SOME EXAMPLES AND EXPLANATIONS ABOUT THE STRUCTURE OF GRAPHS

Contents

Introductive explanation 2

1. Structure of known symmetric graphs 5
2. Partially symmetric structures 16
3. Structure of real objects 21
4. Structural equivalence and isomorphism 32
5. Adjacent structures and reconstruction problem 36
Conclusion 39
References 40

Abstract

Presented a way for recognition the structure of graphs with exactness up to orbits (positions), isomorphism and other structural properties. It is realized in the form of specific models that are essential attributes for studying the structure of graphs.

Introductive explanations

It is a much talk about the structure of graph, but what it meant, has remained vague. Structure is an ordering, organizational or constructional side of systemic objects. Structure is classically defined as a permanently associated status of its elements [14, 17]. We demonstrate that the important properties of the structure of a graph are these which allow one structure to distinguish from the other.

Here is presented a way for recognition the structure of the graphs with exactness up to orbits (positions), isomorphism and other structural properties. All the properties of structure are described in corresponding papers [20, 23, 26, 32, 36, 37]. In this introduction give only a summary of main definitions and characteristics for understanding of examples and its explanations.

Recognition of the structure is based on the identification the relationships between elements and their "positions" in the structure.

1. A primary way for identification the relationships between elements (vertices):
1.1. Each binary relation (vertex pair $\boldsymbol{i j}$) can be characterized as an intersection of surroundings $\boldsymbol{N}_{i} \cap \boldsymbol{N}_{j}$ of the elements (vertices) that is presented in the form of a binary graph $\boldsymbol{g}_{i j}$.
1.2. The invariants of $\boldsymbol{g}_{i j}$, where $+\boldsymbol{d}$ is collateral- and $\boldsymbol{- d}$ custom distance, $\boldsymbol{n}-$ number of vertices and $\boldsymbol{m}-$ number of edges identify the binary relation, called binary sign \pm d.n.m.ij.
1.3. Lexicographically ordered system of binary signs - structure's model SM - identifies the relationships between the elements, as well as positions [15].
1.4. The positions are equivalence classes that on the aspect of group theory to orbits are called.

In common case is the structure recognizable by these preliminary (basic) binary signs.
On the other hand is obvious that a large part of the binary signs are not complete identifiers of element pairs. Many large symmetric structures require complementary identification of binary signs. For this are some ways.
2. Ways of complementary identification the binary signs:
2.1. Using the complementary binary signs $\boldsymbol{d n} m_{i j}{ }^{m}$ of the high degree \boldsymbol{m} binary graphs $\boldsymbol{g}_{i j}{ }^{m}$, i.e. binary graphs, that remain between elements \boldsymbol{i} and \boldsymbol{j} of \boldsymbol{G} after removing the preliminary binary graph $\boldsymbol{g}_{i j}$ (example 4.3).
2.2. Using the complementary binary signs of local structure models $\mathbf{S M}_{i j}$ of binary graphs $\boldsymbol{g}_{i j}$ (example 4.3).
2.3. Using the complementary binary signs of sign structures $\boldsymbol{G S}_{\boldsymbol{p}}$, that consists of element pairs with a certain class of pair signs, independently from their positions (example 1.7).
2.4. Using complementary binary signs of the product of adjacency matrix $\boldsymbol{E} \times \boldsymbol{E} \times \boldsymbol{E} \times \ldots=\boldsymbol{E}^{\boldsymbol{n}}$ where up to certain degree \boldsymbol{n} the values of elements $\boldsymbol{e}^{\boldsymbol{n}}{ }_{i j}$ as well as the number \boldsymbol{p} of their differences increased, and then stopped (examples 1.6 and 4.2).

The meaning of the preliminary binary signs do not lost also in case of perfected binary signs. These characterize the belonging of elements and connections to the paths and girths that are need for treatment of the structure. Perfected binary sign constitutes a quintuplet \pm d.n.m. $\boldsymbol{e}_{i j}{ }_{i j}$, where the last represents the perfecting (examples 1.6 , 1.7, 4.2, 4.3).

Structure model SM contains all the characteristics of structure that are necessary for identification the structure as a whole and for distinguishing of various structures (chapter 4).

Structure is a complete invariant of isomorphic graphs. Isomorphic graphs have equivalent structure (example 4.1).
Essential structural properties are regularity and symmetry Regularity and symmetry of structure are very rare conditions, but for that reason are more intriguing. With the symmetry of the graphs arise confusions. Some call to symmetric the simple graphs, because the edges are not directed. Others call symmetric the transitive of vertices or edges graphs that mean the transitivity domain of automorphisms in AutG. With the latter must be consent.

To the assumption of symmetry is regularity, but not vice versa. Regularities are several, and they are easily readable out from structure model $\mathbf{S M}$. We define these.
3. Kinds of regularity:
3.1. Structure (graph), where by each element \boldsymbol{i} the number \boldsymbol{v} of binary $(+)$ signs $+\boldsymbol{d n m} m_{i j}$ is constant is \boldsymbol{v}-degreeregular.
3.2. Degree-regular structure (graph), where by each element \boldsymbol{i} the number of partial signs $\boldsymbol{-} \boldsymbol{d}$ of binary() signs $-\boldsymbol{d} \boldsymbol{n}_{i j}$ are constant is \boldsymbol{d}-distance-regular.
3.3. Degree-regular structure (graph), where by each element \boldsymbol{i} the number of partial signs $+\boldsymbol{d}$ of binary $(+)$ signs $+\boldsymbol{d n m}_{i j}$ are constant is $(d+1)$-girth-regular.
3.4. Degree-regular structure (graph), where each element \boldsymbol{i} belong to a clique with the power $\boldsymbol{n}<\boldsymbol{V} \boldsymbol{V}$ is \boldsymbol{n} -clique-regular, where $|V|$ is the number of structural elements.
3.5. Degree-regular structure (graph), where each pair of adjacent elements holds $\boldsymbol{a} \geq 0$ common neighbors and each nonadjacent pair holds $\boldsymbol{b} \geq 1$ common neighbors is strongly-regular.

Symmetry is a structural property that expressed as recurrence of similar elements (particles) in the space or time $[14,17]$. Indeed, what greater are the positions and what smaller is the number of positions then greater the structural symmetry. Symmetry is measurable. Symmetry of the structure depends on the number and size of positions. We define these.
4. Kinds of symmetry:
4.1. Complete structure (graph) has one element- ΩV_{k} and one binary position $\Omega \boldsymbol{R}_{n}$ and it is completely symmetric.
4.2. Transitive structure (graph), as it in graph theory called, has one element position ΩV_{k} and it is element symmetric.
4.3. Element symmetric structure (graph), that has one binary(+)position (,edge position") $\Omega \boldsymbol{R}_{n}{ }^{+}$and one binary(-)position (,,non-edge position") $\boldsymbol{\Omega} \boldsymbol{R}_{n}{ }^{-}$is bisymmetric (examples 1.1 and 1.2).
4.4. Element symmetric structure (graph), that has one binary (+)position $\Omega \boldsymbol{R}_{n}{ }^{+}$and several binary(-)positions $\boldsymbol{\Omega} \boldsymbol{R}_{n}{ }^{-}$is $(+)$symmetric or edge symmetric (examples 1.3 and 1.4).
4.5. Element symmetric structure (graph), that has several binary(+)- $\boldsymbol{\Omega} \boldsymbol{R}_{n}{ }^{+}$and several binary(-)positions $\boldsymbol{\Omega} \boldsymbol{R}_{n}{ }^{-}$is poly-symmetric (examples 1.6 and 1.7).
4.6. Structure (graph), that not element symmetric, but has one binary(+)position $\Omega R_{n}{ }^{+}$is semi-symmetric (example 1.5).
4.7. Structure (graph), that not element symmetric, i.e. that has more than one element positions, with at least one of these positions ΩV_{k} has at least two elements is partially symmetric (examples 2.1-2.5, 3.1 3.10, 5.1 and 5.2).
4.8. Structure (graph), where the number \boldsymbol{K} of element positions ΩV_{k} equals to the number $|V|_{\text {of elements }}$ (vertices) is $\boldsymbol{0}$-symmetric or completely asymmetric (example 3.11 and 5.3b). Almost all of the random graphs are 0 -symmetric.

Symmetry and regularity is pretty related to with each other. For example, all the element symmetric (transitive) graphs are girth regular or clique regular (examples 1.1 - 1.6), and all the connected bisymmetric graphs are strongly regular (examples 1.1 and 1.2), etc.

Each position can be "naturalized" in the form of a position structure $\boldsymbol{G} \boldsymbol{S}_{n}$.
5. Properties of position structures:
5.1. Position structure $\boldsymbol{G} \boldsymbol{S}_{n}$ is a structure that consists of element pairs, which belong to a certain binary position $\Omega \boldsymbol{R}_{n}$. The number of position structures equal to the number of binary positions (example 1.5).
5.2. Position structure is element symmetric, i.e. its elements belong to the same position $\Omega V_{k=1}$.
5.3. To the binary(+)position $\boldsymbol{\Omega} \boldsymbol{R}_{n}{ }^{+}$corresponds a position(+)structure $\boldsymbol{G} \boldsymbol{S}_{n}{ }^{+}$is a partial structure of $\boldsymbol{G S}$; to the binary(-)position $\boldsymbol{\Omega} \boldsymbol{R}_{n}{ }^{-}$corresponds a position(-)structure $\boldsymbol{G} \boldsymbol{S}_{n}{ }^{-}$is a partial structure of complement TGS.
5.4. Some position structure $\boldsymbol{G} \boldsymbol{S}_{\boldsymbol{n}}$ can be isomorphic with initial structure, $\boldsymbol{G} \boldsymbol{S}, \boldsymbol{G} \boldsymbol{S}_{\boldsymbol{n}} \cong \boldsymbol{G} \boldsymbol{S}$ (for example, an position structure of the cube is also cube).
5.5. Different position structures $\boldsymbol{G} \boldsymbol{S}_{\boldsymbol{n}}$ of initial structure $\boldsymbol{G S}$ or position structures of different structures can be isomorphic or coincides.

The position structures are needed for opening various "hidden sides" of structure.
For obtaining complementary information about structural properties is sufficient to look the works [32, 35, 37], that are simply obtainable also in digital form.

Essential are also the properties of elementary structural changes.
6. Properties of elementary structural changes:
6.1. By removing an edge $\boldsymbol{G} \backslash \boldsymbol{e}_{i j}$ of \boldsymbol{G} obtained a greatest subgraph $\boldsymbol{G}^{\text {sub }}$.
6.2. With adding an edge $\boldsymbol{G} \cup \boldsymbol{e}_{i j}$ to \boldsymbol{G} obtained a smallest supergraph $\boldsymbol{G}^{s u p}$.
6.3. The number of $\boldsymbol{G}^{s u b}$ equals to the number of edges and the number of $\boldsymbol{G}^{s u p}$ to number of "non-edges.
6.4. Greatest subgraphs $\boldsymbol{G}^{\text {sub }}$ and smallest supergraphs $\boldsymbol{G}^{\text {sup }}$ called adjacent graphs $\boldsymbol{G}^{\text {adj }}$ of graph \boldsymbol{G}.
6.5. If the adjacent graphs $\boldsymbol{G}^{a d j}$ are obtained on the ground of the same binary position $\boldsymbol{\Omega} \boldsymbol{R}_{\boldsymbol{n}}$ then are these isomorphic and constitute an adjacent structure $\boldsymbol{G S}^{\text {adj }}{ }_{n}$ (examples 5.2 and 5.3).
6.6. Disjunctive edge operation $\boldsymbol{F}_{n}=\left\{\left(f_{i j}\right)_{1} \vee \ldots \vee\left(f_{i j}\right)_{q}\right\}_{n}$ that changes the structure $\boldsymbol{G} \boldsymbol{S}$ to its adjacent structure $\boldsymbol{G S}^{\text {adj }}{ }_{n}$ called morphism $\boldsymbol{F}_{\boldsymbol{n}}, \boldsymbol{F}_{\boldsymbol{n}}: \boldsymbol{G S} \rightarrow \boldsymbol{G} \boldsymbol{S}^{\text {adj }}{ }_{n}$.

Here is essential, that morphisms and adjacent structures are related with the reconstruction problem (chapter 5). All the graphs with \boldsymbol{n} vertices form a system of adjacent structures [32, 35, 37].

By studying the graph-structure is useful to treat also its complement, since it helps to recognize its properties. In following presented examples with explanations the enable to study the essential properties of structure.

1. Structures of known symmetric graphs

Example 1.1. Petersen graph Pet (the numbering starts from the upper element and goes clockwise), the structure model for Pet and its complement PetC:

Structural properties to show that is possible to read out from the structure model:
a) Petersen graph Pet has two binary positions, i.e. it is bisymmetric. Thus, it has two adjacent structures $\boldsymbol{G} \boldsymbol{S}^{\text {adj }}{ }_{n}$ in the form of one greatest sub-structure $\boldsymbol{G} \boldsymbol{S}^{\text {sub }}{ }_{n=+B}$ (reflected as its 15 possible isomorphic greatest sub-graphs) and one smallest superstructure $\boldsymbol{G} \boldsymbol{S}^{\boldsymbol{s u p}}{ }_{n=A}$ (reflected as its 30 possible isomorphic smallest super-graphs).
b) From bisymmetry concludes strong regularity of Pet.
c) Graph Pet is 5-girth-regular, there exist twelve 5-girths, in present case: (1): 1-2-3-4-5-1, (2): 6-8-10-7-96, (3): 1-2-3-8-6-1, (4): 1-2-7-10-5-1, (5): 1-5-4-9-6-1, (6): 2-3-4-9-7-2, (7): 3-4-5-10-8-3, (8): 1-2-7-9-61, (9): 1-5-10-8-6-1, (10): 2-3-8-10-7-2, (11): 3-4-9-6-8-3, and (12): 4-5-10-7-9-4. Each element belongs to six girths, each edge belongs to four girths.
d) Binary sign +4.10 .15 means, that the element pair belongs to an assemblage of 5 -girths, which consists of 10 elements and 15 connections (edges) - it is the complete invariant of Petersen graph, such sign do not have other structures.
e) The complement of Petersen graph $\boldsymbol{P e t} \boldsymbol{C}$ is $\mathbf{4}$-clique-regular. Explicit clique sign do not exist, but binary graph of binary sign +2.5 .8 contains the 4 -clique. For example, the local structure model of binary graph with sign +2.5 .8 for elements 1 and 3 contains the signs of 4 -clique, +2.4 .6, that shows the existence of 4 clique $1,3,9,10$:
f) And so exists in the complement five intersected 4-cliques, in present case with elements: (1): 1,3,9,10; (2): $2,4,6,10$; (3): $1,4,7,8$; (4): $2,5,8,9$; and (5): $3,5,6,7$. Each element belongs to two cliques where each edge belongs to one clique.
g) Invariants and measures:

| G | \|E| | k | \mathbf{N}^{+} | N^{-} | P | CL | MC | DM | SEV ${ }^{+}$ | SE ${ }^{+}$ | SRV | HR | SR | aut |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Pet | 15 | 1 | 1 | 1 | 2 | 2 | 5 | 2 | 15^{1} | 1.000 | $15^{1} 30^{1}$ | 0.2767 | 0.8338 | 120 |
| PetC | 30 | 1 | 1 | 1 | 2 | 4 | 4 | 2 | 30^{1} | 1.000 | | | | |

Not every strongly regular graph can be bisymmetric. Among the graphs with up to 20 elements exists 39 bisymmetric \& strongly regular \& clique- or girth-regular graphs, including the 27 simply constructed n-m-cliques and 12 "non-m-n-cliques", to where belongs also Petersen graph. As a rule, the lists of strongly regular graphs are incomplete. By help of the structure models succeeded these lists to supplement.

It is deal with partial coincidence of bisymmetry and strong regularity. Bisymmetry includes also the disconnected structures and strong regularity can be exists in the case of mono-, poly-, and partial symmetry. Although among the structures with up to 20 elements it not been observed. Here has treated only symmetric structures, i.e. graphs that have large positions.

To such part belongs also the Clebsh graph (called also Greewood-Cleason graph) with very interesting structural properties.

Example 1.2. Clebsh graph Cle (the numbering starts from the upper element and goes clockwise, 16 is in the centre), the structure's model of $\boldsymbol{C l e}$ and its complement $\boldsymbol{C l e} \boldsymbol{C}$:

Structural properties:
a) Graph Cle is bisymmetric and has one greatest sub-structure $\boldsymbol{G} \boldsymbol{S}^{\text {sub }}{ }_{n=+\boldsymbol{B}}$ (reflected as its 40 possible
 isomorphic smallest super-graphs).
b) From bisymmetry Cle concludes its strong regularity.
c) From binary sign $+\mathbf{3 . 1 0 . 1 3}$ concludes 4-girth-regularity of Cle.
d) Graph Cle appear also to 4-partite with incompletely connected parts on 4-elementical bases. But it is no quadroclique. The parts are variety, where, for example one variant is $\mathbf{A}=\mathbf{5 , 8 , 1 2 , 1 5 ; ~} \mathbf{B}=\mathbf{3 , 7 , 1 0 , 1 4}$; $\mathbf{C}=\mathbf{1 , 4 , 9 , 1 6}$; and $\mathbf{D}=\mathbf{2 , 6 , 1 1 , 1 3}$.:
e) Binary signs and structure model of complement CleC:

A:-2.8.24; B:+2.8.22.

