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Abstract: Presented a way for recognition the structure of graphs with exactness up to orbits (positions), 

isomorphism and other structural properties. It is realized in the form of specific models that are essential 

attributes for studying the structure of graphs. 
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Introductive explanations 
 

 

It is a much talk about the structure of graph, but what it meant, has remained vague. Structure is an ordering, 

organizational or constructional side of systemic objects. Structure is classically defined as a permanently 

associated status of its elements [14, 17]. We demonstrate that the important properties of the structure of a graph 

are these which allow one structure to distinguish from the other. 

 

Here is presented a way for recognition the structure of the graphs with exactness up to orbits (positions), 

isomorphism and other structural properties. All the properties of structure are described in corresponding papers 

[20, 23, 26, 32, 36, 37]. In this introduction give only a summary of main definitions and characteristics for 

understanding of examples and its explanations. 

 

Recognition of the structure is based on the identification the relationships between elements and their “positions” 

in the structure. 

 

1. A primary way for identification the relationships between elements (vertices): 

1.1. Each binary relation (vertex pair ij) can be characterized as an intersection of surroundings Ni ∩∩∩∩Nj of the 

elements (vertices) that is presented in the form of a binary graph gij.  

1.2. The invariants of gij, where +d is collateral- and  –d custom distance, n – number of vertices and m – 

number of edges identify the binary relation, called binary sign ±d.n.m.ij. 

1.3. Lexicographically ordered system of binary signs – structure’s model SM – identifies the relationships 

between the elements, as well as positions [15]. 

1.4. The positions are equivalence classes that on the aspect of group theory to orbits are called. 

 

In common case is the structure recognizable by these preliminary (basic) binary signs. 

 

On the other hand is obvious that a large part of the binary signs are not complete identifiers of element pairs. 

Many large symmetric structures require complementary identification of binary signs. For this are some ways. 

 

2. Ways of complementary identification the binary signs: 

2.1. Using the complementary binary signs dnmij
m

 of the high degree m binary graphs gij
m

, i.e. binary graphs, 

that remain between elements i and j of G after removing the preliminary binary graph gij (example 4.3). 

2.2. Using the complementary binary signs of local structure models SMij of binary graphs gij (example 4.3). 

2.3. Using the complementary binary signs of sign structures GSp, that consists of element pairs with a 

certain class of pair signs, independently from their positions (example 1.7). 

2.4. Using complementary binary signs of the product of adjacency matrix E×E×E×…=E
n
 where up to 

certain degree n the values of elements e
n

ij as well as the number p of their differences increased, and 

then stopped (examples 1.6 and 4.2). 

 

The meaning of the preliminary binary signs do not lost also in case of perfected binary signs. These characterize 

the belonging of elements and connections to the paths and girths that are need for treatment of the structure. 

Perfected binary sign constitutes a quintuplet ±d.n.m.e
n

ij, where the last represents the perfecting (examples 1.6, 

1.7, 4.2, 4.3). 

 

Structure model SM contains all the characteristics of structure that are necessary for identification the structure as 

a whole and for distinguishing of various structures (chapter 4). 

 

Structure is a complete invariant of isomorphic graphs. Isomorphic graphs have equivalent structure (example 4.1). 

 

Essential structural properties are regularity and symmetry Regularity and symmetry of structure are very rare 

conditions, but for that reason are more intriguing. With the symmetry of the graphs arise confusions. Some call to 

symmetric the simple graphs, because the edges are not directed. Others call symmetric the transitive of vertices or 

edges graphs that mean the transitivity domain of automorphisms in AutG. With the latter must be consent. 
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To the assumption of symmetry is regularity, but not vice versa. Regularities are several, and they are easily 

readable out from structure model SM. We define these. 

 

3. Kinds of regularity: 

3.1. Structure (graph), where by each element i the number v of binary(+)signs +dnmij is constant is v-degree-

regular. 

3.2. Degree-regular structure (graph), where by each element i the number of partial signs –d of binary(–

)signs –dnmij are constant is d-distance-regular. 

3.3. Degree-regular structure (graph), where by each element i the number of partial signs +d of 

binary(+)signs +dnmij are constant is (d+1)-girth-regular. 

3.4. Degree-regular structure (graph), where each element i belong to a clique with the power n<|V| is n-

clique-regular, where |V| is the number of structural elements. 

3.5. Degree-regular structure (graph), where each pair of adjacent elements holds a≥0 common neighbors and 

each nonadjacent pair holds b≥1 common neighbors is strongly-regular. 

 

Symmetry is a structural property that expressed as recurrence of similar elements (particles) in the space or time 

[14, 17]. Indeed, what greater are the positions and what smaller is the number of positions then greater the 

structural symmetry. Symmetry is measurable. Symmetry of the structure depends on the number and size of 

positions. We define these. 

 

4. Kinds of symmetry: 

4.1. Complete structure (graph) has one element- ΩΩΩΩVk and one binary position ΩΩΩΩRn and it is completely 

symmetric. 

4.2. Transitive structure (graph), as it in graph theory called, has one element position ΩΩΩΩVk and it is element 

symmetric. 

4.3. Element symmetric structure (graph), that has one binary(+)position („edge position“) ΩΩΩΩRn
+
  and one 

binary(–)position („non-edge position“) ΩΩΩΩRn
–
 is bisymmetric (examples 1.1 and 1.2). 

4.4. Element symmetric structure (graph), that has one binary(+)position ΩΩΩΩRn
+
 and several binary(–)positions 

ΩΩΩΩRn
–
 is (+)symmetric or edge symmetric (examples 1.3 and 1.4). 

4.5. Element symmetric structure (graph), that has several binary(+)- ΩΩΩΩRn
+
 and several binary(–)positions 

ΩΩΩΩRn
–
 is poly-symmetric (examples 1.6 and 1.7). 

4.6. Structure (graph), that not element symmetric, but has one binary(+)position ΩΩΩΩRn
+
 is semi-symmetric 

(example 1.5). 

4.7. Structure (graph), that not element symmetric, i.e. that has more than one element positions, with at least 

one of these positions ΩΩΩΩVk has at least two elements is partially symmetric (examples 2.1 – 2.5, 3.1 – 

3.10, 5.1 and 5.2). 

4.8. Structure (graph), where the number K of element positions ΩΩΩΩVk equals to the number Vof elements 

(vertices) is 0-symmetric or completely asymmetric (example 3.11 and 5.3b). Almost all of the random 

graphs are 0-symmetric. 

 

Symmetry and regularity is pretty related to with each other. For example, all the element symmetric (transitive) 

graphs are girth regular or clique regular (examples 1.1 – 1.6), and all the connected bisymmetric graphs are 

strongly regular (examples 1.1 and 1.2), etc. 

 

Each position can be “naturalized” in the form of a position structure GSn. 

 

5. Properties of position structures: 

5.1. Position structure GSn is a structure that consists of element pairs, which belong to a certain binary 

position ΩΩΩΩRn. The number of position structures equal to the number of binary positions (example 1.5). 

5.2. Position structure is element symmetric, i.e. its elements belong to the same position ΩΩΩΩVk=1. 

5.3. To the binary(+)position ΩΩΩΩRn
+
 corresponds a position(+)structure GSn

+
 is a partial structure of GS; to 

the binary(–)position ΩΩΩΩRn
–
 corresponds a position(–)structure GSn

–
 is a partial structure of complement 

GS. 
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5.4. Some position structure GSn can be isomorphic with initial structure, GS, GSn≅GS (for example, an 

position structure of the cube is also cube). 

5.5. Different position structures GSn of initial structure GS or position structures of different structures can 

be isomorphic or coincides. 

 

The position structures are needed for opening various “hidden sides” of structure. 

 

For obtaining complementary information about structural properties is sufficient to look the works [32, 35, 37], 

that are simply obtainable also in digital form. 

 

Essential are also the properties of elementary structural changes. 

 

6. Properties of elementary structural changes: 

6.1. By removing an edge G\eij of G obtained a greatest subgraph G
sub

.  

6.2. With adding an edge G∪eij to G obtained a smallest supergraph G
sup

.  

6.3. The number of G
sub

 equals to the number of edges and the number of G
sup

 to number of “non-edges. 

6.4. Greatest subgraphs G
sub

 and smallest supergraphs G
sup

 called adjacent graphs G
adj

 of graph G.  

6.5. If the adjacent graphs G
adj

 are obtained on the ground of the same binary position ΩΩΩΩRn then are these 

isomorphic and constitute an adjacent structure GS
adj

n (examples 5.2 and 5.3).  

6.6. Disjunctive edge operation Fn={(fij)1 ∨…∨ (fij)q}n that changes the structure GS to its adjacent structure 

GS
adj

n called morphism Fn, Fn: GS→→→→GS
adj

n. 

 

Here is essential, that morphisms and adjacent structures are related with the reconstruction problem (chapter 5). 

All the graphs with n vertices form a system of adjacent structures [32, 35, 37]. 

 

By studying the graph-structure is useful to treat also its complement, since it helps to recognize its properties. In 

following presented examples with explanations the enable to study the essential properties of structure. 
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1. Structures of known symmetric graphs 
 

 

Example 1.1. Petersen graph Pet (the numbering starts from the upper element and goes clockwise), the structure 

model for Pet and its complement PetC: 

 

 
A:-2.3.2; B:+4.10.15.    A:-2.6.12; B:+2.5.8. 

 

| 1  1  1  1  1  1  1  1  1  1|      ui    | 1  1  1  1  1  1  1  1  1  1|   ui 

| 1  2  3  4  5  6  7  8  9 10|  i  AB  k  | 1  2  3  4  5  6  7  8  9 10|  AB 

| 0 +B  A  A +B +B  A  A  A  A|  1  63  1  | 0  A +B +B  A  A +B +B +B +B|  36 

     0 +B  A  A  A +B  A  A  A|  2  63  1       0  A +B +B +B  A +B +B +B|  36 

        0 +B  A  A  A +B  A  A|  3  63  1          0  A +B +B +B  A +B +B|  36 

           0 +B  A  A  A +B  A|  4  63  1             0  A +B +B +B  A +B|  36 

              0  A  A  A  A +B|  5  63  1                0 +B +B +B +B  A|  36 

                 0  A +B +B  A|  6  63  1                   0 +B  A  A +B|  36 

                    0  A +B +B|  7  63  1                      0 +B  A  A|  36 

                       0  A +B|  8  63  1                         0 +B  A|  36 

                          0  A|  9  63  1                            0 +B|  36 

                             0| 10  63  1                               0|  36 

 

Structural properties to show that is possible to read out from the structure model: 

a) Petersen graph Pet has two binary positions, i.e. it is bisymmetric. Thus, it has two adjacent structures 

GS
adj

n in the form of one greatest sub-structure GS
sub

n=+B (reflected as its 15 possible isomorphic greatest 

sub-graphs) and one smallest superstructure GS
sup

n=-A (reflected as its 30 possible isomorphic smallest 

super-graphs). 

b) From bisymmetry concludes strong regularity of Pet. 

c) Graph Pet is 5-girth-regular, there exist twelve 5-girths, in present case: (1): 1-2-3-4-5-1, (2): 6-8-10-7-9-

6, (3): 1-2-3-8-6-1, (4): 1-2-7-10-5-1, (5): 1-5-4-9-6-1, (6): 2-3-4-9-7-2, (7): 3-4-5-10-8-3, (8): 1-2-7-9-6-

1, (9): 1-5-10-8-6-1, (10): 2-3-8-10-7-2, (11): 3-4-9-6-8-3, and (12): 4-5-10-7-9-4. Each element belongs 

to six girths, each edge belongs to four girths. 

d) Binary sign +4.10.15 means, that the element pair belongs to an assemblage of 5-girths, which consists of 

10 elements and 15 connections (edges) – it is the complete invariant of Petersen graph, such sign do not 

have other structures. 

e) The complement of Petersen graph PetC is 4-clique-regular. Explicit clique sign do not exist, but binary 

graph of binary sign +2.5.8 contains the 4-clique. For example, the local structure model of binary graph 

with sign +2.5.8 for elements 1 and 3 contains the signs of 4-clique, +2.4.6, that shows the existence of 4-

clique 1,3,9,10: 
A: -2.4.5;  B: +2.3.3;  C: +2.4.6;  D: +2.5.8. 

 

| 1  3| 9 10| 7|   i   ABCD   k   123  

| 0  D| C  C| B|   1   0121   1   121  

     0| C  C| B|   3   0121   1   121  

      | 0  C|-A|   9   1030   2   210  

           0|-A|  10   1030   2   210  

              0|   7   2200   3   200  

f) And so exists in the complement five intersected 4-cliques, in present case with elements: (1): 1,3,9,10; 

(2): 2,4,6,10; (3): 1,4,7,8; (4): 2,5,8,9; and (5): 3,5,6,7. Each element belongs to two cliques where each 

edge belongs to one clique. 

g) Invariants and measures: 
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G |E| k N+ N- P CL MC DM SEV+ SE+ SRV HR SR aut 

Pet 15 1 1 1 2 2 5 2 151 1.000 

PetC 30 1 1 1 2 4 4 2 301 1.000 

151301 0.2767 0.8338 120 

 

Not every strongly regular graph can be bisymmetric. Among the graphs with up to 20 elements exists 39 

bisymmetric & strongly regular & clique- or girth-regular graphs, including the 27 simply constructed n-m-cliques 

and 12 “non-m-n-cliques”, to where belongs also Petersen graph. As a rule, the lists of strongly regular graphs are 

incomplete. By help of the structure models succeeded these lists to supplement. 

 

It is deal with partial coincidence of bisymmetry and strong regularity. Bisymmetry includes also the disconnected 

structures and strong regularity can be exists in the case of mono-, poly-, and partial symmetry. Although among 

the structures with up to 20 elements it not been observed. Here has treated only symmetric structures, i.e. graphs 

that have large positions. 

 

To such part belongs also the Clebsh graph (called also Greewood-Cleason graph) with very interesting structural 

properties. 

 

Example 1.2. Clebsh graph Cle (the numbering starts from the upper element and goes clockwise, 16 is in the 

centre), the structure’s model of Cle and its complement CleC: 

 

 
A:-2.4.4; B:+3.10.13. 

 

  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16|   i    AB   k  

  0 +B  A  A +B  A  A +B  A  A  A +B  A  A +B  A|   1   105   1  

     0 +B  A  A  A +B  A  A +B  A  A  A +B  A  A|   2   105   1  

        0 +B  A +B  A  A +B  A  A +B  A  A  A  A|   3   105   1  

           0 +B  A  A +B  A  A +B  A  A +B  A  A|   4   105   1  

              0 +B  A  A  A +B  A  A +B  A  A  A|   5   105   1  

                 0 +B  A  A  A  A  A  A  A +B +B|   6   105   1  

                    0 +B  A  A +B  A +B  A  A  A|   7   105   1  

                       0 +B  A  A  A  A  A  A +B|   8   105   1  

                          0 +B  A  A +B  A +B  A|   9   105   1  

                             0 +B  A  A  A  A +B|  10   105   1  

                                0 +B  A  A +B  A|  11   105   1  

                                   0 +B  A  A +B|  12   105   1  

                                      0 +B  A  A|  13   105   1  

                                         0 +B +B|  14   105   1  

                                            0  A|  15   105   1  

                                               0|  16   105   1  

Structural properties: 

a) Graph Cle is bisymmetric and has one greatest sub-structure GS
sub

n=+B (reflected as its 40 possible 

isomorphic greatest subgraphs) and one smallest superstructure GS
sup

n=-A (reflected as its 80 possible 

isomorphic smallest super-graphs). 

b) From bisymmetry Cle concludes its strong regularity. 

c) From binary sign +3.10.13 concludes 4-girth-regularity of Cle.  

d) Graph Cle appear also to 4-partite with incompletely connected parts on 4-elementical bases. But it is no 

quadroclique. The parts are variety, where, for example one variant is A=5,8,12,15;  B=3,7,10,14;  

C=1,4,9,16; and  D=2,6,11,13.: 

e) Binary signs and structure model of complement CleC:  
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A:-2.8.24; B:+2.8.22. 

 

  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16|   i   A B   k  

  0  A +B +B  A +B +B  A +B +B +B  A +B +B -A  B|   1   510   1  

     0  A +B +B +B  A +B +B  A +B +B +B  A +B +B|   2   510   1  

        0  A +B  A +B +B  A +B +B  A +B +B +B +B|   3   510   1  

           0  A +B +B  A +B +B  A +B +B  A +B +B|   4   510   1  

              0  A +B +B +B  A +B +B  A +B +B +B|   5   510   1  

                 0  A +B +B +B +B +B +B +B  A  A|   6   510   1  

                    0  A +B +B  A +B  A +B +B +B|   7   510   1  

                       0  A +B +B +B +B +B +B  A|   8   510   1  

                          0  A +B +B  A +B  A +B|   9   510   1  

                             0  A +B +B +B +B  A|  10   510   1  

                                0  A +B +B  A +B|  11   510   1  

                                   0  A +B +B  A|  12   510   1  

                                      0  A +B +B|  13   510   1  

                                         0  A  A|  14   510   1  

                                            0 +B|  15   510   1  

                                               0|  16   510   1  

f) From 4-elemintic parts of Cle concludes the 4-clique regularity of various cliques of complement CleC. 

g) On the other hand, in case of each vertex of Cle exist between its 5 adjacent vertices adjacencies (edges), 

from which concludes also a 5-clique-regularity of complement CleC. We can in CleC to find 16 different 

5-cliques, such as (beginning at the adjacent vertices of first vertex of Cle) 2,5,8,12,15; 1,3,7,10,14; … to 

ending with 6,8,10,12,14. 

h) Invariants and measures of graph and its complement: 

 
G |E| k N+ N- P CL MC DM SEV+ SE+ SRV HR SR 

Cle 40 1 1 1 2 2 4 2 401 1.000 4018010 0.2762 0.8670 

CleC 80 1 1 1 2 5 3 2 801 1.000  0  

 

 

Example 1.3, Heawood graph Hea (the numbering starts from the upper element and goes clockwise) the structure 

model of Hea and its complement HeaC: 

 

 
 

A:-3.8.9; B:-2.3.2; C:+5.14.21. 

