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Abstract. The Gauss–Lagrange stochastic wave model is known to produce irregular waves with realistic degrees of asymmetry.
We present the basic structure of the model and illustrate three of its characteristic properties: front–back asymmetry, particle orbits,
and average horseshoe pattern. We also study the effect of a linear filter in a wave energy converting system on asymmetry and on
average power of the system.

Key words: directional spreading, front–back asymmetry, horseshoe pattern, particle orbit, wave energy, wave steepness.

1. INTRODUCTION

Efficient design and control of wave energy converters
(WEC) needs realistic and well parameterized descrip-
tions of the wave environment, in which the converter
shall operate. To catch the irregularity of real ocean
waves, these models must contain stochastic elements,
summarized in terms of statistical distributions. The
Gaussian wave model is still, after more than fifty years
[19], a standard model in naval architecture. It produces
waves, which are statistically symmetric in the vertical
and horizontal directions.

A physically motivated alternative is the Gauss–
Lagrange model, or just Lagrange model, for the joint
vertical and horizontal movements of individual water
particles [4,6,18]. This model can produce irregular
waves with realistic asymmetry properties. Initial studies
of the statistical properties of Lagrange waves were
made in 2006–2008 [1,2,9], dealing with crest-trough
asymmetry. Detailed analyses of front–back asymmetry
were first presented, for space waves in 2009 [14], for
time waves in 2009–2010 [10,11], and for 3D waves in
2011 [13].

Stochastic wave models are commonly used as input
in efficiency and reliability studies of ships and marine
structures. In both situations it is the response of the
system to the irregular seas that is of interest. For
example, in a reliability analysis, extreme stress values
and fatigue-causing load cycles are the result of a

filtering process of the input wave loads, described in
statistical terms. For efficient design, a construction
has to behave in an optimal or nearly optimal way
under many different conditions, all involving realistic
wave irregularity and asymmetry. Wave asymmetry has
different consequences in different situations. Fatigue
damage is generally assumed to be unaffected of the
exact time path of the varying load; only height and
order of peaks and troughs are considered in most fatigue
studies. In stability and impact studies of ships and
marine installations, on the other hand, front–back wave
asymmetry should be considered. In such cases, the
Lagrange model offers a simple way to generate realistic
waves in numerical simulation studies.

In this paper we will, in Section 2, briefly describe
the Lagrange wave model. In Section 3 we illustrate by
examples some statistical characteristics of the model,
and in Section 4 we investigate some differences between
the Gauss model and the Lagrange model when used as
input to a WEC system in the form of a vertical point
absorber. All computations are made in MATLAB and
the toolbox WAFO [12,21].

2. THE LAGRANGE WAVE MODEL

The 2D stochastic Lagrange wave model is a stochastic
version of Miche waves, the depth dependent modifica-
tion of the Gerstner waves [5,15]. The Gerstner–Miche
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model describes the vertical and horizontal movements
of individual water particle as functions of time t and
original horizontal location. In the first order model,
elementary components act independently of each other,
and their effects are added. We consider here only
particles on the free water surface. In the stochastic
model the vertical and horizontal displacements are
correlated random processes with time parameter t and
space parameter u. The vertical process, denoted W (t,u)
is a Gaussian process and so is the horizontal process,
denoted X(t,u). Expressed verbally, in the stochastic 2D
Lagrange wave model, a water particle with original still
water location (u,0) is, at time t, located at position

(X(t,u),W (t,u)). (1)

The height of the water surface at location x = X(t,u) is
equal to W (t,u). Due to the randomness in horizontal
displacement, it may happen that more than one u-
value satisfies X(t,u) = x; then the surface height is
not uniquely defined. The probability of this folding is
negligible, for all but very shallow waters.

The Lagrange wave model is defined as the pair
(X(t,u),W (t,u)) of horizontal and vertical movement
processes. When location is fixed, x0, one obtains a
time wave as a function of time t. Similarly, with time
fixed, t0, one obtains a space wave profile as a function
of location x.

The Lagrange model is completely defined by the
auto- and cross-covariance functions:

rww(t,u) = Cov(W (s,x),W (s+ t,x+u))

=
∫ ∞

0
cos(κu−ωt)S(ω)dω,

and the analogues rxx(t,u),rwx(t,u). Here, S(ω) is the
orbital spectrum, and wave number κ > 0 and wave
frequency ω > 0 satisfy the depth dependent dispersion
relation, ω2 = gκ tanhκh, with water depth h and
gravitational constant g.