1	2	3	4	5	6	7	8	9	10	01	11	12	13	14	41	15	161	i		k
0	A	+B	+B	A	+B	+B	A	+B	+B	B	+B	A	+B	+B	B	-A	B\|	1	510	1
	0	A	+B	+B	+B	A	+B	+B		A	+B	+B	+B		A	+B	+ B^{1}	2	510	1
		0	A	+B	A	+B	+B	A	+	B	$+B$	A	+B	+ B	B	+ B	$+B \mid$	3	510	1
			0	A	+B	+B	A	+B	+	B	A	+B	+B		A	+ B	$+B \mid$	4	510	1
				0	A	+B	+B	+B		$A+$	+B	+B	A	+	B	+B	+B\|	5	510	1
					0	A	+B	+B	+	B +	+B	+B	+B	+B	B	A	Al	6	510	1
						0	A	+B	+	B	A	+B	A	+	B	+B	+ ${ }^{1}$	7	510	1
							0	A	+	B +	+B	+B	+B	+ B	B	+B	A	8	510	1
								0		A +	+B	+B	A	+	B	A	$+B \mid$	9	510	1
										0	A	+B	+B	+ +	B	+B	A	10	510	1
											0	A	+B	+ +	B	A	$+B \mid$	11	510	1
												0	A	+B	B	+B	Al	12	510	1
													0	A	A	+B	+B\|	13	510	1
															0	A	A	14	510	1
																0	$+B \mid$	15	510	1
																	01	16	510	1

f) From 4-elemintic parts of $\boldsymbol{C l e}$ concludes the 4-clique regularity of various cliques of complement $\boldsymbol{C l e C}$.
g) On the other hand, in case of each vertex of $\boldsymbol{C l e}$ exist between its 5 adjacent vertices adjacencies (edges), from which concludes also a 5-clique-regularity of complement CleC. We can in $\boldsymbol{C l e} \boldsymbol{C}$ to find 16 different 5-cliques, such as (beginning at the adjacent vertices of first vertex of Cle) $\mathbf{2 , 5 , 8 , 1 2 , 1 5} ; \mathbf{1 , 3 , 7 , 1 0}, \mathbf{1 4}, \ldots$ to ending with $\mathbf{6 , 8}, 10,12,14$.
h) Invariants and measures of graph and its complement:

G	$\|E\|$	k	N^{+}	N^{-}	P	CL	MC	DM	$S E V^{+}$	$S E^{+}$	SRV	HR	SR
Cle	40	1	1	1	2	2	4	2	40^{1}	1.000	$40^{1} 80^{1} 0$	0.2762	0.8670
CleC	80	1	1	1	2	5	3	2	80^{1}	1.000		0	

Example 1.3, Heawood graph Hea (the numbering starts from the upper element and goes clockwise) the structure model of Hea and its complement HeaC:

$$
A:-3.8 .9 ; B:-2.3 .2 ; \quad C:+5.14 .21 .
$$

Structural properties:
a) Graph Hea has one vertex position (is "transitive") and one edge position, by $+\boldsymbol{C}$. Consequently, Hea is edge symmetric, but it has also two binary(-)positions, by $-A$ and $-B$ correspondingly. Thus, it has one greatest sub-structure $\boldsymbol{G} \boldsymbol{S}^{\text {sul }}{ }_{n=+C}$ (reflected as its 21 possible isomorphic greatest subgraphs) and two smallest superstructures $\boldsymbol{G} \boldsymbol{S}^{\text {sup }}{ }_{n=-A}$ and $\boldsymbol{G} \boldsymbol{S}^{\text {sup }}{ }_{n=-B}$ (reflected as its 28 and 42 possible isomorphic smallest super-graphs).
b) From existence of two binary(-)positions concludes existence also of two position structures: 1) $\boldsymbol{G S}_{n=-A}$ with binary signs $A:-3.10,16 ; B:-2.2 .4 ; \boldsymbol{C}:+3.8,10 ; 2) \boldsymbol{G} \boldsymbol{S}^{\text {sup }}{ }_{n=-B}$ with binary signs $A:-u .2 .0 ; \boldsymbol{B}:+2.7 .21$ that constitutes two separate 7-cliques.
c) Binary sign +5.14 .21 mean that element pair and corresponding edge belong to an assemblage of 6 -girths with 14 vertices and 21 edges. Consequently, Hea is $\boldsymbol{6}$-girth regular.
d) From 6-girth regularity concludes that graph Hea is also bipartite, where its parts in present case divide to vertices with even numbers and vertices with odd numbers.
e) The binary signs and structure model of complement HeaC:

1	2	3	4	5	6	7	8	9	10	11	12	13	141	i	ABC	k	deg
0	A	+C	+B	+C	A	+	+B	+C	+B	+C	+B	+C	A	1	346	1	10
	0	A	+C	+B	+C	+B	+C	+B	+C	A	+	+B	+C\|	2	346	1	10
		0	A	+C	+B	+C	A	+C	+B	+C	+B	+C	+B\|	3	346	1	10
			0	A	+C	+B	+C	+B	+C	+B	+	A	+ C\|	4	346	1	10
				0	-A	+C	+B	+C	A	+	+B	+C	+ ${ }^{1}$	5	346	1	10
					,	A	+C	+B	+C	+B	+	+B	$+\mathrm{C} \mid$	6	346	1	10
						0	A	+C	+B	+	A	+	+ ${ }^{1}$	7	346	1	10
							0	A	+ C	+B	+C	+B	$+\mathrm{Cl}$	8	346	1	10
								0	-A	+C	+B	+	A	9	346	1	10
									0	A		+B	+C\|	10	346	1	10
										0	A	+C	+B\|	11	346	1	10
											0	A	+C\|	12	346	1	10
												0	A	13	346	,	10
													01	14	346	1	10

f) Complement HeaC has two edge positions, by $+\boldsymbol{B}$ and $+\boldsymbol{C}$, consequently it is poly symmetric. From bipartite of Hea concludes that HeaC consist of two mutually connected 7 -cliques, it is 7 -clique regular, where the cliques correspond to the parts of $\boldsymbol{H e a}$.
g) Invariants and measures:

\boldsymbol{G}	$\|\boldsymbol{E}\|$	\boldsymbol{k}	\boldsymbol{N}^{+}	\boldsymbol{N}	\boldsymbol{P}	$\boldsymbol{C L}$	$\boldsymbol{M C}$	$\boldsymbol{D M}$	$\boldsymbol{S E V}^{+}$	$\boldsymbol{S E}^{+}$	$\boldsymbol{S R V}$	$\boldsymbol{H R}$	$\boldsymbol{S R}$	$\boldsymbol{a u t}$
Hea	21	1	1	2	3	2	6	3	$\mathbf{2 1}^{\mathbf{1}}$	1.000	$\mathbf{2 1}^{\mathbf{1}} \mathbf{2 8}^{\mathbf{1}} \mathbf{4 2}^{\mathbf{1}}$	0.4595	$\mathbf{0 . 7 6 5 5}$	336
HeaC	70	1	2	1	3	7	3	2	$\mathbf{2 8}^{\mathbf{1}} \mathbf{4 2}^{\mathbf{1}}$	0.7935				

Following known graph is not bipartite but its complement contains interesting clique regularity,

Example 1.4. A diagram of dodecahedron or Hamilton graph Ham, the structure model of Ham and its complement HamC:

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	201	i	$A B C D E$	\boldsymbol{k}
0	E	-D	-C	-B	-C	-D	E	-D	-C	-B	-A	-B	-C	-D	-D	-C	-C	-D	E\|	1	13663	1
	0	E	-D	-C	-C	-D	-D	-C	-B	- A	-B	-C	-D	-E	-D	-C	-B	$-C$	$-D \mid$	2	13663	1
		0	E	-D	-D	E	-D	-C	-C	-B	-C	-C	-D	-D	-C	-B	-A	-B	$-C \mid$	3	13663	1
			0	E	-D	-D	-C	-B	-C	-C	-D	-D	E	-D	-C	-C	-B	-A	$-B \mid$	4	13663	1
				0	E	-D	-C	-C	-D	-D	E	-D	-D	-C	-B	-C	-C	-B	- Al	5	13663	1
					0	E	-D	-D	E	-D	-D	-C	-C	-B	-A	-B	-C	-C	$-B \mid$	6	13663	1
						0	E	-D	-D	-C	-C	-B	-C	-C	-B	-A	-B	-C	$-C \mid$	7	13663	1
							0	E	-D	-C	-B	-A	-B	-C	-C	-B	-C	-D	$-D 1$	8	13663	1
								0	E	-D	-C	-B	$-A$	-B	-C	-C	-D	E	$-D \mid$	9	13663	1
									0	E	-D	-C	-B	-A	-B	-C	-D	-D	$-C \mid$	10	13663	1
										0	E	-D	-C	-B	-C	-D	E	-D	$-C \mid$	11	13663	1
											0	E	-D	-C	-C	-D	-D	-C	$-B \mid$	12	13663	1
												0	E	-D	-D	E	-D	-C	$-C \mid$	13	13663	1
													0	E	-D	-D	-C	-B	$-C \mid$	14	13663	1
														0	E	-D	-C	-C	-DI	15	13663	1
															0	E	-D	-D	$E \mid$	16	13663	1
																0	E	-D	-D 1	17	13663	1
																	0	E	-DI	18	13663	1
																		0	$E \mid$	19	13663	1
																			01	20	13663	1

$-A=-2.16 .102 ;+B=+2.14 .78 ;+C=+2.14 .79 ;+D=+2.15 .89$.

Structural properties:
a) Graph Ham is edge symmetric (has one edge position $+\boldsymbol{E}$ and four "non-edge" positions, by $-A,-B, C$ and D. Consequently its complement HamC is poly symmetric.
b) In complement $\boldsymbol{H a m} \boldsymbol{C}$ the explicit clique signs no exist, but in the processing the binary graphs $\boldsymbol{g}_{i j}$, for example with signs $\boldsymbol{+ B}=+\mathbf{2 . 1 4 . 7 8}$, obtained local structure models $\mathbf{S M}_{1.4}, \mathbf{S M}_{5.9}, \mathbf{S M}_{3.16}, \mathbf{S M}_{6.13}$ and $\mathbf{S M}_{5.8}$, contain 8 -clique signs $+\mathbf{2 . 8 . 2 8}$. On the ground of such local structure models can be to recognize all the "hidden" partial 8-cliques of HamC:

$i=$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$	$\mathbf{1 6}$	$\mathbf{1 7}$	$\mathbf{1 8}$	$\mathbf{1 9}$	$\mathbf{2 0}$
I	\bullet			\bullet			\bullet			\bullet		\bullet			\bullet		\bullet		\bullet	
II		\bullet			\bullet		\bullet		\bullet		\bullet			\bullet			\bullet			\bullet
III	\bullet		\bullet			\bullet			\bullet			\bullet		\bullet		\bullet		\bullet		
IV		\bullet		\bullet		\bullet		\bullet			\bullet		\bullet			\bullet			\bullet	
V			\bullet		\bullet															

c) Thus, the complement HamC is $\boldsymbol{8}$-clique-regular, where all five partial cliques are intercrossed, and where all the 10 intercrossing edges belong to binary position $\boldsymbol{C} 2$.

$\boldsymbol{i}-\boldsymbol{j}=$	$1-12$	$2-11$	$3-18$	$4-19$	$5-20$	$6-16$	$7-17$	$8-13$	$9-14$	$10-15$
Partial clique	I	II	III	I	II	III	I	IV	II	I
Partial clique	III	IV	V	IV	V	IV	II	\mathbf{V}	III	\mathbf{V}

d) Invariants and measures:

| \boldsymbol{G} | $\|\boldsymbol{E}\|$ | \boldsymbol{k} | \boldsymbol{N}^{+} | \boldsymbol{N}^{-} | \boldsymbol{P} | $\boldsymbol{C L}$ | $\mathbf{M C}$ | $\boldsymbol{D M}$ | $\boldsymbol{S E V}^{+}$ | $\boldsymbol{S E}^{+}$ | $\boldsymbol{S R V}$ | $\boldsymbol{H R}$ | $\boldsymbol{S R}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ham | 30 | 1 | 1 | 4 | 5 | 2 | 5 | 5 | $\mathbf{3 0 ^ { 1 }}$ | 1.000 | $\mathbf{1 0}^{\mathbf{1}} \mathbf{3 0 ^ { 2 }} \mathbf{6 0 ^ { 2 }}$ | 0.6366 | $\mathbf{0 . 5 0 2 2}$ |
| HamC | 160 | 1 | 4 | 1 | 5 | 8 | 3 | 2 | $\mathbf{1 0}^{1} 30^{1} \mathbf{6 0}$ | 0.5590 | | | |

f) The position structures of Ham: 1) by position $-B$ a graph that is isomorphic with Ham; 2) by position -C structure with binary signs $A:-3.14 .30, B:-2.4 .4, C:-2.3 .2, D:+2.4 .6$, i. e. an edge symmetric and 4-clique regular graph; 3) by $-D$ structure with binary signs $A:-3.14 .30 ; B:-2.4 .4 ; C:+2.3 .3$, i. e. an edge symmetric and 3-girth regular graph.

Form known graphs are clique regular also complements of Coxeter's, Folkman's and other graphs. Their originals are bipartite and by all the nature laws represent the complements of such parts self-evidently cliques.

Example 1.5. Folkman graph Fol (the numbering starts from the main diagonal), its structure model and list of its position structures $\boldsymbol{G S}_{n}$:

$\begin{array}{r} 11 \\ 111 \\ \hline \end{array}$	1 12	1 13	1 14	1 15	1 16	1 17	1 18	1 19	$\begin{array}{r\|r} 11 & 2 \\ 201 & 1 \\ \hline \end{array}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & 2 \\ & 4 \end{aligned}$	2 5	2 6	2	2 8	2 9	$\begin{array}{r} 21 \\ 101 \\ \hline \end{array}$	i	$\begin{gathered} \mathbf{u}_{\mathbf{i}} \\ A B C D E \boldsymbol{F} \\ \hline \end{gathered}$	k	$\begin{array}{r}\boldsymbol{s}_{\boldsymbol{i}} \\ 12 \\ \hline\end{array}$
10	-E	$-C \mid F$	-B	F	-B	-B	-B	-B	-B	F	$F \mid$	11	061084	1	04							
	0	-E	-E	-E	-E	-E	$-E$	-C	$-E \mid-B$	F	-B	F	-B	-B	-B	F	F	-B\|	12	061084	1	04
		0	-E	-E	-E	-E	-C	-E	$-E \mid-B$	-B	F	-B	F	-B	F	F	-B	-B\|	13	061084	1	04
			0	-E	$-E$	-C	-E	-E	$-E \mid \boldsymbol{F}$	-B	-B	F	-B	F	F	-B	-B	-B\|	14	061084	1	04
				0	-C	-E	$-E$	-E	$-E \mid-B$	F	-B	-B	F	F	-B	-B	-B	$F \mid$	15	061084	1	04
					0	-E	$-E$	-E	$-E \mid-B$	F	-B	$-B$	F	F	-B	-B	-B	$F \mid$	16	061084	1	04
						0	$-E$	-E	$-E \mid \boldsymbol{F}$	-B	-B	\boldsymbol{F}	-B	F	F	-B	-B	-B\|	17	061084	1	04
							0	-E	$-E \mid-B$	-B	F	-B	F	-B	F	\boldsymbol{F}	-B	-B\|	18	061084	1	04
								0	$-E \boldsymbol{\|}-B$	F	-B	\boldsymbol{F}	-B	-B	$-B$	\boldsymbol{F}	F	-B\|	19	061084	1	04
									O\| F	-B	F	-B	-B	-B	-B	-B	F	F\|	20	061084	1	04
									10	-A	-D	$-D$	$-A$	-D	-D	-A	-D	$-D \mid$	1	360604	2	40
										0	-A	-D	-D	-D	-A	-D	-D	$-D \mid$	2	360604	2	40
											0	-A	$-D$	$-A$	-D	-D	-D	$-D \mid$	3	360604	2	40
												0	-A	-D	$-D$	-D	-D	-Al	4	360604	2	40
													0		$-D$	-D	-A	$-D 1$	5	360604	2	40
														0	-D	$-A$	$-A$	$-D 1$	6	360604	2	40
															0	-D	$-A$	-A1	7	360604	2	40
																0	$-D$	-A1	8	360604	2	40
																	0	$-D 1$	9	360604	2	40
																		01	10	360604	2	40

Structural properties:
a) It is know that Folkman graph Fol is 4-degree regular, 4-girth regular, bipartite and semi-symmetric.
b) From bipartite of Fol concludes that its complement FolC consist of two mutually connected 10-cliques, it is $\mathbf{1 0}$-clique regular, where the cliques correspond to the parts of Fol.
c) Graph $\boldsymbol{F o l}$ includes six binary positions by $-A,-B,-C,-D,-E,+\boldsymbol{F}$ and can be decomposed to six positionstructures:
d) To binary position with vertex pairs $-A$ corresponds position structure $\boldsymbol{F o l}_{\boldsymbol{n}:-\mathrm{A}}$ is Petersen's graph(!). This fact is showed in partial model $\mathbf{S M}_{2.2}$, if there the sign $-A$ replace with Petersen sign +4.10 .15 and $-D$ replace with sign -2.3 .2 then it is equivalent with structure model of Petersen graph (example 1.1).
e) To binary position $-B$ corresponds position structure $\boldsymbol{F o l}_{n=B}$ turns out to another semi-symmetric graph, designed by V. Titov [39] that has also a position structure in the form of Petersen graph.
f) To binary position $-C$ corresponds position structure $\boldsymbol{F o l}_{n=-}$ is a graph with ten components of 2-cliques.
g) To binary position $-D$ corresponds position structure $\boldsymbol{F o l}_{n=-D}$ is the complement of Petersen graph (!).
h) To binary position $-E$ corresponds position structure $\boldsymbol{F o l}_{n=E}$ is the complement of position structure Fol $_{n=-}$ ${ }_{c}$, i.e. 2-quinta clique.
i) To binary position $+\boldsymbol{F}$ corresponds position structure $\boldsymbol{F o l}_{\boldsymbol{n} \boldsymbol{n} \boldsymbol{F} \boldsymbol{F}}$ is naturally Folkman graph self.

The position structures opens some various "hidden sides" of the structure, that sometimes also "mystical" seems. In principle, the position structures are inevitable, so as the cowering, cliques and others structural attributes, where their identification to a very practical and necessary deemed.

It is obvious that a large part of the binary signs are not complete invariants of element pairs. Some of large symmetric structures require a perfection of binary signs. There exist four ways (see 2.1-2.4 in introduction).

Example 1.6. Polysymmetric graph Tev and its initial structure model. There we will perfect it by product perfection (see 2.4 in introduction) and by sign structures (see 2.3 in introduction) for recognition of all the binary positions:

$$
\begin{gathered}
A:-5.18 .23 ; B:-4.9 .10 ; C:-4.8 .8 ; D:-4.7 .7 ; E:-3.8 .9 ; F:-3-3-6 ; G:-3.4 .3 ; H:-2.3 .2 ; \\
I:+5.10 .12 ; \mathcal{J}:+5.12 .15 ; K:+5.14 .18 .
\end{gathered}
$$

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	241	i	ABCDEFGHIJK	k
0	+K	H	E	H	+I	H	F	B	G	D	G	C	A	D	A	B	G	H	F	H	F	H	+J\|	1	22121336111	1
	0	$+J$	H	F	H	F	H	G	B	A	D	A	C	G	D	G	B	F	H	+I	H	E	H\|	2	22121336111	
		0	+K	H	E	H	+I	H	F	B	G	D	G	C	A	D	A	B	G	H	F	H	Fl	3	22121336111	
			0	+J	H	F	H	F	H	G	B	A	D	A	C	G	D	G	B	F	H	+I	H\|	4	22121336111	
				0	+K	H	E	H	+I	H	F	B	G	D	G	C	A	D	A	B	G	H	Fl	5	22121336111	
					0	$+J$	H	F	H	F	H	G	B	A	D	A	C	G	D	G	B	F	H	6	22121336111	
						0	+K	H	E	H	+I	H	F	B	G	D	G	C	A	D	A	B	$G 1$	7	22121336111	
							0	$+J$	H	F	H	F	H	G	B	A	D	A	C	G	D	G	$B 1$	8	22121336111	
								0	+K	H	E	H	$+I$	H	F	B	G	D	G	C	A	D	Al	9	22121336111	
									0	+J	H	F	H	F	H	G	B	A	D	A	C	G	D 1	10	22121336111	
										0	+K	H	E	H	+I	H	F	B	G	D	G	C	A	11	22121336111	
											0	$+J$	H	F	H	F	H	G	B	A	D	A	C 1	12	22121336111	
												0	+K	H	E	H	+I	H	F	B	G	D	$G \mid$	13	22121336111	
													0	$+J$	H	F	H	F	H	G	B	A	D 1	14	22121336111	
														0	+K	H	E	H	+I	H	F	B	$G \mid$	15	22121336111	
															0	$+J$	H	F	H	F	H	G	B 1	16	22121336111	

The binary (+)positions are here recognized on the level of preliminary binary signs. For true recognition of the binary(-)positions be used the product perfection (2.4 in introduction).

