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Abstract. In the present paper we consider a structure constituted by ‘long’ Euler beams forming two mutually intersecting arrays
and interacting via internal pivots, which we call pantographic 2D lattices. For this structure, small deformations, but possibly
large displacements, can be considered. We performed numerical simulations concerning 2D pantographic sheets of rectangular
shape with two families of beam arrays cutting at 90 degrees. The set of theoretical tools needed to describe the continuous limit
for such kind of structures goes beyond classical continuum mechanics. In particular, non-Cauchy contact actions can arise in the
considered context. The results motivate further investigations, the first step reasonably being the determination of a generalized
continuum model.
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1. INTRODUCTION

It is commonly accepted in continuum mechanics that
mechanical interactions are due to surface contact forces,
these interaction forces being represented by the stress
tensor σ (Cauchy Theorem). As it is well known,
when dealing with the equilibrium of elastic media, this
description can easily be recovered through variational
considerations. These classical conclusions, however,
are valid in the context of first gradient Cauchy continua,
but cease to hold when more peculiar structures are
considered. Specifically, discrete systems leading in
the homogenized limit to higher order continua may
provide relatively simple examples, and thus a better
understanding, of these new mechanical interactions.
The literature concerning higher order continua is of
course very wide; for some works presenting relations
with homogenization problems, the reader can see
e.g. [10,16,31,32,38,39]. The theory of micromorphic
media, which can be viewed as a generalization of higher
gradient continua, can also offer tools useful to deal with
homogenization processes (see e.g. [15,25,29]). The

behaviours that can be shown in this kind of context are
very rich, entailing, for instance, the possibility of phase
transitions (see e.g. [1,11,12,33,40]) and instabilities of
the type presented e.g. in [20–23,30]).

Herein we consider a structure constituted by
suitably long Euler beams. The simple Euler model
for the beam still represents the basis for interesting
scientific subjects in the case of peculiar geometrical or
elastic characteristics (see e.g. [2,6]). In the structure
considered in our model, the beams form parallel and
orthogonal arrays. Each beam belonging to an array is
interconnected via internal pivots to all the beams of the
other array. We call the resulting structure a pantographic
2D lattice. This system is characterized by three scales
of different length: the diameter of the beams (on which
of course the stiffness depends), the spacing between the
beams, and the distance between the closest pivots. As a
concrete example from the ‘real world’, one can consider
the Kevlar fibres shown in Fig. 1a.

The aim of the present paper is to introduce a model
based on the considered structure and characterized by
very simple kinematics, and briefly discuss, by means of
some numerical simulations, its basic characteristics.
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(a) (b)

Fig. 1. Photo of Kevlar fibres (a) and the reference configuration (b).

2. THE MODEL

The reference configuration C∗ for our mechanical model
is graphically represented in Fig. 1b. Lines indicate
beams, which are divided in two families, α and β , of
parallel and equally spaced beams (at the distance d),
reciprocally orthogonal in C∗. The beams are arranged
in a rectangle (sized

√
2Ld ×

√
2Wd in C∗; where L

and W are integers representing the number of intervals
between the beams along the height (h) and the width
(l)) whose sides are crossed by α and β at 45 degrees
in C∗. We indicate the beams belonging to α and β ,
respectively, with integer indexes i and j ranging from
0 to L + W, where the extreme values indicate points
representing ‘degenerate’ beams. Referring to Fig. 1b,
we start counting from the upper left corner for the family
α and from the lower left corner for the family β . In
this way every intersection is uniquely determined by
two integers (i, j) indicating the two beams to which the
intersection belongs.

Each beam has a standard linearized Euler strain
energy density given by

E =
kM(u′′)2 + kN(w′)2

2
. (1)

Here u and w are respectively the values of transverse

and axial displacements u and w with respect to C∗, and
kM and kN are respectively bending and axial stiffness
coefficients, which in the real object depend of course on
the diameter of the beams.

