ′ and t ′ ≤ t hold in A if and only if the identity t = t ′ holds in A . By a variety of
sup-algebras of type Ω we mean a class of sup-algebras satisfying some set E of inequalities and identities
of type Ω. It turns out that such classes are closed under quantic quotients.

Proposition 17. If A is a sup-algebra that belongs to some variety of sup-algebras, then A j belongs to the
same variety for every nucleus j on A .

Proof. We note that if t = t(x1, . . . ,xn) and t ′ = t ′(x1, . . . ,xn) are two Ω-terms and A satisfies an inequality

t 6 t ′ then
tA j(a1, . . . ,an) = j(tA (a1, . . . ,an))6 j(t ′A (a1, . . . ,an)) = t ′A j

(a1, . . . ,an)

for every a1, . . . ,an ∈ A j, so A j also satisfies the inequality t 6 t ′. �
Let us stop here for a moment to give some examples of varieties of sup-algebras.

Example 18. Let Q = (Q,∗,1Q,6Q) be a unital quantale and let ⊤Q be its top element. The variety of left
Q-modules is given by the type Ω = Ω1 = {a· | a ∈ Q} and the set of identities

E = {a · (b · x) = (a∗b) · x | a,b ∈ Q}.

The variety of topped left Q-modules (see Definition 2.4.2 of [6]) is given by the type Ω∪{⊤} and the set
of identities

E ∪{⊤=⊤Q ·⊤}.
The variety of unital left Q-modules is given by the type Ω and the set of identities

E ∪{x = 1Q · x}.
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The variety of pre-unital left Q-modules is given by the type Ω and the set of identities

E ∪{x 6 1Q · x}.

The other way of forming quotient sup-algebras uses the notion of congruence. By a sup-algebra
congruence we mean an equivalence relation ρ that is compatible with all operations and joins. The last
means that if ai ρ bi for all i ∈ I, then (

∨
i∈I ai) ρ (

∨
i∈I bi). We denote the set of all congruences on A by

Con(A ).
It can be shown that kernels of sup-algebra homomorphisms are sup-algebra congruences. To prove a

similar result for nuclei, we need the following lemma.

Lemma 19. If j is a nucleus on a sup-algebra A , then for all ai ∈ Ai, i ∈ I,

j

(∨
i∈I

j(ai)

)
= j

(∨
i∈I

ai

)
.

Proof. The inequality j(
∨

i∈I ai)6 j(
∨

i∈I j(ai)) follows because j is increasing and monotone. Conversely,
since j(ai) 6 j(

∨
i∈I ai) for each i ∈ I, we have

∨
i∈I j(ai) 6 j(

∨
i∈I ai). Therefore, j (

∨
i∈I j(ai)) 6

j ( j (
∨

i∈I ai)) = j (
∨

i∈I ai) . �
Lemma 20. Kernel of a nucleus j : A → A is a congruence on a sup-algebra A .

Proof. By Lemma 12, ker j is compatible with operations and by Lemma 19 it is compatible with joins. �
Let ρ be a congruence on a sup-algebra A . Then we can define joins on the quotient set A/ρ = {[a] |

a ∈ A}, where [a] = {b ∈ A | aρb}, by ∨
i∈I

[ai] :=

[∨
i∈I

ai

]
, (4.1)

and operations on A/ρ are defined in the usual manner. In this way we obtain a sup-algebra, which we
denote by A /ρ . From (4.1) we conclude that the order on the quotient sup-algebra A /ρ is given by

[a]≼ [b]⇐⇒ [a]∨ [b] = [b]⇐⇒ (a∨b)ρ b.

In the theory of ordered algebras, the order on the quotient is defined by

[a]⊑ [b]⇐⇒ a 6
ρ

b,

where a 6
ρ

b means that

a 6 a1 ρ a2 6 a3 ρ a4 6 . . .6 an−1 ρ an 6 b

for some a1, . . . ,an ∈ A (see [2]). The next lemma shows that these two orders actually coincide.

Lemma 21. Let (L,∨,∧) be a lattice and let ρ be an upper semilattice congruence on L. Then, for every
a,b ∈ L,

a 6
ρ

b ⇐⇒ (a∨b)ρ b.