 
  1  2  3  4  5  6  7  8  9 10 11 12 13 14|   i   ABC   k  deg 

  0 +C  B  A  B +C  B  A  B  A  B  A  B +C|   1   463   1   3 

     0 +C  B  A  B  A  B  A  B +C  B  A  B|   2   463   1   3 

        0 +C  B  A  B +C  B  A  B  A  B  A|   3   463   1   3 

           0 +C  B  A  B  A  B  A  B +C  B|   4   463   1   3 

              0 +C  B  A  B +C  B  A  B  A|   5   463   1   3 

                 0 +C  B  A  B  A  B  A  B|   6   463   1   3 

                    0 +C  B  A  B +C  B  A|   7   463   1   3 

                       0 +C  B  A  B  A  B|   8   463   1   3 

                          0 +C  B  A  B +C|   9   463   1   3 

                             0 +C  B  A  B|  10   463   1   3 

                                0 +C  B  A|  11   463   1   3 

                                   0 +C  B|  12   463   1   3 

                                      0 +C|  13   463   1   3 

                                         0|  14   463   1   3 
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Structural properties: 

a) Graph Hea has one vertex position (is “transitive”) and one edge position, by +C. Consequently, Hea is 

edge symmetric, but it has also two binary(–)positions, by –A and –B correspondingly. Thus, it has one 

greatest sub-structure GS
sub

n=+C (reflected as its 21 possible isomorphic greatest subgraphs) and two 

smallest superstructures GS
sup

n=–A and GS
sup

n=–B (reflected as its 28 and 42 possible isomorphic smallest 

super-graphs). 

b) From existence of two binary(–)positions concludes existence also of two position structures: 1) GSn=–A 

with binary signs A: –3.10,16; B: –2.2.4; C: +3.8,10; 2) GS
sup

n=–B with binary signs A: –u.2.0; B:+2.7.21 

that constitutes two separate 7-cliques. 

c) Binary sign +5.14.21 mean that element pair and corresponding edge belong to an assemblage of 6-girths 

with 14 vertices and 21 edges. Consequently, Hea is 6-girth regular. 

d) From 6-girth regularity concludes that graph Hea is also bipartite, where its parts in present case divide to 

vertices with even numbers and vertices with odd numbers. 

e) The binary signs and structure model of complement HeaC: 

 
A:-2.10.36; B:+2.8.22; C:+2.9.30. 

  1  2  3  4  5  6  7  8  9 10 11 12 13 14|   i   ABC   k   deg 

  0  A +C +B +C  A +C +B +C +B +C +B +C  A|   1   346   1   10 

     0  A +C +B +C +B +C +B +C  A +C +B +C|   2   346   1   10 

        0  A +C +B +C  A +C +B +C +B +C +B|   3   346   1   10 

           0  A +C +B +C +B +C +B +C  A +C|   4   346   1   10 

              0 -A +C +B +C  A +C +B +C +B|   5   346   1   10 

                 0  A +C +B +C +B +C +B +C|   6   346   1   10 

                    0  A +C +B +C  A +C +B|   7   346   1   10 

                       0  A +C +B +C +B +C|   8   346   1   10 

                          0 -A +C +B +C  A|   9   346   1   10 

                             0  A +C +B +C|  10   346   1   10 

                                0  A +C +B|  11   346   1   10 

                                   0  A +C|  12   346   1   10 

                                      0  A|  13   346   1   10 

                                         0|  14   346   1   10 

 

f) Complement HeaC has two edge positions, by +B and +C, consequently it is poly symmetric. From 

bipartite of Hea concludes that HeaC consist of two mutually connected 7-cliques, it is 7-clique regular, 

where the cliques correspond to the parts of Hea. 

g) Invariants and measures: 
 

G |E| k N+ N- P CL MC DM SEV+ SE+ SRV HR SR aut 

Hea 21 1 1 2 3 2 6 3 211 1.000 

HeaC 70 1 2 1 3 7 3 2 281421 0.7935 

211281421 0.4595 0.7655 336 

 

Following known graph is not bipartite but its complement contains interesting clique regularity, 

 

 

Example 1.4. A diagram of dodecahedron or Hamilton graph Ham, the structure model of Ham and its complement 

HamC: 
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-A=-5.20.30; -B=-4.8.9; -C=-3.4.3; -D=-2.3.2; +E=+4.8.9. 

 
 1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20|   i   ABCDE   k 

 0  E -D -C -B -C -D  E -D -C -B -A -B -C -D -D -C -C -D  E|   1   13663   1 

    0  E -D -C -C -D -D -C -B -A -B -C -D -E -D -C -B -C –D|   2   13663   1 

       0  E -D -D  E -D -C -C -B -C -C -D -D -C -B -A -B –C|   3   13663   1 

          0  E -D -D -C -B -C -C -D -D  E -D -C -C -B -A –B|   4   13663   1 

             0  E -D -C -C -D -D  E -D -D -C -B -C -C -B –A|   5   13663   1 

                0  E -D -D  E -D -D -C -C -B -A -B -C -C –B|   6   13663   1 

                   0  E -D -D -C -C -B -C -C -B -A -B -C –C|   7   13663   1 

                      0  E -D -C -B -A -B -C -C -B -C -D –D|   8   13663   1 

                         0  E -D -C -B -A -B -C -C -D  E –D|   9   13663   1 

                            0  E -D -C -B -A -B -C -D -D –C|  10   13663   1 

                               0  E -D -C -B -C -D  E -D –C|  11   13663   1 

                                  0  E -D -C -C -D -D -C –B|  12   13663   1 

                                     0  E -D -D  E -D -C –C|  13   13663   1 

                                        0  E -D -D -C -B –C|  14   13663   1 

                                           0  E -D -C -C –D|  15   13663   1 

                                              0  E -D -D  E|  16   13663   1 

                                                 0  E -D –D|  17   13663   1 

                                                    0  E –D|  18   13663   1 

                                                       0  E|  19   13663   1 

                                                          0|  20   13663   1 

 

 

-A=-2.16.102; +B=+2.14.78; +C=+2.14.79; +D=+2.15.89. 

 
 1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20|   i   ABCCD   k 

 0 -A  D  B C1  B  D -A  D  B C1 C2 C1  B  D  D  B  B  D –A|   1   36316   1 

    0 -A  D  B  B  D  D  B C1 C2 C1  B  D -A  D  B C1  B  D|   2   36316   1 

       0 -A  D  D -A  D  B  B C1  B  B  D  D  B C1 C2 C1  B|   3   36316   1 

          0 -A  D  D  B C1  B  B  D  D -A  D  B  B C1 C2 C1|   4   36316   1 

             0 -A  D  B  B  D  D -A  D  D  B C1  B  B C1 C2|   5   36316   1 

                0 -A  D  D -A  D  D  B  B C1 C2 C1  B  B C1|   6   36316   1 

                   0 -A  D  D  B  B C1  B  B C1 C2 C1  B  B|   7   36316   1 

                      0 -A  D  B C1 C2 C1  B  B C1  B  D  D|   8   36316   1 

                         0 -A  D  B C1 C2 C1  B  B  D -A  D|   9   36316   1 

                            0 -A  D  B C1 C2 C1  B  D  D  B|  10   36316   1 

                               0 -A  D  B C1  B  D -A  D  B|  11   36316   1 

                                  0 -A  D  B  B  D  D  B C1|  12   36316   1 

                                     0 -A  D  D -A  D  B  B|  13   36316   1 

                                        0 -A  D  D  B C1  B|  14   36316   1 

                                           0 -A  D  B  B  D|  15   36316   1 

                                              0 -A  D  D –A|  16   36316   1 

                                                 0 -A  D  D|  17   36316   1 

                                                    0 -A  D|  18   36316   1 

                                                       0 –A|  19   36316   1 

                                                          0|  20   36316   1 

 

Structural properties: 

a) Graph Ham is edge symmetric (has one edge position +E and four “non-edge” positions, by –A, –B, C and 

D. Consequently its complement HamC is poly symmetric. 

b) In complement HamC the explicit clique signs no exist, but in the processing the binary graphs gij, for 

example with signs +B=+2.14.78, obtained local structure models SM1.4, SM5.9, SM3.16, SM6.13 and SM5.8, 

contain 8-clique signs +2.8.28. On the ground of such local structure models can be to recognize all the 

“hidden” partial 8-cliques of HamC: 

 

i= 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

I �    �    �   �  �   �  �  �  

II  �   �  �  �  �   �   �   � 

III �  �   �   �   �  �  �  �   

IV  �  �  �  �   �  �   �   �  

V   �  �   �  �   �  �   �  � 
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c) Thus, the complement HamC is 8-clique-regular, where all five partial cliques are intercrossed, and where 

all the 10 intercrossing edges belong to binary position C2. 

 
i-j= 1-12 2-11 3-18 4-19 5-20 6-16 7-17 8-13 9-14 10-15 

Partial clique I II III I II III I IV II I 

Partial clique III IV V IV V IV II V III V 

 

d) Invariants and measures: 

 
G |E| k N+ N- P CL MC DM SEV+ SE+ SRV HR SR 

Ham 30 1 1 4 5 2 5 5 301 1.000 

HamC 160 1 4 1 5 8 3 2 101301602 0.5590 

101302602 0.6366 0.5022 

 

f) The position structures of Ham: 1) by position –B a graph that is isomorphic with Ham; 2) by position –C 

structure with binary signs A:–3.14.30, B: –2.4.4, C:–2.3.2, D: +2.4.6, i. e. an edge symmetric and 4-clique 

regular graph; 3) by –D structure with binary signs A:–3.14.30; B: –2.4.4; C: +2.3.3, i. e. an edge 

symmetric and 3-girth regular graph. 

 

Form known graphs are clique regular also complements of Coxeter’s, Folkman’s and other graphs. Their originals 

are bipartite and by all the nature laws represent the complements of such parts self-evidently cliques. 

 

 

Example 1.5. Folkman graph Fol (the numbering starts from the main diagonal), its structure model and list of its 

position structures GSn: 

 

 
 

A:-4.14.21; B:-3.8.10; C:-2.6.8; D:-2.4.4; E:-2.3.2; F:+3.6.8. 

 
| 1  1  1  1  1  1  1  1  1  1| 2  2  2  2  2  2  2  2  2  2|        ui    k   si 

|11 12 13 14 15 16 17 18 19 20| 1  2  3  4  5  6  7  8  9 10|  i   ABCDEF     12 

| 0 -E -E -E -E -E -E -E -E –C| F -B  F -B -B -B -B -B  F  F| 11   061084  1  04 

     0 -E -E -E -E -E -E -C –E|-B  F -B  F -B -B -B  F  F -B| 12   061084  1  04 

        0 -E -E -E -E -C -E –E|-B -B  F -B  F -B  F  F -B -B| 13   061084  1  04 

           0 -E -E -C -E -E –E| F -B -B  F -B  F  F -B -B –B| 14   061084  1  04 

              0 -C -E -E -E –E|-B  F -B -B  F  F -B -B -B  F| 15   061084  1  04 

                 0 -E -E -E –E|-B  F -B -B  F  F -B -B –B  F| 16   061084  1  04 

                    0 -E -E –E| F -B –B  F -B  F  F -B –B -B| 17   061084  1  04 

                       0 -E –E|-B –B  F -B  F –B  F  F –B -B| 18   061084  1  04 

                          0 –E|-B  F -B  F -B -B –B  F  F -B| 19   061084  1  04 

                             0| F -B  F -B -B -B -B –B  F  F| 20   061084  1  04 

                              | 0 -A -D -D -A -D -D -A -D –D|  1   360604  2  40 

                                   0 -A -D -D -D -A -D -D -D|  2   360604  2  40 

                                      0 -A -D -A -D -D -D –D|  3   360604  2  40 

                                         0 -A -D -D -D -D –A|  4   360604  2  40 

                                            0 -D -D -D -A –D|  5   360604  2  40 

                                               0 -D -A -A –D|  6   360604  2  40 

                                                  0 -D -A –A|  7   360604  2  40 

                                                     0 -D –A|  8   360604  2  40 

                                                        0 –D|  9   360604  2  40 

                                                           0| 10   360604  2  40 
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Structural properties: 

a) It is know that Folkman graph Fol is 4-degree regular, 4-girth regular, bipartite and semi-symmetric. 

b) From bipartite of Fol concludes that its complement FolC consist of two mutually connected 10-cliques, it 

is 10-clique regular, where the cliques correspond to the parts of Fol. 

c) Graph Fol includes six binary positions by –A, –B, –C, –D, –E, +F and can be decomposed to six position-

structures: 

d) To binary position with vertex pairs –A corresponds position structure Foln: –A is Petersen’s graph(!). This 

fact is showed in partial model SM2.2, if there the sign –A replace with Petersen sign +4.10.15 and –D 

replace with sign –2.3.2 then it is equivalent with structure model of Petersen graph (example 1.1). 

e) To binary position –B corresponds position structure Foln=–B turns out to another semi-symmetric graph, 

designed by V. Titov [39] that has also a position structure in the form of Petersen graph. 

f) To binary position –C corresponds position structure Foln=–C is a graph with ten components of 2-cliques. 

g) To binary position –D corresponds position structure Foln=–D is the complement of Petersen graph (!). 

h) To binary position –E corresponds position structure Foln=–E is the complement of position structure Foln=–

C, i.e. 2-quinta clique. 

i) To binary position +F corresponds position structure Foln=+F is naturally Folkman graph self. 

 

The position structures opens some various “hidden sides” of the structure, that sometimes also “mystical” seems. 

In principle, the position structures are inevitable, so as the cowering, cliques and others structural attributes, where 

their identification to a very practical and necessary deemed. 

 

It is obvious that a large part of the binary signs are not complete invariants of element pairs. Some of large 

symmetric structures require a perfection of binary signs. There exist four ways (see 2.1 – 2.4 in introduction). 

 

 

Example 1.6. Polysymmetric graph Tev and its initial structure model. There we will perfect it by product 

perfection (see 2.4 in introduction) and by sign structures (see 2.3 in introduction) for recognition of all the binary 

positions: 
 

 
 

A:-5.18.23; B:-4.9.10; C:-4.8.8; D:-4.7.7; E:-3.8.9; F: -3-3-6; G:-3.4.3; H:-2.3.2; 

I:+5.10.12; J:+5.12.15; K:+5.14.18. 

 
  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24|  i   ABCDEFGHIJK  k 

  0 +K  H  E  H +I  H  F  B  G  D  G  C  A  D  A  B  G  H  F  H  F  H +J|  1   22121336111  1 

     0 +J  H  F  H  F  H  G  B  A  D  A  C  G  D  G  B  F  H +I  H  E  H|  2   22121336111  

        0 +K  H  E  H +I  H  F  B  G  D  G  C  A  D  A  B  G  H  F  H  F|  3   22121336111  

           0 +J  H  F  H  F  H  G  B  A  D  A  C  G  D  G  B  F  H +I  H|  4   22121336111  

              0 +K  H  E  H +I  H  F  B  G  D  G  C  A  D  A  B  G  H  F|  5   22121336111  

                 0 +J  H  F  H  F  H  G  B  A  D  A  C  G  D  G  B  F  H|  6   22121336111  

                    0 +K  H  E  H +I  H  F  B  G  D  G  C  A  D  A  B  G|  7   22121336111  

                       0 +J  H  F  H  F  H  G  B  A  D  A  C  G  D  G  B|  8   22121336111  

                          0 +K  H  E  H +I  H  F  B  G  D  G  C  A  D  A|  9   22121336111  

                             0 +J  H  F  H  F  H  G  B  A  D  A  C  G  D| 10   22121336111  

                                0 +K  H  E  H +I  H  F  B  G  D  G  C  A| 11   22121336111  

                                   0 +J  H  F  H  F  H  G  B  A  D  A  C| 12   22121336111  

                                      0 +K  H  E  H +I  H  F  B  G  D  G| 13   22121336111  

                                         0 +J  H  F  H  F  H  G  B  A  D| 14   22121336111  

                                            0 +K  H  E  H +I  H  F  B  G| 15   22121336111  

                                               0 +J  H  F  H  F  H  G  B| 16   22121336111  
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                                                  0 +K  H  E  H +I  H  F| 17   22121336111  

                                                     0 +J  H  F  H  F  H| 18   22121336111  

                                                        0 +K  H  E  H +I| 19   22121336111  

                                                           0 +J  H  F  H| 20   22121336111  

                                                              0 +K  H  E| 21   22121336111  

                                                                 0 +J  H| 22   22121336111  

                                                                    0 +K| 23   22121336111  

                                                                       0| 24   22121336111  

 

The binary(+)positions are here recognized on the level of preliminary binary signs. For true recognition of the 

binary(–)positions be used the product perfection (2.4 in introduction). 