2.1. The Lagrange model with linked components

Expressed as stochastic Fourier integrals, the relation
between the vertical and horizontal processes is

W (t,u) =
∫ ∞

−∞
ei(κu−ωt) dζ (ω), (2)

X(t,u) = u+
∫ ∞

−∞
ei(κu−ωt) H(ω)dζ (ω), (3)

where the spectral process ζ (ω) distributes the energy
according to the orbital spectrum S(ω). In the simplest
Lagrange model, the free, or Miche, model, the response

function is H(ω) = i coshκh
sinhκh , which will give crest-trough

asymmetric waves. A flexible general approach [14] is to
let the response function be a general complex function,
H(ω) = ρ(ω)eiθ(ω), leading to

rwx(t,u) = Cov(W (s,x),X(s+ t,x+u))

=
∫ ∞

0
cos(κu−ωt +θ(ω))ρ(ω)S(ω)dω,

(4)

X(t,u) = u+
∫ ∞

−∞
ei(κu−ωt+θ(ω)) ρ(ω)dζ (ω). (5)

We see that the free Lagrange model represents a phase
shift between vertical and horizontal movement of θ =
π/2 = 90o, while the general model has a frequency
dependent phase shift.

In the free Lagrange model, individual water
particles move unaffected by outer forces. The
dependence between vertical and horizontal movements
is taken care of by the Miche filtration. For wind
driven waves this is unrealistic, and one would like to
include external influence in the interaction. One way to
formulate a relation between the vertical and horizontal
processes is to let the horizontal acceleration of the water
particles depend linearly on the vertical process, e.g., to
take X(t,u) as the solution to the equation

∂ 2X(t,u)
∂ t2 =

∂ 2XM(t,u)
∂ t2 −α W (t,u), (6)

with α > 0. Here XM is the Miche solution. With G(ω)=

− α
(−iω)2 , the response function will be H(ω) = i coshκh

sinhκh −
α

(−iω)2 = ρ(ω)eiθ(ω). By adjusting the values for the α-
parameter one can obtain waves with realistic geometric
properties, observed in empirical studies. Figure 1 shows
an extreme example of asymmetrics plunging waves. For
realistic wave spectra and water depth, this type of event
occurs very rarely.
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Fig. 1. Extreme asymmetric Lagrange waves with multiple
points travelling from left to right. Time step is 0.25 seconds.
The thick curve shows the wave profile at the instance when it
is observed at the observation point at x = 0.
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3. WAVE ASYMMETRY

3.1. Wave asymmetry measures

Many empirical studies have documented the degree of
asymmetry in irregular waves, as measured with different
indices. Figure 2 defines some wave characteristics
used in these indices for a time wave. For analogous
definitions for the space waves, the asymmetry is
reversed with the steep side facing right.

In Section 3.2. we will show examples with similar
degree of asymmetry as observed in experiments. We
will report three different asymmetry measures. The first
was defined in [14] as

λAL =−E(Lt(tdown))

E(Lt(tup))
≈ E(Hcb/Tcb)

E(Hc f /Tc f )
, (7)

where Lt(tdown) and Lt(tup) are the slopes at down-
and upcrossings of the mean water level. When front
and back crest amplitudes are about the same, it is
approximately equal to the index proposed in [17],

λNLS = E(Tc f )/E(Tcb). (8)

This index is related to λMK = T ′/T ′′, proposed in [16].
The full distributions of Tcb and Tc f provide even more
information about the asymmetry, and so do the T ′ and
T ′′ distributions. Another measure is based on the Hilbert
transform L̂(t) and is defined from its third moment and
standard deviation σ as

A = E(L̂(t)3)/σ3. (9)

This measure was used in [8] in a study of the relation
between wind speed and wave asymmetry. The A-values
reported in that work varied between zero and −0.4 for
time waves, corresponding to steeper wave fronts than
wave backs. In the examples we will stay within this
range of asymmetry.
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Fig. 2. Wave characteristic definitions for time waves.

