
Proceedings of the Estonian Academy of Sciences,
2015, 64, 3, 297–303

doi: 10.3176/proc.2015.3.14
Available online at www.eap.ee/proceedings
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Abstract. The emergence and propagation of solitary waves is investigated for carbon fibre reinforced polymer using numerical
simulations for Non-Destructive Testing (NDT) purposes. The simulations are done with the Chebyshev collocation method.
The simplest laminate model is used for the periodical structure of the material from which dispersion will arise. Classical and
nonclassical nonlinearities are introduced in the constitutive equation. The balance of the dispersion and nonlinearity is analysed
by studying the shape-changing effects of the medium on the initial input pulse and the possibility of solitary wave propagation is
considered. Future applications of solitary waves for nonlinear medical imaging and NDT of materials are discussed.
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1. INTRODUCTION

The recent ten years have seen considerable development
of optimized signal processing methods for improving
nonlinear Non-Destructive Testing (NDT) methods
derived from Nonlinear Elastic Wave Spectroscopy
(NEWS) and supplemented by symmetry invariance
and Time Reversal (TR). The emerging TR–NEWS
method is a useful tool for microcracks detection
of various complex samples [1], but also recently
for the localization of nonlinear scatterers in a wide
sense [2]. TR–NEWS signal processing is performed
with symmetrization of coded excitation using cross-
correlation, pulse-inversion [3], or chirp-coded schemes,
which are promising alternatives to frequency coding.
The response to positive and negative excitations enables
to extract the nonlinear signature of the tested sample.

In materials with nonlinear and dispersive properties,
solitary waves could be used for NDT [4,5]. They are
stable in propagation and have elastic interactions due to
the balance between the nonlinearity and dispersion. This
robustness could improve the monitoring capabilities of
layered, granular, or functionally graded materials. It
is well known that in such a medium, dispersion and
nonlinearity could be combined in a way that solitonic

propagation could be observed. The dispersion can
be caused by the material microstructure [6] or layers
[7,8], and the nonlinearity by the microdamage or soft
inclusions [9]. Using solitonic excitation, a medium
with these properties could be analysed. The solitary
waves can experience a phenomenon called ‘selection’
where the amplitude and velocity of a solitary wave tend
to finite values, which depend on the nonlinearity and
dispersion [10–12]. In some microstructured models,
the solitary wave propagation can also be sensitive to
the ratio of macro- and microstructural dispersions and
a general ‘shape’ of the initial profile [13], which could
likewise be used for diagnostic purposes.

Carbon Fibre Reinforced Polymers (CFRPs) are
being increasingly used for applications requiring both a
high strength to weight ratio and reliability, for example
in aerospace, automotive, and naval industries. Therefore
demand for the robustness of NDT of layered composites
is rising. The material is geometrically complex and
has several micro-scales: firstly, the scale of individual
carbon fibres that make up a single yarn; secondly, the
scale of individual yarns from which the fabric is woven;
and finally in 2D or 3D cases, the scale of individual
layers (carbon fabric and polymer). This makes the use
of conventional NDT techniques difficult, which is why
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this work analyses the potential use of solitary waves
for testing a material with nonclassical nonlinearities at
multiscale level. In this work the plies of the composite
are regarded as homogeneous orthotropic materials. This
multiscale complexity also justifies the use of methods
such as TR–NEWS because they have shown extreme
efficiency in complex media, such as composites and
biological tissues.

The numerical simulations are done by the Che-
byshev collocation method with Chebyshev polynomials
used for approximating physical quantities and finding
the spatial derivatives. The simulations take into account
the layered character of the material and are performed
for a 144 layered CFRP test sample. In addition to
the dispersion arising from the layered configuration,
the material is assumed to be weakly nonlinear. The
goal is to determine the influence of nonlinearity on the
character of the propagating waves. The main attention
is paid to the formation of solitary waves. The conditions
for the emergence of a solitary wave and its propagating
characteristics are analysed for future use in physical
experiments.

This paper is presented as follows. Firstly, the
model of the CFRP material is described, the classical
and nonclassical nonlinearities are introduced into the
governing equations, and the key points about the
numerical method are described. Secondly, the simula-
tion results are presented and then analysed for the effect
of a small but global nonclassical nonlinearity.

2. MODEL

The modelled material is a CFRP block with a thickness
of 43 mm, consisting of 144 layers (Fig. 1). It is
composed of fabric woven from yarns of fibre and
impregnated with epoxy. The cross-section of the
yarns is of elliptical shape (Fig. 2) and the material has
inclusions of pure epoxy, so a wave propagating through
the material will encounter yarns (fibres with epoxy) and
areas of pure epoxy. The simplest material model for the
test object is the laminate model (Fig. 3) in which (i) the

Fig. 1. Carbon Fibre Reinforced Polymer (CFRP) block of 144
layers tested with ultrasonic of NDT.