 

The adjacency matrix E of Tev: 

 
  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24|  i   k 

  0  1  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1|  1   1 

     0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  0  0  0|  2   1 

        0  1  0  o  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0|  3   1 

           0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  0|  4   1 

              0  1  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0|  5   1 

                 0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0|  6   1 

                    0  1  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0|  7   1 

                       0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0|  8   1 

                          0  1  0  0  0  1  0  0  0  0  0  0  0  0  0  0|  9   1 

                             0  1  0  0  0  0  0  0  0  0  0  0  0  0  0| 10   1 

                                0  1  0  0  0  1  0  0  0  0  0  0  0  0| 11   1 

                                   0  1  0  0  0  0  0  0  0  0  0  0  0| 12   1 

                                      0  1  0  0  0  1  0  0  0  0  0  0| 13   1 

                                         0  1  0  0  0  0  0  0  0  0  0| 14   1 

                                            0  1  0  0  0  1  0  0  0  0| 15   1 

                                               0  1  0  0  0  0  0  0  0| 16   1 

                                                  0  1  0  0  0  1  0  0| 17   1 

                                                     0  1  0  0  0  0  0| 18   1 

                                                        0  1  0  0  0  1| 19   1 

                                                           0  1  0  0  0| 20   1 

                                                              0  1  0  0| 21   1 

                                                                 0  1  0| 22   1 

                                                                    0  1| 23   1 

                                                                       0| 24   1 

 

The second degree of its adjacency matrix, E
2
:  

 
  i   1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24   k 

  1   3  0  1  0  1  0  1  0  0  0  0  0  0  0  0  0  0  0  1  0  1  0  1  0   1 

  2   0  3  0  1  0  1  0  1  0  0  0  0  0  0  0  0  0  0  0  1  0  1  0  1   1 

  3   1  0  3  0  1  0  1  0  1  0  0  0  0  0  0  0  0  0  0  0  1  0  1  0   1 

  4   0  1  0  3  0  1  0  1  0  1  0  0  0  0  0  0  0  0  0  0  0  1  0  1   1 

  5   1  0  1  0  3  0  1  0  1  0  1  0  0  0  0  0  0  0  0  0  0  0  1  0   1 

  6   0  1  0  1  0  3  0  1  0  1  0  1  0  0  0  0  0  0  0  0  0  0  0  1   1 

  7   1  0  1  0  1  0  3  0  1  0  1  0  1  0  0  0  0  0  0  0  0  0  0  0   1 

  8   0  1  0  1  0  1  0  3  0  1  0  1  0  1  0  0  0  0  0  0  0  0  0  0   1 

  9   0  0  1  0  1  0  1  0  3  0  1  0  1  0  1  0  0  0  0  0  0  0  0  0   1 

 10   0  0  0  1  0  1  0  1  0  3  0  1  0  1  0  1  0  0  0  0  0  0  0  0   1 

 11   0  0  0  0  1  0  1  0  1  0  3  0  1  1  0  1  0  0  0  0  0  0  0  0   1 

 12   0  0  0  0  0  1  0  1  0  1  0  3  0  1  0  1  0  1  0  0  0  0  0  0   1 

 13   0  0  0  0  0  0  1  0  1  0  1  0  3  0  1  0  1  0  1  0  0  0  0  0   1 

 14   0  0  0  0  0  0  0  1  0  1  0  1  0  3  0  1  0  1  0  1  0  0  0  0   1 

 15   0  0  0  0  0  0  0  0  1  0  1  0  1  0  3  0  1  0  1  0  1  0  0  0   1 

 16   0  0  0  0  0  0  0  0  0  1  0  1  0  1  0  3  0  1  0  1  0  1  0  0   1 

 17   0  0  0  0  0  0  0  0  0  0  1  0  1  0  1  0  3  0  1  0  1  0  1  0   1 

 18   0  0  0  0  0  0  0  0  0  0  0  1  0  1  0  1  0  3  0  1  0  1  0  1   1 

 19   1  0  0  0  0  0  0  0  0  0  0  0  1  0  1  0  1  0  3  0  1  0  1  0   1 

 20   0  1  0  0  0  0  0  0  0  0  0  0  0  1  0  1  0  1  0  3  0  1  0  1   1 

 21   1  0  1  0  0  0  0  0  0  0  0  0  0  0  1  0  1  0  1  0  3  0  1  0   1 

 22   0  1  0  1  0  0  0  0  0  0  0  0  0  0  0  1  0  1  0  1  0  3  0  1   1 

 23   1  0  1  0  1  0  0  0  0  0  0  0  0  0  0  0  1  0  1  0  1  0  3  0   1 

 24   0  1  0  1  0  1  0  0  0  0  0  0  0  0  0  0  0  1  0  1  0  1  0  3   1 

 

The second degree matrix no gives perfect information about the binary positions. 
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We must use the matrices of 6 and 7 degree. The results of matrices E
6
 and E

7
 are here connected:  

 
  i     1     2     3     4     5     6     7     8     9    10    11    12    13 

  1     0   258    84   243    75   239    65   191    42   150    33   130    32 

  2   258     0   248    84   201    75   173    65   139    42   108    33   107 

  3    84   248     0   258    84   243    75   239    65   191    42   150    33 

  4   243    84   258     0   248    84   201    75   173    65   139    42   108 

  5    75   201    84   248     0   258    84   243    75   239    65   191    42 

  6   239    75   243    84   258     0   248    84   201    75   173    65   139 

  7    65   173    75   201    84   248     0   258    84   243    75   239    65 

  8   191    65   239    75   243    84   258     0   248    84   201    75   173 

  9    42   139    65   173    75   201    84   248     0   258    84   243    75 

 10   150    42   191    65   239    75   243    84   258     0   248    84   201 

 11    33   108    42   139    65   173    75   201    84   248     0   258    84 

 12   130    33   150    42   191    65   239    75   243    84   258     0   248 

 13    32   107    33   108    42   139    65   173    75   201    84   248     0 

 14   107    32   130    33   150    42   191    65   239    75   243    84   258 

 15    33   130    32   107    33   108    42   139    65   173    75   201    84 

 16   108    33   107    32   130    33   150    42   191    65   239    75   243 

 17    42   150    33   130    32   107    33   108    42   139    65   173    75 

 18   139    42   108    33   107    32   130    33   150    42   191    65   239 

 19    65   191    42   150    33   130    32   107    33   108    42   139    65 

 20   173    65   139    42   108    33   107    32   130    33   150    42   191 

 21    75   239    65   191    42   150    33   130    32   107    33   108    42 

 22   201    75   173    65   139    42   108    33   107    32   130    33   150 

 23    84   243    75   239    65   191    42   150    33   130    32   107    33 

 24   248    84   201    75   173    65   139    42   108    33   107    32   130 

 

 

  i    14    15    16    17    18    19    20    21    22    23    24     k  

  1   107    33   108    42   139    65   173    75   201    84   248     1 

  2    32   130    33   150    42   191    65   239    75   243    84     1 

  3   130    32   107    33   108    42   139    65   173    75   201     1 

  4    33   107    32   130    33   150    42   191    65   239    75     1 

  5   150    33   130    32   107    33   108    42   139    65   173     1 

  6    42   108    33   107    32   130    33   150    42   191    65     1 

  7   191    42   150    33   130    32   107    33   108    42   139     1 

  8    65   139    42   108    33   107    32   130    33   150    42     1 

  9   239    65   191    42   150    33   130    32   107    33   108     1 

 10    75   173    65   139    42   108    33   107    32   130    33     1 

 11   243    75   239    65   191    42   150    33   130    32   107     1 

 12    84   201    75   173    65   139    42   108    33   107    32     1 

 13   258    84   243    75   239    65   191    42   150    33   130     1 

 14     0   248    84   201    75   173    65   139    42   108    33     1 

 15   248     0   258    84   243    75   239    65   191    42   150     1 

 16    84   258     0   248    84   201    75   173    65   139    42     1 

 17   201    84   248     0   258    84   243    75   239    65   191     1 

 18    75   243    84   258     0   248    84   201    75   173    65     1 

 19   173    75   201    84   248     0   258    84   243    75   239     1 

 20    65   239    75   243    84   258     0   248    84   201    75     1 

 21   139    65   173    75   201    84   248     0   258    84   243     1 

 22    42   191    65   239    75   243    84   258     0   248    84     1 

 23   108    42   139    65   173    75   201    84   248     0   258     1 

 24    33   150    42   191    65   239    75   243    84   258     0     1 

 

We can assert that all the complete identifiers of vertex pairs (ie positions) are here recognized. We know that the 

initial binary signs cannot always be the complete identifiers of vertex pairs, but the clarification is suitable 

associate these with the results of matrix product E
n
 of this graph: 

 
1 2 3 4 5 6 7 8 9 10 11 

-A -B -C -D -E -F -G -H +I +J +K 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

108 107 42 32 33 243 191 201 173 150 139 130 65 75 84 239 248 258 

-A1 -A2 -B -C -D -E -F1 -F2 -F3 -G1 -G2 -G3 -H1 -H2 -H3 +I +J +K 

1 1 2 1 2 1 1 1 1 1 1 1 2 2 2 1 1 1 
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The number of initial binary signs is 11, the number of perfected binary signs is 18. The last row is here the 

frequency vector for all the rows (vertices) of structure model: 

 

The complete structure model SM of Tev: 

 
1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24|  i  k  

0  K H3  E H2  I H1 F1  B G1  D G3  C A2  D A1  B G2 H1 F3 H2 F2 H3  J|  1  1 

   0  J H3 F2 H2 F3 H1 G2  B A1  D A2  C G3  D G1  B F1 H1  I H2  E H3|  2  1 

      0  K H3  E H2  I H1 F1  B G1  D G3  C A2  D A1  B G2 H1 F3 H2 F2|  3  1 

         0  J H3 F2 H2 F3 H1 G2  B A1  D A2  C G3  D G1  B F1 H1  I H2|  4  1 

            0  K H3  E H2  I H1 F1  B G1  D G3  C A2  D A1  B G2 H1 F3|  5  1 

               0  J H3 F2 H2 F3 H1 G2  B A1  D A2  C G3  D G1  B F1 H1|  6  1 

                  0  K H3  E H2  I H1 F1  B G1  D G3  C A2  D A1  B G2|  7  1 

                     0  J H3 F2 H2 F3 H1 G2  B A1  D A2  C G3  D G1  B|  8  1 

                        0  K H3  E H2  I H1 F1  B G1  D G3  C A2  D A1|  9  1 

                           0  J H3 F2 H2 F3 H1 G2  B A1  D A2  C G3  D| 10  1 

                              0  K H3  E H2  I H1 F1  B G1  D G3  C A2| 11  1 

                                 0  J H3 F2 H2 F3 H1 G2  B A1  D A2  C| 12  1 

                                    0  K H3  E H2  I H1 F1  B G1  D G3| 13  1 

                                       0  J H3 F2 H2 F3 H1 G2  B A1  D| 14  1 

                                          0  K H3  E H2  I H1 F1  B G1| 15  1 

                                             0  J H3 F2 H2 F3 H1 G2  B| 16  1 

                                                0  K H3  E H2  I H1 F1| 17  1 

                                                   0  J H3 F2 H2 F3 H1| 18  1 

                                                      0  K H3  E H2  I| 19  1 

                                                         0  J H3 F2 H2| 20  1 

                                                            0  K H3  E| 21  1 

                                                               0  J H3| 22  1 

                                                                  0  K| 23  1 

                                                                     0| 24  1 

 

Structural properties: 

a) Perfected binary sign constitutes a quintuplet ±d.n.m.e
n

ij, where the last represents the perfecting. 

b) 23x24:2 = 276 vertex pairs of Tev form 18 binary positions, where by 240 “non-edges” be formed 15 

binary(–)positions, where the positions with pair signs –A1, –A2, –C, –E, –F1, –F2, –F3, –G1, –G2, –G3 

have 12-elements, and with –B, –D, –H1, –H2, –H3 have 24 elements. 

c) 36 adjacent vertex pairs of Tev form three binary(+)positions, +I, +J and +K that have 12 elements. These 

are recognized on the level of initial binary signs. 

d) The number N of binary positions, also position- and adjacent structures is 18, their powers coincide in 

cases Tev and TevC, but have reversed signs. 

e) Graph Tev and its complement TevC divide to 18 position-structures. Position structures by signs –A1, –

A2, –C, –E, –F1, –F2, –F3, –G1, –G2, –G3, I, J, and K have only two pair signs, –A:–0.2.0 and +B:+1.2.1 

and are bisymmetric, 2-clique-regular, and are mutually isomorphic. Position structures by –B, –D, –H1, –

H2 and –H3 constitutes rings and circlets. 

f) 276 possible adjacent graphs aggregate to 15 adjacent super-structures and to three adjacent sub-

structures. 

g) Tev is bipartite, in present case parts with even- and odd-numbered vertices. 

h) As Tev is bipartite, but not bi-clique, then its complement TevC consist of two mutually connected 12-

cliques and is thus 12-clique-regular. These cliques correspond to parts of Tev. 

 

The initial binary signs no lose its meaning these show the relationships between vertices, belonging of vertex 

pairs to (assemblage of) paths or girths with corresponding size etc. It is need for characterizing of the structure. 

But in our focus are binary and element (vertex) positions. Its recognition by help of multiplication the adjacency 

matrices must be a mathematical regularity (lawfulness) for all the no-strongly regular graphs. It could not be 

ignored. Contra examples do not find. As already mentioned earlier, for strongly regular graphs exist other ways of 

deep identification. 

 

In the following example is presented a way that is usable also in case of strongly regular graphs. 
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Example 1.7. The structure of Tev is recognizable also by pair signs of sign structure Tevp= –F (see 2.3 in 

introduction). Sign structures Tevp= –F and Tevp= –A (these not yet the position structures): 

 

 
For explanation is suitable to compare the results on the level of initial binary signs, binary signs of sign structure 

and productive binary signs. 

 

Initial binary signs dnmij of Tev, their markings p and ordering numbers n, perfected binary signs dnmij
p=F

 by sign 

graph Tevp= –F, their markings p*, ordering numbers n* of binary positions, and productive binary signs eij
6 and 

eij
7 of products E6 and E7, where 6 and 7 is degree of adjacency matrix E. 

 
dnmij p n dnmij

p=–F p* n* eij
6 eij

7 

–5.10.12 A1 1 0 108 –5.18.23 -A 

 

1 

–5.8.8 A2 2 0 107 

–4.9.10 -B 2 –4.7.7 B 3 42 0 

–4.8.8 -C 3 –2.4.4 C 4 32 0 

–4.7.7 -D 4 –2.3.2 D 5 33 0 

–3.8.9 -E 5 –3.10.12 E 6 0 243 

+3.4.4 F1 7 0 191 

+5.8.10 F2 8 0 201 

 

–3.6.6 

 

-F 

 

 

6 

+3.4.4 F3 9 0 173 

–3.8.10 G1 10 0 150 

–3.6.6 G2 11 0 139 

 

–3.4.3 

 

-G 

 

 

7 

–3.4.3 G3 12 0 130 

–6.20.26 H1 13 65 0 

–4.7.7 H2 14 75 0 

 

–2.3.2 

 

-H 

 

 

8 

–2.3.2 H3 15 84 0 

+5.10.12 I 9 –3.6.6 I 16 0 239 

+5.12.15 J 10 –3.4.3 J 17 0 248 

+5.14.18 K 11 –5.8.8 K 18 0 258 

 

We see that the same results are obtained by sign structures and products of adjacency matrices coincide. 

 

The positions are essential attributes of structure. The meaning of the structure (ie its recognition) consists in its 

primary attributes – relationships between elements and positions (orbits). On the other hand is structure an 

inseparable attribute of all the really existing objects.  

 

It has once again demonstrated the importance of structure model in research the graph structure. As well the role 

of position- and sign-structures in this, and importance of mutual treatment the structure and its complement. All 

the hidden sides are expressed by position- and sign structures. 

 

The importance of position structures lies in the recognition of structural properties, these recognizes the similar 

parts of various structures. If the structure is divided to parts (bipartite, tripartite etc) or contain components, 

cliques, girths, etc., then the corresponding attributes appear in position structures in another forms. 

 

The preliminary binary signs their meanings do not lose, these remains characterize belonging the elements and 

connections to the paths and girths that is needed by treatment of the structure. 
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2. Partially symmetric structures 
 

 

Example 2.1. Partially symmetric structures Pet
sub

 and Pet
sup

 as adjacent structures GS
adj

 of Petersen graph Pet 

(example 1.1):  

 

By removing at Petersen graph Pet an edge i,j=4,5 is obtained its adjacent sub-structure Pet
sub

: 

 
A:-4.10.14; B:-3.6.6; C:-2.3.2; D:+4.7.8; E:+4.9.12; F:+4.10.14. 

 

| 1  1  1  1| 2  2  2  2| 3  3|          ui    k    si 

| 2  6  7  8| 1  3  9 10| 4  5|   i   ABCDEF       123 deg 

  0 -C  F –C| E  E -C –C|-C –C|   2   006021   1   120  3 

     0 -C  F| E -C  E –C|-C –C|   6   006021   1   120  3 

        0 –C|-C -C  E  E|-C –C|   7   006021   1   120  3 

           0|-C  E -C  E|-C –C|   8   006021   1   120  3 

            | 0 -C -C –C|-B  D|   1   015120   2   201  3 

                 0 -C –C| D –B|   3   015120   2   201  3 

                    0 –C| D –B|   9   015120   2   201  3 

                       0|-B  D|  10   015120   2   201  3 

                        | 0 –A|   4   124200   3   020  2 

                             0|   5   124200   3   020  2 

 

By adding to Petersen graph Pet an edge i,j=4,6 is obtained its adjacent super-structure Pet
sup

: 
 

A:-2.4.4; B:-2.3.2; C:+2.3.3; D:+3.4.4; E:+4.10.16. 