Proof. Necessity. Suppose that a 6
ρ

b, that is,

a 6 an ρ an−1 6 . . .6 a6 ρ a5 6 a4 ρ a3 6 a2 ρ a1 6 b

for some a1, . . . ,an ∈ L. Now a1 ρ a2 implies (a1 ∨ b)ρ (a2 ∨ b), hence bρ (a2 ∨ b). A similar argument
gives that a2 ρ (a4 ∨ a2). Now bρ (a2 ∨ b) and a2 ρ (a4 ∨ a2) imply that (b∨ a2)ρ (a2 ∨ a4 ∨ b), and hence



X. Zhang and V. Laan: Quotients and subalgebras of sup-algebras 317

bρ (a4 ∨ b). Continuing in this manner we arrive at bρ (an ∨ b). Taking upper bounds with a we obtain
(a∨b)ρ (a∨an ∨b), thus (a∨b)ρ (an ∨b)ρ b and (a∨b)ρ b.

Sufficiency. If (a∨b)ρ b, then we have a sequence a6 (a∨b)ρ b between a and b. �
A binary relation ρ on an ordered algebra A is said to satisfy the closed chains condition if a 6

ρ
b 6

ρ
a

implies aρ b for all a,b ∈ A. An order-congruence on an ordered algebra A is a congruence of the
underlying algebra that satisfies the closed chains condition (see [2]).

Corollary 22. Every lattice congruence on a lattice satisfies the closed chains condition.

Proof. If a 6
ρ

b 6
ρ

a, then (a∨b)ρ b and (a∨b)ρ a. Hence aρ b by transitivity. �

From Corollary 22 we can conclude that the congruences on a sup-algebra A are precisely the order-
congruences of A (considered as an ordered algebra) that are compatible with joins.

If A is a sup-algebra and ρ ∈ Con(A ), then the natural surjection A → A/ρ , a 7→ [a] will be denoted
by ρ♮, and its right adjoint by ρ♮

∗. By Lemma 11, the mapping

jρ = ρ♮
∗ρ♮ : A → A

is a nucleus on A .

Lemma 23 ([6], Proposition 2.2.11). If A is a sup-algebra and ρ ∈ Con(A ), then kerρ♮ = ker jρ .

Our main result in this section is the following.

Theorem 24. Let A be a sup-algebra. Then there exists an isomorphism ψ : Nuc(A )→ Con(A ) of posets.
Moreover, for each j ∈ Nuc(A ), A j ∼= A/ψ( j) as sup-algebras.

Proof. We define a mapping ψ : Nuc(A )−→ Con(A ) by

ψ( j) := ker j,

where j ∈ Nuc(A ). By Lemma 20, ker j is indeed a sup-algebra congruence. By Proposition 2.2.8(5)
of [6], ψ is an order-embedding. Thus, to show that ψ is an isomorphism of posets, it remains to prove its
surjectivity. If ρ ∈ Con(A ), then we can consider the natural surjection ρ♮ : A → A/ρ . By Lemma 23,

ψ( jρ) = ker jρ = kerρ♮ = ρ,

so ψ is surjective. Thus, we have established the isomorphism of posets Con(A ) and Nuc(A ).
Further, we take a nucleus j and define mappings f : A/ker j → A j and g : A j → A/ker j by

f ([a]) := j(a),
g(a) := [a].

Obviously, f is well defined. The mapping f is a homomorphism, because using Lemma 12 we have

f (ωA/ker j([a1], . . . , [an])) = f ([ωA(a1, . . . ,an)])

= j(ωA(a1, . . . ,an))

= j(ωA( j(a1), . . . , j(an)))

= ωA j( j(a1), . . . , j(an))

= ωA j( f ([a1]), . . . , f ([an]))

for every n ∈ N and ω ∈ Ωn,
f (ωA/ker j) = f ([ωA]) = j(ωA) = ωA j
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for every ω ∈ Ω0, and, by Lemma 19,

f

(∨
i∈I

[ai]

)
= f

([∨
i∈I

ai

])
= j

(∨
i∈I

ai

)
= j

(∨
i∈I

j(ai)

)

=
j∨

i∈I

j(ai) =
j∨

i∈I

f ([ai]).

For g we have

ωA/ker j(g(a1), . . . ,g(an)) = ωA/ker j([a1], . . . , [an])

= [ωA(a1, . . . ,an)]

= [ j(ωA(a1, . . . ,an))]

= g(ωA j(a1, . . . ,an))

for every n ∈ N, ω ∈ Ωn, and g(ωA j) = g( j(ωA)) = [ j(ωA)] = [ωA] for every ω ∈ Ω0. It preserves joins
because

g

(
j∨

i∈I

ai

)
= g

(
j

(∨
i∈I

ai

))
=

[
j

(∨
i∈I

ai

)]
=

[∨
i∈I

ai

]
=
∨
i∈I

[ai] =
∨
i∈I

g(ai).