Fig. 2. Close-up image of the structure of the test object.

Fig. 3. Material model of the CFRP block.
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Fig. 4. The material is modelled as a laminate, with the thick-
ness of individual laminae proportional to the cross-sectional
area of the material.

material consists of homogeneous layers, (ii) each layer
has its own elasticity properties, and (iii) dispersion
arises due to the periodical discontinuity of the
properties. The widths of the layers are proportional
to the area of the cross-section of the yarn (Fig. 4) and
are here modelled as laminates of constant thickness
(thickness he = 50 µm for the epoxy layer and hCFRP =
210 µm for the pure CFRP layer). The longitudinal wave
modulus for the epoxy layer Ee = 6.5 GPa and for the
CFRP layer ECFRP = 13.6 GPa.

2.1. Mathematical model

The deformations are assumed to be small: εkl =
1
2

(
uk,l +ul,k

)
. The Cauchy’s equations governing the
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wave motion in each piecewise continuous layer are{
σkl,k +ρ ül = 0 ,
σkl = σlk .

(1)

The constitutive equation is

σ = αE
(
ε −βε2) . (2)

In the above equations σ denotes stress, ε denotes strain,
u denotes displacement, ρ is the density of the material,
and E is the modulus of elasticity. The Einstein’s
summation convention is used. An index after a comma
denotes a derivative in that direction. Weak classical
nonlinearity is given by β and nonclassical nonlinearity
by α . Here the nonclassical nonlinearity means that
the material can have an abrupt change in the elasticity
modulus (in this work on ε = 0). This permits strong
nonlinear effects in cases of small strain. Nonclassical
nonlinearity parameter α allows the material to be
weaker in tension than in compression [14]: α ≤ 1 if
ε ≥ 0 and α = 1 always if ε < 0. There is no nonclassical
nonlinearity if α = 1 for all ε . In order to use the pulse-
inversion method [3], dynamic boundary conditions with
both positive and negative polarities and with temporal
extent τ were used.

σ(0, t) =

{
±35 ·103

(
1+ cos

(
π t−τ/2

τ/2

))
, if t ≤ τ ,

0, if t > τ .
(3)

2.2. Numerical method

The numerical simulations use the Chebyshev colloca-
tion method where the solution is approximated at
gridpoints by a polynomial that is easy to differentiate.
Unlike the finite difference methods, it is a global method
where all the points contribute to the derivatives at
each point. Its main advantage is lower computational
cost due to the smaller number of points needed to
describe the problem and simplicity of use in case of
nonlinearities and a high order of spatial derivatives.
For the Chebyshev collocation method the variables are
stored at the Chebyshev extrema points, allowing the
interpolation scheme to avoid the Runge’s phenomenon
(Fig. 5), which would arise in case of equidistant dis-
tribution of collocation points (Fig. 6) [15]. The spatial
differentiation uses one Chebyshev differentiation matrix
[16], and the integration in time is carried out using a
vode solver [17] in the SciPy package [18].

The spatial differentiation and calculations are
initially done on each layer separately. Thereafter the
layers are interconnected by carrying over the stress and
the particle velocity as shown in Fig. 7, allowing the
energy to propagate both ways. The boundary conditions
of stress σ = 0 or particle velocity v = 0 can be specified
according to the problem.
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Fig. 5. Interpolation in the case of Chebyshev points.
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Fig. 6. Interpolation in the case of equi-spaced points.

Fig. 7. Matching between the layers during the timestep.

3. SIMULATIONS

Dynamic boundary conditions (Eq. (3)) were used to
excite the wave in the medium. The simulation scheme
was verified by doubling the number of spatial grid
points, running the simulation again, and comparing
the results. In case of little or no change in results,
the scheme is suitable. For some material parameters,
Eq. (1) with purely classical nonlinearity (α = 1 in
Eq. (2)) has been proven to sustain solitonic waves [19].
The simulations in this work are done to suggest the
possibility of the existence of solitary waves in case of
CFRP material parameters when introducing classical
and nonclassical nonlinearities.
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Firstly, a wide pulse half-cosine stress wave of
Eq. (3), where τ = 2 µs, was inserted into a 43-mm
thick material. The pulse is allowed to reflect from
the rear wall, return, and reflect from the front wall.
The nearly initial pulse and twice-reflected pulse are
compared. The reflections are, for the simplicity of
analysis, from fixed ends. This means that the sign of the
pulse is not changed by the reflections. The ‘wavelength’
corresponds to about 15 pairs of CFRP–epoxy layers.
Figure 8 illustrates comparison between two cases:
Fig. 8a where there is only classical nonlinearity β =
−15 and α = 1 for all ε; and Fig. 8b where there are
both classical and nonclassical nonlinearities β = −15
and α = 97% if ε ≥ 0. The results do not exhibit an
oscillatory tail behind the pulse (toward x= 0). In Fig. 8a
the classical nonlinearity of β =−15 does not change

(a) Only classical nonlinearity: β =−15, α = 1.