The adjacency matrix \boldsymbol{E} of $\boldsymbol{T e v}$:

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	241	i	\boldsymbol{k}
0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	11	1	1
	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	01	2	1
		0	1	0	\bigcirc	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	01	3	1
			0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	01	4	1
				0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	01	5	1
					0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	01	6	1
						0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	01	7	1
							0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	01	8	1
								0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	01	9	1
									0	1	0	0	0	0	0	0	0	0	0	0	0	0	01	10	1
										0	1	0	0	0	1	0	0	0	0	0	0	0	01	11	1
											0	1	0	0	0	0	0	0	0	0	0	0	01	12	1
												0	1	0	0	0	1	0	0	0	0	0	01	13	1
													0	1	0	0	0	0	0	0	0	0	01	14	1
														0	1	0	0	0	1	0	0	0	01	15	1
															0	1	0	0	0	0	0	0	01	16	1
																0	1	0	0	0	1	0	01	17	1
																	0	1	0	0	0	0	01	18	1
																		0	1	0	0	0	11	19	1
																			0	1	0	0	01	20	1
																				0	1	0	01	21	1
																					0	1	01	22	1
																						0	11	23	1
																							01	24	1

The second degree of its adjacency matrix, \boldsymbol{E}^{2} :

i	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	k
1	3	0	1	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	1	0	1
2	0	3	0	1	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	1	1
3	1	0	3	0	1	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	1
4	0	1	0	3	0	1	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1
5	1	0	1	0	3	0	1	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	1
6	0	1	0	1	0	3	0	1	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	1	1
7	1	0	1	0	1	0	3	0	1	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	1
8	0	1	0	1	0	1	0	3	0	1	0	1	0	1	0	0	0	0	0	0	0	0	0	0	1
9	0	0	1	0	1	0	1	0	3	0	1	0	1	0	1	0	0	0	0	0	0	0	0	0	1
10	0	0	0	1	0	1	0	1	0	3	0	1	0	1	0	1	0	0	0	0	0	0	0	0	1
11	0	0	0	0	1	0	1	0	1	0	3	0	1	1	0	1	0	0	0	0	0	0	0	0	1
12	0	0	0	0	0	1	0	1	0	1	0	3	0	1	0	1	0	1	0	0	0	0	0	0	1
13	0	0	0	0	0	0	1	0	1	0	1	0	3	0	1	0	1	0	1	0	0	0	0	0	1
14	0	0	0	0	0	0	0	1	0	1	0	1	0	3	0	1	0	1	0	1	0	0	0	0	1
15	0	0	0	0	0	0	0	0	1	0	1	0	1	0	3	0	1	0	1	0	1	0	0	0	1
16	0	0	0	0	0	0	0	0	0	1	0	1	0	1	0	3	0	1	0	1	0	1	0	0	1
17	0	0	0	0	0	0	0	0	0	0	1	0	1	0	1	0	3	0	1	0	1	0	1	0	1
18	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	1	0	3	0	1	0	1	0	1	1
19	1	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	1	0	3	0	1	0	1	0	1
20	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	1	0	3	0	1	0	1	1
21	1	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	1	0	3	0	1	0	1
22	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	1	0	3	0	1	1
23	1	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	1	0	3	0	1
24	0	1	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	1	0	3	1

The second degree matrix no gives perfect information about the binary positions.

We must use the matrices of 6 and 7 degree. The results of matrices $\underline{\boldsymbol{E}}^{\boldsymbol{6}}$ and \boldsymbol{E}^{7} are here connected:

i	1	2	3	4	5	6	7	8	9	10	11	12	13
1	0	258	84	243	75	239	65	191	42	150	33	130	32
2	258	0	248	84	201	75	173	65	139	42	108	33	107
3	84	248	0	258	84	243	75	239	65	191	42	150	33
4	243	84	258	0	248	84	201	75	173	65	139	42	108
5	75	201	84	248	0	258	84	243	75	239	65	191	42
6	239	75	243	84	258	0	248	84	201	75	173	65	139
7	65	173	75	201	84	248	0	258	84	243	75	239	65
8	$1 \overline{91}$	65	239	75	243	84	258	0	248	84	201	75	173
9	42	$1 \overline{39}$	65	173	75	$2 \overline{01}$	84	248	0	$2 \overline{58}$	84	243	75
10	150	42	191	65	239	75	243	84	258	0	248	84	201
11	33	$1 \overline{08}$	42	139	65	173	75	$2 \overline{01}$	84	248	0	$2 \overline{58}$	84
12	130	33	150	42	191	65	239	75	243	84	258	0	248
13	32	107	33	108	42	139	65	173	75	201	84	248	0
14	107	32	130	33	150	42	191	65	239	75	243	84	258
15	33	130	32	107	33	108	42	139	65	173	75	201	84
16	108	33	107	32	130	33	150	42	191	65	239	75	243
17	42	150	33	130	32	107	33	108	42	139	65	173	75
18	139	42	108	33	107	32	130	33	150	42	191	65	239
19	65	191	42	150	33	130	32	107	33	108	42	139	65
20	173	65	139	42	108	33	107	32	130	33	150	42	191
21	75	239	65	191	$\underline{42}$	150	33	130	32	107	33	108	42
22	201	75	173	65	139	$\underline{42}$	108	33	107	32	130	33	150
23	84	243	75	239	65	191	42	150	33	130	32	107	33
24	248	84	201	75	173	65	139	42	108	33	107	32	130

i	14	15	16	17	18	19	20	21	22	23	24	\boldsymbol{k}
1	107	33	108	42	139	65	173	75	201	84	248	1
2	32	130	33	150	$\underline{42}$	191	65	239	75	243	84	1
3	130	32	107	33	108	42	139	65	173	75	201	1
4	33	107	32	130	33	150	42	191	65	239	75	1
5	150	33	130	32	107	33	108	42	139	65	173	1
6	42	108	33	107	32	130	33	150	42	191	65	1
7	$1 \overline{91}$	42	150	33	$1 \overline{30}$	32	$1 \overline{07}$	33	$1 \overline{08}$	42	$1 \overline{39}$	1
8	65	139	42	108	33	107	32	130	33	150	42	1
9	239	65	$1 \overline{91}$	42	150	33	$1 \overline{30}$	32	107	33	$1 \overline{08}$	1
10	75	173	65	139	42	108	33	107	32	130	33	1
11	243	75	239	65	191	42	150	33	130	32	107	1
12	84	201	75	173	65	139	42	108	33	107	32	1
13	258	84	243	75	239	65	191	42	150	33	130	1
14	0	248	84	201	75	173	65	139	$\underline{42}$	108	33	1
15	248	0	258	84	243	75	239	65	191	42	150	1
16	84	258	0	248	84	201	75	173	65	139	42	1
17	201	84	248	0	258	84	243	75	239	65	191	1
18	75	243	84	258	0	248	84	201	75	173	65	1
19	173	75	201	84	248	0	258	84	243	75	239	1
20	65	239	75	243	84	258	0	248	84	201	75	1
21	139	65	173	75	$2 \overline{01}$	84	248	0	$2 \overline{58}$	84	243	1
22	42	191	65	239	75	243	84	258	0	248	84	1
23	108	42	139	65	173	75	201	84	248	0	258	1
24	33	150	42	191	65	239	75	243	84	258	0	1

We can assert that all the complete identifiers of vertex pairs (ie positions) are here recognized. We know that the initial binary signs cannot always be the complete identifiers of vertex pairs, but the clarification is suitable associate these with the results of matrix product \boldsymbol{E}^{n} of this graph:

1		2	3	4	5	6			7			8			9	10	11
		-B	-C	-D	-E		-F			-G			-H		+I	+J	+K
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
108	107	42	32	33	243	191	201	173	150	139	130	65	75	84	239	248	258
-Al	-A2	-B	-C	-D	-E	-F1	-F2	-F3	-G1	-G2	-G3	-H1	-H2	-H3	+I	+J	+K
1	1	2	1	2	1	1	1	1	1	1	1	2	2	2	1	1	1

The number of initial binary signs is 11 , the number of perfected binary signs is 18 . The last row is here the frequency vector for all the rows (vertices) of structure model:

The complete structure model $\mathbf{S M}$ of $\boldsymbol{T e v}$:

$$
\begin{aligned}
& 0 \text { K H3 E H2 I H1 F1 B G1 D G3 C A2 D A1 B G2 H1 F3 H2 F2। } 31 \\
& 0 \text { J H3 F2 H2 F3 H1 G2 B A1 D A2 C G3 D G1 B F1 H1 I H2 } \mathbf{4} 1 \\
& 0 \text { K H3 E H2 I H1 F1 B G1 D G3 CA2 D A1 B G2 H1 F31 } 51 \\
& 0 \text { J H3 F2 H2 F3 H1 G2 BA1 D A2 C G3 D G1 B F1 H1 } 6
\end{aligned}
$$

$$
\begin{aligned}
& 0 \text { J H3 F2 H2 F3 H1 G2 B A1 D A2 C G3 D G1 B1 } 8 \text { 1 }
\end{aligned}
$$

$$
\begin{aligned}
& 0 \text { J H3 F2 H2 F3 H1 G2 B A1 D A2 C G3 Dl } 10 \text { I } \\
& \boldsymbol{K} H 3 \quad E \quad H 2 \quad \text { I H1 F1 } B \text { G1 } D \text { G3 } C A 2111 \quad 1 \\
& 0 \text { J H3 F2 H2 F3 H1 G2 B A1 } D \text { A2 } C 112 \quad 1 \\
& 0 \text { K H3 E H2 I H1 F1 B G1 D G3। } 13 \quad 1 \\
& \begin{array}{rrrrrrrrrr|rl}
\boldsymbol{J} & H 3 & F 2 & H 2 & F 3 & H 1 & G 2 & B & A 1 & D & 14 & 1 \\
0 & \boldsymbol{K} & H 3 & E & H 2 & \boldsymbol{I} & H 1 & F 1 & B & G 1 & 15 & 1
\end{array} \\
& 0 \text { J H3 F2 H2 F3 H1 G2 Bl } 16 \text { I } \\
& 0 \text { K H3 E H2 I H1 F1| } 17 \text { 1 } \\
& 0 \text { J H3 F2 H2 F3 H1 } 181 \\
& 0 \text { K H3 E H2 I| } 19 \text { 1 } \\
& 0 \text { J H3 F2 H2। } 20 \text { 1 } \\
& 0 \text { K H3 El } 21 \text { 1 }
\end{aligned}
$$

Structural properties:
a) Perfected binary sign constitutes a quintuplet \pm d.n.m. $\boldsymbol{e}^{\boldsymbol{n}}{ }_{i j}$, where the last represents the perfecting.
b) $23 \times 24: 2=276$ vertex pairs of Tev form 18 binary positions, where by 240 "non-edges" be formed 15 binary(-)positions, where the positions with pair signs $-A 1,-A 2,-C,-E,-F 1,-F 2,-F 3,-G 1,-G 2,-G 3$ have 12 -elements, and with $-B,-D,-H 1,-H 2,-H 3$ have 24 elements.
c) 36 adjacent vertex pairs of $\boldsymbol{T e v}$ form three binary(+)positions, $+\boldsymbol{I},+\boldsymbol{J}$ and $+\boldsymbol{K}$ that have 12 elements. These are recognized on the level of initial binary signs.
d) The number N of binary positions, also position- and adjacent structures is 18 , their powers coincide in cases $\boldsymbol{T e v}$ and $\boldsymbol{T e v} \boldsymbol{C}$, but have reversed signs.
e) Graph Tev and its complement $\boldsymbol{T e v} \boldsymbol{C}$ divide to 18 position-structures. Position structures by signs $-A 1$, $A 2,-C,-E,-F 1,-F 2,-F 3,-G 1,-G 2,-G 3, \boldsymbol{I}, \boldsymbol{J}$, and \boldsymbol{K} have only two pair signs, $-A:-0.2 .0$ and $+\boldsymbol{B}:+\mathbf{1 . 2 . 1}$ and are bisymmetric, 2-clique-regular, and are mutually isomorphic. Position structures by $-B,-D,-H 1,-$ H2 and $-H 3$ constitutes rings and circlets.
f) 276 possible adjacent graphs aggregate to 15 adjacent super-structures and to three adjacent substructures.
g) Tev is bipartite, in present case parts with even- and odd-numbered vertices.
h) As $\boldsymbol{T e v}$ is bipartite, but not bi-clique, then its complement $\boldsymbol{T e v} \boldsymbol{C}$ consist of two mutually connected 12cliques and is thus 12-clique-regular. These cliques correspond to parts of Tev.

The initial binary signs no lose its meaning these show the relationships between vertices, belonging of vertex pairs to (assemblage of) paths or girths with corresponding size etc. It is need for characterizing of the structure. But in our focus are binary and element (vertex) positions. Its recognition by help of multiplication the adjacency matrices must be a mathematical regularity (lawfulness) for all the no-strongly regular graphs. It could not be ignored. Contra examples do not find. As already mentioned earlier, for strongly regular graphs exist other ways of deep identification.

In the following example is presented a way that is usable also in case of strongly regular graphs.

Example 1.7. The structure of $\boldsymbol{T e v}$ is recognizable also by pair signs of sign structure $\boldsymbol{T e} \boldsymbol{v}_{\boldsymbol{p}=-\boldsymbol{F}}$ (see 2.3 in introduction). Sign structures $\boldsymbol{T e} \boldsymbol{v}_{p=-F}$ and $\boldsymbol{T e} \boldsymbol{v}_{p=-A}$ (these not yet the position structures):

For explanation is suitable to compare the results on the level of initial binary signs, binary signs of sign structure and productive binary signs.

Initial binary signs $\boldsymbol{d n m}_{\boldsymbol{i j}}$ of $\boldsymbol{T e v}$, their markings \boldsymbol{p} and ordering numbers \boldsymbol{n}, perfected binary signs $\boldsymbol{d n m} \boldsymbol{m}_{i j}{ }^{\boldsymbol{p}=\boldsymbol{F}}$ by sign graph $\boldsymbol{T e} \boldsymbol{v}_{\boldsymbol{p}=-\boldsymbol{F}}$, their markings \boldsymbol{p}^{*}, ordering numbers \boldsymbol{n}^{*} of binary positions, and productive binary signs $\boldsymbol{e}_{i j}{ }^{6}$ and $\boldsymbol{e}_{i j}{ }^{7}$ of products $\boldsymbol{E}^{\boldsymbol{6}}$ and \boldsymbol{E}^{7}, where $\mathbf{6}$ and 7 is degree of adjacency matrix \boldsymbol{E}.

$\mathrm{dnm}_{i j}$	p	n	$\mathrm{dnm} \mathrm{ij}^{\text {j }}$ p-F	p*	n*	$e_{i j}{ }^{6}$	$\boldsymbol{e}_{i j}{ }^{7}$
-5.18.23	$-A$	1	-5.10.12	A1	1	0	108
			-5.8.8	A2	2	0	107
$-4.9 .10$	$-B$	2	-4.7.7	B	3	42	0
-4.8.8	$-C$	3	$-2.4 .4$	C	4	32	0
-4.7.7	-D	4	-2.3.2	D	5	33	0
-3.8.9	$-E$	5	-3.10.12	E	6	0	243
$-3.6 .6$	$-F$	6	$+3.4 .4$	F1	7	0	191
			+5.8.10	F2	8	0	201
			+3.4.4	F3	9	0	173
$-3.4 .3$	$-G$	7	-3.8.10	G1	10	0	150
			$-3.6 .6$	G2	11	0	139
			-3.4.3	G3	12	0	130
$-2.3 .2$	$-H$	8	$-6.20 .26$	H1	13	65	0
			-4.7.7	H2	14	75	0
			$-2.3 .2$	H3	15	84	0
+5.10.12	I	9	-3.6.6	I	16	0	239
+5.12.15	J	10	-3.4.3	J	17	0	248
+5.14.18	K	11	-5.8.8	K	18	0	258

We see that the same results are obtained by sign structures and products of adjacency matrices coincide.
The positions are essential attributes of structure. The meaning of the structure (ie its recognition) consists in its primary attributes - relationships between elements and positions (orbits). On the other hand is structure an inseparable attribute of all the really existing objects.

It has once again demonstrated the importance of structure model in research the graph structure. As well the role of position- and sign-structures in this, and importance of mutual treatment the structure and its complement. All the hidden sides are expressed by position- and sign structures.

The importance of position structures lies in the recognition of structural properties, these recognizes the similar parts of various structures. If the structure is divided to parts (bipartite, tripartite etc) or contain components, cliques, girths, etc., then the corresponding attributes appear in position structures in another forms.

The preliminary binary signs their meanings do not lose, these remains characterize belonging the elements and connections to the paths and girths that is needed by treatment of the structure.