 

| 1  1| 2| 3| 4  4  4  4| 5  5|        ui    k     s1    s2 

| 2 10| 7| 9| 1  3  5  8| 4  6|  i   ABCDE       1234  12345 deg 

  0 –B| E|-B| E  E -B –B|-B -B|  2   06003   1   1020  01020  3 

     0| E|-B|-B -B  E  E|-B -B| 10   06003   1   1020  01020  3 

        0| E|-B -B -B –B|-B -B|  7   06003   2   2100  20100  3 

           0|-B -B -B –B| C  C|  9   06201   3   1002  01002  3 

            | 0 -B  D –B|-A  D|  1   15021   4   1011  10011  3 

                 0 -B  D| D -A|  3   15021   4   1011  10011  3 

                    0 –B| D -A|  5   15021   4   1011  10011  3 

                       0|-A  D|  8   15021   4   1011  10011  3 

                        | 0  C|  4   23220   5   0121  00121  4 

                             0|  6   23220   5   0121  00121  4 

 

Structural properties: 

a) Exactly these same structures Pet
sub

 and Pet
sup

 are obtainable by operating with an arbitrary edge on 

Petersen graph. 

b) Adjacent sub-structure of Petersen graph has 3 vertex- and 9 binary positions. Its adjacent super-structure 

has 5 vertex- and 16 binary positions and its symmetry value SR is smaller. 

c) From 5-girth regularity of Petersen graph is in Pet
sub

 remained 14/15 or 93%, but in Pet
sup

 7/15 or 47%. 

The first is „more petersenical”.  

d) Reverse binary position that reconstruct the Petersen graph placed in partial model SM3.3 of Pet
sub

 by sign –

A; reconstructing probability PF’=1/31. Reverse binary position of Pet
sup

 placed in partial model SM5.5 in 

the form of sign C; reconstructing probability PF’=1/16.  

e) Adjacent sub-structure Pet
sub

 is a common adjacent super-structure of 3 initial structures and a common 

adjacent sub-structure of 6 initial structures. Adjacent super-structure Pet
sup

 is a common adjacent super-

structure of 7 initial structures and common adjacent sub-structure of 9 initial structures. 

f) Invariants and measures: 
G |E| K N CL MC DM SVV SV SEV+ SE+ SRV HR SR 

Petsub 14 3 9 2 5 4 2142 0.5419 214181 0.6379 1121436183 0.8939 0.4593 

Petsup 16 5 16 3 5 2 122241 0.3612 122342 0.3437 132548 1.1582 0.2994 
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Example 2.2. Structure model of Boris Weisfeiler’s [44, p. 166 (a)] partially symmetric and strongly regular graph 

Wei: 
 

A:-2.8.20; B:-2.8.19; C:-2.8.18; 
D:+2.7.13; E:+2.7.14; F:+2.7.15. 

 

| 1  1| 2  2|3  3|4  4| 5| 6  6|7  7|8  8| 9  9|10 10|11|12|13|14 14|15|         ui     k 

|20 24|12 14|1  2|9 19| 6|10 16|8 18|4  7|11 17|13 15|23| 3|22|21 25| 5|   i  ABCDEF    * 

| 0  F| C  C|C  B|F  C| C| B  F|C  E|F  C| E  F| E  C| B| F| F| F  C| F|  20  039039   1 

     0| C  C|B  C|C  F| C| F  B|E  C|C  F| F  E| C  E| B| F| F| C  F| F|  24  039039   1 

      | 0  F|F  C|C  C| B| F  C|B  F|B  F| E  C| F  E| F| C| F| F  C| E|  12  039039   2 

           0|C  F|C  C| B| C  F|F  B|F  B| C  E| E  F| F| C| F| C  F| E|  14  039039   2 

            |0  F|F  C| E| F  C|F  B|F  E| F  C| F  C| C| F| B| C  C| E|   1  039039   3 

                0|C  F| E| C  F|B  F|E  F| C  F| C  F| C| F| B| C  C| E|   2  039039   3 

                 |0  F| E| F  C|F  E|F  C| B  F| F  C| F| B| E| C  B| C|   9  039039   4 

                     0| E| C  F|E  F|C  F| F  B| C  F| F| B| E| B  C| C|  19  039039   4 

                      | 0| C  C|B  B|B  B| E  E| F  F| F| F| C| F  F| C|   6  066066   5 

                         | 0  B|F  E|F  E| B  E| B  E| B| B| C| E  E| C|  10  066066   6 

                              0|E  F|E  F| E  B| E  B| B| B| C| E  E| C|  16  066066   6 

                               |0  C|F  B| F  B| C  C| E| C| B| C  E| E|   8  066066   7 

                                   0|B  F| B  F| C  C| E| C| B| E  C| E|  18  066066   7 

                                    |0  C| C  C| B  E| C| E| E| E  B| B|   4  066066   8 

                                        0| C  C| E  B| C| E| E| B  E| B|   7  066066   8 

                                         | 0  B| E  F| C| B| B| E  C| F|  11  066066   9 

                                              0| F  E| C| B| B| C  E| F|  17  066066   9 

                                               | 0  B| B| C| E| B  F| B|  13  066066  10 

                                                    0| B| C| E| F  B| B|  15  066066  10 

                                                     | 0| E| D| F  F| E|  23  066147  11 

                                                        | 0| E| F  F| D|   3  066147  12 

                                                           | 0| B  B| B|  22  093174  13 

                                                              | 0  E| A|  21  147066  14 

                                                                   0| A|  25  147066  14 

                                                                    | 0|   5  255174  15 

 

Structural properties: 

a) On the ground of only six binary signs is the 25×25 structure matrix decomposed by help u- and s-vectors 

to 15 vertex positions and 115 partial matrices Wki,kj. 

b) 150 “non edges” of Wei forms 74 binary(–)positions, where –A forms a position with two elements, –B 

forms 33 positions, among these 4 with one element and 29 with two elements, –C forms 40 positions, 4 

with one, 31 with two and 5 with four elements. 

c) 150 edges of Wei forms 80 binary(+)positions, where +D forms 2 positions with one element, +E 32 

positions, among these 4 with one, 27 with two and one with four elements, and +F forms 46 positions, 6 

with one and 40 with two elements. 

d) For analyzing the structure of Wei is suitable use its sign graphs Wei+2.7.13, Wei+2.7.14 and Wei+2.7.15. 

e) Graph Wei and its complement WeiC is strongly regular, 2-distance- and 12-degree regular and 

triangular. 

f) Invariants and measures: 
G |E| k N+ N- P CL G DM SEV+ SE SVV SV SRV SR 

Wei 150 15 80 74 6 4 3 2 11226741 0.1310 

WeiC 150 15 74 80 6 4 3 2 1826145 0.1494 

15210 0.1723 120212846 0.1290 

 

B. Weisfeiler [44] is one of the few who finds that orbits (positions) are essential attributes of graph structure. But 

he did not reached the binary orbits (positions). He has designed some strongly regular graphs that be grounded on 

the same binary signs, but are no isomorphic. On structural aspect: these differ from decompositions. 

 

Example 2.3. Structure model of Robertson’s partially symmetric and degree regular (4.5)-cage [16, p. 272] Rob 

and its complement RobC: 

 
A:-3.10.12; B:-3.8.9. C:-2.3.2: 

D:+4.15.24; E:+4.15.25; F:+4.17.31. 
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| 1  1  1  1| 2  2  2  2  2  2  2  2  2  2  2  2| 3  2  3|          ui      k   si 

|13 14 18 19| 1  2  3  4  5  6  7  8  9 10 11 12|15 16 17|   i   ABCCCDEF      123 

| 0  B  B  F|C2 C1 C2  E C2 C1 C2  E C2 C1 C2  E|C2 C2 C2|  13   02390031   1  130 

     0  F  B|C1 C2  E C2 C1 C2  E C2 C1 C2  E C2|C2 C2 C2|  14   02390031   1  130 

        0  B| E C2 C1 C2  E C2 C1 C2  E C2 C1 C2|C2 C2 C2|  18   02390031   1  130 

           0|C2  E C2 C1 C2  E C2 C1 C2  E C2 C1|C2 C2 C2|  19   02390031   1  130 

            | 0  E C1 C1 C2  A C3  A C2 C1 C1  E|C1  D C1|   1   20741130   2  121 

                 0  E C1 C1 C2  A C3  A C2 C1 C1|C1 C1  D|   2   20741130   2  121 

                    0  E C1 C1 C2  A C3  A C2 C1| D C1 C1|   3   20741130   2  121 

                       0  E C1 C1 C2  A C3  A C2|C1  D C1|   4   20741130   2  121 

                          0  E C1 C1 C2  A C3  A|C1 C1  D|   5   20741130   2  121 

                             0  E C1 C1 C2  A C3| D C1 C1|   6   20741130   2  121 

                                0  E C1 C1 C2  A|C1  D C1|   7   20741130   2  121 

                                   0  E C1 C1 C2|C1 C1  D|   8   20741130   2  121 

                                      0  E C1 C1| D C1 C1|   9   20741130   2  121 

                                         0  E C1|C1  D C1|  10   20741130   2  121 

                                            0  E|C1 C1  D|  11   20741130   2  121 

                                               0| D C1 C1|  12   20741130   2  121 

                                                | 0  A  A|  15   20840400   3  040 

                                                     0  A|  16   20840400   3  040 

                                                        0|  17   20840400   3  040 

 

A:-2.13.64; 

B:+2.11.45; C:+2.11.46; D:+2.12.53; E:+2.12.54; F:+2.12.55. 

 

| 1  1  1  1| 2  2  2| 3  3  3  3  3  3  3  3  3  3  3  3|          ui    k   si 

|13 14 18 19|15 16 17| 1  2  3  4  5  6  7  8  9 10 11 12|   i   ABCDEF      123 

| 0  C  C -A| D  D  D| E  D  E -A  E  D  E -A  E  D  E -A|  13   402660   1  239 

     0 -A  C| D  D  D| D  E -A  E  D  E -A  E  D  E -A  E|  14   402660   1  239 

        0  C| D  D  D|-A  E  D  E -A  E  D  E -A  E  D  E|  18   402660   1  239 

           0| D  D  D| E -A  E  D  E -A  E  D  E -A  E  D|  19   402660   1  239 

            | 0  B  B| E  E -A  E  E -A  E  E -A  E  E –A|  15   420480   2  428 

                 0  B|-A  E  E -A  E  E -A  E  E -A  E  E|  16   420480   2  428 

                    0| E -A  E  E -A  E  E -A  E  E -A  E|  17   420480   2  428 

                     | 0 -A  D  D  E  B  F  B  E  D  D –A|   1   420561   3  329 

                          0 -A  D  D  E  B  F  B  E  D  D|   2   420561   3  329 

                             0 -A  D  D  E  B  F  B  E  D|   3   420561   3  329 

                                0 -A  D  D  E  B  F  B  E|   4   420561   3  329 

                                   0 -A  D  D  E  B  F  B|   5   420561   3  329 

                                      0 -A  D  D  E  B  F|   6   420561   3  329 

                                         0 -A  D  D  E  B|   7   420561   3  329 

                                            0 -A  D  D  E|   8   420561   3  329 

                                               0 -A  D  D|   9   420561   3  329 

                                                  0 -A  D|  10   420561   3  329 

                                                     0 -A|  11   420561   3  329 

                                                        0|  12   420561   3  329 

Structural properties: 

a) Graph Rob is 5-girth regular with 4 binary(+)positions and adjacent sub-structures. 

b) Structure models of position structure RobC1 (in SM2.2) and its complement RobC1C: 
A:-2.4.4; B:-2.3.2;     A:-2.6.13; B:-2.6.12; 

C:+3.6.7; D:+3.8.10.   C:+2.5.8; D:+2.6.12; E:+2.6.13. 

| 1  2  3  4  5  6  7  8  9 10 11 12|   i   k   |1  2  3  4  5  6  7  8  9 10 11 12| 

  0 -A  C  D -B -A -A -A -B  D  C –A|   1   1   |0  D -A -B  C  D  E  D  C -B -A  D| 

     0 -A  C  D -B -A -A -A -B  D  C|   2   1   |   0  D -A -B  C  D  E  D  C -B –A| 

        0 -A  C  D -B -A -A -A -B  D|   3   1   |      0  D -A -B  C  D  E  D  C –B| 

           0 -A  C  D -B -A -A -A –B|   4   1   |         0  D -A -B  C  D  E  D  C| 

              0 -A  C  D -B -A -A –A|   5   1   |            0  D -A -B  C  D  E  D| 

                 0 -A  C  D -B -A –A|   6   1   |               0  D -A -B  C  D  E| 

                    0 -A  C  D -B –A|   7   1   |                  0  D -A -B  C  D| 

                       0 -A  C  D –B|   8   1   |                     0  D -A -B  C| 

                          0 -A  C  D|   9   1   |                        0  D -A –B| 

                             0 -A  C|  10   1   |                           0  D –A| 

                                0 –A|  11   1   |                              0  D| 

                                   0|  12   1   |                                 0| 

 

c) Complement RobC is triangular with 10 binary(+)positions and adjacent sub-structures. It contain two 

mutually connected 6-cliques, in present case with elements 1,3,5,7,9,11 anf 2,4,6,8,10,12. 
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d) Invariants and measures: 
G |E| k N+ N- P CL G DM SEV+ SE+ SRV HR SR 

Rob 38 3 4 10 8 2 5 3 21123 0.6572 

RobC 133 3 10 4 6 6 3 2 314161124243 0.5653 

21314161127243 0.0685 0.5215 

 

Example 2.4. Structure model of graph RobB that is obtained by adding the position structure GSn= –B (ie. edges 13-

14, 13-18, 14-19, 18-19) of Robertson’s partially symmetric graph Rob (example 2.3) to Rob: 
 

A:-3.10.13; B:-3.10.12; C:-2.4.4; D:-2.3.2; 

E:+2.4.6; F:+3.4.4; G:+3.6.8; H:+4.15.28: 

 
|13 14 18 19|15 16 17| 1  2  3  4  5  6  7  8  9 10 11 12|   i   ABCDDDEFGH   k   123  

| 0 E1 E1 E2|D1 D1 D1| C D2  C  G  C D2  C  G  C D2  C  G|  13   0063303030   1   303  

     0 E2 E1|D1 D1 D1|D2  C  G  C D2  C  G  C D2  C  G  C|  14   0063303030   1   303  

        0 E1|D1 D1 D1| G  C D2  C  G  C D2  C  G  C D2  C|  18   0063303030   1   303  

           0|D1 D1 D1| C  G  C D2  C  G  C D2  C  G  C D2|  19   0063303030   1   303  

            | 0  B  B|D2 D2  H D2 D2  H D2 D2  H D2 D2  H|  15   0204800004   2   004  

                 0  B| H D2 D2  H D2 D2  H D2 D2  H D2 D2|  16   0204800004   2   004  

                    0|D2  H D2 D2  H D2 D2  H D2 D2  H D2|  17   0204800004   2   004  

                     | 0  F D1 D2 D2  A D3  A D2 D2 D1  F|   1   2022710211   3   112  

                          0  F D1 D2 D2  A D3  A D2 D2 D1|   2   2022710211   3   112  

                             0  F D1 D2 D2  A D3  A D2 D2|   3   2022710211   3   112  

                                0  F D1 D2 D2  A D3  A D2|   4   2022710211   3   112  

                                   0  F D1 D2 D2  A D3  A|   5   2022710211   3   112  

                                      0  F D1 D2 D2  A D3|   6   2022710211   3   112  

                                         0  F D1 D2 D2  A|   7   2022710211   3   112  

                                            0  F D1 D2 D2|   8   2022710211   3   112  

                                               0  F D1 D2|   9   2022710211   3   112  

                                                  0  F D1|  10   2022710211   3   112  

                                                     0  F|  11   2022710211   3   112  

                                                        0|  12   2022710211   3   112  

Structural properties: 

a) The vertex- and binary positions of Rob are remained in RobB, but the number of binary(+)positions is 5. 

b) RobB has a 4-ckique, is now not valence regular and not isomorphic with Rob.  

 

 

Example 2.5. Structure models of Brinkman’s [2, p. 175, Fig. V, 14] partially symmetric and valence regular 

graph Bri and its complement BriC: 

 
A:-3.10.12; B:-3.8.9; C:-3.6.6; D:-2.3.2; E:+4.13.19; F:+4.14.19; G:+4.14.21. 

 

| 1  1  1  1  1  1  1| 2  2  2  2  2  2  2| 3  3  3  3  3  3  3|         ui      k    si 

| 2  3  9 10 17 18 21| 1  5  6 13 14 19 20| 4  7  8 11 12 15 16|  i  ABC  DEFG       123  

| 0 -D -D  G  G -D -D| G  G -D -D -D -D -C|D1 D1 D2 D2 -B -B -A|  2  121 12004   1   220 

     0  G -D -D  G -D| G -D  G -D -D -C -D|D1 D2 D1 -B D2 -A -B|  3  121 12004   1   220 

        0 -D -D -D  G|-D  G -D  G -C -D -D|D2 D1 -B D1 -A D2 -B|  9  121 12004   1   220 

           0 -D -D  G|-D -D  G -C  G -D -D|D2 -B D1 -A D1 -B D2| 10  121 12004   1   220 

              0  G -D|-D -D -C  G -D  G -D|-B D2 -A D1 -B D1 D2| 17  121 12004   1   220 

                 0 -D|-D -C -D -D  G -D  G|-B -A D2 -B D1 D2 D1| 18  121 12004   1   220 

                    0|-C -D -D -D -D  G  G|-A -B -B D2 D2 D1 D1| 21  121 12004   1   220 

                     | 0 D2 D2 D1 D1 -B -B|-A  F  F D2 D2 D1 D1|  1  121 12022   2   202 

                          0 D1 D2 -B D1 -B| F -A D2  F D1 D2 D1|  5  121 12022   2   202 

                             0 -B D2 -B D1| F D2 -A D1  F D1 D2|  6  121 12022   2   202 

                                0 -B D2 D1|D2  F D1 -A D1  F D2| 13  121 12022   2   202 

                                   0 D1 D2|D2 D1  F D1 -A D2  F| 14  121 12022   2   202 

                                      0 D2|D1 D2 D1  F D2 -A  F| 19  121 12022   2   202 

                                         0|D1 D1 D2 D2  F  F -A| 20  121 12022   2   202 

                                          | 0 D2 D2 D1 D1  E  E|  4  220 12220   3   022 

                                               0 D1 D2  E D1  E|  7  220 12220   3   022 

                                                  0  E D2  E D1|  8  220 12220   3   022 

                                                     0  E D2 D1| 11  220 12220   3   022 

                                                        0 D1 D2| 12  220 12220   3   022 

                                                           0 D2| 15  220 12220   3   022 

                                                              0| 16  220 12220   3   022 
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A:-2.15.87; B:+2.13.64; C:+2.13.65; D:+2.13.66; E:+2.14.74; F:+2.14.75; G:+2.14.76. 