The dots in Fig. 1a represent hinges whose
kinematics are defined by

ub(i, j)+wb(i, j) = uc(i, j)+wc(i, j), (2)

which must hold for ∀b ∈ α,c ∈ β and for all integers i, j
such that 0 ≤ i ≤ L+W and 0 ≤ j ≤ L+W.

Informally speaking, the actual configuration Ct is
then characterized, with respect to C∗, by a ‘large’
displacement due to the contribution of rigid rotations
allowed by the hinges – which do not interrupt the
continuity of beams – and ‘small’ displacements due to
axial and bending elastic deformations.

3. NUMERICAL RESULTS AND DISCUSSION

Numerical simulations for textile composites have of
course already been considered in the literature (see
e.g. [27,28]). For our numerical simulations, we chose
the value 0.1 m for the length of the lower side of the
rectangle, and a height h whose value is given for every
single simulation. As we had the already mentioned
Kevlar fibres [3] in mind as a reference model, we chose
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the values 1.96× 10−2 N m2 and 7.85× 104 N for kM
and kN , corresponding to a beam with an elliptic section
of semiaxes a = 0.001 m and b = 0.00025 m (area
A = 7.85×10−7 m2, inertia moment of the cross-section
around its minor axis J = 1.96 × 10−13 m4) rotating
around the minor one. To conclude our geometry, we
selected d = 0.0(1) m for the static simulations and
d = 0.00(5) m for the dynamic ones.

The mechanical parameters were again selected
referring to the Kevlar fibres described in [3]. Therefore
we set the mass density ρ = 1450 kg/m3, Y = 100 GPa
for Young’s modulus, and ν = 0.2 for Poisson’s ratio.
The material was assumed to be linearly elastic.

Numerical computation in discrete systems can very
easily lead to delicate numerical problems. A set of tools
that are useful when dealing with peculiar geometrical
configurations, like those considered in our model, are
exposed in [7–9,14,17–19,37].

All numerical simulations were performed with
COMSOL Multiphysics R⃝.

3.1. Statics

We started considering static simulations in which the
system is deformed by means of imposed displacements
applied to the 10 points belonging to the upper side. The
displacement is parallel to the height of the rectangle and
has the value u∆ = h

3 . The displacement parallel to the
upper side is equal to zero, and the points belonging to
the lower side are built in. In this simulation we chose
h = 0.3 m.

The deformed shapes of the system in the given
conditions are shown in Fig. 2. In Fig. 2a the deformation
field of the beam axes for α and β is also plotted, while
in Fig. 2b the maximum and minimum values for the
axial strain due to bending are plotted. In both panels the
upper and lower sides are of course undeformed, and the
maximum striction is observed around the centre. One
can observe that, as it is well known in the continuous
case, the two triangular regions having the upper and
lower sides as the basis are stressed at a very low level,
while a higher concentration of stress is observed in the
vertexes, and the stress gradually decreases along the
sides of the two aforementioned triangular regions.

The global elongation along the height is, as we set,
1/3, while locally one can measure a maximum axial
strain due to the axial force ≈ 7×10−3 and a maximum
axial strain due to the bending moment ≈ 3 × 10−2.
Therefore, as already observed, we have here small
strains and clearly large displacements and rotations.

All the maximum values for stresses and deforma-
tions are well below the yielding values characterizing
the material (Kevlar) we chose as a reference in this
paper.

3.2. Parametric analysis

In this section we begin considering the dynamics of
our system. Specifically, we impose a time-dependent

displacement, oriented along the direction of α , on the
points belonging to the upper side, the lower side being,
as before, built in. The displacement has an impulse-
like character, i.e. it is sharp and concentrated in a
short interval around t = 0.005 s, vanishing elsewhere.
It is analytically represented by the function I(t) = u0 ∗
sech[τ(t − t0)], where u0 = 0.05 m and t0 = 0.005 s, and
τ is a parameter affecting the duration of the impulse.

We provide here (Fig. 3) a parametric analysis
concerning the effect of changing τ while keeping all
other parameters unchanged. The height h of the
rectangle is set to 2.5 m, and for τ the values (from left to
right) 1500, 2500, and 3500 s−1 are considered; the plots
refer to the situation at t = 0.01 s. In Fig. 3 (as well as
in Figs 4 and 5) the absolute value of the rotations of the
cross-sections is plotted by means of colour maps.