Hence g is a homomorphism.
For every a ∈ A j, f (g(a)) = f ([a]) = j(a) = a, so f g = id. Also g( f ([a])) = g( j(a)) = [ j(a)] = [a] for

every a ∈ A, thus g f = id. This completes the proof. �

5. A REPRESENTATION THEOREM

Let A be an ordered Ω-algebra and P(A) the power set of A. Define

ωP(A)(D1, . . . ,Dn) := {ωA(d1, . . . ,dn) | di ∈ Di, i = 1, . . . ,n}

for n ∈ N, ω ∈ Ωn, Di ∈ P(A), i = 1, . . . ,n, and

ωP(A) := ωA↓

if ω ∈ Ω0. It is easy to see that P(A ) = (P(A),{ωP(A) | ω ∈ Ω},⊆) is a sup-algebra.
Next we present a representation theorem for sup-algebras in terms of nuclei and quotients. This

generalizes Theorem 3.1.2 in [7] and the main theorem of [9].

Theorem 25 (Representation Theorem). If A is a sup-algebra, then there is a nucleus j : P(A)→ P(A)
such that A ∼= P(A ) j as sup-algebras.

Proof. We define a mapping j : P(A)→ P(A) by

j(D) =
(∨

D
)
↓.

It is routine to check that j is a closure operator, we show that j is a subhomomorphism. For ωA(d1, . . . ,dn)∈
ωP(A)( j(D1), . . . , j(Dn)), where di ∈ j(Di) = (

∨
Di)↓, Di ⊆ A, i = 1, . . . ,n, one has di 6

∨
Di. Hence

ωA(d1, . . . ,dn) 6 ωA

(∨
D1, . . . ,

∨
Dn

)
=

∨
{ωA(a1, . . . ,an) | ai ∈ Di, i = 1, . . . ,n}

=
∨

ωP(A)(D1, . . . ,Dn).
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Together with

j(ωP(A)(D1, . . . ,Dn)) =
(∨

ωP(A)(D1, . . . ,Dn)
)
↓

=
{

x ∈ A | x 6
∨

ωP(A)(D1, . . . ,Dn)
}

we obtain that ωP(A)( j(D1), . . . , j(Dn))⊆ j(ωP(A)(D1, . . . ,Dn)) in P(A). If ω ∈ Ω0, then clearly ωP(A) 6
j(ωP(A)).

One can easily see that j(D) = D, D ⊆ A if and only if D = d↓ for some d ∈ A. So

P(A) j = {D ∈ P(A) | D = j(D)}= {D ⊆ A | D = d↓ for some d ∈ A}.

Now define ϕ : A → P(A) j by
ϕ(a) = a↓

for all a ∈ A. Then obviously ϕ is surjective, and a 6 a′ in A if and only if a↓ ⊆ a′↓ in P(A) j. It remains to
show that ϕ preserves operations. Take n ∈ N, ω ∈ Ωn and a1, . . . ,an ∈ A. Note that

ωP(A) j(ϕ(a1), . . . ,ϕ(an)) = ωP(A) j(a1↓, . . . ,an↓)
= j(ωP(A)(a1↓, . . . ,an↓))

=
(∨

ωP(A)(a1↓, . . . ,an↓)
)
↓

=
{

x ∈ A | x 6
∨

ωP(A)(a1↓, . . . ,an↓)
}
.

If x ∈ ϕ(ωA(a1, . . . ,an)), then x 6 ωA(a1, . . . ,an) ∈ ωP(A)(a1↓, . . . ,an↓), and hence
x 6 ∨ωP(A)(a1↓, . . . ,an↓). Conversely, let x ∈ ωP(A) j(ϕ(a1), . . . ,ϕ(an)). Since ωA(a1, . . . ,an) is an upper
bound of ωP(A)(a1↓, . . . ,an↓), we have

x 6
∨

ωP(A)(a1↓, . . . ,an↓)6 ωA(a1, . . . ,an)

and x ∈ ωA(a1, . . . ,an)↓= ϕ(ωA(a1, . . . ,an)). Consequently, ϕ(ωA(a1, . . . ,an)) = ωP(A) j(ϕ(a1), . . . ,ϕ(an)).
Also, if ω ∈ Ω0, then

ϕ(ωA) = ωA↓=
(∨

(ωA↓)
)
↓= j(ωA↓) = j(ωP(A)) = ωP(A) j . �

6. SUBALGEBRAS OF SUP-ALGEBRAS

In this section we study subalgebras and conuclei of sup-algebras. As in classical cases, they turn out to be
in one-to-one correspondence.