 

| 1  1  1  1  1  1  1| 2  2  2  2  2  2  2| 3  3  3  3  3  3  3|        ui    k   si 

| 2  3  9 10 17 18 21| 1  5  6 13 14 19 20| 4  7  8 11 12 15 16|  i  ABCDEFG     123  

| 0  E  E -A -A  F  F|-A -A  F  F  F  F  D| G  G  F  F  C  C  B|  2  4121282  1  457  

     0 -A  E  F -A  F|-A  F -A  F  F  D  F| G  F  G  C  F  B  C|  3  4121282  1  457  

        0  F  E  F -A| F -A  F -A  D  F  F| F  G  C  G  B  F  C|  9  4121282  1  457  

           0  F  E -A| F  F -A  D -A  F  F| F  C  G  B  G  C  F| 10  4121282  1  457  

              0 -A  E| F  F  D -A  F -A  F| C  F  B  G  C  G  F| 17  4121282  1  457  

                 0  E| F  D  F  F -A  F -A| C  B  F  C  G  F  G| 18  4121282  1  457  

                    0| D  F  F  F  F -A -A| B  C  C  F  F  G  G| 21  4121282  1  457  

                     | 0  F  F  E  E  C  C| B -A -A  F  F  G  G|  1  4121282  2  565  

                          0  E  F  C  E  C|-A  B  F -A  G  F  G|  5  4121282  2  565  

                             0  C  F  C  E|-A  F  B  G -A  G  F|  6  4121282  2  565  

                                0  C  F  E| F -A  G  B  G -A  F| 13  4121282  2  565  

                                   0  E  F| F  G -A  G  B  F -A| 14  4121282  2  565  

                                      0  F| G  F  G -A  F  B -A| 19  4121282  2  565  

                                         0| G  G  F  F -A -A  B| 20  4121282  2  565  

                                          | 0  F  F  E  E -A -A|  4  4220264  3  754  

                                               0  E  F -A  E -A|  7  4220264  3  754  

                                                  0 -A  F -A  E|  8  4220264  3  754  

                                                     0 -A  F  E| 11  4220264  3  754  

                                                        0  E  F| 12  4220264  3  754  

                                                           0  F| 15  4220264  3  754  

                                                              0| 16  4220264  3  754  

 

Common invariants and measures: 
 

G |E| k N+ N- P CL G DM SEV+ SE+ SVV SV SRV SR 

Bri 42 3 4 15 7 2 5 3 72142 0.6443  73 0.6391 

BriC 168 3 15 4 7 7 3 2 710145281 0.4812   

712147281 0.459 

 

Structural properties: 

a) Graph Bri is 5-girth regular and has 4 binary(+)positions and adjacent sub-structures with morphism 

probabilities PF1=7/42=1/6, PF2=14/42=1/3, PF3=14/42=1/3, and PF4=7/42=1/6 correspondingly. 

b) Its complement BriC is triangular and has 15 binary(+)positions and adjacent sub-structures. 

c) A 7-clique of BriC is expressed in structure model by vertices 1,5,6,13,14,19,20 of second vertex orbit. 

d) Data about the number and powers of binary orbits of Bri and BriC contain in symmetry signs SRV and 

SEV
+
. 
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3. Structure of real objects 
 

 

We can assert that a system, structure and also graph consist of the elements and relationships between the 

elements, these are “connected sets”. How do they relate to each other and how they differ from each other? 

 

In the system play an important role the empirical features of elements and their relationships. Each system has its 

function and structure. The structure is a discrete abstraction of the system, its “skeleton” where the elements have 

lost of their empirical meanings but the differences are expressed in the form of different positions in the structure. 

The structure is presentable as a graph, and is associated with the invariance and isomorphism. 

 

The relations between concepts of the system, structure, invariance, position and graph are easily and pictorially 

explainable on the Rubik’s cube. The function of this cube is known for all. Rubik's cube was studied mainly on 

playing aspect, but here we interested in its structure. To this end, let’s look at a Rubik’s Cube and answer to three 

questions. 

 

Questions: 

a) Which positions have the elements of the cube? 

b) With layers turning of the cube (different placing are 4,3x10
19
) changes its structure or system? 

c) How to present a Rubik's cube as a graph 

 

Example 3.1. Rubik’s cube as a system that retains the structure (i.e. positions of elements). 

 

 
 

Answers: 

a) Rubik’s cube has in each facet one element in the middle, four elements in the edges and four elements in 

the angles. Thus, the 6 elements of the cube represent a “middle position”, 24 elements an “edge position” 

and 24 elements an “angle position”. 

b) With turning the layers of the cube, although be changed the system, because the relationships between its 

empirical properties of the elements (i.e. colors) changes. However, the structure does not change, 

because the positions remains – these are invariant. For example, a marked element in middle of face will 

always remain in the middle, and so on. 

c) Each element of Rubic’s cube has four adjacent elements: an “upper”, a “lower“, a “right –hand”, a “left-

hand” that are treatable as the vertices of a graph. 

 

Now we need to label the elements and to compile a list of adjacent vertices or adjacency matrix and using it for 

forming a structure model. This graph is too large and does not make sense to draw it. All the structural information 

represented in the structure model. 

 

 

Example 3.2. Processing results: Binary signs and structure model of the Rubik’s cube: 

 
A: -8.54.108;  B: -7.33.60;  C: -7.18.27; D: -6.22.24;  E: -6.21.36; 

F: -6.20.33; G: -6.19.31:  H: -6.15.22;  I: -6.12.16; J: -6.12.12; 

K: -5.13.20; L: -5.12.17; M: -5.10.13; N: -5.6.5; O: -4.9.12;  P: -4. 8.11; 

Q: -4.8.10;  R: -4.5.4;  S: -3.6.7;  T: -3.4.3;  U: -2.4.4;  V: -2.3.2; 

W: +2.3.3;  X: +3.6.7. 
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Structure model of Rubik.GRA (beginning): 
 

|1. “Middle pos”. |                   2. “Edge position”                                  | 

| b  r  g  o  y  w|    blue   |    red    |   green   |  orange   |  yellow   |   white   | 

  5 14 23 32 41 50| 2  4  6  8 11 13 15 17 20 22 24 26 29 31 33 35 38 40 42 44 47 49 51 53|  i   k 

  0  T  D  T  T  T|+X +X +X +X  Q  V  R  Q  N  N  N  N  Q  R  V  Q  V  Q  Q  R  V  Q  Q  R|  5   1 

     0  T  D  T  T| Q  R  V  Q +X +X +X +X  Q  V  R  Q  N  N  N  N  Q  R  V  Q  Q  R  V  Q| 14   1 

        0  T  T  T| N  N  N  N  Q  R  V  Q +X +X +X +X  Q  V  R  Q  R  Q  Q  V  R  Q  Q  V| 23   1 

           0  T  T| Q  V  R  Q  N  N  N  N  Q  R  V  Q +X +X +X +X  Q  V  R  Q  Q  V  R  Q| 32   1 

              0  D| V  Q  Q  R  V  Q  Q  R  V  Q  Q  R  V  Q  Q  R +X +X +X +X  N  N  N  N| 41   1 

                 0| R  Q  Q  V  R  Q  Q  V  R  Q  Q  V  R  Q  Q  V  N  N  N  N +X +X +X +X| 50   1 

                  | 0  U  U  V  T  S  M  L  R  F  F  J  T  M  S  L +X  S  S  T  T  M  M  N|  2   2 

                       0  V  U  M  T  N  M  F  J  R  F  S  T +X  S  S  T  L  M  S  T  L  M|  4   2 

                          0  U  S +X  T  S  F  R  J  F  M  N  T  M  S  L  T  M  S  L  T  M|  6   2 

                             0  L  S  M  T  J  F  F  R  L  M  S  T  T  M  M  N +X  S  S  T|  8   2 

                                0  U  U  V  T  S  M  L  R  F  F  J  S  T +X  S  M  N  T  M| 11   2 

                                   0  V  U  M  T  N  M  F  J  R  F  T  M  S  L  T  M  S  L| 13   2 

                                      0  U  S +X  T  S  F  R  J  F  L  M  S  T  L  M  S  T| 13   2 

                                         0  L  S  M  T  J  F  F  R  M  N  T  M  S  T +X  S| 17   2 

                                            0  U  U  V  T  S  M  L  T  S  S +X  N  M  M  T| 20   2 

                                               0  V  U  M  T  N  M  M  L  T  S  M  L  T  S| 22   2 

                                                  0  U  S +X  T  S  M  T  L  S  M  T  L  S| 24   2 

                                                     0  L  S  M  T  N  M  M  T  T  S  S +X| 26   2 

                                                        0  U  U  V  S +X  T  S  M  T  N  M| 29   2 

                                                           0  V  U  L  S  M  T  L  S  M  T| 31   2 

                                                              0  U  T  S  M  L  T  S  M  L| 33   2 

                                                                 0  M  T  N  M  S +X  T  S| 35   2 

                                                                    0  U  U  V  R  F  F  J| 38   3 

                                                                       0  V  U  F  R  J  F| 40   2 

                                                                          0  U  F  J  R  F| 42   2 

                                                                             0  J  F  F  R| 44   2 

                                                                                0  U  U  V| 47   2 

                                                                                   0  V  U| 49   2 

                                                                                      0  U| 51   2 

                                                                                         0| 53   2 

 
Structure model of Rubik.GRA (ending): 
 

|                        3. “Angle position”                           | 

|   blue   |    red    |   green   |  orange   |  yellow   |   white   | 

 1  3  7  9 10 12 16 18 19 21 25 27 28 30 34 36 37 39 43 45 46 48 52 54|   i   k 

 U  U  U  U  S  M  S  M  G  G  G  G  M  S  M  S  S  S  M  M  S  S  M  M|   5   1  

 M  S  M  S  U  U  U  U  S  M  S  M  G  G  G  G  M  S  M  S  M  S  M  S|  14   1  

 G  G  G  G  M  S  M  S  U  U  U  U  S  M  S  M  M  M  S  S  M  M  S  S|  23   1  

 S  M  S  M  G  G  G  G  M  S  M  S  U  U  U  U  S  M  S  M  S  M  S  M|  32   1  

 S  S  M  M  S  S  M  M  S  S  M  M  S  S  M  M  U  U  U  U  G  G  G  G|  41   1  

 M  M  S  S  M  M  S  S  M  M  S  S  M  M  S  S  G  G  G  G  U  U  U  U|  50   1  

+X +X  S  S  V  R  O  H  K  K  B  B  R  V  H  O  U  U  Q  Q  Q  Q  I  I|   2   2  

+X  S +X  S  Q  I  Q  I  B  K  B  K  Q  U  Q  U  V  O  R  H  V  O  R  H|   4   2  

 S +X  S +X  U  Q  U  Q  K  B  K  B  I  Q  I  Q  O  V  H  R  O  V  H  R|   6   2  

 S  S +X +X  O  H  V  R  B  B  K  K  H  O  R  V  Q  Q  I  I  U  U  Q  Q|   8   2  

 R  V  H  O +X +X  S  S  V  R  O  H  K  K  B  B  Q  U  Q  U  I  Q  I  Q|  11   2  

 Q  U  Q  U +X  S +X  S  Q  I  Q  I  B  K  B  K  R  V  H  O  R  V  H  O|  13   2  

 I  Q  I  Q  S +X  S +X  U  Q  U  Q  K  B  K  B  H  O  R  V  H  O  R  V|  15   2  

 H  O  R  V  S  S +X +X  O  H  V  R  B  B  K  K  I  Q  I  Q  Q  U  Q  U|  17   2  

 K  K  B  B  R  V  H  O +X +X  S  S  V  R  O  H  Q  Q  U  U  I  I  Q  Q|  20   2  

 B  K  B  K  Q  U  Q  U +X  S +X  S  Q  I  Q  I  H  R  O  V  H  R  O  V|  22   2  

 K  B  K  B  I  Q  I  Q  S +X  S +X  U  Q  U  Q  R  H  V  O  R  H  V  O|  24   2  

 B  B  K  K  H  O  R  V  S  S +X +X  O  H  V  R  I  I  Q  Q  Q  Q  U  U|  26   2  

 V  R  O  H  K  K  B  B  R  V  H  O +X +X  S  S  U  Q  U  Q  Q  I  Q  I|  29   2  

 Q  I  Q  I  B  K  B  K  Q  U  Q  U +X  S +X  S  O  H  V  R  O  H  V  R|  31   2  

 U  Q  U  Q  K  B  K  B  I  Q  I  Q  S +X  S +X  V  R  O  H  V  R  O  H|  33   2  

 O  H  V  R  B  B  K  K  H  O  R  V  S  S +X +X  Q  I  Q  I  U  Q  U  Q|  35   2  

 U  U  Q  Q  V  O  R  H  Q  Q  I  I  O  V  H  R +X +X  S  S  K  K  B  B|  38   2  

 V  O  R  H  Q  Q  I  I  O  V  H  R  U  U  Q  Q +X  S +X  S  K  B  K  B|  40   2  

 O  V  H  R  U  U  Q  Q  V  O  R  H  Q  Q  I  I  S +X  S +X  B  K  B  K|  42   2  

 Q  Q  I  I  O  V  H  R  U  U  Q  Q  V  O  R  H  S  S +X +X  B  B  K  K|  44   2  

 Q  Q  U  U  R  H  V  O  I  I  Q  Q  H  R  O  V  K  K  B  B +X +X  S  S|  47   2  

 R  H  V  O  I  I  Q  Q  H  R  O  V  Q  Q  U  U  K  B  K  B +X  S +X  S|  49   2  

 H  R  O  V  Q  Q  U  U  R  H  V  O  I  I  Q  Q  B  K  B  K  S +X  S +X|  51   2  

 I  I  Q  Q  H  R  O  V  Q  Q  U  U  R  H  V  O  B  B  K  K  S  S +X +X|  53   2  

 0  V  V  O  T  N  L  C  E  P  A  E  T +W  L  S +W  S  T  L  T  L  N  C|   1   3  

    0  O  V +W  T  S  L  P  E  E  A  N  T  C  L  S +W  L  T  L  T  C  N|   3   3  

       0  V  L  C  T  N  A  E  E  P  L  S  T +W  T  L  N  C +W  S  T  L|   7   3  

          0  S  L +W  T  E  A  P  E  C  L  N  T  L  T  C  N  S +W  L  T|   9   3  

             0  V  V  O  T  N  L  C  E  P  A  E  T +W  L  S  N  T  C  L|  10   3  
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                0  O  V +W  T  S  L  P  E  E  A  L  S  T +W  C  L  N  T|  12   3  

                   0  V  L  C  T  N  A  E  E  P  N  T  C  L  T +W  L  S|  16   3  

                      0  S  L +W  T  E  A  P  E  C  L  N  T  L  S  T +W|  18   3  

                         0  V  V  O  T  N  L  C  L  T  S +W  C  N  L  T|  19   3  

                            0  O  V +W  T  S  L  T  L +W  S  N  C  T  L|  21   3  

                               0  V  L  C  T  N  C  N  L  T  L  T  S +W|  25   3  

                                  0  S  L +W  T  N  C  T  L  T  L +W  S|  27   3  

                                     0  V  V  O  S  L +W  T  L  C  T  N|  28   3  

                                        0  O  V +W  T  S  L  T  N  L  C|  30   3  

                                           0  V  L  C  T  N  S  L +W  T|  34   3  

                                              0  T  N  L  C +W  T  S  L|  36   3  

                                                 0  V  V  O  P  E  E  A|  37   3  

                                                    0  O  V  E  P  A  E|  39   3  

                                                       0  V  E  A  P  E|  43   3  

                                                          0  A  E  E  P|  45   3  

                                                             0  V  V  O|  46   3  

                                                                0  O  V|  48   3  

                                                                   0  V|  52   3  

                                                                      0|  54   3  

 

The elements of cube are labeled in this case by the facets, but the algorithm divides these on the basis of 

frequency- ui and position si vectors into positions k. The binary signs in the model characterize the relationships 

between the elements, where in the present case exists 24 types of relationships. The frequency vector represents 

the relationships of an element i with other elements. The position vector represents the relationships of an element 

i with the elements in the same and other positions k. 

 

Example 3.3. Frequency- and position vectors of elements of Rubik’s cube and corresponding positions: 

 
Frequency vectors          |   Position 

                          |   vectors 

A B C D E F G H I J K L M N O P Q R S T U V W X| k  1 2 3      Positions     No 

0 0 0 1 0 0 4 0 0 0 0 0 8 4 0 0 8 4 8 4 4 4 0 4| 1  0 4 0  “Middle position”  6 

0 2 0 0 0 2 0 2 2 1 2 2 4 2 2 0 6 4 6 4 4 4 0 4| 2  1 1 2   “Edge position”  24 

1 2 2 0 2 0 1 2 2 0 2 4 2 2 3 1 4 2 6 4 3 4 2 2| 3  0 2 2  “Angle position”  24 

 

Therefore, structure model is the complete invariant of Rubil’s cube where: 1) the elements 5, 14, 23, 32, 41, 50 are 

on the “middle position”, 2) the elements 2, 4, 6, 8, 11, 13, 15, 17, 20, 22, 24, 26, 29, 31, 33, 35, 38, 40, 42, 44, 47, 

49, 51, 53 on the “edge position”, 3) and the elements 1, 3, 7, 9, 10, 12, 16, 18, 19, 21, 25, 27, 28, 30, 34, 36, 37, 

39, 43, 45, 46, 48, 52, 54 on the “angle position”.  