2. Partially symmetric structures

Example 2.1. Partially symmetric structures Pet ${ }^{\text {sub }}$ and $\boldsymbol{P e t} \boldsymbol{t}^{s u p}$ as adjacent structures $\boldsymbol{G} \boldsymbol{S}^{\text {adj }}$ of Petersen graph Pet (example 1.1):

By removing at Petersen graph Pet an edge $i, j=4,5$ is obtained its adjacent sub-structure $\boldsymbol{P e t}{ }^{\text {sub }}$:

$$
A:-4.10 .14 ; B:-3.6 .6 ; C:-2.3 .2 ; D:+4.7 .8 ; E:+4.9 .12 ; F:+4.10 .14 .
$$

	$\begin{aligned} & 1 \\ & 6 \end{aligned}$	$\begin{aligned} & 1 \\ & 7 \end{aligned}$	$\begin{aligned} & 11 \\ & 81 \end{aligned}$	2 1 1	2	$\begin{array}{rr} 213 \\ 101 & 4 \end{array}$	$\begin{aligned} & 31 \\ & 51 \\ & \hline \end{aligned}$	i	$\begin{gathered} \mathbf{u}_{i} \\ A B C D E F \end{gathered}$	k	$\begin{gathered} \boldsymbol{s}_{\boldsymbol{i}} \\ 123 \end{gathered}$	deg
0) -C	F	-C\|	E E	-C	$-C \mid-C$	$-\mathrm{Cl}$	2	006021	1	120	g
	0	-C	F\|	E -C	E	$-C \mid-C$	$-\mathrm{Cl}$	6	006021	1	120	3
		0	$-\mathrm{Cl}$	-C	E	E\|-C	$-\mathrm{Cl}$	7	006021	1	120	3
			01-	C E	-C	E\|-C	$-\mathrm{Cl}$	8	006021	1	120	3
				$0-C$	-C	$-C \mid-B$	D	1	015120	2	201	3
				0	-C	$-C \mid D$	$-B \mid$	3	015120	2	201	3
					0	-C\| D	-BI	9	015120	2	201	3
						O1-B	D1	10	015120	2	201	3
						10	-A	4	124200	3	020	2
							01	5	124200	3	020	2

By adding to Petersen graph Pet an edge $i, j=4,6$ is obtained its adjacent super-structure $\boldsymbol{P e t}{ }^{\text {sup }}$:

Structural properties:
a) Exactly these same structures $\boldsymbol{P e t} \boldsymbol{t}^{s u b}$ and $\boldsymbol{P e t}{ }^{s u p}$ are obtainable by operating with an arbitrary edge on Petersen graph.
b) Adjacent sub-structure of Petersen graph has 3 vertex- and 9 binary positions. Its adjacent super-structure has 5 vertex- and 16 binary positions and its symmetry value $\boldsymbol{S R}$ is smaller.
c) From 5-girth regularity of Petersen graph is in Pet ${ }^{\text {sub }}$ remained $14 / 15$ or 93%, but in $\boldsymbol{P e t}^{\text {sup }} 7 / 15$ or 47%. The first is „more petersenical".
d) Reverse binary position that reconstruct the Petersen graph placed in partial model $\boldsymbol{S M} \boldsymbol{M}_{3.3}$ of $\boldsymbol{P e t}{ }^{\text {sub }}$ by sign A; reconstructing probability $\boldsymbol{P F} \boldsymbol{\prime}^{\prime}=1 / 31$. Reverse binary position of $\boldsymbol{P e t}{ }^{s u p}$ placed in partial model $\boldsymbol{S M}_{5.5}$ in the form of sign \boldsymbol{C}; reconstructing probability $\boldsymbol{P F}{ }^{\prime}=1 / 16$.
e) Adjacent sub-structure $\boldsymbol{P e} \boldsymbol{t}^{s u b}$ is a common adjacent super-structure of 3 initial structures and a common adjacent sub-structure of 6 initial structures. Adjacent super-structure Pet ${ }^{s u p}$ is a common adjacent superstructure of 7 initial structures and common adjacent sub-structure of 9 initial structures.
f) Invariants and measures:

\boldsymbol{G}	$\mid \boldsymbol{E} /$	\boldsymbol{K}	\boldsymbol{N}	$\boldsymbol{C L}$	$\boldsymbol{M C}$	$\boldsymbol{D M}$	$\boldsymbol{S V V}$	$\boldsymbol{S V}$	$\boldsymbol{S E V}^{+}$	$\boldsymbol{S E} \boldsymbol{E}^{+}$	$\boldsymbol{S R V}$	$\boldsymbol{H R}$	$\boldsymbol{S R}$
Pet $^{\text {sub }}$	14	3	9	2	5	4	$\mathbf{2}^{1} \mathbf{4}^{2}$	0.5419	$\mathbf{2}^{1} \mathbf{4}^{1} \mathbf{8}^{1}$	0.6379	$\mathbf{1}^{1} \mathbf{2}^{1} \mathbf{4}^{3} \mathbf{6}^{1} \mathbf{8}^{3}$	0.8939	0.4593
Pet $^{\text {sup }}$	16	5	16	3	5	2	$\mathbf{1}^{2} \mathbf{2}^{2} \mathbf{4}^{1}$	0.3612	$\mathbf{1}^{2} \mathbf{2}^{\mathbf{3}} \mathbf{4}^{2}$	0.3437	$\mathbf{1}^{3} \mathbf{2}^{5} \mathbf{4}^{8}$	1.1582	0.2994

Example 2.2. Structure model of Boris Weisfeiler's [44, p. 166 (a)] partially symmetric and strongly regular graph Wei:

$$
\begin{aligned}
& A:-2.8 \cdot 20 ; ~ B:-2 \cdot 8 \cdot 19 ; ~ C:-2 \cdot 8 \cdot 18 ; \\
& D:+2.7 .13 ; E:+2.7 .14 ; \quad F:+2 \cdot 7.15 .
\end{aligned}
$$

11 120	$\begin{array}{r\|r} 1 \mid 2 \\ 24 \mid 12 \end{array}$	213 1411	314 219	$\begin{array}{r} 41 \\ 191 \\ \hline \end{array}$	$\begin{array}{l\|r} 51 & 6 \\ 6 & 10 \\ \hline \end{array}$	$\begin{array}{r} 617 \\ 1618 \end{array}$	$\begin{array}{r} 718 \\ 1814 \\ \hline \end{array}$	$\begin{array}{l\|r} 81 & 9 \\ 7 & 11 \\ \hline \end{array}$	$\begin{array}{r} 9110 \\ 17113 \end{array}$	$10\|11\|$ $15\|23\|$	121 31	$3 \mid 14$ $2 \mid 21$	141 251	51	i	$\begin{gathered} \mathbf{u}_{\boldsymbol{i}} \\ A B C D E \boldsymbol{F} \end{gathered}$	k	
10	$F \mid C$	$C \mid C$	$B \mid F$	C।	$C \mid B$	$F \mid C$	$E \mid F$	$C \mid E$	$F \mid E$	$C\|B\|$	$F \mid$	$F \mid F$	Cl	$F \mid$	20	039039	1	
	O1 C	$C \mid B$	$C \mid C$	$F \mid$	$C \mid \boldsymbol{F}$	$B \mid E$	$C \mid C$	$\boldsymbol{F} \mid \boldsymbol{F}$	E\\| C	$\boldsymbol{E}\|B\|$	$F \mid$	$\boldsymbol{F} \mid$ C	Fl	$F \mid$	24	039039	1	
	10	$\boldsymbol{F} \mid \boldsymbol{F}$	$C \mid C$	C	$B \mid \boldsymbol{F}$	$C \mid B$	$\boldsymbol{F} \mid B$	$F \mid E$	$C \mid \boldsymbol{F}$	$E\|F\|$	C 1	$F \mid F$	C	$E \mid$	12	039039	2	
		O\|C	$F \mid C$	C 1	$B \mid C$	$\boldsymbol{F} \mid \boldsymbol{F}$	$B \mid \boldsymbol{F}$	$B \mid C$	$E \mid E$	$F\|F\|$	C 1	$\boldsymbol{F} \mid$ C	$F \mid$	$E \mid$	14	039039	2	
		10	$F \mid F$	C	$E \mid F$	$C \mid F$	$B \mid \boldsymbol{F}$	$E \mid F$	$C \mid \boldsymbol{F}$	$C\|C\|$	$F \mid$	$B \mid C$	C	$E \mid$	1	039039	3	
			O1C	$F \mid$	$E \\| C$	$\boldsymbol{F} \mid B$	$F \mid E$	$\boldsymbol{F} \mid$ C	$\boldsymbol{F} \mid$ C	$\boldsymbol{F}\|C\|$	$F \mid$	$B \mid C$	C 1	$E \mid$	2	039039	3	
			10	$F \mid$	$E \mid F$	$C \mid \boldsymbol{F}$	$E \mid F$	$C \mid B$	$\boldsymbol{F} \mid \boldsymbol{F}$	$C\|F\|$	$B \mid$	E\\| C	B1	C 1	9	039039	4	
				01	E\\| C	$F \mid E$	$\boldsymbol{F} \mid C$	$\boldsymbol{F} \mid \boldsymbol{F}$	$B \mid C$	$F\|F\|$	B\|	$\boldsymbol{E} \mid \quad B$	C 1	C 1	19	039039	4	
				1	이 C	$C \mid B$	$B \mid B$	$B \mid E$		$F\|F\|$	$F \mid$	$C \mid F$	$F \mid$	C 1	6	066066	5	
					10	$B \mid \boldsymbol{F}$	$E \mid F$	E\| ${ }^{\text {B }}$	$E \mid B$	$E\|B\|$	$B 1$	$C \mid E$	$E \mid$	C 1	10	066066	6	
						O\|E	$F \mid E$	$\boldsymbol{F \|} \mid \boldsymbol{E}$	$B \mid \boldsymbol{E}$	$B\|B\|$	B\|	$C \mid E$	$E \mid$	C 1	16	066066	6	
						10	$C \mid F$	$B \mid \boldsymbol{F}$	$B \mid C$	$C\|E\|$	C 1	$B \mid C$	$E \mid$	$E \mid$	8	066066	7	
							O\| B	$\boldsymbol{F} \mid B$	$\boldsymbol{F \|}$ \|	$C\|E\|$	C 1	$B \mid \boldsymbol{E}$	C 1	$E \mid$	18	066066	7	
							10	$C \mid C$	$C \mid B$	$E\|C\|$	$E \mid$	$E \mid E$	B	$B \mid$	4	066066	8	
								이 C	$C \mid E$	$B\|C\|$	$E \mid$	$\boldsymbol{E} \mid B$	E\|	B1	7	066066	8	
								10	$B \mid \boldsymbol{E}$	$\boldsymbol{F}\|C\|$	$B \mid$	$B \mid E$	C 1	$F \mid$	11	066066	9	
									O\| \boldsymbol{F}	$E\|C\|$	B\|	$B \mid C$	$E \mid$	$F \mid$	17	066066	9	
									0	$B\|B\|$	C 1	$\boldsymbol{E} \mid ~ B$	$F \mid$	$B 1$	13	066066		
										O\| $B 1$	C 1	$E \\| F$	B 1	B1	15	066066		
										1 O1	$E \mid$	$D \mid F$	$F \mid$	$E \mid$	23	066147		
										1	01	$E \mid F$	$F \mid$	D 1	3	066147		
											1	O1 B	B \|	$B \mid$	22	093174		
												10	$E \mid$	A	21	147066		
													01	Al	25	147066		
													I	01	5	255174		

Structural properties:
a) On the ground of only six binary signs is the 25×25 structure matrix decomposed by help u - and s-vectors to $\mathbf{1 5}$ vertex positions and 115 partial matrices $W_{k i, k j}$.
b) 150 "non edges" of Wei forms 74 binary(-)positions, where $-A$ forms a position with two elements, $-B$ forms 33 positions, among these 4 with one element and 29 with two elements, $-C$ forms 40 positions, 4 with one, 31 with two and 5 with four elements.
c) 150 edges of $\boldsymbol{W e i}$ forms $\mathbf{8 0}$ binary (+)positions, where $+\boldsymbol{D}$ forms 2 positions with one element, $+\boldsymbol{E} 32$ positions, among these 4 with one, 27 with two and one with four elements, and $+\boldsymbol{F}$ forms 46 positions, 6 with one and 40 with two elements.
d) For analyzing the structure of Wei is suitable use its sign graphs $\boldsymbol{W e i}_{+2.7 .13}, \boldsymbol{W e i}_{+2.7 .14}$ and $\boldsymbol{W e i}_{+2.7 .15}$.
e) Graph Wei and its complement WeiC is strongly regular, 2-distance- and 12-degree regular and triangular.
f) Invariants and measures:

G	/E/	k	\mathbf{N}^{+}	N^{-}	P	CL	G	DM	SEV ${ }^{+}$	SE	SVV	SV	SRV	SR
Wei	150	15	80	74	6	4	3	2	$1^{12} 2^{67} 4^{1}$	0.1310	$1^{5} 2^{10}$	0.1723	$1^{20} 2^{128} 4^{6}$	0.1290
WeiC	150	15	74	80	6	4	3	2	$1^{8} 2^{61} 4^{5}$	0.1494				

B. Weisfeiler [44] is one of the few who finds that orbits (positions) are essential attributes of graph structure. But he did not reached the binary orbits (positions). He has designed some strongly regular graphs that be grounded on the same binary signs, but are no isomorphic. On structural aspect: these differ from decompositions.

Example 2.3. Structure model of Robertson's partially symmetric and degree regular (4.5)-cage [16, p. 272] Rob and its complement RobC:

$$
\begin{gathered}
A:-3.10 .12 ; \quad B:-3.8 .9 ; C:-2.3 .2: \\
D:+4.15 .24 ; E:+4.15 .25 ; F:+4.17 .31 .
\end{gathered}
$$

1 113	1 14	1 18	$\begin{array}{r\|r} 1 \mid & 2 \\ 19 \mid & 1 \\ \hline \end{array}$	2 2	2 3	$\begin{aligned} & 2 \\ & 4 \end{aligned}$	$\begin{aligned} & 2 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2 \\ & 6 \end{aligned}$	2 7	$\begin{aligned} & 2 \\ & 8 \end{aligned}$	$\begin{aligned} & 2 \\ & 9 \end{aligned}$	2	2 11	$\begin{array}{r\|r} 2 \mid 3 \\ 12 \mid 15 \\ \hline \end{array}$	2 16	31 171	i	$\begin{gathered} \mathbf{u}_{\mathbf{i}} \\ A B C C D \mathbf{F} \end{gathered}$	k	$\begin{gathered} \boldsymbol{s}_{\boldsymbol{i}} \\ 123 \\ \hline \end{gathered}$
10	B	B	$\boldsymbol{F} \mid$ C2	C1	C2	E	C2	C1	C2	E	C2	C1	C2	E\|C2	C2	C21	13	02390031	1	130
	0	F	$B \mid C 1$	C2	E	C2	C1	C2	E	C2	C1	C2	E	C2\|C2	C2	C21	14	02390031	1	130
		0	$B \mid \boldsymbol{E}$	C2	C1	C2	E	C2	C1	C2	E	C2	C1	C2\| C 2	C2	C21	18	02390031	1	130
			O\|C2	E	C2	C1	C2	E	C2	C1	C2	E	C2	C1\|C2	C2	C21	19	02390031	1	130
			10	E	C1	C1	C2	A	C3	A	C2	C1	C1	E\|C1	D	C11	1	20741130	2	121
				0	E	C1	C1	C2	A	C3	A	C2	C1	C1\|C1	C1	D 1	2	20741130	2	121
					0	E	C1	C1	C2	A	C3	A	C2	C1\| D	C1	C11	3	20741130	2	121
						0	E	C1	C1	C2	A	C3	A	C2\|C1	D	C11	4	20741130	2	121
							0	E	C1	C1	C2	A	C3	A\|C1	C1	D 1	5	20741130	2	121
								0	E	C1	C1	C2	A	C3\| D	C1	C11	6	20741130	2	121
									0	E	C1	C1	C2	A\|C1	D	C11	7	20741130	2	121
										0	E	C1	C1	C2\|C1	C1	D 1	8	20741130	2	121
											0	E	C1	C1\| D	C1	C11	9	20741130	2	121
												0	E	C1\|C1	D	C11	10	20741130	2	121
													0	E\|C1	C1	D	11	20741130	2	121
														O\| D	C1	C11	12	20741130	2	121
														10	A	A 1	15	20840400	3	040
															0	A 1	16	20840400	3	040
																01	17	20840400	3	040

$$
\begin{gathered}
A:-2.13 .64 ; \\
B:+2.11 .45 ; ~ C:+2.11 .46 ; ~ \\
D:+2.12 .53 ; \\
E:+2.12 .54 ; F:+2.12 .55 .
\end{gathered}
$$

Structural properties:
a) Graph Rob is 5-girth regular with 4 binary (+)positions and adjacent sub-structures.
b) Structure models of position structure $\boldsymbol{R o b} \boldsymbol{b}_{\boldsymbol{C l}}$ (in $\mathrm{SM}_{2.2}$) and its complement $\boldsymbol{R o b}_{\boldsymbol{C l}} \boldsymbol{C}$:

$\begin{array}{ll} A:-2.4 .4 ; & B:-2 \cdot 3 \cdot 2 ; \\ C:+3.6 .7 ; & D:+3 \cdot 8 \cdot 10 \end{array}$														$A:-2.6 .13 ; ~ B:-2.6 .12 ;$$C:+2.5 .8 ; ~ D:+2.6 .12 ; ~ E:+2.6 .13$.											
11	2	3	4	5	6	7	8	9	10	11	121	i	k	11	2	3	4	5	6	7	8	9	10	11	121
0	- - A	C	D	-B	-A	-A	-A	-B	D	C	-A\|	1	1	10	D	-A	- -	C	D	E	D	C	-B	-A	D 1
	0	-A	C	D	-B	$-A$	-A	-A	-B	D	$C 1$	2	1	\|	0	D	-A	-B	C	D	E	D	C	-B	-A\|
		0	-A	C	D	-B	-A	-A	-A	-B	D 1	3	1	\|		0	D	-A	-B	C	D	E	D	C	$-B 1$
			0	-A	C	D	-B	-A	-A	$-A$	$-B \mid$	4	1	\|			0	D	-A	-B	C	D	E	D	C
				0	-A	C	D	-B	-A	$-A$	-Al	5	1	\|				0	D	-A	-B	C	D	E	D
					0	-A	C	D	-B	-A	-Al	6	1	\|					0	D	-A	-B	C	D	$\boldsymbol{E} \mid$
						0	-A	C	D	$-B$	$-A \mid$	7	1	\|						0	D	-A	$-B$	C	D
							0	-A	C	D	$-B \mid$	8	1	\|							0	D	-A	-B	C
								0	-A	C	D	9	1	\|								0	D	-A	$-B \mid$
									0	-A	C	10	1	\|									0	D	-A\|
										0	-AI	11	1	\|										0	D
											01	12	1	1											01

c) Complement RobC is triangular with 10 binary(+)positions and adjacent sub-structures. It contain two mutually connected $\mathbf{6}$-cliques, in present case with elements $\mathbf{1 , 3 , 5 , 7 , 9 , 1 1}$ anf $\mathbf{2 , 4 , 6 , 8 , 1 0 , 1 2}$.
d) Invariants and measures:

| G | \|E| | k | \mathbf{N}^{+} | N^{-} | P | $C L$ | G | DM | SEV^{+} | SE ${ }^{+}$ | SRV | HR | SR |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Rob | 38 | 3 | 4 | 10 | 8 | 2 | 5 | 3 | $2^{1} 12^{3}$ | 0.6572 | $2^{1} 3^{1} 4^{1} 6^{1} 12^{7} 24^{3}$ | 0.0685 | 0.5215 |
| RobC | 133 | 3 | 10 | 4 | 6 | 6 | 3 | 2 | $3^{1} 4^{1} 6^{1} 12^{4} 24^{3}$ | 0.5653 | | | |

Example 2.4. Structure model of graph $\boldsymbol{R o b B}$ that is obtained by adding the position structure $\boldsymbol{G} \boldsymbol{S}_{n=-\boldsymbol{B}}$ (ie. edges 1314, 13-18, 14-19, 18-19) of Robertson's partially symmetric graph Rob (example 2.3) to Rob:

$$
\begin{gathered}
A:-3.10 .13 ; B:-3.10 .12 ; C:-2.4 .4 ; D:-2.3 .2 ; \\
E:+2.4 .6 ; F:+3.4 .4 ; G:+3.6 .8 ; H:+4.15 .28:
\end{gathered}
$$

Structural properties:
a) The vertex- and binary positions of Rob are remained in RobB, but the number of binary(+)positions is 5 .
b) RobB has a 4-ckique, is now not valence regular and not isomorphic with Rob.