Definition 26. If A is a sup-algebra, then a subset M ⊆ A is called a subalgebra of A if M is closed under
operations and joins.

Let A be a sup-algebra. We denote by Sub(A ) (Submc(A )) the set of all subalgebras (resp. meet-
closed subalgebras) of A . Since intersections of subalgebras are subalgebras, we have the following result.

Proposition 27. Let A be a sup-algebra. Then Sub(A ) is a complete lattice.

Definition 28. Let A be a sup-algebra. A coclosure operator g on A is called a conucleus if it is a
subhomomorphism.

We denote by Conuc(A ) (Conucmp(A )) the set of all conuclei (resp. meet-preserving conuclei) on A .
These two sets are posets with respect to pointwise order.
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Lemma 29. If g is a conucleus on a sup-algebra A , then Ag = {a ∈ A | g(a) = a} is a subalgebra of A .

Proof. Let g be a conucleus on A . As in the case of quantales (see [7], Theorem 3.1.3) one can show that
Ag is closed under arbitrary joins. Furthermore, if n ∈ N, ω ∈ Ωn,a1, . . . ,an ∈ Ag, then

ωA(a1, . . . ,an) = ωA(g(a1), . . . ,g(an))6 g(ωA(a1, . . . ,an)).

Since g is decreasing, we conclude that ωA(a1, . . . ,an) = g(ωA(a1, . . . ,an)). �
Lemma 30. If A is a complete lattice, M ⊆ A is closed under joins and meets, and ai ∈ A, i ∈ I, then

∨(
M∩

(∧
i∈I

ai

)
↓

)
=
∧
i∈I

(∨
(M∩ai↓)

)
.

Proof. Denoting U := M ∩ (
∧

i∈I ai)↓, u :=
∨

U , vi :=
∨
(M ∩ ai↓) and v :=

∧
i∈I vi we need to prove that

u = v.
To prove that u 6 v it suffices to show that u 6 vi for each i ∈ I. If x ∈U , then x ∈ M and x 6 ai for every

i ∈ I. Hence x 6 vi for every i ∈ I and x 6∧i∈I vi = v. Since v is an upper bound of U , we have u 6 v.
Conversely, since M is closed under joins and meets, vi ∈ M and v =

∧
i∈I vi ∈ M. Also ai↓ is closed

under joins, so vi 6 ai for each i ∈ I. Thus v =
∧

i∈I vi 6
∧

i∈I ai, and v ∈U . Consequently, v 6 u. �
Theorem 31. Let A be a sup-algebra. Then there exists an isomorphism φ : Sub(A ) −→ Conuc(A ) of
posets such that M = Aφ(M) for each M ∈ Sub(A ). Moreover, φ induces an isomorphism between posets
Submc(A ) and Conucmp(A ).

Proof. We define mappings ψ : Conuc(A )−→ Sub(A ) and φ : Sub(A )−→ Conuc(A ) by

ψ(g) := Ag,

φ(M) := gM,

where
gM(a) =

∨
{m ∈ M | m 6 a}=

∨
(M∩a ↓)

for any a ∈ A. It is not difficult to see that g is a coclosure operator. However, we also have that for every
n ∈ N, ω ∈ Ωn, and a1, . . . ,an ∈ A,

ωA(g(a1), . . . ,g(an))

= ωA

(∨
{m ∈ M | m 6 a1}, . . . ,

∨
{m ∈ M | m 6 an}

)
=
∨
{ωA(m1, . . . ,mn) | mi ∈ M,mi 6 ai, i = 1, . . . ,n}

6
∨
{m ∈ M | m 6 ωA(a1, . . . ,an)}

= g(ωA(a1, . . . ,an)).

If ω ∈ Ω0, then ωA ∈ M ∩ωA↓ because M is a subalgebra. Thus ωA 6 gM(ωA). We have shown that g is a
subhomomorphism and hence a conucleus.