 

With turning a layer exchanged the place (replaced) some labels of elements, i. e. changes the system, but the 

structure (relationships between the elements) remain invariable. Essentially, deal with replacing of rows and 

columns (or changing of labeling), which does not really make sense, since we obtain the equivalent structural 

models, i. e. isomorphic graphs of Rubic’s cube.  

 

The structure of Rubik’s graph has also 41 binary positions (positions that consist in corresponding vertex pairs). 

These are: 

1. In segment 1.1 exist two binary positions, with vertex pairs D and T; 

2. In segment 1.2 exist five binary positions, with vertex pairs N, Q, R, V and +X; 

3. In segment 1.3 exist four binary positions, with vertex pairs G, M, S and U; 

4. In segment 2.2 exist nine binary positions, with vertex pairs F, J, M, N, R, S, T, U and V; 

5. In segment 2.3 exist ten binary positions, with vertex pairs B, H, K, O, Q, R, S, U, V and +X; 

6. In segment 3.3 exist eleven binary positions, with vertex pairs A, C, E, F, L, N, O, S, T, V and +W. 

 

Here we have discussed about the structure of Rubik's cube, but not about the playing with it. As the positions of 

elements of this cube are expressed by binary signs and the colours of elements are known, then may be possible to 

construct a version of playing on the basis of structure’s model SM. In principle can be constructed various plays 

on the ground of this model. 

 

* 
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Structure model of the chemical compound is a detailed submission of the classical structural formula, i.e. of a 

graph that represents this formula. 

 

This is a so-called systemic approach to the study of chemical compounds where different chemical elements 

(atoms) as a rule, are divided into different positions as subsystems. In case of more complex compounds, however, 

may also the same elements (atoms) belong to different positions (for example, ethanol, butane, propane, etc.). The 

main idea of using the same models consists in treatment of the whole on the basis of positions and the 

relationships between them. Structural models open up the possibility for additional investigation of chemical 

compounds. The structural models of some polymers and organic matters tend to be very large. Here is limited with 

moderates. 

 

Example 3.4. Structural formula of isobutan C4H10, its binary signs and structure model: 

 

 
 

A:-4.5.4;  B:-3.4.3;  C:-2.3.2; 

D:+1.2.1. 

 

| 2| 1  3  4|11| 5  6  7  8  9 10 12 13 14|       i    ui         si  

| C| C  C  C| H| H  H  H  H  H  H  H  H  H|   a       ABCD   k   1234  

| 0| D  D  D| D|-C -C -C -C -C -C -C -C -C|   C   2   0094   1   0310  

   | 0 -C –C|-C| D  D  D -B -B -B -B -B -B|   C   1   0634   2   1003  

        0 –C|-C|-B -B -B  D  D  D -B -B -B|   C   3   0634   2   1003  

           0|-C|-B -B -B -B -B -B  D  D  D|   C   4   0634   2   1003  

            | 0|-B -B -B -B -B -B -B -B -B|   H  11   0931   3   1000  

               | 0 -C -C -A -A -A -A -A -A|   H   5   6331   4   0100  

                    0 -C -A -A -A -A -A -A|   H   6   6331   4   0100  

                       0 -A -A -A -A -A -A|   H   7   6331   4   0100  

                          0 -C -C -A -A –A|   H   8   6331   4   0100  

                             0 -C -A -A -A|   H   9   6331   4   0100  

                                0 -A -A -A|   H  10   6331   4   0100  

                                   0 -C -C|   H  12   6331   4   0100  

                                      0 -C|   H  13   6331   4   0100  

                                         0|   H  14   6331   4   0100  

 

Explanation: Decomposition of the elements C and H to four positions should not cause questions. 

 

Example 3.5. Structural formula, binary signs and structure model of the amino acid proline C5H9NO2: 

 

 
 

A:-6.7.6;  B:-5.6.5;  C:-4.5.4;  D:-3.4.3;  E:-2.3.2; 

F:+1.2.1;  G:+4.5.5. 
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| 4| 3|15| 5|10| 2| 1| 8  9|12|17|16| 6  7|13 14|11|       i      ui  

| C| C| N| C| H| C| C| H  H| H| O| O| H  H| H  H| H|   a       ABCDEFG   k 

| 0| G| G| F| F|-E|-E|-E –E|-E|-E|-E|-D –D|-D –D|-D|   C   4   0005722   1 

     0|-E|-E|-E| G|-E| F  F|-D|-D|-D|-E –E|-D –D|-C|   C   3   0015622   2 

        0|-E|-E|-E| G|-D –D| F|-D|-D|-D –D|-E –E|-C|   N  15   0016612   3 

           0|-E|-D|-D|-D –D|-D| F| F|-C –C|-C –C|-E|   C   5   0045430   4 

              0|-D|-D|-D –D|-D|-D|-D|-C –C|-C –C|-C|   H  10   0057310   5 

                 0| G|-E –E|-D|-C|-C| F  F|-E –E|-B|   C   2   0123622   6 

                    0|-D –D|-E|-C|-C|-E –E| F  F|-B|   C   1   0124522   7 

                       0  E|-C|-C|-C|-D –D|-C –C|-B|   H   8   0156310   8 

                          0|-C|-C|-C|-D –D|-C –C|-B|   H   9   0156310   8 

                             0|-C|-C|-C –C|-D –D|-B|   H  12   0166210   9 

                                0|-E|-B –B|-B –B| F|   O  17   0453220  10 

                                   0|-B –B|-B –B|-D|   O  16   0454210  11 

                                      0 –E|-D –D|-A|   H   6   1236310  12 

                                         0|-D –D|-A|   H   7   1236310  12 

                                            0 –E|-A|   H  13   1245310  13 

                                               0|-A|   H  14   1245310  13 

                                                  0|   H  11   4532110  14 

 

 

si 

a   i   k   12345678901234  

C   4   1   01111000000000  

C   3   2   10000102000000  

N  15   3   10000010100000  

C   5   4   10000000011000  

H  10   5   10000000000000  

C   2   6   01000010000200  

C   1   7   00100100000020  

H   8   8   01000000000000  

H   9   8   01000000000000  

H  12   9   00100000000000  

O  17  10   00010000000001  

O  16  11   00010000000000  

H   6  12   00000100000000  

H   7  12   00000100000000  

H  13  13   00000010000000  

H  14  13   00000010000000  

H  11  14   00000000010000  

 

Structure model of proline also provides all the relationship between the elements. Its 17 elements are concentrated 

in 14 different positions. Presented separately position-vectors si constitutes an adjacent matrix of positions, which 

enable to compose corresponding “position’s graph”. 

 

Example 3.6. The position’s graph of proline: 

 

 
 

The structure model of this position graph (“positions model”) we here no represents, we note only that this has 10 

positions, in which joined former positions (2, 3), (6, 7), (8, 9) and (12, 13). The structure model of chemical 
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compound opens for chemist unfamiliar structural side, but this side does not advisable to ignore because the 

existence of structure is real. To this end, all of this is presented here. 

 

Exists also such a thing as a “chemical graph theory”, which can be regarded as the mainstay of chemical 

compounds in the field of work by Arthur Cayley in 1874 (although if the term “graph” was not yet used). The end 

of the last century, thousands of articles on the subject, and in 1980 published a two-volume monograph of Nenad 

Trinaisti on Chemical Graph Theory. Proponents of this theory argue that it is giving valuable information about 

chemical phenomena, however, to the opponents seems it reasonable only in exceptional cases. Recommend to 

support the first. Moreover, the structure model is something perfect than a graph. 

 

* 

 

The genetic code in biology describes how genes that are composed of DNA are translated into proteins composed 

amino acids. The American bioinformatics William Seffens seems that genetic codes can be represented as graphs 

where the elements are amino acids. In his article, he justifies this view-point [18]. Here we limited with the 

treatment of graphs and structural model of the genetic code.  

 

Example 3.7. The graph with three components of Standard genetic code (ID=1), its binary signs and structure 

model: 

 
A: -4.7.9;  B:-4.7.8;  C:-3.6.8;  D:-3.6.7;  E:-3.5.5;  F:-3.4.3; 

G:-2.6.10;  H:-2.5.6;  I:-2.4.4;  J:-2.3.2;  K:-u.2.0; 

L:+1.2.1;  M:+2.3.3;  N:+2.4.5;  O:+3.4.4;  P:+3.5.6;  Q:+3.6.10. 

 

| L| E  K| V| R  G| N  D  Y| Q| F| S| A  T| H| P| M| I| W| C|      a  

|11| 7 12|20| 2  8| 3  4 19| 6|14|16| 1 17| 9|15|13|10|18| 5|  i      deg k 

| 0| O  O|-K|-K -K|-K -K -K| L|-I|-K|-K -K|-K|-K|-K|-K|-K|-K| 11  Leu  3  1 

     0 -I|-K|-K –K|-K -K –K|-J| O|-K|-K –K|-K|-K|-K|-K|-K|-K|  7  Glu  2  2 

        0|-K|-K –K|-K -K –K|-J| O|-K|-K –K|-K|-K|-K|-K|-K|-K| 12  Lys  2  2 

           0|-K –K| P  P  P|-K|-K|-K|-K –K| L|-K|-J|-H|-K|-K| 20  Val  4  3 

              0 –G|-K -K –K|-K|-K| N| M  M|-K| Q|-K|-K|-J|-I|  2  Arg  4  4 

                 0|-K -K –K|-K|-K| N| M  M|-K| Q|-K|-K|-J|-I|  8  Gly  4  4 

                    0 -I –I|-K|-K|-K|-K –K|-J|-K|-F| P|-K|-K|  3  Asn  2  5 

                       0 -I|-K|-K|-K|-K –K|-J|-K|-F| P|-K|-K|  4  Asp  2  5 

                          0|-K|-K|-K|-K –K|-J|-K|-F| P|-K|-K| 19  Tyr  2  5 

                             0|–E|-K|-K –K|-K|-K|-K|-K|-K|-K|  6  Gln  1  6 

                                0|-K|-K –K|-K|-K|-K|-K|-K|-K| 14  Phe  2  7 

                                   0| N  N|-K|-I|-K|-K|-E|-I| 16  Ser  4  8 

                                      0 –G|-K|-I|-K|-K|-E| Q|  1  Ala  4  9 

                                         0|-K|-I|-K|-K|-E| Q| 17  Thr  4  9 

                                            0|-K| L|-D|-K|-K|  9  His  2 10 

                                               0|-K|-K| L|-C| 15  Pro  3 11 

                                                  0|-B|-K|-K| 13  Met  1 12 

                                                     0|-K|-K| 10  Ile  3 13 

                                                        0|-A| 18  Trp  1 14 

                                                           0|  5  Cys  2 15 
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                    ui                        si  

  i    a    ABCDEFGHIJ  K LMNOPQ   k   123456789012345  

 11   Leu   0000000010 15 100200   1   020001000000000  

  7   Glu   0000000011 15 000200   2   100000100000000  

 12   Lys   0000000011 15 000200   2   100000100000000  

 20   Val   0000000101 13 100030   3   000030000100000  

  2   Arg   0000001011 12 021001   4   000000012010000  

  8   Gly   0000001011 12 021001   4   000000012010000  

  3   Asn   0000010021 13 000020   5   001000000000100  

  4   Asp   0000010021 13 000020   5   001000000000100  

 19   Tyr   0000010021 13 000020   5   001000000000100  

  6   Gln   0000100002 15 100000   6   100000000000000  

 14   Phe   0000100010 15 000200   7   020000000000000  

 16   Ser   0000100020 12 004000   8   000200002000000  

  1   Ala   0000101010 12 021001   9   000200010000001  

 17   Thr   0000101010 12 021001   9   000200010000001  

  9   His   0001000003 13 200000  10   001000000001000  

 15   Pro   0010000030 12 100002  11   000200000000010  

 13   Met   0100030001 13 100000  12   000000000100000  

 10   Ile   0101000100 13 000030  13   000030000000000  

 18   Trp   1000300002 12 100000  14   000000000010000  

  5   Cys   1010000030 12 000002  15   000000002000000  

 

Three components are by Seffens represented as a common graph, because in case of alternative genetic codes 

exists relationships between the components. The numbers by relations indicate the number of edges (multigraph’s 

existence). The girths exist in standard genetic code with a length of 3 and 4. Disconnections with the other 

components represent binary sign K:–u.2.0. Twenty amino acids form the fifteen positions. We can see that the 

common positions k in the genetic code have the following amino acids 

k=2: glutamic acid (Glu) ja lysine (Lys); k=4: arginine (Arg) ja glycine (Gly); 

k=5: aspargine (Asn), aspartic acid (Asp) ja tyrosine (Tyr); k=9: alahine (Ala) ja threonine (Thr). 

 

If accepted the positions in genetic code, then should also be accept the relationships between positions (position 

vectors si), which constitutes the adjacent matrix of positions. The corresponding graph to present here does not 

make sense, but the structural model can be set up. Existing there double and triple connections can be ignore, 

because these characterize only the number of amino acids that having a common position. 

 

 

Example 3.8. Binary signs and structure model of position’s relationships of Standard genetic code: 

 
A:-4.5.4;  B:-3.4.3;  C:-2.3.2;  D:+u.2.0;  E:+1.2.1;  F:+2.3.3. 

 

                                                               ui  

| 1  2| 4| 3| 9| 5 10| 6  7| 8|11|12 13|15|14|   k   ABC  D EF   k* 

| 0  E|-D|-D|-D|-D –D| E –C|-D|-D|-D –D|-D|-D|   1   001 11 20   1  

     0|-D|-D|-D|-D –D|-C  E|-D|-D|-D –D|-D|-D|   2   001 11 20   1  

        0|-D| F|-D –D|-D –D| F| E|-D –D|-C|-C|   4   002  9 12   2  

           0|-D| E  E|-D –D|-D|-D|-C –C|-D|–D|   3   002 10 20   3  

              0|-D –D|-D –D| F|-C|-D -D| E|–B|   9   011  9 12   4  

                 0 –C|-D –D|-D|-D|-B  E|-D|–D|   5   011 10 20   5  

                    0|-D –D|-D|-D| E –B|-D|-D|  10   011 10 20   5  

                       0 –B|-D|-D|-D –D|-D|–D|   6   011 11 10   6  

                          0|-D|-D|-D –D|-D|–D|   7   011 11 10   6  

                             0|-C|-D –D|-C|-B|   8   012  9 02   7  

                                0|-D –D|-B| E|  11   012  9 20   8  

                                   0 –A|-D|–D|  12   111 10 10   9  

                                      0|-D|–D|  13   111 10 10   9  

                                         0|–A|  15   112  9 10  10  

                                            0|  14   121  9 10  11  
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                               si  

 k|  12345678901   k*         a  * 

 1|  10000100000   1     Leu 

 2|  10000100000   1     Glu, Lys * 

 4|  00010011000   2     Arg, Gly * 

 3|  00002000000   3     Val      * 

 9|  01000010010   4     Ala, Thr * 

 5|  00100000100   5     Asn, Asp,* 

10|  00100000100   5     His, Tyr * 

 6|  10000000000   6     Gln      * 

 7|  10000000000   6     Phe      * 

 8|  01010000000   7     Ser      * 

11|  01000000001   8     Pro      * 

12|  00001000000   9     Met      * 

13|  00001000000   9     Ile      * 

15|  00010000000  10     Cys      * 

14|  00000001000  11     Trp      * 

 

In the structure model of position’s relationships are some previous positions k merged into new positions k*, the 

number of previous positions was 15, now 11. Also here represent the position vectors a new adjacent matrix, on 

which it could continue to operate. However we limited, because the genetic significances of the obtained results 

are not covered here. 

 

Alternative genetic codes differ from standard code a greater or lesser extent. Different components of the codes 

can be isomorphic. For example, the second and third component of Euplotid Nuclear code (ID=10) is isomorphic 

with the corresponding components of Standard genetic code, etc. The differences expressed as a few different 

loop, a new relationship (edge) in component or between components. 

 

 

Example 3.9. First component of Euplotid Nuclear code (ID=10), its binary signs and structure model: 

 

 
A:-4.8.14;  B:-3.7.13;  C:-3.5.5;  D:-2.6.11;  E:-2.6.10;  F:-2.5.8; 

G:-2.4.4;  H:-2.3.2; 

I:+1.2.1;  J:+2.3.3;  K:+2.4.5;  L:+2.5.7;  M:+3.6.10. 

 

| G  R| S| T  A| P| W| C|        a          ui               si  

| 8  2|16|17  1|15|18| 5|   i         ABCDEFGHIJKLM   k   123456  

  0 -E| K| J  J| M|-H|-F|   8   Gly   0000110102101   1   012100  

     0| K| J  J| M|-H|-F|   2   Arg   0000110102101   1   012100  

        0| L  L|-G|-C| K|  16   Ser   0010001000320   2   202001  

           0 -D|-G|-C| J|  17   Thr   0011001003010   3   210001  

              0|-G|-C| J|   1   Ala   0011001003010   3   210001  

                 0| I|-B|  15   Pro   0100003010002   4   200010  

                    0|-A|  18   Trp   1030000210000   5   000100  

                       0|   5   Cys   1100020002100   6   012000  
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Euplotid Nuclear code is an adjacent superstructure of Standard code, it differs only by addition of a relation 

(connection) between Ser and Cys to the first component. Changes the structure, but the positions will be retained. 