Example 2.5. Structure models of Brinkman's [2, p. 175, Fig. V, 14] partially symmetric and valence regular graph Bri and its complement BriC:

$$
A:-3.10 .12 ; B:-3.8 .9 ; C:-3.6 .6 ; D:-2.3 .2 ; E:+4.13 .19 ; F:+4.14 .19 ; G:+4.14 .21
$$

$\begin{array}{ll} 1 & 1 \\ 1 & 2 \end{array}$	$\begin{array}{ll} 1 & 1 \\ 2 & 3 \end{array}$	$\begin{aligned} & 1 \\ & 9 \end{aligned}$	$\begin{array}{r} 1 \\ 10 \end{array}$	17	1		$\begin{aligned} & 2 \\ & 5 \end{aligned}$	$\begin{aligned} & 2 \\ & 6 \end{aligned}$	$\begin{array}{r} 2 \\ 13 \end{array}$	2	$\begin{array}{r} 2 \\ 19 \end{array}$	$\begin{array}{r\|r} 213 \\ 201 & 4 \end{array}$	$\begin{aligned} & 3 \\ & 7 \end{aligned}$	3	$\begin{array}{r} 3 \\ 11 \end{array}$	$\begin{array}{r} 3 \\ 12 \end{array}$	$\begin{array}{r} 3 \\ 15 \end{array}$	$\begin{array}{r} 31 \\ 161 \end{array}$	i	$A B C$	u_{i} DEFG	\boldsymbol{k}	$\begin{gathered} \boldsymbol{s}_{\boldsymbol{i}} \\ 123 \end{gathered}$	
10	$0-D$	-D	G	G	-D	$-D \mid G$	G	-D	-D	-D	-D	$-C \mid D 1$	D1	D2	D2	-B	-B	-A\|	2	121	12004	1	220	
	0	G	-D	-D	G	$-D \mid G$	$-D$	G	-D	-D	-C	$-D \mid D 1$	D2	D1	-B	D2	- A	$-B \mid$	3	121	12004	1	220	
		0	-D	-D	-D	$G \mid-D$	G	-D	G	-C	-D	$-D \mid D 2$	D1	-B	D1	-A	D2	$-B \mid$	9	121	12004	1	220	
			0	-D	-D	$\boldsymbol{G} \boldsymbol{- D}$	-D	G	-C	G	-D	$-\mathrm{D} \mid$ D2	-B	D1	-A	D1	-B	D21	10	121	12004	1	220	
				0	G	$-D \mathbf{- D}$	-D	-C	G	-D	G	$-D \mid-B$	D2	-A	D1	-B	D1	D21	17	121	12004	1	220	
					0	$-D \mathbf{- D}$	-C	-D	-D	G	-D	$G \mid-B$	-A	D2	-B	D1	D2	D11	18	121	12004	1	220	
						O1-C	-D	-D	-D	-D	G	G\|-A	-B	-B	D2	D2	D1	D11	21	121	12004	1	220	
						10	D2	D2	D1	D1	-B	$-B \mid-A$	F	F	D2	D2	D1	D11	1	121	12022	2	202	
							0	D1	D2	-B	D1	$-B \mid \boldsymbol{F}$	-A	D2	F	D1	D2	D11	5	121	12022	2	202	
								0	-B	D2	-B	D1\\| \boldsymbol{F}	D2	-A	D1	F	D1	D21	6	121	12022	2	202	
									0	-B	D2	$D 1 \mid D 2$	F	D1	-A	D1	F	D21	13	121	12022	2	202	
										0	D1	D2\|D2	D1	\boldsymbol{F}	D1	-A	D2	$F \mid$	14	121	12022	2	202	
											0	D2\|D1	D2	D1	F	D2	-A	$F 1$	19	121	12022	2	202	
												0101	D1	D2	D2	F	F	-A\|	20	121	12022	2	202	
												10	D2	D2	D1	D1	E	$E \\|$	4	220	12220	3	022	
													0	D1	D2	E	D1	$E \mid$	7	220	12220	3	022	
														0	E	D2	E	D11	8	220	12220	3	022	
															0	E	D2	D11	11	220	12220	3	022	
																0	D1	D21	12	220	12220	3	022	
																	0	D21	15	220	12220	3	022	
																		01	16	220	12220	3	022	

Common invariants and measures:

\boldsymbol{G}	$\|\boldsymbol{E}\|$	\boldsymbol{k}	\boldsymbol{N}^{+}	\boldsymbol{N}	\boldsymbol{P}	$\boldsymbol{C L}$	\boldsymbol{G}	$\mathbf{D M}$	$\boldsymbol{S E V}^{+}$	$\boldsymbol{S E}^{+}$	$\boldsymbol{S V V}$	$\boldsymbol{S V}$	$\boldsymbol{S R V}$	$\boldsymbol{S R}$
Bri	42	3	4	15	7	2	5	3	$\mathbf{7}^{\mathbf{1} 1 \mathbf{4}^{2}}$	0.6443	$\mathbf{7}^{\mathbf{3}}$	0.6391	$\mathbf{7}^{\mathbf{1 2}} \mathbf{1 4}^{\mathbf{7}} \mathbf{2 \mathbf { 8 } ^ { \mathbf { 1 } }}$	0.459
BriC	168	3	15	4	7	7	3	2	$\mathbf{7}^{10} \mathbf{1 4}^{\mathbf{5}} \mathbf{2 \mathbf { 8 } ^ { 1 }}$	0.4812				

Structural properties:
a) Graph Bri is 5-girth regular and has 4 binary (+)positions and adjacent sub-structures with morphism probabilities $\boldsymbol{P} \boldsymbol{F}_{1}=7 / 42=1 / 6, \boldsymbol{P F} \boldsymbol{F}_{2}=14 / 42=1 / 3, \boldsymbol{P F} \boldsymbol{F}_{3}=14 / 42=1 / 3$, and $\boldsymbol{P} \boldsymbol{F}_{4}=7 / 42=1 / 6$ correspondingly.
b) Its complement BriC is triangular and has 15 binary(+)positions and adjacent sub-structures.
c) A 7-clique of BriC is expressed in structure model by vertices $1,5,6,13,14,19,20$ of second vertex orbit.
d) Data about the number and powers of binary orbits of Bri and BriC contain in symmetry signs $\boldsymbol{S R} \boldsymbol{V}$ and $\boldsymbol{S E} \boldsymbol{V}^{+}$.

3. Structure of real objects

We can assert that a system, structure and also graph consist of the elements and relationships between the elements, these are "connected sets". How do they relate to each other and how they differ from each other?

In the system play an important role the empirical features of elements and their relationships. Each system has its function and structure. The structure is a discrete abstraction of the system, its "skeleton" where the elements have lost of their empirical meanings but the differences are expressed in the form of different positions in the structure. The structure is presentable as a graph, and is associated with the invariance and isomorphism.

The relations between concepts of the system, structure, invariance, position and graph are easily and pictorially explainable on the Rubik's cube. The function of this cube is known for all. Rubik's cube was studied mainly on playing aspect, but here we interested in its structure. To this end, let's look at a Rubik's Cube and answer to three questions.

Questions:
a) Which positions have the elements of the cube?
b) With layers turning of the cube (different placing are $4,3 \times 10^{19}$) changes its structure or system?
c) How to present a Rubik's cube as a graph

Example 3.1. Rubik's cube as a system that retains the structure (i.e. positions of elements).

Answers:

a) Rubik's cube has in each facet one element in the middle, four elements in the edges and four elements in the angles. Thus, the 6 elements of the cube represent a "middle position", 24 elements an "edge position" and 24 elements an "angle position".
b) With turning the layers of the cube, although be changed the system, because the relationships between its empirical properties of the elements (i.e. colors) changes. However, the structure does not change, because the positions remains - these are invariant. For example, a marked element in middle of face will always remain in the middle, and so on.
c) Each element of Rubic's cube has four adjacent elements: an "upper", a "lower", a "right-hand", a "lefthand" that are treatable as the vertices of a graph.

Now we need to label the elements and to compile a list of adjacent vertices or adjacency matrix and using it for forming a structure model. This graph is too large and does not make sense to draw it. All the structural information represented in the structure model.

Example 3.2. Processing results: Binary signs and structure model of the Rubik's cube:

$$
\begin{aligned}
& \text { A: -8.54.108; } B:-7.33 .60 ; C:-7.18 .27 ; D:-6.22 .24 ; \text { E: -6.21.36; } \\
& \text { F: -6.20.33; G: -6.19.31: } H:-6.15 .22 ; ~ I:-6.12 .16 ; ~ J: ~-6.12 .12 ; ~ \\
& \text { K: -5.13.20; L: -5.12.17; M: -5.10.13; N: -5.6.5; O: -4.9.12; P: -4. 8.11; } \\
& Q:-4.8 .10 ; R:-4.5 .4 ; \quad S:-3.6 .7 ; \quad T:-3.4 .3 ; \quad U:-2.4 .4 ; \quad V:-2.3 .2 ; \\
& \text { W: +2.3.3; } X:+3.6 .7 \text {. }
\end{aligned}
$$

|1. "Middle pos". | 2. "Edge position"

Structure model of Rubik. GRA (ending):

,	blue						\% $\begin{array}{r}3 \\ 18 \quad 19\end{array}$		"Angle pgreen$21 \quad 25 \quad 27$			position" orange				yellow					white 4852		541	i	k			
1	3	7	9	10	12	16			28		34	36	37															
U	U	U	U	S	M	S	M	G				G	G	G	M	S	M	S	S	S	M	M	S	S	M	M	5	1
M	S	M	S	U	U	U	U	S	M	S	M	G	G	G	G	M	S	M	S	M	S	M	S	14	1			
G	G	G	G	M	S	M	S	U	U	U	U	S	M	S	M	M	M	S	S	M	M	S	SI	23	1			
S	M	S	M	G	G	G	G	M	S	M	S	U	U	U	U	S	M	S	M	S	M	S	M	32	1			
S	S	M	M	S	S	M	M	S	S	M	M	S	S	M	M	U	U	U	U	G	G	G	GI	41	1			
M	M	S	S	M	M	S	S	M	M	S	S	M	M	S	S	G	G	G	G	U	U	U	U1	50	1			
+X	+X	S	S	V	R	0	H	K	K	B	B	R	V	H	0	U	U	Q	Q	Q	Q	I	II	2	2			
+X	S	+X	S	Q	I	Q	I	B	K	B	K	Q	U	Q	U	V	0	R	H	V	0	R	H	4	2			
S	+X	S	+X	U	Q	U	Q	K	B	K	B	I	Q	I	Q	0	V	H	R	0	V	H	R I	6	2			
S	S	+X	+X	0	H	V	R	B	B	K	K	H	0	R	V	Q	Q	1	I	U	U	Q	Q	8	2			
R	V	H	0	+X	+X	S	S	V	R	0	H	K	K	B	B	Q	U	Q	U	I	Q	I	Q 1	11	2			
Q	U	Q	U	+X	S	+X	S	Q	I	Q	I	B	K	B	K	R	V	H	0	R	V	H	O1	13	2			
I	Q	I	Q	S	+X	S	+X	U	Q	U	Q	K	B	K	B	H	0	R	V	H	0	R	VI	15	2			
H	0	R	V	S	S	+X	+X	0	H	V	R	B	B	K	K	I	Q	I	Q	Q	U	Q	U	17	2			
K	K	B	B	R	V	H	0	+X	+X	S	S	V	R	0	H	Q	Q	U	U	I	I	Q	Q 1	20	2			
B	K	B	K	Q	U	Q	U	+X	S	+X	S	Q	I	Q	I	H	R	0	V	H	R	0	VI	22	2			
K	B	K	B	I	Q	I	Q	S	+X	S	+X	U	Q	U	Q	R	H	V	\bigcirc	R	H	V	O1	24	2			
B	B	K	K	H	0	R	V	S	S	+X	+X	0	H	V	R	I	I	Q	Q	Q	Q	U	U	26	2			
V	R	\bigcirc	H	K	K	B	B	R	V	H	0	+X	+X	S	S	U	Q	U	Q	Q	I	Q	II	29	2			
Q	I	Q	I	B	K	B	K	Q	U	Q	U	+X	S	+X	S	0	H	V	R	0	H	V	R	31	2			
U	Q	U	Q	K	B	K	B	I	Q	I	Q	S	+X	S	+X	V	R	0	H	V	R	0	H	33	2			
\bigcirc	H	V	R	B	B	K	K	H	0	R	V	S	S	+X	+X	Q	1	Q	1	U	Q	U	Q	35	2			
U	U	Q	Q	V	0	R	H	Q	Q	1	I	0	V	H	R	+X	+X	S	S	K	K	B	BI	38	2			
V	\bigcirc	R	H	Q	Q	I	I	\bigcirc	V	H	R	U	U	Q	Q	+X	S	+X	S	K	B	K	BI	40	2			
\bigcirc	V	H	R	U	U	Q	Q	V	0	R	H	Q	Q	I	I	S	+X	S	+X	B	K	B	KI	42	2			
Q	Q	I	I	0	V	H	R	U	U	Q	Q	V	0	R	H	S	S	+X	+X	B	B	K	K	44	2			
Q	Q	U	U	R	H	V	0	I	I	Q	Q	H	R	0	V	K	K	B	B	+X	+X	S	S	47	2			
R	H	V	\bigcirc	I	I	Q	Q	H	R	\bigcirc	V	Q	Q	U	U	K	B	K	B	+X	S	+X	S	49	2			
H	R	\bigcirc	V	Q	Q	U	U	R	H	V	\bigcirc	I	I	Q	Q	B	K	B	K	S	+X	S	+X\|	51	2			
I	I	Q	Q	H	R	0	V	Q	Q	U	U	R	H	V	0	B	B	K	K	S	S	+X		53	2			
0	V	V	0	T	N	L	C	E	P	A	E	T	+W	L	S	+W	S	T	L	T	L	N	Cl	1	3			
	0	0	V	+W	T	S	L	P	E	E	A	N	T	C	L	S	+W	L	T	L	T	C	NI	3	3			
		0	V	L	C	T	N	A	E	E	P	L	S		+W	T	L	N	C	+W	S	T	LI	7	3			
			0	S		+W	T	E	A	P	E	C	L	N	T	L	T	C	N	S	+W	L	TI	9	3			
				0	V	V	0	T	N	L	C	E	P	A	E	T	+W	L	S	N	T	C	LI	10	3			

00	V	+W	T	S	L	P	E	E	A	L	S	T	+W	C	L	N	$T \mid$	12	3	
0	V	L	C	T	N	A	E	E	P	N	T	C	L	T	+W	L	$S \mid$	16	3	
	0	S	L	+W	T	E	A	P	E	C	L	N	T	L	S	T	+W\|	18	3	
		0	V	V	0	T	N	L	C	L	T	S	+W	C	N	L	T 1	19	3	
			0	0	V	+W	T	S	L	T	L	+W	S	N	C	T	LI	21	3	
				0	V	L	C	T	N	C	N	L	T	L	T	S	+W\|	25	3	
					0	S	L	+W	T	N	C	T	L	T	L	+W	$S 1$	27	3	
						0	V	V	0	S	L	+W	T	L	C	T	N	28	3	
							0	\bigcirc	V	+W	T	S	L	T	N	L	C 1	30	3	
								0	V	L	C	T	N	S	L	+W	$T \mid$	34	3	
									0	T	N	L	C	+W	T	S	$L \\|$	36	3	
										0	V	V	\bigcirc	P	E	E	A 1	37	3	
											0	0	V	E	P	A	$E \\|$	39	3	
												0	V	E	A	P	$E \mid$	43	3	
													0	A	E	E	P\|	45	3	
														0	V	V	Ol	46	3	
															0	O	VI	48	3	
																0	VI	52	3	
																	01	54	3	

The elements of cube are labeled in this case by the facets, but the algorithm divides these on the basis of frequency- $\boldsymbol{u}_{\boldsymbol{i}}$ and position $\boldsymbol{s}_{\boldsymbol{i}}$ vectors into positions \boldsymbol{k}. The binary signs in the model characterize the relationships between the elements, where in the present case exists 24 types of relationships. The frequency vector represents the relationships of an element \boldsymbol{i} with other elements. The position vector represents the relationships of an element \boldsymbol{i} with the elements in the same and other positions \boldsymbol{k}.

Example 3.3. Frequency- and position vectors of elements of Rubik's cube and corresponding positions:

Therefore, structure model is the complete invariant of Rubil's cube where: 1) the elements 5, 14, 23, 32, 41, 50 are on the "middle position", 2) the elements $2,4,6,8,11,13,15,17,20,22,24,26,29,31,33,35,38,40,42,44,47$, $49,51,53$ on the "edge position", 3) and the elements $1,3,7,9,10,12,16,18,19,21,25,27,28,30,34,36,37$, $39,43,45,46,48,52,54$ on the "angle position".

With turning a layer exchanged the place (replaced) some labels of elements, i. e. changes the system, but the structure (relationships between the elements) remain invariable. Essentially, deal with replacing of rows and columns (or changing of labeling), which does not really make sense, since we obtain the equivalent structural models, i. e. isomorphic graphs of Rubic's cube.

The structure of Rubik's graph has also 41 binary positions (positions that consist in corresponding vertex pairs). These are:

1. In segment 1.1 exist two binary positions, with vertex pairs \boldsymbol{D} and \boldsymbol{T};
2. In segment 1.2 exist five binary positions, with vertex pairs $\boldsymbol{N}, \boldsymbol{Q}, \boldsymbol{R}, \boldsymbol{V}$ and $+\boldsymbol{X}$;
3. In segment 1.3 exist four binary positions, with vertex pairs $\boldsymbol{G}, \boldsymbol{M}, \boldsymbol{S}$ and \boldsymbol{U};
4. In segment 2.2 exist nine binary positions, with vertex pairs $\boldsymbol{F}, \boldsymbol{J}, \boldsymbol{M}, \boldsymbol{N}, \boldsymbol{R}, \boldsymbol{S}, \boldsymbol{T}, \boldsymbol{U}$ and \boldsymbol{V};
5. In segment 2.3 exist ten binary positions, with vertex pairs $\boldsymbol{B}, \boldsymbol{H}, \boldsymbol{K}, \boldsymbol{O}, \boldsymbol{Q}, \boldsymbol{R}, \boldsymbol{S}, \boldsymbol{U}, \boldsymbol{V}$ and $+\boldsymbol{X}$;
6. In segment 3.3 exist eleven binary positions, with vertex pairs $\boldsymbol{A}, \boldsymbol{C}, \boldsymbol{E}, \boldsymbol{F}, \boldsymbol{L}, \boldsymbol{N}, \boldsymbol{O}, \boldsymbol{S}, \boldsymbol{T}, \boldsymbol{V}$ and $+\boldsymbol{W}$.

Here we have discussed about the structure of Rubik's cube, but not about the playing with it. As the positions of elements of this cube are expressed by binary signs and the colours of elements are known, then may be possible to construct a version of playing on the basis of structure's model SM. In principle can be constructed various plays on the ground of this model.

Structure model of the chemical compound is a detailed submission of the classical structural formula, i.e. of a graph that represents this formula.

This is a so-called systemic approach to the study of chemical compounds where different chemical elements (atoms) as a rule, are divided into different positions as subsystems. In case of more complex compounds, however, may also the same elements (atoms) belong to different positions (for example, ethanol, butane, propane, etc.). The main idea of using the same models consists in treatment of the whole on the basis of positions and the relationships between them. Structural models open up the possibility for additional investigation of chemical compounds. The structural models of some polymers and organic matters tend to be very large. Here is limited with moderates.

Example 3.4. Structural formula of isobutan $\mathrm{C}_{4} \mathrm{H}_{10}$, its binary signs and structure model:

$$
\begin{aligned}
A:-4.5 .4 ; \quad & B:-3.4 .3 ; \quad C:-2.3 .2 ; \\
& D:+1.2 .1 .
\end{aligned}
$$

Explanation: Decomposition of the elements C and H to four positions should not cause questions.
Example 3.5. Structural formula, binary signs and structure model of the amino acid proline $\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{NO}_{2}$:

$$
\begin{gathered}
A:-6.7 .6 ; \quad B:-5.6 .5 ; \quad C:-4.5 .4 ; \quad D:-3.4 .3 ; \quad E:-2.3 .2 ; \\
F:+1.2 .1 ; \quad G:+4.5 .5 .
\end{gathered}
$$

$\boldsymbol{s}_{\text {i }}$			
a	i	k	12345678901234
C	4	1	01111000000000
C	3	2	10000102000000
N	15	3	10000010100000
C	5	4	10000000011000
H	10	5	10000000000000
C	2	6	01000010000200
C	1	7	00100100000020
H	8	8	01000000000000
H	9	8	0100000000000
H	12	9	00100000000000
0	17	10	00010000000001
0	16	11	00010000000000
H	6	12	00000100000000
H	7	12	00000100000000
H	13	13	00000010000000
H	14	13	00000010000000
H	11	14	00000000010000

Structure model of proline also provides all the relationship between the elements. Its 17 elements are concentrated in 14 different positions. Presented separately position-vectors s_{i} constitutes an adjacent matrix of positions, which enable to compose corresponding "position's graph".