Observing the length of the perturbed zone, one can
conjecture a significant dispersion in wave propagation,
whose level appears to be positively influenced by an
increase in τ . Dispersion in such kind of discrete elastic
media was already proven in a one-dimensional context,
e.g. in [36], where the case with dispersion is obtained
by suitably adjusting the parameters characterizing the
system (we will observe in more detail the dispersion in
the following section). As it is visible from the length of
the unperturbed zone close to the upper side, the velocity
of the waves is also positively influenced by the values
of τ .

Another parametric study involved the intensity of
the impulse, controlled by varying u0. In Fig. 4 the values
(from left to right) 0.05√

2
, 0.05, and 0.05

√
2 are employed.

In this case, both the velocity and the dispersion are
unchanged, and only the higher deformations due to
higher intensities are observed.

3.3. Dynamics

In the last simulation, plotted in Fig. 5, we considered the
propagation of a wave in our medium. Wave propagation
has been considered, of course, in an enormously rich
class of contexts in the literature; in particular, cases
which present analogies with our discrete model have
been studied (see e.g. [24,34,35]), and even some cases
of very interesting exotic behaviours were observed
(see [13,26,41]).

In our simulation, we imposed a time-dependent
displacement – analytically given by the aforementioned
function I(t) – oriented along the height of the rectangle
and applied to the points belonging to the upper side. The
height h is set to 2.5 m, and on the horizontal axis, the
time relative to every snapshot is given. In this dynamic
simulation, an X-shaped wave front is visible, and a more
appropriate assessment of dispersion is possible, as the
length of the perturbed zone is clearly increasing in time.
The last two snapshots also show the reflection of the
wave on the lower side (which, we recall, is built in).
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(a) (b)

Fig. 2. Axial strain due to the axial force (a) and the bending moment (b).

Fig. 3. Parametric study on the duration of the impulse.
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Fig. 4. Parametric study on the intensity of the impulse.

Fig. 5. Wave propagation after an imposed displacement on the upper side.

4. CONCLUSIONS

The main aim of the paper was to introduce a simple
model for a pantographic 2D lattice, which can have,
in its homogenized limit, very interesting properties as
a continuum medium. The model can be enriched,
of course, by introducing geometrical non-linearities
or considering dissipation phenomena [4,5] in order
to improve the accuracy in describing real objects.
The theoretical interest, moreover, is also connected
to a set of possible practical applications to different

fields. In this connection, we can mention three main
areas for which realistic applications of the considered
structures are predictable: (i) vascular prostheses, due
to the required properties of anisotropy and selective
penetrability; (ii) aeronautic, aerospace, and naval
engineering, due to the potential lightness of the resulting
components; and (iii) acoustic filters, due to the
possibility of finding suitable inclusions that can damp
selected frequencies. Therefore, further investigation
on the considered pantographic structures looks both
promising and potentially very rich in scientific content.
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Elastne kahemõõtmeline pantograafiline võre:
numbriline analüüs staatilisest tagasisidest ja lainelevist

Francesco dell’Isola, Ivan Giorgio ja Ugo Andreaus

On vaadeldud Euleri taladest koosnevat kahemõõtmelist pantograafilist võret, kus on lubatud väikesed deformatsioo-
nid, kuid suured siirded. Eesmärgiks oli koostada homogeniseeritud pidevale keskkonnale vastav mudel ja teostada
numbrilised simulatsioonid. Nende käigus selgitati esiteks, millised pikijõud ja paindemomendid tekivad võret
moodustavates talades, kui võre on deformeeritud staatiliselt. Teiseks selgitati lainelevi seaduspärasusi vaadeldavas
struktuuris. Sel eesmärgil rakendati mõnedesse võrepunktidesse ajas muutuv siirdeväli. Vaadeldava materjali võima-
like rakendustena on välja pakutud vaskulaarseid proteese, lennuki- ja kosmosetööstust ning laevaehitust.