3.2. Some characteristic properties of Lagrange
wave asymmetry

Wave characteristic distributions can be found either
by crossing theory (see [13] for examples and more
references) or by Monte Carlo simulation, which is the
method we chose here. The standard procedure to
generate random waves is via a discrete approximation of
the spectral integral and, for discrete wave numbers and
frequencies, generate a discretized version of the integral
(2),

W (t,u) = ∑Ak cos(κku−ωkt +ϕk),

with phases ϕk uniformly distributed in [0,2π], and
random or, most often, deterministic amplitudes Ak. We
will use the discrete approximation with evenly spaced
ωk with spacing ∆ω and corresponding wave numbers
κk given by the dispersion relation. The amplitudes

are random Ak =
√

∆ω S(ωk)
√

U2
k +V 2

k , with Uk,Vk

independent standard normal variables. The horizontal
process X(t,u) is computed simultaneously from the
corresponding formula. The computation is made by the
fast Fourier transform in the time variable t, and looping
over a discrete set of u-values. Finally, the Lagrange
wave is computed according to the definition [12].

In our examples we will use an orbital spectrum
S(ω) of the Pierson–Moskowitz (PM) type with
significant wave height Hs = 2.4 m and different peak
periods Tp = 4,6,10 s and truncated at 3 rad/s. The water
depth is set to 20 m. (This combination of significant
wave height and water depth is somewhat unrealistic, but
is chosen to better illustrate the effect of linear filtering.)

Front–back asymmetry. From the simulations one
can estimate the different asymmetry indices, which are
shown in Table 1. Index λAL says that the rate of increase
at mean level upcrossings is about twice the rate of
decrease at downcrossings. Index λNLS says that the time
from trough to crest is about (70±5)% of the time from
crest to trough, on average. The A-indices agree with
values reported in [8]. Cumulative slope distributions are
shown in Fig. 3. The asymmetry parameter is α = 3.

Particle orbits. In the Lagrange model with non-
zero α-parameter the front-back asymmetry is related to
the orientation of particle orbits, which will get a slightly
upward tilt (Fig. 4).

Table 1. Front–back asymmetry measures (7–9) for Lagrange
time waves with PM spectrum

Tp 4 6 10
λAL 0.57 0.50 0.42
λNLS 0.74 0.70 0.67
A –0.32 –0.36 –0.44
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Fig. 3. CDF’s of full crest front Ttc,Tct , (x) and back (o) periods
(solid) and corresponding half periods and T ′,T ′′ (dashed).

Fig. 4. Upper diagram shows eight positively skewed time
waves (centered at time 0). The lower diagram shows the up-
tilting orbits for the particles that are exactly at the crest in the
upper diagram. Circles indicate their displacement at crest time.

Horseshoe pattern. Wave fields with directional
spreading often exhibit crescent or horseshoe like wave
patterns with concave wave back. The Lagrange models
naturally produce such patterns, even with the first order
model. Figure 5 shows the average shape of Lagrange

Fig. 5. Level curves for average 3D Lagrange wave height near
local maximum with height u = 4 m, centered at the origin.
Wave direction is from left to right; horizontal and vertical axis
show distance from the maximum. Solid curve indicates the
maximum of the average wave front.

waves near local maxima with specified height u =
4 m for PM directional orbital spectrum with standard
spreading parameter m = 5. Asymmetry parameter is
α = 2.

4. ASYMMETRIC LAGRANGE WAVES IN A
LINEAR WAVE ENERGY SYSTEM

Wave asymmetry may play a role in design and control
of wave energy converters. We will investigate some
effects of wave asymmetry for one common design, the
vertical linear converter. This generator consists of a
magnetic alternator anchored to the sea floor by a spring
and attached to a buoy floating on the sea surface. When
moving up and down with the waves, the magnet induces
an electric current in the windings of a surrounding
stator, also fixed to the see floor [3,20].

The average power P delivered by the generator
is proportional to the square of its vertical velocity; if
Z(t) denotes the vertical position of the magnet relative
its position at calm water, then P = γE

(
(dZ(t)/dt)2

)
,

where γ is a damping coefficient, which can be changed
according to wave conditions. The standard approach in
design studies is to use either empirical data or artificial
data generated by a Gaussian model. The question
addressed here is to what extent, if any, the average
power depends on the wave asymmetry as manifested in
the Lagrange model as compared to the Gaussian model.