To prove that φ is monotone we suppose that M ⊆ N, M,N ∈ Sub(A ). Take a ∈ A. Then M ∩ a↓ ⊆
N ∩a↓, whence gM(a) =

∨
(M∩a ↓)6∨(N ∩a ↓) = gN(a). Thus gM 6 gN .

Let us show that ψ is monotone. Suppose that g 6 h, g,h ∈ Conuc(A ). If a ∈ Ag, then a = g(a)6 h(a).
Since h is a conucleus, h(a)6 a. Therefore a = h(a) and a ∈ Ah. This proves the inclusion Ag ⊆ Ah.

To prove that ψφ = id we have to show that AgM = M for every M ∈ Sub(A ). Take x ∈ M. Then
gM(x) =

∨
(M ∩ x↓) = x, and so x ∈ AgM . Conversely, let a ∈ AgM , i.e. a =

∨
(M ∩ a↓). Since M is closed

under joins, a ∈ M, and therefore AgM ⊆ M.
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To verify the equality φψ = id we need to show that gAg = g for every g ∈ Conuc(A ). Take a ∈ A.
Then gAg(a) =

∨
(Ag ∩a↓). Since g(a) ∈ Ag ∩a↓, we have g(a)6∨(Ag ∩a↓) = gAg(a). On the other hand,

if x ∈ Ag ∩ a↓, then x 6 a and x = g(x) 6 g(a). So g(a) is an upper bound of Ag ∩ a↓ and gAg(a) 6 g(a).
Consequently, gAg = g. Thus we have established an isomorphism Sub(A )∼= Conuc(A ).

If M ∈ Submc(A ), then φ(M) = gM preserves meets because of Lemma 30. Also, if g ∈ Conucmp(A ),
then ψ(g) = Ag is closed under meets, because

g

(∧
i∈I

ai

)
=
∧
i∈I

g(ai) =
∧
i∈I

ai

for ai ∈ Ag, i ∈ I. �
The following result can be proved exactly as Proposition 32 of [10].

Proposition 32. For every sup-algebra A , the posets Submc(A ) and Nuc(A ) are dually isomorphic.

For a poset X we denote its dual poset by Xd . We can summarize our main results in the following form.

Corollary 33. For a sup-algebra A we have the following isomorphisms and order-embeddings of posets:

Con(A )d Nuc(A )d Submc(A ) Sub(A )

Conucmp(A ) Conuc(A ).

∼= ∼= ⊆

⊆

∼= ∼=

Remark 34. Since Nuc(A ) and Sub(A ) are complete lattices (see Proposition 13 and Proposition 27),
all posets in the above corollary are actually complete lattices and all isomorphisms are isomorphisms
of complete lattices. Moreover, Con(A ) is a quantale with respect to inclusion and relational product
of congruences. Therefore one can also introduce a quantale structure on Nuc(A ), Submc(A )d , and
Conucmp(A )d .

ACKNOWLEDGEMENTS

The research of X. Z. was supported by the Specialized Research Fund for the Doctoral Program of Higher
Education (grant No. 20124407120004) and the Chinese State Education Ministry (grant No. 20141685
‘The Scientific Research Foundation for Returned Overseas Chinese Scholars’). The research of V. L. was
supported by institutional research funding IUT20-57 of the Estonian Ministry of Education and Research.

REFERENCES

1. Bloom, S. L. Varieties of ordered algebras. J. Comput. Syst. Sci., 1976, 13, 200–212.
2. Czédli, G. and Lenkehegyi, A. On classes of ordered algebras and quasiorder distributivity. Acta Sci. Math., 1983, 46, 41–54.
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Sup-algebrate faktor- ja alamalgebrad

Xia Zhang ja Valdis Laan

Järjestatud algebrat nimetatakse sup-algebraks, kui see järjestatud hulk, millel ta on defineeritud, on täielik
võre ja tema tehted on iga argumendi suhtes kooskõlas ülemiste rajadega. Selles artiklis on uuritud sup-
algebrate faktor- ja alamalgebraid. On näidatud, et sup-algebra kongruentside võre on isomorfne tema
tuumade võrega ja duaalselt isomorfne tema alumise raja suhtes kinniste alamalgebrate võrega. Samuti on
tõestatud, et sup-algebra alamalgebrate võre on isomorfne tema kotuumade võrega.