Example 3.6. The position's graph of proline:

The structure model of this position graph ("positions model") we here no represents, we note only that this has 10 positions, in which joined former positions $(2,3),(6,7),(8,9)$ and $(12,13)$. The structure model of chemical
compound opens for chemist unfamiliar structural side, but this side does not advisable to ignore because the existence of structure is real. To this end, all of this is presented here.

Exists also such a thing as a "chemical graph theory", which can be regarded as the mainstay of chemical compounds in the field of work by Arthur Cayley in 1874 (although if the term "graph" was not yet used). The end of the last century, thousands of articles on the subject, and in 1980 published a two-volume monograph of Nenad Trinaisti on Chemical Graph Theory. Proponents of this theory argue that it is giving valuable information about chemical phenomena, however, to the opponents seems it reasonable only in exceptional cases. Recommend to support the first. Moreover, the structure model is something perfect than a graph.

The genetic code in biology describes how genes that are composed of DNA are translated into proteins composed amino acids. The American bioinformatics William Seffens seems that genetic codes can be represented as graphs where the elements are amino acids. In his article, he justifies this view-point [18]. Here we limited with the treatment of graphs and structural model of the genetic code.

Example 3.7. The graph with three components of Standard genetic code (ID=1), its binary signs and structure model:

I. 1 e

61:
$A:-4.7 .9 ; \quad B:-4.7 .8 ; \quad C:-3.6 .8 ; \quad D:-3.6 .7 ; \quad E:-3.5 .5 ; \quad F:-3.4 .3$;
$G:-2.6 .10 ; \quad H:-2.5 .6 ; \quad I:-2.4 .4 ; \quad J:-2.3 .2 ; \quad K:-U .2 .0$;
$L:+1.2 .1 ; \quad M:+2.3 .3 ; \quad N:+2.4 .5 ; \quad 0:+3.4 .4 ; \quad P:+3.5 .6 ; \quad Q:+3.6 .10$.

| \| L| E | K \\| V ${ }^{\text {R }}$ | G\| N D | Y\| Q| F|S| A | T\| H| P| M| I| W| C| | | a | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \|11| 7 | 12\|20| 2 | 8\| 3 4 | 19\| 6|14|16| 1 | 17\| 9|15|13|10|18| 5| | i | | $\operatorname{deg} k$ |
| 100 | O\| $-K \mid-K$ | $-K \mid-K-K$ | $-K\|L\|-I\|-K\|-K$ | $-K\|-K\|-K\|-K\|-K\|-K\|-K \mid$ | 11 | Leu | 31 |
| 0 | $-I\|-K\|-K$ | $-K \mid-K-K$ | $-K\|-J\| O\|-K\|-K$ | $-K\|-K\|-K\|-K\|-K\|-K\|-K \mid$ | 7 | Glu | 22 |
| | O\|-K|-K | $-K \mid-K-K$ | $-K\|-J\| \quad O\|-K\|-K$ | $-K\|-K\|-K\|-K\|-K\|-K\|-K \mid$ | 12 | Lys | 22 |
| | O1-K | $-K \mid P \quad P$ | $P\|-K\|-K\|-K\|-K$ | $-K\|L\|-K\|-J\|-H\|-K\|-K \mid$ | 20 | Val | 43 |
| | 0 | $-G \mid-K-K$ | $-K\|-K\|-K \mid \boldsymbol{N \|} \boldsymbol{M}$ | $\boldsymbol{M}\|-K\| \boldsymbol{Q}\|-K\|-K\|-J\|-I \mid$ | 2 | Arg | 44 |
| | | O\| $-K-K$ | $-K\|-K\|-K \mid \boldsymbol{N \|} \boldsymbol{M}$ | $\boldsymbol{M}\|-K\| \quad Q\|-K\|-K\|-J\|-I \mid$ | 8 | Gly | $4 \quad 4$ |
| | | $0-I$ | $-I\|-K\|-K\|-K\|-K$ | $-K\|-J\|-K\|-F\| \quad \boldsymbol{P}\|-K\|-K \mid$ | 3 | Asn | 25 |
| | | 0 | $-I\|-K\|-K\|-K\|-K$ | $-K\|-J\|-K\|-F\| \quad P\|-K\|-K \mid$ | 4 | Asp | 25 |
| | | | O\| $-K\|-K\|-K \mid-K$ | $-K\|-J\|-K\|-F\| \mathbf{P}\|-K\|-K \mid$ | 19 | Tyr | 25 |
| | | | O\| $-E\|-K\|-K$ | $-K\|-K\|-K\|-K\|-K\|-K\|-K \mid$ | 6 | Gln | 16 |
| | | | O\|-K|-K | $-K\|-K\|-K\|-K\|-K\|-K\|-K \mid$ | 14 | Phe | 27 |
| | | | O1 N | $\boldsymbol{N}\|-K\|-I\|-K\|-K\|-E\|-I \mid$ | 16 | Ser | 48 |
| | | | 0 | $-G\|-K\|-I\|-K\|-K\|-E\| \quad Q \mid$ | 1 | Ala | 49 |
| | | | | O\|-K|-I|-K|-K|-E| Q| | 17 | Thr | 49 |
| | | | | O\|-K| L|-D|-K|-K| | 9 | His | 210 |
| | | | | O\|-K|-K| L|-C| | 15 | Pro | 311 |
| | | | | $0\|-B\|-K\|-K\|$ | 13 | Met | 112 |
| | | | | $\underline{O\|-K\|-K \mid}$ | 10 | Ile | 313 |
| | | | | O\|-A| | 18 | Trp | 114 |
| | | | | 01 | 5 | Cys | 215 |

u_{i}						
i	a	ABCDEFGHIJ	K	LMNOPQ	k	123456789012345
11	Leu	0000000010	15	100200	1	020001000000000
7	Glu	0000000011	15	000200	2	100000100000000
12	Lys	0000000011	15	000200	2	100000100000000
20	Val	0000000101	13	100030	3	000030000100000
2	Arg	0000001011	12	021001	4	000000012010000
8	Gly	0000001011	12	021001	4	000000012010000
3	Asn	0000010021	13	000020	5	001000000000100
4	Asp	0000010021	13	000020	5	001000000000100
19	Tyr	0000010021	13	000020	5	00100000000100
6	Gln	0000100002	15	100000	6	10000000000000
14	Phe	0000100010	15	000200	7	020000000000000
16	Ser	0000100020	12	004000	8	000200002000000
1	Ala	0000101010	12	021001	9	000200010000001
17	Thr	0000101010	12	021001	9	000200010000001
9	His	0001000003	13	200000	10	001000000001000
15	Pro	0010000030	12	100002	11	000200000000010
13	Met	0100030001	13	100000	12	000000000100000
10	Ile	0101000100	13	000030	13	00003000000000
18	Trp	1000300002	12	100000	14	000000000010000
5	Cys	1010000030	12	000002	15	000000002000000

Three components are by Seffens represented as a common graph, because in case of alternative genetic codes exists relationships between the components. The numbers by relations indicate the number of edges (multigraph's existence). The girths exist in standard genetic code with a length of 3 and 4 . Disconnections with the other components represent binary sign $K:-u .2 .0$. Twenty amino acids form the fifteen positions. We can see that the common positions \boldsymbol{k} in the genetic code have the following amino acids
$\boldsymbol{k}=2$: glutamic acid (Glu) ja lysine (Lys); $\boldsymbol{k}=4$: arginine (Arg) ja glycine (Gly); $\boldsymbol{k}=5$: aspargine (Asn), aspartic acid (Asp) ja tyrosine (Tyr); $\boldsymbol{k = 9}$: alahine (Ala) ja threonine (Thr).

If accepted the positions in genetic code, then should also be accept the relationships between positions (position vectors s_{i}), which constitutes the adjacent matrix of positions. The corresponding graph to present here does not make sense, but the structural model can be set up. Existing there double and triple connections can be ignore, because these characterize only the number of amino acids that having a common position.

Example 3.8. Binary signs and structure model of position's relationships of Standard genetic code:

$$
A:-4.5 .4 ; \quad B:-3.4 .3 ; \quad C:-2.3 .2 ; \quad D:+ \text { U.2.0; } \quad E:+1.2 .1 ; \quad F:+2.3 .3 .
$$

			u_{i}							
	$2\|4\| 3\|9\| 510 \mid 6$	$7\|8\| 11 \mid 12$ 13\|15	14		k	ABC	D	EF	k^{\star}	
1	$\boldsymbol{E} \mid-D \mathbf{\| - D \| - D \| - D ~ - D \| ~} \boldsymbol{E}$	$-C \mid-D \mathbf{- D \| - D ~ - D \| ~ - D \| ~ - D \| ~}$	1	001	11	20	1			
	$0 \mathbf{\|}-D \mathbf{\|}-D \mathbf{-}-D \mathbf{- D}-D \mathbf{-}-C$	$\boldsymbol{E} \mathbf{\|}-D \mathbf{\|}-D \mathbf{\|}-D-D \mathbf{\|}-D \mathbf{\|}-D \mathbf{\|}$	2	001	11	20	1			
	$0\|-D\| \boldsymbol{F \|}\|-D-D\|-D$	$-D\|\boldsymbol{F}\| \boldsymbol{E}\|-D-D \mathbf{- C \|}-C\|$	4	002	9	12	2			
	O\|-D	E E	-D	$-D \mid-D \mathbf{- D \| - C - C \| - D \| - D \| ~}$	3	002	10	20	3	
	$0 \mid-D-D \mathbf{- D}$	$-D\|\boldsymbol{F} \mathbf{\|}-C\|-D-D\|\boldsymbol{E}\|-B \mid$	9	011	9	12	4			
	$0-C \mid-D$	$-D \mathbf{\| - D \| - D \| - B \quad E \boldsymbol { \| } - D \mathbf { - D } \|}$	5	011	10	20	5			
	O1-D	$-D \mathbf{\|}-D \mathbf{- D \| ~} \boldsymbol{E}-B\|-D \mathbf{- D}\|$	10	011	10	20	5			
	0	$-B \mid-D \mathbf{- D \| - D - D \| - D \| - D \| ~}$	6	011	11	10	6			
		$0 \mid-D \mathbf{-}-D \mathbf{\|}-D-D \mathbf{\|}-D \mathbf{\|}-D \mathbf{\|}$	7	011	11	10	6			
		$0\|-C\|-D-D\|-C\|-B \mid$	8	012	9	02	7			
		O\|-D-D	-B	E		11	012	9	20	8
		$0-A\|-D\|-D \mid$	12	111	10	10	9			
		$0\|-D\|-D \mid$	13	111	10	10	9			
		O\|-A		15	112	9	10	10		
		01	14	121	9	10	11			

\boldsymbol{s}_{i}					
11	10000100000	1	Leu		
21	10000100000	1	Glu,	Lys	*
41	00010011000	2	Arg,	Gly	*
31	00002000000	3	Val		*
91	01000010010	4	Ala,	Thr	\star
51	00100000100	5	Asn,	Asp,	*
101	00100000100	5	His,	Tyr	\star
61	1000000000	6	Gln		*
71	10000000000	6	Phe		*
81	01010000000	7	Ser		*
111	0100000001	8	Pro		*
121	00001000000	9	Met		*
131	00001000000	9	Ile		*
151	00010000000	10	Cys		*
141	00000001000	11	Trp		*

In the structure model of position's relationships are some previous positions \boldsymbol{k} merged into new positions \boldsymbol{k}^{*}, the number of previous positions was 15, now 11. Also here represent the position vectors a new adjacent matrix, on which it could continue to operate. However we limited, because the genetic significances of the obtained results are not covered here.

Alternative genetic codes differ from standard code a greater or lesser extent. Different components of the codes can be isomorphic. For example, the second and third component of Euplotid Nuclear code (ID=10) is isomorphic with the corresponding components of Standard genetic code, etc. The differences expressed as a few different loop, a new relationship (edge) in component or between components.

Example 3.9. First component of Euplotid Nuclear code (ID=10), its binary signs and structure model:

G	R\|	S 1	T	A	P\| W		i	a	u_{i}		$\boldsymbol{s}_{\boldsymbol{i}}$	
8		6			15\|18		51			ABCDEFGHIJKLM	k	123456
0	-E\|	K\|	J	J	$\mathbf{M \| - H \|}$		8	Gly	0000110102101	1	012100	
	01	$K 1$	J	J	$\boldsymbol{M}\|-H\|$		2	Arg	0000110102101	1	012100	
		01	L	L\|	$-G\|-C\|$	$K \mid$	16	Ser	0010001000320	2	202001	
			0	-DI	$-G\|-C\|$	J	17	Thr	0011001003010	3	210001	
					$-G\|-C\|$	$J \mid$	1	Ala	0011001003010	3	210001	
					O\|I		-B\|	15	Pro	0100003010002	4	200010
						$-A \mid$	18	Trp	1030000210000	5	000100	
						01	5	Cys	1100020002100	6	012000	

Euplotid Nuclear code is an adjacent superstructure of Standard code, it differs only by addition of a relation (connection) between Ser and Cys to the first component. Changes the structure, but the positions will be retained. W. Seffens has treated 15 genetic codes, which on the structural aspect forms a "space of genetic codes".

Example 3,10. Partially symmetric graph of Kabalahh $\boldsymbol{K} \boldsymbol{a} \boldsymbol{b}$ and its structure model:

Where: Kether - Crown; Binach - Understanding; Chochmah - Wisdom; Gewurah - Severity; Chesed - Mercy; Tiphereth - Beauty; Hod - Splendor; Nezah - Victory; Jesod - Foundation; Malchuth - Kingdom.

```
    A: -3.5.6; B: -3.4.3; C: -2.5.9; D: -2.5.8; E: -2.4.5; F: -2.3.2;
G: +1.2.1; H: +2.3.3; I: +2.4.6; J: +2.5.8; K: +2.5.10; L: +2.6.12; M: +2.6.13.
```

1\| 2		\|	\| 51	71				\boldsymbol{k}			
6\| 9	7	812	3\| 1	4	5\|10		i		ABCDEFGHIJKLM		1234567
$0\|+I\|+J$	$+J \mid+M$	$+M\|+I\|+L$	+L\| F		6	Beauty	0000010022022	1	0122120		
O\|+I	+I\\| F	$F\|F\| E$	$E\|+G\|$	9	Foundation	0000231030000	2	1020001			
10	+I\| E	$E\|F\|+H$	$D\|F\|$	7	Splendor	0001220121000	3	1110010			
	O1E	$E\|F\| D$	+H\| F		8	Victory	0001220121000	3	1110010		
	10	$+M\|+I\|+K$	+K\| \quad \|	2	Understanding	0100210010202	4	1001120			
		$0\|+I\|+K$	+K\| $\quad \mathrm{B} \mid$	3	Wisdom	0100210010202	4	1001120			
		O1 C	$C\|B\|$	1	Crown	0120030030000	5	1002000			
		10	+K\| $\mathrm{A} \mid$	4	Severity	1011100100310	6	1012010			
			O\| A		5	Mercy	1011100100310	6	1012010		
			01	10	Kingdom	2300031000000	7	0100000			

The positions of (understanding, wisdom), (severity, mercy), (beauty) form a 5 -clique and positions (beauty), (splendor, victory), (foundation) form a 4-clique. What mean the positions and cliques on the viewpoint of Kaballahh?

Since real communication networks are very large. Imagine here one a peculiar companionship \boldsymbol{Z} consisting of Adolf, Berta, Charles, Diana, Erik, Frieda, George, Helen, Ingvar and Jane. They are mutually agreed that everyone communicates with the five, known to us, parlor companions. The latter circumstance had required of coordination, and someone had to do it.

Adolf-Berta, Charles, Diana, George, Jane;
Berta - Adolf, Charles, Helen, Ingvar, Jane;
Charles - Adolf, Berta, Diana, Erik, George;
Diana - Adolf, Charles, Erik, Frieda, Ingvar;
Erik - Charles, Diana, Frieda, Helen, Jane;
Frieda - Diana, Erik, George, Helen, Ingvar;
George - Adolf, Charles, Frieda, Helen, Jane;
Helen - Berta, Erik, Frieda, George, Ingvar;
Ingvar - Berta, Diana, Frieda, Helen, Jane;
Jane - Adolf, Berta, Erik, George, Ingvar.
This situation constitutes a five-degree-regular structure in which all the members seem to be in "equal position".
Example 3.11. To present this situation make a corresponding structure model \boldsymbol{Z} :

$$
\begin{gathered}
A:-2.6 .10 ; \quad B:-2.6 .9 ; \quad C:-2.5 .8 ; \quad D:-2.5 .7 ; \quad E:-2.5 .6 ; \quad F:-2.4 .5 ; \quad G:-2.4 .4 ; \\
H:+2.3 .3 ; \quad I:+2.4 .5 ; \text { J:+2.5.7; K:+3.10.25. }
\end{gathered}
$$

Unfortunately, the structure Z is 0 -symmetric, there do not "equality", each member has its own private position. Different position means different connectivity, "relationships" with other members. Between ten members exists 11 different relationships, which is characterized by the binary signs (see frequency vectors $\boldsymbol{u}_{\boldsymbol{i}}$). The problem lies here in the grouping of strictly differentiated members. This fact leads us back to the sign structures $\boldsymbol{G S}_{p}$. In selection of the sign must be proceeds from:

1) Selected sign must be exists in case of each structural element.
2) To keep in mind the meaning of sign, because the sign structure be formed on the aspect of sign.

In principle is the companionship decomposable to the eleven inseparable component sign structures $\boldsymbol{G S} \boldsymbol{S}_{\boldsymbol{p}}$, and gives different groupings. This is inappropriate, and useful to go the other way.