W. Seffens has treated 15 genetic codes, which on the structural aspect forms a “space of genetic codes”. 

 

* 

 

Example 3,10. Partially symmetric graph of Kabalahh Kab and its structure model: 

 

 
 

Where: Kether – Crown; Binach – Understanding; Chochmah – Wisdom; Gewurah – Severity; Chesed – Mercy; 

Tiphereth – Beauty; Hod – Splendor; Nezah – Victory; Jesod – Foundation; Malchuth – Kingdom. 

 
A: -3.5.6;  B: -3.4.3;  C: -2.5.9;  D: -2.5.8;  E: -2.4.5;  F: -2.3.2; 

G: +1.2.1;  H: +2.3.3;  I: +2.4.6;  J: +2.5.8;  K: +2.5.10;  L: +2.6.12;  M: +2.6.13. 

 

| 1| 2|  3  |  4  | 5|  6  | 7|                                      k 

| 6| 9| 7  8| 2  3| 1| 4  5|10|   i                  ABCDEFGHIJKLM       1234567  

  0|+I|+J +J|+M +M|+I|+L +L| F|   6   Beauty         0000010022022   1   0122120  

     0|+I +I| F  F| F| E  E|+G|   9   Foundation     0000231030000   2   1020001  

      | 0 +I| E  E| F|+H  D| F|   7   Splendor       0001220121000   3   1110010  

           0| E  E| F| D +H| F|   8   Victory        0001220121000   3   1110010  

            | 0 +M|+I|+K +K| B|   2   Understanding  0100210010202   4   1001120  

                 0|+I|+K +K| B|   3   Wisdom         0100210010202   4   1001120  

                    0| C  C| B|   1   Crown          0120030030000   5   1002000  

                     | 0 +K| A|   4   Severity       1011100100310   6   1012010  

                          0| A|   5   Mercy          1011100100310   6   1012010  

                             0|  10   Kingdom        2300031000000   7   0100000  

 

The positions of (understanding, wisdom), (severity, mercy), (beauty) form a 5-clique and positions (beauty), 

(splendor, victory), (foundation) form a 4-clique. What mean the positions and cliques on the viewpoint of 

Kaballahh? 

 

* 

 

Since real communication networks are very large. Imagine here one a peculiar companionship Z consisting of 

Adolf, Berta, Charles, Diana, Erik, Frieda, George, Helen, Ingvar and Jane. They are mutually agreed that 

everyone communicates with the five, known to us, parlor companions. The latter circumstance had required of 

coordination, and someone had to do it. 
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Adolf – Berta, Charles, Diana, George, Jane; 

Berta – Adolf, Charles, Helen, Ingvar, Jane; 

Charles – Adolf, Berta, Diana, Erik, George; 

Diana – Adolf, Charles, Erik, Frieda, Ingvar; 

Erik – Charles, Diana, Frieda, Helen, Jane; 

Frieda – Diana, Erik, George, Helen, Ingvar; 

George – Adolf, Charles, Frieda, Helen, Jane; 

Helen – Berta, Erik, Frieda, George, Ingvar; 

Ingvar – Berta, Diana, Frieda, Helen, Jane; 

Jane – Adolf, Berta, Erik, George, Ingvar. 

 

This situation constitutes a five-degree-regular structure in which all the members seem to be in “equal position”. 

 

Example 3.11. To present this situation make a corresponding structure model Z: 

 
A:-2.6.10;  B:-2.6.9;  C:-2.5.8;  D:-2.5.7;  E:-2.5.6;  F:-2.4.5;  G:-2.4.4; 

H:+2.3.3;  I:+2.4.5;  J:+2.5.7;  K:+3.10.25. 

 

| 1| 2| 3| 4| 5| 6| 7| 8| 9|10|              ui 

| F| A| D| H| C| B| I| J| E| G|  name    ABCDEFGHIJK   k  

  0|-G| I| J|-D|-F| I|-E| I| H|  Frieda  00011111310   1  

     0| H|-G| J| I|-D| I|-D| I|  Adolf   00020021310   2  

        0|-C| I|-D| H|-E| I|-D|  Diana   00121002300   3  

           0|-E| H| I|-B| H| H|  Helen   01101013110   4  

              0| H|-G|-A| H| H|  Charles 10011013110   5  

                 0| I| I|-E|-A|  Berta   10011102300   6  

                    0| H|-A|-D|  Ingvar  10020012300   7  

                       0| K| H|  Jane    11002002201   8  

                          0|-B|  Erik    11011002201   9  

                             0|  George  11020004100  10  

 

Unfortunately, the structure Z is 0-symmetric, there do not “equality”, each member has its own private position. 

Different position means different connectivity, "relationships" with other members. Between ten members exists 

11 different relationships, which is characterized by the binary signs (see frequency vectors ui). The problem lies 

here in the grouping of strictly differentiated members. This fact leads us back to the sign structures GSp. In 

selection of the sign must be proceeds from: 

1) Selected sign must be exists in case of each structural element. 

2) To keep in mind the meaning of sign, because the sign structure be formed on the aspect of sign. 

 

In principle is the companionship decomposable to the eleven inseparable component sign structures GSp, and 

gives different groupings. This is inappropriate, and useful to go the other way. 

 

Let to it is the rearranging the members by their “direct communication signs” HIJK of frequency-vectors. 

 

Example 3.12. Rearranged by HIJK structure model Z: 
 

| 1| 2| 4| 5| 3| 6| 7| 8| 9|10|               ui 

| F| A| H| C| D| B| I| J| E| G|   name    k   HIJK   R  

  0|-G| J|-D| I|-F| I|-E| I| H|   Frieda  1   1310   1  

     0|-G| J| H| I|-D| I|-D| I|   Adolf   2   1310   1  

        0|-E|-C| H| I|-B| H| H|   Helen   4   3110   2  

           0| I| H|-G|-A| H| H|   Charles 5   3110   2  

              0|-D| H|-E| I|-D|   Diana   3   2300   3  

                 0| I| I|-E|-A|   Berta   6   2300   3  

                    0| H|-A|-D|   Ingvar  7   2300   3  

                       0| K| H|   Jane    8   2201   4  

                          0|-B|   Erik    9   2201   4  

                             0|   George 10   4100   5  
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The resulting grouping corresponds to the requirement of “direct communication signs”, where the ten positions k 

reduces to five groups, with the members: 

R1= (Frieda, Adolf), R2= (Helen, Charles), R3= (Diana, Berta, Ingvar), 

R4= (Jane, Erik) and R5= (George). 

 

For finding the “similarity” of members can be use also approximate or rounded-off binary signs. 

 

Example 3.13. Using the rounded-off binary signs: 
 

Rounding-off: a= [A:-2.6.10; B:-2.6.9], b= [C:-2.5.8; D:-2.5.7; E:-2.5.6], 
c= [F:-2.4.5; G:-2.4.4], d= [H: +2.3.3; I:+2.4.5; J: +2.5.7], e= (K: +3.10.25). 
Rounded binary signs:  a:(A, B) ≈ –2.6, b:(C, D, E) ≈ –2.5, c:(F, G) ≈ –2.4, d:(H, I, J) ≈ +2 ja e: K ≈ +3. 

 
|  1  | 2|     3     |  4  | 5|          | a| b | c| d |e|       u*i  

| F| A| D| H| C| B| I| J| E| G|  name     AB|CDE|FG|HIJ|K   k  abcde   k* 

  0|-G| I| J|-D|-F| I|-E| I| H|  Frieda   00|011|11|131|0   1  02250   1 

     0| H|-G| J| I|-D| I|-D| I|  Adolf    00|020|02|131|0   2  02250   1 

        0|-C| I|-D| H|-E| I|-D|  Diana    00|121|00|230|0   3  03050   2 

           0|-E| H| I|-B| H| H|  Helen    01|101|01|311|0   4  12150   3 

              0| H|-G|-A| H| H|  Charles  10|011|01|311|0   5  12150   3 

                 0| I| I|-E|-A|  Berta    10|011|10|230|0   6  12150   3 

                    0| H|-A|-D|  Ingvar   10|020|01|230|0   7  12150   3 

                       0| K| H|  Jane     11|002|00|220|1   8  22041   4 

                          0|-B|  Erik     11|011|00|220|1   9  22041   4 

                             0|  George   11|020|00|410|0  10  22050   5 

 

The resulting grouping by rounded-off binary signs: 

k*1= (Frieda, Adolf), k*2= (Diana), k*3= (Helen, Charles, Berta, Ingvar), 

k*4= (Jane, Erik) and k*5= (George). 

 

We can see that there exist coincidences between the results of “direct communication signs” and rounding-off. 

The first way shall be considered as more distinct and therefore more reliable. The “rounding” of binary signs may 

prove to be quite arbitrary. Here can remark a specific role of Jane and Erik in this companionship, to their 

relationship K: +3.10.25 includes all members and relationships, and they may be coordinators. 

 

Such 0-symmetric structures can be treats, investigate, and elements grouped in several ways: 

1) By investigation of the selected sign structures GSp. 

2) By investigate on the basis of some selected binary signs formed the so-called complex sign structures. 

3) By reordering the structural model by the given binary signs (example 3.12). 

4) For reducing the positions to use the connected or “rounded” binary signs (example 3.13). 

 

All of this requires a good knowledge of the subject and suitable choices the aspects for the investigation. 
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4. Structural equivalence and isomorphism 
 

 

We demonstrate that isomorphic graphs have the same structure, which expressed in the form of structural 

equivalence of models, where: 

1) Isomorphism is a one-to-one correspondence between elements, an isomorphic mapping from graph GA to 

graph GB is a bijection ϕϕϕϕ: VA→VB:. 

2) Isomorphism recognition does not recognize the structure, but the structure model recognize the structure 

with exactness up to isomorphism. 

3) Structural equivalence is a coincidence or bijection on the level of binary signs, binary- and element 

positions. 

4) Recognition the positions by binary signs is more simply than detecting the orbits on the ground of the 

group AutG. 

 

Example 4.1. Graphs GA and GB, their binary signs and structure models SMA and SMB: 

 
  3-1  1-3    3-1  1-3   

  �  �    �  �   

5-3    6-2  6-1    2-2  

�    �  �    �  

             

  �  �    �  �   

  4-1  2-3    4-3  5-3   

 
A:-2.5.7; B:-2.5.6;    A:-2.5.7; B:-2.5.6; 

C:+2.3.3; D:+2.5.7; E:+3.6.10.  C:+2.3.3; D:+2.5.7; E:+3.6.10. 

 
|1  1| 2| 3  3  3|       ui   k   si   |1  1| 2| 3  3  3|      ui    k   si 

|3  4| 6| 1  2  5|  i  ABCDE     123  |3  6| 2| 1  4  5|  i  ABCDE     123 

|0  D|-B| C  C  C|  3  01310  1  103  |0  D|-B| C  C  C|  3  01310  1  103 

    0|-B| C  C  C|  4  01310  1  103      0|-B| C  C  C|  6  01310  1  103 

     | 0| E  E  E|  6  02003  2  003 ≈      | 0| E  E  E|  2  02003  2  003 

        | 0 -A -A|  1  20201  3  210          | 0 -A -A|  1  20201  3  210 

             0 -A|  2  20201  3  210               0 -A|  4  20201  3  210 

                0|  5  20201  3  210                  0|  5  20201  3  210 

Explanations: 

a) Different graphs GA and GB have equivalent structure models SMA ≈≈≈≈ SMB! This means that the structures 

are equivalent and the graphs isomorphic GA ≅ GB. 

b) The structural elements are divided to three positions (equivalence classes, orbits) ΩΩΩΩVk and element pairs 

to five positions ΩΩΩΩRn, where the adjacent elements or “edges” divided to three binary(+)positions (full line, 

a dotted, dashed-line) that coincides with binary signs C, D, E correspondingly. 

c) The column ui of model consists of the frequency vectors, which for the element i show its relations with 

other elements. On the basis of vectors ui are arranged the positions in model. 

d) The column si of model consists of the position vectors that represent the connections of element i with 

elements in corresponding positions k. If on the framework of frequency vectors arises differences of 

position vectors, then by lasts does a complementary partition into classes. 

 

Here it may be noted that the first primitive “distance matrix” was presented already in 1973 by S. Toida [40], as 

isomorphism identification attribute. Indeed, the distance matrix can detect the isomorphism or “non-isomorphism” 

for quite many graphs, but it is by no means reliable. 

 

The structure model SM is a canonical description of structure (graph) with exactness up to binary signs, positions, 

isomorphism and others structural attributes. The problem of canonical representation of the graphs was set by 

Lazlo Babai in 1977th [1]. The presentation ways are proposed much [5, 9]. Unfortunately, they do not contain 

information about the structure. 
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If the structure models of graphs G and H are equivalent SMG ≈ SMH then the graphs are isomorphic G ≅ H. 

 

The isomorphism problem is to design an algorithm that recognizes the isomorphism of two objects. The graph 

isomorphism problem came into prominence in 1857, when Arthur Cayley reported his research on organic 

isomers [3]. Two graphs called isomorphic, if they differ only in the labeling of their vertices. 

 

Example 4.2. Graphs PraA and PraB, designed especially for testing the structural equivalence of “very similar” 

poly-symmetric graphs that have common basic, but different perfected binary signs: 

 

  
 

Common basic binary signs of PraA and PraB: 

 
A:-3.8.10; B:-3.6.7; C:-2.4.4; D:-2.3.2; E:+2.4.6; F:+3.8.16. 

 

Perfected by matrix product E
n=5

 binary signs and structure model SM of graph PraA: 

 
Marking the basic binary signs 0 -A -B -C -D E F 

Productive binary signs e
5
   180 125 110 165 160 80 231 233 210 

Perfected binary signs 0 -A -B -C1 -C2 -D E1 E2 F 

Frequency vector - 2 4 4 2 3 2 1 2 

 
            ui 

| 1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20|  i  ABCCDEEF   k  

| 0 E2 E1 E1  F C2 C1 C1  F C2 C1 C1  D  A  B  B  D  A  B  B|  1  24422212   1 

     0 E1 E1 C2  F C1 C1 C2  F C1 C1  A  D  B  B  A  D  B  B|  2  24422212   1 

        0 E2 C1 C1  F C2 C1 C1  F C2  B  B  D  A  B  B  D  A|  3  24422212   1 

           0 C1 C1 C2  F C1 C1 C2  F  B  B  A  D  B  B  A  D|  4  24422212   1 

              0 E2 E1 E1  D  A  B  B  F C2 C1 C1  A  D  B  B|  5  24422212   1 

                 0 E1 E1  A  D  B  B C2  F C1 C1  D  A  B  B|  6  24222212   1 

                    0 E2  B  B  D  A C1 C1  F C2  B  B  A  D|  7  24222212   1 

                       0  B  B  A  D C1 C1 C2  F  B  B  D  A|  8  24222212   1 

                          0 E2 E1 E1  A  D  B  B  F C2 C1 C1|  9  24222212   1 

                             0 E1 E1  D  A  B  B C2  F C1 C1| 10  24222212   1 

                                0 E2  B  B  A  D C1 C1  F C2| 11  24222212   1 

                                   0  B  B  D  A C1 C1 C2  F| 12  24222212   1 

                                      0 E2 E1 E1 C2  F C1 C1| 13  24222212   1 

                                         0 E1 E1  F C2 C1 C1| 14  24222212   1 

                                            0 E2 C1 C1 C2  F| 15  24222212   1 

                                               0 C1 C1  F C2| 16  24222212   1 

                                                  0 E2 E1 E1| 17  24222212   1 

                                                     0 E1 E1| 18  24222212   1 

                                                        0 E2| 19  24222212   1 

                                                           0| 20  24222212   1 

 

Perfected by matrix product E
n=7

 binary signs and structure model SM of graph PraB: 

 
Basic binary signs 0 -A -B -C -D E F 

Productive signs e
7
 4410 3437 3276 3277 4081 4088 4011 3010 4831 4803 4445 

Perfected signs 0 -A -B1 -B2 -C1 -C2 -C3 -D E1 E2 F 

Frequency vector - 2 2 2 2 2 2 2 2 1 2 
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               ui 

|1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20|  i  ABBCCCDEEF   k 

|0 E1 E2 E1  F C1 C2 C3  F C3 C2 C1  D B2 B1  A  D  A B1 B2|  1  2222222212   1 

    0 E1 E2 C3  F C1 C2 C1  F C3 C2  A  D B2 B1 B2  D  A B1|  2  2222222212   1 

       0 E1 C2 C3  F C1 C2 C1  F C3 B1  A  D B2 B1 B2  D  A|  3  2222222212   1 

          0 C1 C2 C3  F C3 C2 C1  F B2 B1  A  D  A B1 B2  D|  4  2222222212   1 

             0 E1 E2 E1  D  A B1 B2  F C1 C2 C3  A  D B2 B1|  5  2222222212   1 

                0 E1 E2 B2  D  A B1 C3  F C1 C2 B1  A  D B2|  6  2222222212   1 

                   0 E1 B1 B2  D  A C2 C3  F C1 B2 B1  A  D|  7  2222222212   1 

                      0  A B1 B2  D C1 C2 C3  F  D B2 B1  A|  8  2222222212   1 

                         0 E1 E2 E1  A B1 B2  D  F C3 C2 C1|  9  2222222212   1 

                            0 E1 E2  D  A B1 B2 C1  F C3 C2| 10  2222222212   1 

                               0 E1 B2  D  A B1 C2 C1  F C3| 11  2222222212   1 

                                  0 B1 B2  D  A C3 C2 C1  F| 12  2222222212   1 

                                     0 E1 E2 E1 C3  F C1 C2| 13  2222222212   1 

                                        0 E1 E2 C2 C3  F C1| 14  2222222212   1 

                                           0 E1 C1 C2 C3  F| 15  2222222212   1 

                                              0  F C1 C2 C3| 16  2222222212   1 

                                                 0 E1 E2 E1| 17  2222222212   1 

                                                    0 E1 E2| 18  2222222212   1 

                                                       0 E1| 19  2222222212   1 

                                                          0| 20  2222222212   1 

 

Explanations: 

a) The structure models of PraA and PraB are non equivalent, it is recognized already with the difference of 

frequency vectors, and graphs are non isomorphic. 

b) Graph PraA has five binary(-)positions by –A, -C2, and -D with power 20 and two binary positions by -B 

and –C1 with power 40. 

c) Graph PraB has seven binary(-)positions whit power 20. 

d) Both graphs have three binary(+)positions E1, E2 and F with power 20. 