The simplest formulation of the vertical linear
converter is the spring-and-damper filter with hydrostatic
excitation only, disregarding any hydrodynamical forces.
With L and Z denoting surface elevation and system
elevation relative to the surface, the governing equation
is

(m+ma)Z′′+ γZ′+ kZ = c(L−Z). (10)

Here, m + ma is the total moving mass, including
any added water mass (assumed to be frequency
independent), γ is the total damping, equal to
the damping coefficient in the generator plus any
hydrodynamic damping, k is the spring constant in the
anchor spring. The parameter c depends on the geometry
and size of the buoy. For a circular buoy with radius r it is
simply c = ρg2πr2 in water with density ρ . This model
only contains two parameters, the eigenfrequency ω0 =√

k+c
m+ma

of buoy/alternator, and the relative damping

ζ = γ
2
√

(m+ma)(k+c)
. The value of the parameter c is

irrelevant for the comparison between the Gaussian and
the Lagrangian wave model.

In irregular seas the wave excitation does not act with
regular periodicity, since individual waves have variable
amplitude and period, and the efficiency is measured
as the statistical average P. We will now investigate
how this measure depends on the assumed wave model
– Gaussian or Lagrangian. The power of the linear
generator has its maximum when its eigenperiod is equal
to the wave period. In a random sea there is no fixed
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Fig. 6. Relative effect PLagrange/PGauss as function of relative damping ζ for buoy/generator system with eigenfrequency
ω0 = 2π/6 rad/s in three different seastates with peak period Tp = 4,6,10 s. The boxplots illustrate the spreading in 1000
simulations for each ζ = 0.1(0.1)2.0.

wave period and one has to relate to the peak period of the
power spectrum. Then there is the issue how much the
wave asymmetry affects the theoretical average generator
power.

Figure 6 shows boxplots of simulated ratios
between the generator power when driven by front–
back symmetric Gaussian waves and with asymmetric
Lagrange waves. The orbital spectrum is a Pierson–
Moskowitz spectrum with significant wave height 2.4 m
and the water depth is 20 m. The ratio depends on
the relative damping ζ = 0.1(0.1)2.0 and on the wave
peak period Tp and the eigenperiod ω0. For each damp-
ing value 1000 wave sections were simulated, each
20 minutes long. The asymmetry parameter was α = 3.

As seen in the figure, the use of a Gaussian wave
model tends to mostly overestimate the generator power
compared to what can be produced by asymmetric waves.
However, as can be expected, the degree of front–back
wave asymmetry is suppressed by the linear filter, and the
vertical generator movement will be almost symmetric
(not illustrated here). A nonlinear filter, taking also
hydrodynamical forces into account, may give different
results.

5. SUMMARY

The first order Gauss–Lagrange wave model consists of
two linear wave components, which, when combined,
produce waves that share many geometric properties
typical for more complex nonlinear wave models. In
the simplest Lagrange model there is a 90 deg phase
shift between the vertical and horizontal components,
giving crest-trough statistical asymmetry, depending on
the water depth. A simple modification, governed by
a single parameter, gives waves with realistic degrees
of front–back asymmetry. A major advantage with
the model is that one can compute the exact statistical
distributions of different slope variables, without relying
only on simulations.

The examples show what asymmetries that can be
obtained, illustrate the statistical distributions of the
crest front and crest back periods, and the tilted particle
orbits near asymmetric wave crests. A new feature, not

previously published, is the horseshoe like patterns near
local crests in 3D Lagrange waves. The final example
illustrates the consequences of using an asymmetric wave
model in a linear wave energy converter, as compared to
the often used Gaussian model.

A tutorial for how to simulate and analyse Lagrange
models together with the WAFO toolbox is available
in [12].
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Gaussi-Lagrange’i tüüpi juhuslike laineväljade asümmeetria ja energiasaagis

Georg Lindgren

Gaussi-Lagrange’i tüüpi juhuslike lainete mudel esitab kahest lineaarsest komponendist koosnevaid mitteregulaarseid
lainevälju, mille asümmeetria omadused sarnanevad ookeanilainete vastavate omadustega. On esitatud sellise mudeli
põhimõtteskeem ja arvutatud tekkivate veepinna kallete tõenäosusjaotused. On näidatud, milliseiks kujunevad lainete
esi- ja taganõlva asümmeetria, veeosakeste trajektoorid ning laineharjade hobuserauakujuline muster ja demonstree-
ritud, et selliste lainete energiasaagis on väiksem kui sama kõrgete lineaarsete lainete puhul.