Let to it is the rearranging the members by their "direct communication signs" HIJK of frequency-vectors.
Example 3.12. Rearranged by HIJK structure model Z:

The resulting grouping corresponds to the requirement of "direct communication signs", where the ten positions \boldsymbol{k} reduces to five groups, with the members:

$$
\begin{gathered}
\mathrm{R}_{1}=(\text { Frieda, Adol }), \mathrm{R}_{2}=(\text { Helen, Charles }), \mathrm{R}_{3}=(\text { Diana, Berta, Ingvar }), \\
\mathrm{R}_{4}=(\text { Jane, Erik }) \text { and } \mathrm{R}_{5}=(\text { George }) .
\end{gathered}
$$

For finding the "similarity" of members can be use also approximate or rounded-off binary signs.
Example 3.13. Using the rounded-off binary signs:

$$
\begin{aligned}
& \text { Rounding-off: } a=[A:-2.6 .10 ; B:-2.6 .9], b=[C:-2.5 .8 ; D:-2.5 .7 ; E:-2.5 .6], \\
& C=[F:-2.4 .5 ; G:-2.4 .4], d=[H:+2.3 .3 ; I:+2.4 .5 ; J:+2.5 .7], \quad e=(K:+3.10 .25) . \\
& \text { Rounded binary signs: } a:(A, B) \approx-2.6, b:(C, D, E) \approx-2.5, c:(F, G) \approx-2.4, \boldsymbol{d}:(\boldsymbol{H}, \boldsymbol{I}, \boldsymbol{J}) \approx+2 \text { ja } \boldsymbol{e}: \boldsymbol{K} \approx+\mathbf{3} .
\end{aligned}
$$

The resulting grouping by rounded-off binary signs:

$$
\begin{gathered}
\boldsymbol{k}_{1}^{*}=(\text { Frieda, Adolf }), \boldsymbol{k}_{2}^{*_{2}}=(\text { Diana }), \boldsymbol{k}_{3}{ }_{3}=(\text { Helen, Charles, Berta, Ingvar }), \\
\boldsymbol{k}_{*_{4}}=(\text { Jane, Erik }) \text { and } \boldsymbol{k}^{*}{ }_{5}=(\text { George }) .
\end{gathered}
$$

We can see that there exist coincidences between the results of "direct communication signs" and rounding-off. The first way shall be considered as more distinct and therefore more reliable. The "rounding" of binary signs may prove to be quite arbitrary. Here can remark a specific role of Jane and Erik in this companionship, to their relationship $K:+3.10 .25$ includes all members and relationships, and they may be coordinators.

Such 0 -symmetric structures can be treats, investigate, and elements grouped in several ways:

1) By investigation of the selected sign structures $\boldsymbol{G} \boldsymbol{S}_{p}$.
2) By investigate on the basis of some selected binary signs formed the so-called complex sign structures.
3) By reordering the structural model by the given binary signs (example 3.12).
4) For reducing the positions to use the connected or "rounded" binary signs (example 3.13).

All of this requires a good knowledge of the subject and suitable choices the aspects for the investigation.

4. Structural equivalence and isomorphism

We demonstrate that isomorphic graphs have the same structure, which expressed in the form of structural equivalence of models, where:

1) Isomorphism is a one-to-one correspondence between elements, an isomorphic mapping from graph $\boldsymbol{G}_{\boldsymbol{A}}$ to graph $\boldsymbol{G}_{\boldsymbol{B}}$ is a bijection $\boldsymbol{\varphi}: \boldsymbol{V}_{\boldsymbol{A}} \rightarrow \boldsymbol{V}_{\boldsymbol{B}}:$.
2) Isomorphism recognition does not recognize the structure, but the structure model recognize the structure with exactness up to isomorphism.
3) Structural equivalence is a coincidence or bijection on the level of binary signs, binary- and element positions.
4) Recognition the positions by binary signs is more simply than detecting the orbits on the ground of the group AutG.

Example 4.1. Graphs $\boldsymbol{G}_{\boldsymbol{A}}$ and $\boldsymbol{G}_{\boldsymbol{B}}$, their binary signs and structure models $\mathbf{S M}_{\boldsymbol{A}}$ and $\mathbf{S M}_{\boldsymbol{B}}$:

$A:-2.5 .7 ; B:-2.5 .6 ;$
$C:+2.3 .3 ; D:+2.5 .7 ; E:+3.6 .10$.

11	1121	3	3	31		\mathbf{u}_{i}	k	$\boldsymbol{s}_{\boldsymbol{i}}$
13	4\|61	1	2	51	i	$A B C D E$		123
10	$D\|-B\|$	C	C	$C \mid$	3	01310	1	103
	O\| $-B \mid$	C	C	C 1	4	01310	1	103
	101	E	E	$E \mid$	6	02003	2	003
		0	-A	-A\|	1	20201	3	210
			0	- AI	2	20201	3	210
				01	5	20201	3	210

$A:-2.5 .7 ; B:-2.5 .6 ;$

$$
C:+2.3 .3 ; D:+2.5 .7 ; E:+3.6 .10 .
$$

	11	1\| 21	3	3	31		u_{i}	k	s_{i}
	13	61 21	1	4	51	i	ABCDE		123
	10	$D\|-B\|$	C	C	Cl	3	01310	1	103
		이-B\|	C	C	Cl	6	01310	1	103
\approx		1 O1	E	E	E\|	2	02003	2	003
		1	0	-A	$-A \mid$	1	20201	3	210
				0	-AI	4	20201	3	210
					01	5	20201	3	210

Explanations:
a) Different graphs $\boldsymbol{G}_{\boldsymbol{A}}$ and $\boldsymbol{G}_{\boldsymbol{B}}$ have equivalent structure models $\mathbf{S M}_{\mathbf{A}} \approx \mathbf{S M}_{\mathbf{B}}$! This means that the structures are equivalent and the graphs isomorphic $\boldsymbol{G}_{\boldsymbol{A}} \cong \boldsymbol{G}_{\boldsymbol{B}}$.
b) The structural elements are divided to three positions (equivalence classes, orbits) $\boldsymbol{\Omega} \boldsymbol{V}_{\boldsymbol{k}}$ and element pairs to five positions $\boldsymbol{\Omega} \boldsymbol{R}_{\boldsymbol{n}}$, where the adjacent elements or "edges" divided to three binary(+)positions (full line, a dotted, dashed-line) that coincides with binary signs $\boldsymbol{C}, \boldsymbol{D}, \boldsymbol{E}$ correspondingly.
c) The column \boldsymbol{u}_{i} of model consists of the frequency vectors, which for the element \boldsymbol{i} show its relations with other elements. On the basis of vectors \boldsymbol{u}_{i} are arranged the positions in model.
d) The column s_{i} of model consists of the position vectors that represent the connections of element \boldsymbol{i} with elements in corresponding positions \boldsymbol{k}. If on the framework of frequency vectors arises differences of position vectors, then by lasts does a complementary partition into classes.

Here it may be noted that the first primitive "distance matrix" was presented already in 1973 by S. Toida [40], as isomorphism identification attribute. Indeed, the distance matrix can detect the isomorphism or "non-isomorphism" for quite many graphs, but it is by no means reliable.

The structure model SM is a canonical description of structure (graph) with exactness up to binary signs, positions, isomorphism and others structural attributes. The problem of canonical representation of the graphs was set by Lazlo Babai in 1977th [1]. The presentation ways are proposed much [5, 9]. Unfortunately, they do not contain information about the structure.

If the structure models of graphs \boldsymbol{G} and \boldsymbol{H} are equivalent $\mathbf{S M}_{\boldsymbol{G}} \approx \mathbf{S M}_{\boldsymbol{H}}$ then the graphs are isomorphic $\boldsymbol{G} \cong \boldsymbol{H}$.

The isomorphism problem is to design an algorithm that recognizes the isomorphism of two objects. The graph isomorphism problem came into prominence in 1857, when Arthur Cayley reported his research on organic isomers [3]. Two graphs called isomorphic, if they differ only in the labeling of their vertices.

Example 4.2. Graphs $\operatorname{Pra}_{\boldsymbol{A}}$ and $\boldsymbol{P r a}_{\boldsymbol{B}}$, designed especially for testing the structural equivalence of "very similar" poly-symmetric graphs that have common basic, but different perfected binary signs:

Common basic binary signs of $\boldsymbol{P r a}_{\boldsymbol{A}}$ and $\boldsymbol{P r a}_{\boldsymbol{B}}$:

$$
A:-3.8 .10 ; B:-3.6 .7 ; C:-2.4 .4 ; D:-2.3 .2 ; E:+2.4 .6 ; F:+3.8 .16 .
$$

Perfected by matrix product $\boldsymbol{E}^{\boldsymbol{n}=5}$ binary signs and structure model $\mathbf{S M}$ of graph $\operatorname{Pra}_{\boldsymbol{A}}$:

Marking the basic binary signs	0	$-A$	$-B$	$-C$		$-D$	\boldsymbol{E}		\boldsymbol{F}
Productive binary signs $\boldsymbol{e}^{\mathbf{5}}$	180	125	110	165	160	80	231	233	210
Perfected binary signs	0	$-A$	$-B$	$-C 1$	$-C 2$	$-D$	$\boldsymbol{E 1}$	$\boldsymbol{E} 2$	\boldsymbol{F}
Frequency vector	-	2	4	4	2	3	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{2}$

Perfected by matrix product $\boldsymbol{E}^{n=7}$ binary signs and structure model $\mathbf{S M}$ of graph $\boldsymbol{P r a}_{\boldsymbol{B}}$:

Basic binary signs	0	$-A$	$-B$		$-C$			$-D$	\boldsymbol{E}		\boldsymbol{F}
Productive signs \boldsymbol{e}^{\prime}	4410	3437	3276	3277	4081	4088	4011	3010	4831	4803	4445
Perfected signs	0	$-A$	$-B 1$	$-B 2$	$-C 1$	$-C 2$	$-C 3$	$-D$	$\boldsymbol{E 1}$	$\boldsymbol{E 2}$	\boldsymbol{F}
Frequency vector	-	2	2	2	2	2	2	2	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{2}$

Explanations:
a) The structure models of $\boldsymbol{P r a}_{\boldsymbol{A}}$ and $\boldsymbol{P r a}_{\boldsymbol{B}}$ are non equivalent, it is recognized already with the difference of frequency vectors, and graphs are non isomorphic.
b) Graph $\operatorname{Pra}_{\boldsymbol{A}}$ has five binary(-)positions by $-A,-C 2$, and $-D$ with power 20 and two binary positions by $-B$ and $-C 1$ with power 40.
c) Graph $\boldsymbol{P r a}_{\boldsymbol{B}}$ has seven binary(-)positions whit power 20.
d) Both graphs have three binary(+)positions $\boldsymbol{E} 1, \boldsymbol{E} 2$ and \boldsymbol{F} with power 20.

For recognition the equivalence of structure models $\mathbf{S M}_{\boldsymbol{A}}$ and $\mathbf{S M}_{\boldsymbol{B}}$ is necessary and sufficient:

1) Detecting the coincidence of the sequences of binary signs $\left\{ \pm \text { d.n.q. }{ }_{\cdot i j}\right\}_{A}$ and $\{ \pm \text { d.n.q. } \cdot i j\}_{B}$;
2) Detecting the coincidence of the frequency vectors $\left\{\boldsymbol{u}_{i}\right\}_{A}$ and $\left\{\boldsymbol{u}_{i}\right\}_{\boldsymbol{B}}$;
3) Detecting the coincidence of the position vectors $\left\{\boldsymbol{s}_{i}\right\}_{A}$ and $\left\{\boldsymbol{s}_{i}\right\}_{B}$.

It is possible to construct such bisymmetric and strongly regular graphs that have very small binary graphs in case of large number of vertices. We call these strongly symmetric graphs. Look to constructed by M. Nechepurenko, M. Klin et al strongly symmetric graphs $\boldsymbol{S i b}_{\boldsymbol{A}}$ and $\boldsymbol{S i b}_{\boldsymbol{B}}$ with 40 vertices [13]. These graphs have common binary signs: $-A:-2.6 .8$ (complement has $\boldsymbol{+ B} \boldsymbol{+}+\mathbf{2 . 2 0 . 1 4 2}$) and $\boldsymbol{+ B} \boldsymbol{+}+\mathbf{2 . 4 . 6}$ (the complement has $-A:-2.20 .144$). From binary signs conclude that Sib_{A} and Sib_{B} are 4-clique-, 2-distance- and 12-degree regular. From coincidence the binary signs of $\operatorname{Sib}_{\boldsymbol{A}}$ and $\mathbf{S i b}_{\boldsymbol{B}}$ conclude the coincidence of the symmetry properties.

As in case of strongly symmetric graphs the product identification no works, we must use another perfection ways. The high (second) degree pair signs (see introduction 1.1) of $\boldsymbol{S i b}_{\boldsymbol{A}}$ and $\boldsymbol{S i b}_{\boldsymbol{B}}$ are $-A^{m=2}=-3.18 .48$ and $+\boldsymbol{B}^{\boldsymbol{m}=2}=+3.20 .64$, and anew coincide. A binary graph of third degree $\boldsymbol{g}_{i j}{ }^{m=3}$ no arise, it is empty \varnothing.

Now must to form for second degree binary graphs $\boldsymbol{g}_{i j}{ }^{m=2}$ of Sib_{A} and $\operatorname{Sib}_{\boldsymbol{B}}$ with help the local structure models $\boldsymbol{S} \boldsymbol{M}_{i j}{ }^{m=2}$ (see introduction 1.2). For this we open in both graphs the binary graph $\boldsymbol{g}_{i j}^{m=2}{ }_{\boldsymbol{A}}$ and $\boldsymbol{g}_{i j}^{m=2} \boldsymbol{B}_{\boldsymbol{B}}$, such that correspond to pair sign $+\boldsymbol{B}^{m=2}$.

Example 4.3. Binary signs of second degree binary graphs $\boldsymbol{g}_{i j}{ }^{\boldsymbol{m}=2}$ of $\boldsymbol{S i b}_{\boldsymbol{A}}$ and $\boldsymbol{S i b}_{\boldsymbol{B}}$ are:
Binary signs of second degree binary graph $\boldsymbol{g}_{i j}{ }^{m=2} \subset \operatorname{Sib}_{A}$ in local structure model $\mathbf{S M}_{i j}{ }^{m=2}{ }_{A}$:

$$
-A=-2.6 .8 ;-B=-2.4 .4 ;-C=-2.3 .2 ; \boldsymbol{D}=+2.4 .6 ; E=+3.12 .28 ; F=+3.20 .46
$$

Binary signs of second degree binary graph $\boldsymbol{g}_{i j}{ }^{m=2} \subset \operatorname{Sib}_{\boldsymbol{B}}$ in local structure model $\mathbf{S M}_{i j}{ }^{m=2}{ }_{\boldsymbol{B}}$:

$$
-A=-2.6 .8 ;-B=-2.4 .4 ; C=+2.4 .6 ; D=+3.12 .24 ; E=+3.20 .46 .
$$

Explanations:
a) From differences of binary signs of second degree binary graphs signs conclude non-equivalence of local structure models, $\mathbf{S M}_{i j}{ }^{m=2} \neq \mathbf{S M}_{i j}{ }^{m=2}{ }_{B}$.
b) From non-equivalence of local structure models conclude non-equivalence of structures $\mathbf{S i b}_{\boldsymbol{A}}$ and $\boldsymbol{S i b}_{\boldsymbol{B}}$.

Thus, from non-isomorphism of binary graphs $\boldsymbol{g}_{i j}{ }^{m}{ }_{A}$ and $\boldsymbol{g}_{i j}{ }^{m}{ }_{B}$ of corresponding strongly symmetric graphs $\boldsymbol{G}_{\boldsymbol{A}}$ and $\boldsymbol{G}_{\boldsymbol{B}}$ concludes structural non-equivalence and non-isomorphism of $\boldsymbol{G}_{\boldsymbol{A}}$ and $\boldsymbol{G}_{\boldsymbol{B}}$.

For showing the differences of $\mathbf{S i b}_{\boldsymbol{A}}$ and $\mathbf{S i b}_{\boldsymbol{B}}$ we demostrate the kernels of second degree pair graphs.
Example 4.4. The kernels of second degree pair graphs of very similar structures $\mathbf{S i b}_{\boldsymbol{A}}$ and $\mathbf{S i b}_{\boldsymbol{B}}$:
Kernel of $\boldsymbol{g}_{1-6}{ }^{\boldsymbol{m}=2} \subset \boldsymbol{S i b}_{A}$:

Explanation: There is no doubt that the bipartite kernels are different.

5. Adjacent structures and reconstruction problem

Example 5.1. Partially symmetric structure GS.37(6.9.4) [28, 35] with two element positions and four binary positions (two binary(+)- and two binary(-)positions, its graph, structure model, characteristics of changes and morphisms:

	1	1	1\| 2	2	21		u_{i}	k	s_{i}
	1	3	512	4	61	i	$A B C D$		12
\|	0	D	D ${ }^{\text {c }}$	-A	C\|	1	1022	1	22
		0	D\| C	C	-A\|	3	1022	1	22
			O1-A	C	Cl	5	1022	1	22
			10	-B	-B\|	2	1220	2	20
				0	-B\|	4	1220	2	20
					01	6	1220	2	20

	$G S^{\text {adj }}{ }_{n}$	1	2
	$G S^{\text {sup }}{ }_{n-}$	29	30
GS. 37	$\begin{gathered} k . k^{\prime}(p) \\ P F^{s^{\text {sup }}}{ }_{n-} \end{gathered}$	$\begin{gathered} 2.2(-B) \\ 3 / 6 \end{gathered}$	$\begin{gathered} 1.2(-A) \\ 3 / 6 \end{gathered}$
	$\mathcal{G S}^{\text {sub }}{ }_{\text {n }}$	72	76
GS. 37	$\begin{gathered} k_{k} k^{\prime}(p) \\ P F^{\text {sub }}{ }_{n+} \end{gathered}$	$\begin{gathered} 1.1 \quad(+D) \\ 3 / 9 \end{gathered}$	$\begin{gathered} 1.2 \quad(+C) \\ 6 / 9 \end{gathered}$

Explanations:
a) $\boldsymbol{G} \boldsymbol{S}^{s u p}{ }_{n-}$ and $\boldsymbol{G} \boldsymbol{S}^{s u b}{ }_{n^{+}}$denotes the ordering numbers of adjacent superstructures and adjacent substructures in the system of structures with six elements [28, 35];
b) $\boldsymbol{k}, \boldsymbol{k}^{\prime}$ - index of partial model $\mathbf{S M}_{\boldsymbol{k}, \boldsymbol{k}}$, whither belong the binary position (\boldsymbol{p});
c) $\boldsymbol{P} \boldsymbol{F}_{\boldsymbol{n}}$ - morphism probability.

Example 5.2. Three isomorphic graphs that represent the adjacent superstructure $\boldsymbol{G S}^{\text {sup }}{ }_{n=-\boldsymbol{B}}$, $(G S .29)$ [28, 35] of structure GS.37 (example 5.1). These are obtained by adding the connections 2-4, 2-6 and 4-6 (dashed line) to binary(-)position $-B$ of GS.37. Their common binary signs and equivalent structure models $\mathbf{S M}_{\mathbf{1}} \equiv \mathbf{S M}_{\mathbf{2}} \equiv \mathbf{S M}_{\mathbf{3}}$:

$$
\begin{gathered}
A:-2 \cdot 5 \cdot 8 ; B:-2 \cdot 4 \cdot 5 ; C ;-2 \cdot 3 \cdot 2 ; \\
D:+2 \cdot 3 \cdot 3 ; E:+2 \cdot 4 \cdot 5 .
\end{gathered}
$$

$1 \mid 21$	3	31	41		u_{i}		s_{i}
13161	1	512	41	i	ABCDE	k	1234
\| $0\|-B\|$	E	$E \mid E$	El	3	01004	1	0022
101	D	D\|-C	$-\mathrm{Cl}$	6	01220	2	0020
1	0	E\| D	-A\|	1	10022	3	1111
		이-A	D 1	5	10022	3	1111
		10	$D *$	2	10121	4	1011
			01	4	10121	4	1011

1\| 21		314	4 \|	u_{i}			s_{i}		
$\|1\| 4 \mid$	3	512	61	i	ABCDE	k	1234		
O\|-B		E	$E \\| E$	E\|	1	01004	1	0022	
101	D	D\|-C	$-\mathrm{Cl}$	4	01220	2	0020		
1	0	$E \\|$ D	-A\|	3	10022	3	1111		
		이-A	D 1	5	10022	3	1111		
			D*	2	10121	4	1011		
			01	6	10121	4	1011		

1\| 21	3	31 4	41		u_{i}		$\boldsymbol{s}_{\boldsymbol{i}}$	
$15\|2\|$	1	314	61	i	ABCDE	k	1234	
O\|-B		E	$E \mid E$	$E \mid$	5	01004	1	0022
101	D	D\|-C	$-C \mid$	2	01220	2	0020	
	0	El-A	D 1	1	10022	3	1111	
		O1 D	-A\|	3	10022	3	1111	
			D*	4	10121	4	1011	
			01	6	10121	4	1011	

Explanation: Equivalent structure models differ from each other only numbered elements in different positions in the division.