(b) Both nonlinearities: β =−15, α = 97%.

Fig. 8. Propagation of a half-cosine pulse with the width of
τ = 2 µs. The black dotted lines show the wave profile near
the beginning of the propagation. Bold grey lines show wave
profiles of positive and negative polarities after propagating
and reflecting twice in the 43 mm wide medium. The spatial
coordinate is denoted by x.

the propagation characteristics in any noticeable way. In
Fig. 8b the addition of nonclassical nonlinearity α =
97% decreases the velocity of the positive pulse.

Secondly, the initial pulse width was shortened to
τ = 0.4 µs, corresponding to about three pairs of epoxy–
CFRP simulated laminate. The shorter wavelength ‘feels’
the microstructure and introduces oscillations due to the
dispersion. The results are shown in Fig. 9. The case of
of β =−15 and α = 1 for all ε is shown in Fig. 9a, and
for β =−15 and α = 97% if ε ≥ 0 in Fig. 9b. Obviously
the velocity of the positive σ pulse is again lower than
for the negative pulse. Additionally, the effect of the
inhomogeneous medium is immediately recognizable by
an oscillatory tail of the pulses. Furthermore, in case
of nonclassical nonlinearity in Fig. 9b, both positive and
negative pulses change shape in the propagation. For the
positive pulse the oscillatory tail has increased slightly.
For the negative pulse the oscillatory tail decreases and
smoothens.

(a) Only classical nonlinearity: β =−15, α = 1.

(b) Both nonlinearities: β =−15, α = 97%.

Fig. 9. Propagation of a half-cosine τ = 0.4 µs pulse. The black
dotted lines show the wave profile near the beginning of the
propagation. Bold grey lines show wave profiles of positive and
negative polarities after propagating and reflecting twice in the
43 mm wide medium. The spatial coordinate is denoted by x.
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4. DISCUSSION

In the case of long-wavelength pulse τ = 2 µs in
Fig. 8, there is no noticeable wave steepening effect,
which is normally found in nonlinear wave propagation.
Since the pulses stay either purely positive or purely
negative, the only nonlinearity affecting the shapes of the
pulses is classical nonlinearity β , while the nonclassical
nonlinearity α only affects the velocities of the pulses.

The situation changes when the pulse length is
shortened to τ = 0.4 µs, because it will become
affected by the layered material, causing dispersion.
The dispersion generates an oscillatory tail behind the
main pulse for all results in Fig. 9. The purely
classical nonlinearity with β = −15 (and α = 1) is not
strong enough to affect the wave propagation noticeably
(Fig. 9a), only the dispersion decreases the amplitude of
the main peak. However, the situation is different with
small nonclassical nonlinearity of α = 97% (Fig. 9b),
as both positive and negative pulses change shape. The
oscillatory tail decreases for the negative pulse and
increases for the positive pulse, resembling the behaviour
of a solitary wave. Figure 9b furthermore shows that
at the beginning of the propagation the shape of the
positive pulse is slightly more gradual than the shape
of the negative pulse. It resembles the wave-steepening
effect commonly seen in nonlinear wave propagation,
suggesting that the negative pulse behaves in a solitary
wave-like manner. Its speed of propagation is greater
than that of the positive pulse and it is more stable
thanks to the nonclassical nonlinearity counteracting
the dispersion by affecting the positive parts of the
oscillatory tail.

In these simulations the nonclassical nonlinearity
α = 97% affects the solution far more than the classical
nonlinearity β = −15. The material parameters should
be measured with nonlinear NDT techniques [20] in
order to ascertain reasonable magnitudes for non-
linearities. For measuring the nonclassical nonlinearity,
a sinusoidal pulse could be propagated in this material.
The pulse would have its negative part travelling faster
than its positive. If the sinusoidal pulse was short
(close to a single period), it would become compressed
in propagation if the dynamic boundary condition was
σ(0, t) ∼ +sin and stretched if σ(0, t) ∼ −sin. The
amount of distortion could indicate the magnitude of the
nonclassical nonlinearity α in the constitutive Eq. (2).

5. CONCLUSIONS

It has been shown that in the case of large-wavelength
pulses with the pulse width of 15 epoxy–CFRP pairs,
the dispersion is not noticeably strong. Moreover, the
classical nonlinearity of β = −15 with CFRP elasticity
parameters is not strong enough to induce a noticeable
change in wave shape. Introduction of nonclassical
nonlinearity in addition to classical nonlinearity will
bring about a speed difference between positive and

negative pulses. The speed difference of positive and
negative parts of a sinusoidal pulse here could indicate
the magnitude of the nonlinearity.