 

For recognition the equivalence of structure models SMA and SMB is necessary and sufficient: 

1) Detecting the coincidence of the sequences of binary signs {±d.n.q.ij}A and {±d.n.q.ij}B; 

2) Detecting the coincidence of the frequency vectors {ui}A and {ui}B; 

3) Detecting the coincidence of the position vectors {si}A and {si}B. 

 

* 

 

It is possible to construct such bisymmetric and strongly regular graphs that have very small binary graphs in case 

of large number of vertices. We call these strongly symmetric graphs. Look to constructed by M. Nechepurenko, 

M. Klin et al strongly symmetric graphs SibA and SibB with 40 vertices [13]. These graphs have common binary 

signs: –A:–2.6.8 (complement has +B:+2.20.142) and +B:+2.4.6 (the complement has –A:–2.20.144). From binary 

signs conclude that SibA and SibB are 4-clique-, 2-distance- and 12-degree regular. From coincidence the binary 

signs of SibA and SibB conclude the coincidence of the symmetry properties. 

 

As in case of strongly symmetric graphs the product identification no works, we must use another perfection ways. 

The high (second) degree pair signs (see introduction 1.1) of SibA and SibB are –A
m=2

=–3.18.48 and 

+B
m=2

=+3.20.64, and anew coincide. A binary graph of third degree gij
m=3

 no arise, it is empty ∅. 

 

Now must to form for second degree binary graphs gij
m=2

 of SibA and SibB with help the local structure models 

SMij
m=2

 (see introduction 1.2). For this we open in both graphs the binary graph gij
m=2

A and gij
m=2

B, such that 

correspond to pair sign +B
m=2

. 

 

Example 4.3. Binary signs of second degree binary graphs gij
m=2

 of SibA and SibB are: 

Binary signs of second degree binary graph gij
m=2⊂ SibA in local structure model SMij

m=2
A: 

–A=–2.6.8; –B=–2.4.4; –C=–2.3.2; D=+2.4.6; E=+3.12.28; F=+3.20.46. 

Binary signs of second degree binary graph gij
m=2⊂ SibB in local structure model SMij

m=2
B: 

–A=–2.6.8; –B=–2.4.4; C=+2.4.6; D=+3.12.24; E=+3.20.46. 

Explanations: 
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a) From differences of binary signs of second degree binary graphs signs conclude non-equivalence of local 

structure models, SMij
m=2

A ≠ SMij
m=2

B. 

b) From non-equivalence of local structure models conclude non-equivalence of structures SibA and SibB. 

 

Thus, from non-isomorphism of binary graphs gij
m

A and gij
m

B of corresponding strongly symmetric graphs GA and 

GB concludes structural non-equivalence and non-isomorphism of GA and GB. 

 

For showing the differences of SibA and SibB we demostrate the kernels of second degree pair graphs. 

 

Example 4.4. The kernels of second degree pair graphs of very similar structures SibA and SibB: 

 

Kernel of g1-6
m=2⊂ SibA: 

        �1=i    
             

    ����10 ����11 ����16 ����23 ����30 ����40 ����34 ����35 ����37 
             

             

             

    ����27 ����33 ����36 ����4 ����21 ����28 ����9 ����10 ����32 
             

        �6=j   

Kernel of g20-22
m=2⊂ SibB: 

        �20=i    
             

    ����7 ����8 ����9 ����15 ����18 ����27 ����29 ����39 ����40 
             

       
             

    ����5 ����2 ����32 ����14 ����33 ����11 ����25 ����1 ����35 
             

        �22=j   

 

Explanation: There is no doubt that the bipartite kernels are different. 
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5. Adjacent structures and reconstruction problem 
 

 

Example 5.1. Partially symmetric structure GS.37(6.9.4) [28, 35] with two element positions and four binary 

positions (two binary(+)- and two binary(–)positions, its graph, structure model, characteristics of changes and 

morphisms: 

 
A:-2.4.5; B:-2.3.2; 

C:+2.3.3; D:+2.4.5. 

 

| 1  1  1| 2  2  2|       ui    k  si  

 2-2  3-1  | 1  3  5| 2  4  6|  i   ABCD     12 

 �  �  | 0  D  D| C –A  C|  1   1022  1  22 

1-1    4-2      0  D| C  C -A|  3   1022  1  22 

�    �         0|-A  C  C|  5   1022  1  22 

              | 0 -B -B|  2   1220  2  20 

 �  �                0 -B|  4   1220  2  20 

 6-2  5-1                   0|  6   1220  2  20 

 
GSadjn 1 2 

 

GS.37 

GSsupn- 
k.k’(p) 

PFsupn- 

29 

2.2 (-B) 

3/6 

30 

1.2 (-A) 

3/6 

 

GS.37 

GSsubn+ 
k.k’(p) 

PFsubn+ 

72 

1.1 (+D) 

3/9 

76 

1.2 (+C) 

6/9 

 

Explanations: 

a) GS
sup

n– and GS
sub

n+ denotes the ordering numbers of adjacent superstructures and adjacent substructures in 

the system of structures with six elements [28, 35]; 

b) k,k’ – index of partial model SMk,k’, whither belong the binary position (p); 

c) PFn – morphism probability. 

 

 

Example 5.2. Three isomorphic graphs that represent the adjacent superstructure GS
sup

n=–B, (GS.29) [28, 35] of 

structure GS.37 (example 5.1). These are obtained by adding the connections 2-4, 2-6 and 4-6 (dashed line) to 

binary(–)position  –B of GS.37. Their common binary signs and equivalent structure models SM1 ≡ SM2 ≡ SM3: 
A:-2.5.8; B:-2.4.5; C;-2.3.2; 

D:+2.3.3; E:+2.4.5. 

 

| 1| 2| 3  3| 4  4|       ui        si 

 2-4  3-1   | 3| 6| 1  5| 2  4|  i  ABCDE  k  1234 

 �  �   | 0|-B| E  E| E  E|  3  01004  1  0022 

1-3    4-4     | 0| D  D|-C -C|  6  01220  2  0020 

�    �        | 0  E| D -A|  1  10022  3  1111 

                 0|-A  D|  5  10022  3  1111 

 �  �               | 0 D*|  2  10121  4  1011 

 6-2  5-3                    0|  4  10121  4  1011 

 
| 1| 2| 3  3| 4  4|       ui        si 

 2-4  3-3   | 1| 4| 3  5| 2  6|  i  ABCDE  k  1234 

 �  �   | 0|-B| E  E| E  E|  1  01004  1  0022 

1-1    4-2     | 0| D  D|-C -C|  4  01220  2  0020 

�    �        | 0  E| D -A|  3  10022  3  1111 

                 0|-A  D|  5  10022  3  1111 

 �  �               | 0 D*|  2  10121  4  1011 

 6-4  5-3                    0|  6  10121  4  1011 
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| 1| 2| 3  3| 4  4|       ui        si 

 2-3  3-3   | 5| 2| 1  3| 4  6|  i  ABCDE  k  1234 

 �  �   | 0|-B| E  E| E  E|  5  01004  1  0022 

1-3    4-4     | 0| D  D|-C -C|  2  01220  2  0020 

�    �        | 0  E|-A  D|  1  10022  3  1111 

                 0| D -A|  3  10022  3  1111 

 �  �               | 0 D*|  4  10121  4  1011 

 6-4  5-1                    0|  6  10121  4  1011 

 

Explanation: Equivalent structure models differ from each other only numbered elements in different positions in 

the division. 

 

 

Example 5.3. The different adjacent substructures GS
sub

n=+D, (GS.72) [28, 35] and GS
sub

n=+C, (GS.76) of structure 

GS.37 (example 5.1) that obtained by removing the connection 3-5 from binary(+)position +D and removing the 

connection 5-6 from binary(+)position +C correspondingly. Their non-isomorphic graphs, different binary signs 

and non-equivalent structure models SMA and SMB: 

 

A:-2.4.4; B:-2.3.2; 

C:+2.3.3; D:+3.4.4. 
 

| 1  1| 2| 3  3| 4|       ui       si 

 2-1  3-3   | 2  6| 1| 3  5| 4|  i  ABCD  k  1234 

 �  �   | 0 -B| C| C –B|-B|  2  0320  1  0110 

1-2    4-4       0| C|-B  C|-B|  6  0320  1  0110 

�    �        | 0| C  C|-A|  1  1040  2  2020 

               | 0–A*| D|  3  1121  3  1101 

 �  �                 0| D|  5  1121  3  1101 

 6-1  5-3                    0|  4  1202  4  0020 

 
A:-3.5.6; B:-2.4.5; C:-2.3.2; 

D:+1.2.1; E:+2.3.3; F:+2.4.5. 
 

| 1| 2| 3| 4| 5| 6|        ui        si 

 2-1  3-3   | 3| 1| 5| 2| 6| 4|  i ABCDEF  k  123456 

 �  �   | 0| F| F| E|–C| E|  3 001022  1  011101 

1-2    4-4       0| E| E| D|-B|  1 010121  2  101110 

�    �        | 0|-B|-C| E|  5 011021  3  110001 

               | 0|C*|-C|  2 012020  4  110000 

 �  �                 0|-A|  6 103100  5  010000 

 6-1  5-3                    0|  4 111020  6  101000 

 

Explanation: By different binary positions obtained adjacent structures are non-equivalent. 

 

Each structure GS is an adjacent substructure GS
sub

n or adjacent superstructure G
sup

n of some other structures. 

 

Morphism F is reversible – in each adjacent structure GS
adj

 of GS exist an “reverse position” ΩΩΩΩR
rev

, whereat used 

reverse morphism F
rev

 reconstruct the initial structure GS, F
rev

: GS
adj→→→→GS. 

 

Let the structure on example 5.2 is an initial structure GS that has an adjacent substructure GS
sub

n in the forms of 

structure on example 5.1. Then GS can be reconstruct by adding a connection to the reverse position –B of GS
sub

n 

with morphism probability PF
rev

=3/6.  

 

The reversing of morphism is valid both in the case of adjacent sub- GS
sub

n+ and super-structures Gs
sup

n-. Indeed, 

structure GS can be reconstructed by each of its adjacent structure GS
adj

 separately. On the set {GS
adj

n} of all the 
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adjacents of GS there exists a certain set of reverse morphisms {F
rev

n}, n∈[1, N], such that each its disjunctive 

element (F
rev

1: GS
adj

1→GS)∨…∨(F
rev

N: GS
adj

N→ GS) reconstructs the structure GS separately. 

 

Thus, to be precise, the morphisms exist between the binary positions of structures. 

 

If morphisms Fn: GS→GS
adj

n are applied to binary positions ΩΩΩΩR1,…,ΩΩΩΩRn,…,ΩΩΩΩRN of GS disjunctivelly, 

F1∨…∨Fn∨…∨FN, then GS is decomposed (deconstructed) to its adjacent structures GS
adj

1,…,GS
adj

n,…,GS
adj

N. 

 

Non-decomposable structures do not exist. 

 

If structure GS is decomposed (deconstructed) to its adjacent substructures GS
sub

1,…,GS
sub

n,…,GS
sub

N, then their 

union ∪∪∪∪(GS\eij)n, n
+∈[1, N

+], reconstruct (recompose) the structure GS. 

 

This applies in particular for union of adjacency matrices ∪∪∪∪(E\eij)n = E. 

 

If structure GS is decomposed (deconstructed) toi ts adjacent superstructures GS
sup

1,…,GS
sup

n,…,GS
sup

N, then 

their intersection  ∩(GS∪eij)n, n–∈[1, N
–], reconstruct (recompose) the structure GS. 

 

Thus, the reconstructing (restoring) of structure is inevitable, non-reconstructive structures do not exist. 

 

The reconstruction problem is known as Ulam’s Conjecture and reflects the isomorphism relations between two 

graphs and their (G\vi)-subgraphs [42]. It is formulated as follows: “Let graph G has p≥3 vertices vi and H has p≥3 

vertices ui. If for each i, the sub-graphs Gi=G\vi and Hi=H\ui are isomorphic, then the graphs G and H are 

isomorphic”. 

 

This problem has been over the past half century, one of under active consideration graph theoretical problem, but 

the ultimate solutions have only some graph classes. Why so? Evidently be interested on the question: contain the 

collection of sub-graphs G\vi of G enough information about graph G itself? On the structural aspect is the 

procedure of this conjecture nonsense, because, if given graphs G and H then on the ground of structure models 

SMG and SMH we obtain the complete information about their isomorphism and isomorphism of their adjacent 

graphs. Other ways are for us here senseless. 

 

Ulam’s Conjecture treats the reconstruction on the aspect of removing of the vertices, but we treat it on the aspect 

of adding and removing of edges. This not changes the essence of reconstruction, because all remains to the frame 

of graphs (structures) and their adjacent graphs (-structures), i.e. in our case to the frame of morphisms Fn. Already 

old master W. T. Tutte emphasized that reconstruction-problem must be solve on the basis of isomorphism classes, 

that we also have followed [41]. 

 
By help of the morphisms between adjacent structures are generated the system of structures with five elements 

[32] (where 72 morphisms connect 34 structures) and the system with six elements [35] (where 572 morphisms 

connect 156 structures). Principally it can be generated for all the structures. It also shows the inevitability of 

reconstructing.  

 

The first sample of non-isomorphic graphs with up to six vertices was represented by Frank Harary in 1969th [7]. 

Later, F. Harary and E. Palmer had calculated the number of non-isomorphic graphs (i.e. structures) up to 24 

vertices [8]. R. Read and F. Wilson have in “Graph Atlas” also given the diagrams of graphs up to seven vertices 

[16]. But so far do not are discussed about the relationships between adjacent graphs, i.e. morphisms. It is not much 

possible that someone would have tried to do anything like on the base of combinatorics, algebra or other classical 

attributes. 
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Conclusion 
 
 

Here was demonstrated that the nature of the structure is revealed on the base of the relationships between the 

elements and their positions [37]. It is presentable in the form of structure’s model.  

 

Significant is this, that the different problems, such as recognition of structure, detecting of structural positions 

(orbits), isomorphism, reconstructions and the systems of adjacent structures (morphisms) are treatable on the base 

of the same attribute – on the structure’s model. 

 

Recognition of the structure can be characterized by the following sequence of attributes: adjacency matrix→ 

identification of the element pairs→ binary signs→ decomposition→ structural positions→ structure’s model. 

 

Recognition of the structural properties is based on the structural model and is realizable on three directions: 

1) Structure’s model→ structural properties → sign- and position structures; 

2) Structure’s model→ equivalence of structural models→ isomorphism; 

3) Structure’s model→ elementary structural changes→ adjacent structures→ reconstruction problem → 

system of structures. 

 

The structural models open some hidden sides of the graphs that complement our knowledge about graphs. It is 

expressively sees in case of known graphs.  

 

There exists an agreement that the structure is an inseparable attribute of all the really existing objects. Structure 

exists there where the relations between element pairs are recognizable. The relations are simple presentable in case 

of chemical compounds, genetic formations and some networks. In case of ecological and social communities must 

be previously to agree on the aspect of decomposition the object to its elements and their connections (relations). If 

be accepted the existence of structure, then is desirable accept also their attributes. For example, accept the 

positions and the relationships between these. 

 

Presumably, that such attributes for chemists, biologists and others are unaccustomed phenomena, but it is the 

structural reality and worth thinking about it. It is also clear that the structure of natural objects not easily 

recognizable. 

 

Hidden remains the problem of multiplication of the adjacent matrices. On this base has been developed a spectral 

treatment of the graphs, spectral graph theory. But we are interested in the problem of high degree adjacent 

matrices E
n
. A practical meaning has the following fact: 1) if to multiply the adjacency matrices E, then enlarge the 

values of the elements as well as the number of different values; 2) the enlargement takes place only to a certain 

degree n, after which the enlarging stopped; 3) remains the question: what for the values of vertex pairs in the 

obtained matrix E
n
 detect the binary positions, including on this base obtained vertex positions? 

 

In principle, the structure’s model can be based only on the elements of multiplied adjacent matrices, if would 

known the meaning of those elements. It is not known what represent the elements of obtained matrices, and to 

what degree must the matrices to multiply. There is only alluded that these elements characterize the longest paths 

between the vertices. This is doubtful, since these also appear in the main diagonal, while the relationships between 

the vertices, occasionally turn out to be zero. In present case we cannot distinguish from each other even adjacent 

and non-adjacent pairs of elements. Obviously, this nobody not interested. Already in 1976 were drawn attentions 

to the too one-sided approach to the graphs that impede the development of graph theory [12]. 

 

The preliminary binary signs are indispensable (required), the more that in case of strongly regular graphs, the 

multiplication of adjacency matrices works only partially. 

 

Hope, that this paper gives a sufficient overview about the nature of structure 
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