Example 5.3. The different adjacent substructures $\boldsymbol{G} \boldsymbol{S}^{\text {sub }}{ }_{n=+D}$, (GS.72) [28, 35] and $\boldsymbol{G} \boldsymbol{S}^{\text {sub }}{ }_{n=+C}$, (GS.70) of structure GS. 37 (example 5.1) that obtained by removing the connection 3-5 from binary $(+$)position $+\boldsymbol{D}$ and removing the connection 5-6 from binary(+)position $+\boldsymbol{C}$ correspondingly. Their non-isomorphic graphs, different binary signs and non-equivalent structure models $\mathbf{S M}_{A}$ and $\mathbf{S M}_{B}$:

$$
\begin{aligned}
& A:-2.4 .4 ; \quad B:-2 \cdot 3 \cdot 2 ; \\
& C:+2.3 .3 ; D:+3.4 .4 .
\end{aligned}
$$

		11	213	3141		u_{i}		s_{i}	
	2	61	1\| 3	51 41	i	$A B C D$	k	1234	
1	0	-B\|	C\| C	$-B\|-B\|$	2	0320	1	0110	
		01	$C \mid-B$	$C\|-B\|$	6	0320	1	0110	
		1	O1 C	$C\|-A\|$	1	1040	2	2020	
			10	-A*\| D		3	1121	3	1101
				Ol DI	5	1121	3	1101	
				이	4	1202	4	0020	

$$
\begin{aligned}
& A:-3 \cdot 5.6 ; ~ B:-2 \cdot 4 \cdot 5 ; C:-2 \cdot 3.2 ; \\
& D:+1.2 .1 ; E:+2.3 .3 ; F:+2 \cdot 4.5 .
\end{aligned}
$$

Explanation: By different binary positions obtained adjacent structures are non-equivalent.
Each structure $G S$ is an adjacent substructure $G S^{\text {sub }}{ }_{n}$ or adjacent superstructure $G^{s u p}{ }_{n}$ of some other structures.
Morphism \boldsymbol{F} is reversible - in each adjacent structure $\boldsymbol{G} \boldsymbol{S}^{\text {adj }}$ of $\boldsymbol{G S}$ exist an "reverse position" $\boldsymbol{\Omega} \boldsymbol{R}^{\text {rev }}$, whereat used reverse morphism $\boldsymbol{F}^{\text {rev }}$ reconstruct the initial structure $\boldsymbol{G S}, \boldsymbol{F}^{\text {rev }}: \boldsymbol{G S}{ }^{\text {adj }} \rightarrow \boldsymbol{G S}$.

Let the structure on example 5.2 is an initial structure $\boldsymbol{G S}$ that has an adjacent substructure $\boldsymbol{G} \boldsymbol{S}^{s u b}{ }_{n}$ in the forms of structure on example 5.1. Then $\boldsymbol{G S}$ can be reconstruct by adding a connection to the reverse position $-B$ of $\boldsymbol{G} \boldsymbol{S}^{\text {sub }}{ }_{n}$ with morphism probability $\boldsymbol{P} \boldsymbol{F}^{\text {rev }}=3 / 6$.

The reversing of morphism is valid both in the case of adjacent sub- $\boldsymbol{G} \boldsymbol{S}^{\text {sub }}{ }_{n+}$ and super-structures $\boldsymbol{G} \boldsymbol{s}^{\text {sup }}{ }_{n-}$. Indeed, structure $\boldsymbol{G S}$ can be reconstructed by each of its adjacent structure $\boldsymbol{G} \boldsymbol{S}^{\text {adj }}$ separately. On the set $\left\{\boldsymbol{G} \boldsymbol{S}^{\text {adj }}{ }_{n}\right\}$ of all the
adjacents of $\boldsymbol{G S}$ there exists a certain set of reverse morphisms $\left\{\boldsymbol{F}^{r e v}{ }_{n}\right\}, n \in[1, N]$, such that each its disjunctive element $\left(\boldsymbol{F}^{r e v}{ }_{1}: \boldsymbol{G S} \boldsymbol{S}^{a d j}{ }_{\mathbf{I}} \rightarrow \boldsymbol{G S}\right) \vee \ldots \vee\left(\boldsymbol{F}^{r e v}{ }_{N}: \boldsymbol{G S}^{\boldsymbol{a d j}}{ }_{N} \rightarrow \boldsymbol{G S}\right)$ reconstructs the structure $\boldsymbol{G S}$ separately.

Thus, to be precise, the morphisms exist between the binary positions of structures.
If morphisms $\boldsymbol{F}_{\boldsymbol{n}}: \boldsymbol{G S} \rightarrow \boldsymbol{G} \boldsymbol{S}^{\text {adj }}{ }_{n}$ are applied to binary positions $\boldsymbol{\Omega} \boldsymbol{R}_{\boldsymbol{1}}, \ldots, \boldsymbol{\Omega} \boldsymbol{R}_{\boldsymbol{n}}, \ldots, \boldsymbol{\Omega} \boldsymbol{R}_{\boldsymbol{N}}$ of $\boldsymbol{G S}$ disjunctivelly, $\boldsymbol{F}_{\boldsymbol{I}} \vee \ldots \vee \boldsymbol{F}_{n} \vee \ldots \vee \boldsymbol{F}_{N}$, then $\boldsymbol{G S}$ is decomposed (deconstructed) to its adjacent structures $\boldsymbol{G} \boldsymbol{S}^{\text {adj }}{ }_{\boldsymbol{l}}, \ldots, \boldsymbol{G} \boldsymbol{S}^{\text {adj }}{ }_{n}, \ldots, \boldsymbol{G} \boldsymbol{S}^{\text {adj }}{ }_{N}$.

Non-decomposable structures do not exist.
If structure $\boldsymbol{G S}$ is decomposed (deconstructed) to its adjacent substructures $\boldsymbol{G} \boldsymbol{S}^{\text {sub }}{ }_{1}, \ldots, \boldsymbol{G} \boldsymbol{S}^{\text {sub }}{ }_{\boldsymbol{n}}, \ldots, \boldsymbol{G} \boldsymbol{S}^{\text {sub }}{ }_{\boldsymbol{N}}$, then their union $\cup\left(\boldsymbol{G S} \backslash e_{i j}\right)_{n}, n^{+} \in\left[1, N^{+}\right]$, reconstruct (recompose) the structure $\boldsymbol{G S}$.

This applies in particular for union of adjacency matrices $\cup\left(\boldsymbol{E} \backslash \boldsymbol{e}_{i j}\right)_{n}=\boldsymbol{E}$.
If structure $\boldsymbol{G S}$ is decomposed (deconstructed) toi ts adjacent superstructures $\boldsymbol{G S} \boldsymbol{S}^{\text {sup }}{ }_{1}, \ldots, \boldsymbol{G} \boldsymbol{S}^{\text {sup }}{ }_{n}, \ldots, \boldsymbol{G S}^{\text {sup }}{ }_{N}$, then their intersection $\cap\left(\boldsymbol{G S} \cup \boldsymbol{e}_{i j}\right)_{n}, n^{-} \in\left[1, N^{-}\right]$, reconstruct (recompose) the structure $\boldsymbol{G S}$.

Thus, the reconstructing (restoring) of structure is inevitable, non-reconstructive structures do not exist.
The reconstruction problem is known as Ulam's Conjecture and reflects the isomorphism relations between two graphs and their $\left(\boldsymbol{G} \backslash \boldsymbol{v}_{\boldsymbol{i}}\right)$-subgraphs [42]. It is formulated as follows: "Let graph \boldsymbol{G} has $\boldsymbol{p} \geq 3$ vertices $\boldsymbol{v}_{\boldsymbol{i}}$ and \boldsymbol{H} has $\boldsymbol{p} \geq 3$ vertices $\boldsymbol{u}_{\boldsymbol{i}}$. If for each \boldsymbol{i}, the sub-graphs $\boldsymbol{G}_{\boldsymbol{i}}=\boldsymbol{G} \backslash \boldsymbol{v}_{\boldsymbol{i}}$ and $\boldsymbol{H}_{\boldsymbol{i}}=\boldsymbol{H} \backslash \boldsymbol{u}_{\boldsymbol{i}}$ are isomorphic, then the graphs \boldsymbol{G} and \boldsymbol{H} are isomorphic".

This problem has been over the past half century, one of under active consideration graph theoretical problem, but the ultimate solutions have only some graph classes. Why so? Evidently be interested on the question: contain the collection of sub-graphs $\boldsymbol{G} \backslash \boldsymbol{v}_{i}$ of \boldsymbol{G} enough information about graph \boldsymbol{G} itself? On the structural aspect is the procedure of this conjecture nonsense, because, if given graphs \boldsymbol{G} and \boldsymbol{H} then on the ground of structure models $\mathbf{S M}_{\boldsymbol{G}}$ and $\mathbf{S M}_{\boldsymbol{H}}$ we obtain the complete information about their isomorphism and isomorphism of their adjacent graphs. Other ways are for us here senseless.

Ulam's Conjecture treats the reconstruction on the aspect of removing of the vertices, but we treat it on the aspect of adding and removing of edges. This not changes the essence of reconstruction, because all remains to the frame of graphs (structures) and their adjacent graphs (-structures), i.e. in our case to the frame of morphisms \boldsymbol{F}_{n}. Already old master W. T. Tutte emphasized that reconstruction-problem must be solve on the basis of isomorphism classes, that we also have followed [41].

By help of the morphisms between adjacent structures are generated the system of structures with five elements [32] (where 72 morphisms connect 34 structures) and the system with six elements [35] (where 572 morphisms connect 156 structures). Principally it can be generated for all the structures. It also shows the inevitability of reconstructing.

The first sample of non-isomorphic graphs with up to six vertices was represented by Frank Harary in 1969th [7]. Later, F. Harary and E. Palmer had calculated the number of non-isomorphic graphs (i.e. structures) up to 24 vertices [8]. R. Read and F. Wilson have in "Graph Atlas" also given the diagrams of graphs up to seven vertices [16]. But so far do not are discussed about the relationships between adjacent graphs, i.e. morphisms. It is not much possible that someone would have tried to do anything like on the base of combinatorics, algebra or other classical attributes.

Conclusion

Here was demonstrated that the nature of the structure is revealed on the base of the relationships between the elements and their positions [37]. It is presentable in the form of structure's model.

Significant is this, that the different problems, such as recognition of structure, detecting of structural positions (orbits), isomorphism, reconstructions and the systems of adjacent structures (morphisms) are treatable on the base of the same attribute - on the structure's model.

Recognition of the structure can be characterized by the following sequence of attributes: adjacency matrix \rightarrow identification of the element pairs \rightarrow binary signs \rightarrow decomposition \rightarrow structural positions \rightarrow structure's model.

Recognition of the structural properties is based on the structural model and is realizable on three directions:

1) Structure's model \rightarrow structural properties \rightarrow sign- and position structures;
2) Structure's model \rightarrow equivalence of structural models \rightarrow isomorphism;
3) Structure's model \rightarrow elementary structural changes \rightarrow adjacent structures \rightarrow reconstruction problem \rightarrow system of structures.

The structural models open some hidden sides of the graphs that complement our knowledge about graphs. It is expressively sees in case of known graphs.

There exists an agreement that the structure is an inseparable attribute of all the really existing objects. Structure exists there where the relations between element pairs are recognizable. The relations are simple presentable in case of chemical compounds, genetic formations and some networks. In case of ecological and social communities must be previously to agree on the aspect of decomposition the object to its elements and their connections (relations). If be accepted the existence of structure, then is desirable accept also their attributes. For example, accept the positions and the relationships between these.

Presumably, that such attributes for chemists, biologists and others are unaccustomed phenomena, but it is the structural reality and worth thinking about it. It is also clear that the structure of natural objects not easily recognizable.

Hidden remains the problem of multiplication of the adjacent matrices. On this base has been developed a spectral treatment of the graphs, spectral graph theory. But we are interested in the problem of high degree adjacent matrices \boldsymbol{E}^{n}. A practical meaning has the following fact: 1) if to multiply the adjacency matrices \boldsymbol{E}, then enlarge the values of the elements as well as the number of different values; 2) the enlargement takes place only to a certain degree \boldsymbol{n}, after which the enlarging stopped; 3) remains the question: what for the values of vertex pairs in the obtained matrix \boldsymbol{E}^{n} detect the binary positions, including on this base obtained vertex positions?

In principle, the structure's model can be based only on the elements of multiplied adjacent matrices, if would known the meaning of those elements. It is not known what represent the elements of obtained matrices, and to what degree must the matrices to multiply. There is only alluded that these elements characterize the longest paths between the vertices. This is doubtful, since these also appear in the main diagonal, while the relationships between the vertices, occasionally turn out to be zero. In present case we cannot distinguish from each other even adjacent and non-adjacent pairs of elements. Obviously, this nobody not interested. Already in 1976 were drawn attentions to the too one-sided approach to the graphs that impede the development of graph theory [12].

The preliminary binary signs are indispensable (required), the more that in case of strongly regular graphs, the multiplication of adjacency matrices works only partially.

Hope, that this paper gives a sufficient overview about the nature of structure

References

1. Babai, L. Luks, E. (1983) Canonical labelling of graphs. - Proc. 15th ACM Symposium on Theory Computing, 1983, 171-183.
2. Bollobas, B. (1998) Modern Graph Theory. Springer, 1998.
3. Cayley, A. (1857) On theory of the analytical forms called trees. - Phil. Mag. (4) 13 (1857) 172-176.
4. Dharwadker, A., Tevet, J.-T. (2009) The Graph Isomorphism Algorithm. ISBN 9781466394377. Amazon Books, 2009.
5. Gurevich, Y. (1997) From Invariants to Canonization. - The Bull. of Euto. Assoc. for Comp. Sci. No 63, 1997.
6. Hoffman, C. (1982) Group-Theoretic Algorithms and Graph Isomorphism. Springer, 1982.
7. Harary, F. (1969) Graph Theory. Addison-Wesley, 1969.
8. Harary, F., Palmer, E. M. (1973) Graph Enumeration. Academic Press, 1973.
9. Locke, S. www.math.fau.edu/locke/isotest.
10. Martin, J., Tevet, J.-T. (1988) On the interrelations between structure, dynamics and evolution of epilithic lichen synusiae. - Proc. Estonian Acad. Sci., Biol., 37 (1988), N 1, 56-66.
11. (2010) From Fundamental Problems to Applications of Graph Theory. - Baltic Horizons, No 14 (111) 45, December 2010.
12. Mayer. J. (1976) Developments recents de la theorie des graphes. - Historia Mathematica 3 (1976) 55-62.
13. Nechepurenko, M. et al (1990) Нечепуренко, М и др. Алгоритмы и программы решение задач для графов и сетей. Новосибирск, 1990.
14. Новая философская энциклопедия, Москва. 2001.
15. Praust, V. (1995) Tevet's algorithm for graphs recognition. Tallinn.
16. Read, R. C., Wilson, R. J. (1998) An Atlas of Graphs. Oxford, 1998.
17. Schmidt, H. (1991) Philosophisches Wörterbuch. Stuttgard, 1991.
18. Seffens, W. (2002) Graph Theory Pattern in the Genetic Codes. - Forma 17 309-320.
19. Tevet, J.-T. (1984) The symmetry phenomenon on the aspect of structural principle (in Estonian). - Schola Biotheoretica X, Tartu, 1984, 84-93.
20. (1990) Interpretations on some Graph Theoretical Problems. Edition of Estonian Acad. Sci., Tallinn, 1990.
21. (1991) On a discrete model of ecological processes. - Proc. Estonian Acad. Sci., Ecol., $\underline{1}$ (1991), N 3, 105-108.
22. (1999) Appendix to Structure Semiotics: A System of Graphs, their Characteristics and Changes. S.E.R.R., Tallinn, 1999.
23. (2001) Semiotic Testing of the Graphs. Principles, Using, Developments. S.E.R.R., Tallinn, 2001.
24. (2002) Isomorphism and Reconstructions of the graphs. A Constructive Approach and Development. S.E.R.R., Tallinn, 2002.
25. *(2003) Graphs of the Structure and Structure of the Graphs. S.E.R.R., Tallinn, 2003.
26. *(2004) Heuristic Algorithms for Structure Processing of the Graphs. S.E.R.R., Tallinn, 2004.
27. *(2006) Structure-semiotic approach to the graphs. S.E.R.R., Tallinn, 2006.
28. *(2007a) Systematic analysis of the graphs./võrguteavik/ S.E.R.R., Tallinn, 2007,
29. (2007b) 270 years graphs and 70 years graph theory. - Baltic Horizons, No 8 (107) 9-16, Decenber 2007.
30. (2007c) Recognition the structure, symmetry and systems of graphs. - Baltic Horizons, No 8 (107) 3375, Decenber 2007.
31. *(2008) Constructive presentation of the graphs: a selection of examples. S.E.R.R., Tallinn, 2008.
32. *(2010a) Hidden sides of the graphs. S.E.R.R., Tallinn, 2010.
33. (2010b) Regularities in the Graphs. - Baltic Horizons, No 14 (111) 74-85, December 2010.
34. (2010c) Semiotic 'Mystery' of Canonical Presentation, Isomorphism and Reconstructions. - Baltic Horizons, No 14 (111) 119-147, December 2010.
35. *(2012a) Semiotic Modelling of the Graphs. ISBN 9789949302475 , S.E.R.R., Tallinn, 2012.
36. *(2012b) The story of SERR. ISBN 9789949308774, S.E.R.R., Tallinn, 2012.
37. *(2013) Nature of the Structure. ISBN 9789949334650, S.E.R.R., Tallinn, 2013.
38. Tevet, J.-T., Lambing, M. (2000) Visions about skeletions of artworks. - Frontiers of Interstanding, Stockholm, 2000, 69-73.
39. Titov, V. (1975) Титов, В. (1975) О симметрии в графах. Bопросы кибернетики, 15, N2, 1975, 76-109.
40. Toida, S. (1973) Isomorphism of graphs. - Proc. 16th Midwest Symp.Circuit Theory, Waterloo, 1973, XVI5.15.7.
41. Tutte, W. T. Graph Theory As I Have Known It. Claerdon Press, Oxford, 1998.
42. Ulam, S. M. (1960) A Collection of Mathematical Problems. Wiley, New York, 1960.
43. Võhandu, L. (2007) Graphs as effective models of the world. - Baltic Horizons, No 8 (107) 17-22, December 2007.
44. Weisfeiler, B. (1976) On Construction and Identification of Graphs. Springer Lecture Notes Math., 558.

Starred * publications are also in digital form by www.digar.ee available