However, a pulse with a length corresponding to 3–4
epoxy–CFRP layers will ‘feel’ the layered configuration
of the material, so it will have an oscillatory tail due to the
dispersion. Introducing a small nonclassical nonlinearity
of the magnitude α = 97% (in addition to classical
nonlinearity β =−15) will change the shape of the pulse
in different ways depending on the sign of the wave
amplitude. Essentially, the oscillatory tail of the positive
σ pulse will be increased and the tail of the negative σ
pulse will be decreased. This resembles the propagation
of a solitary wave by having (i) an effect resembling
wave steepening, (ii) balancing between dispersion and
nonlinearity, and (iii) a larger speed of a negative σ pulse
compared to a positive pulse.

We found in this study that the nonclassical non-
linearity would produce favourable effects for solitary
wave propagation in the case of CFRP material, which
could be used for the nonlinearity characterization and
microdamage detection of the material. The nonclassical
nonlinearity is zero-centred in this work and produces
changes of velocity between the positive and negative
parts of a wave even for small stress wave propagation.
The material parameters, the type, and the magnitude of
the nonlinearities need to be verified.

The Chebyshev collocation method was found
suitable for 1D simulations of discontinuous media. The
future work will include 2D simulations and analysis
of wave propagation in complex nonlinear media. This
should model potential materials better for solitary wave
characterization and enable to take into account other
complexities that surely affect the nonlinear acoustics
of the material. As the results of this work show, it is
necessary to consider additional sources of nonlinearity,
other than the classical nonlinear parameter β , at
different scales to see solitary wave-like evolution of
waves.

Advances of imaging complex layered media by new
signal processing schemes, involving solitonic coding,
would improve the methods used today in medical
imaging and NDT. Some biological complex layered
media, such as the human skin, could benefit from such
new coding schemes. Solitonic coding signal processing
with using the orthogonality properties needed in
classical nonlinear imaging potentially allows the use of
elastic properties of soliton–soliton interactions in order
to conduct fast nonlinear imaging.
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Üksiklainete leviku numbrilised simulatsioonid süsinikkiudkomposiitmaterjalis

Martin Lints, Andrus Salupere ja Serge Dos Santos

Üksiklaineteks nimetatakse dispersiivses ja mittelineaarses keskkonnas levivaid stabiilse kujuga lokaliseeritud laineid.
Juhul kui üksiklained interakteeruvad omavahel elastselt, nimetatakse neid solitonideks. Üksiklained võivad
mittepurustavas testimises osutuda kasulikeks tänu nende suurele stabiilsusele ja kuju sõltuvusele materjali omadus-
test. Nende rakendamine võib lubada keerulise geomeetria või keerulise sisestruktuuriga materjalide (mikrostruktuur-
või granulaarsed materjalid) detailsemat või kiiremat uurimist.

Antud töös on uuritud süsinikkiudkomposiiti kui materjali, millel võivad olla nii klassikalised kui ka (mikro-
kahjustustest tulenevalt) mitteklassikalised mittelineaarsused. Dispersiooni tekitab keskkonna perioodiline kihilisus.
Modelleeritav materjal on 144-kihiline süsinikkiudkomposiit. Antud töös oli kasutusel lihtne laminaatmudel tükati
pidevatest keskkondadest. Matemaatiline mudel baseerub Cauchy liikumisvõrranditel ja mittelineaarsel olekuvõrran-
dil, kus materjali jäikus võib sõltuda nii deformatsiooni suurusest kui ka selle märgist. Numbrilised eksperimendid on
tehtud Chebyshevi pseudospektraalmeetodiga.
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Simulatsioonide tulemused näitavad, et kuigi klassikaline mittelineaarsus võib olla liiga väike, tasakaalustamaks
dispersiooni simuleeritud komposiidis, siis seevastu üsna väike mitteklassikaline mittelineaarsus muudab lainelevikut
olulisel määral. Sealjuures on sellisel mittelineaarsusel suuremate lainepikkuste korral ilmne efekt positiivse ja nega-
tiivse pingelaine leviku kiiruses. Väiksemate lainepikkuste juures, kus dispersioon avaldub tugevamalt, on positiivse
ja negatiivse amplituudiga lainetel lisaks liikumiskiiruse erinevusele ka oluline erinevus laine kujus ning selle “sabas”
olevate ostsillatsioonide suuruses. Selline negatiivne pingelaine on suhteliselt stabiilne ja selle omadused sarnanevad
üksiklaine omadustele, mis viitab mitteklassikalise mittelineaarsuse soodsale mõjule üksiklainete tekitamisel kihilistes
materjalides.


