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Introduction 
 

 

There exist three formations that consist of elements (components, particles,) and relationships 

(connections) between them. These are system, structure and graph.  

 

System is an association of empirical elements (components) and relationships where the significant 

meaning have it function and structure. These are principal features of all the systems. 

 

Structure is the ordering, organizational or constructional side of systemic objects. Structure is 

generally defined as a permanently associated status of its elements. Unfortunately, the term “structure” 

has become a blurred adjective, or speaking only on the structure of a particular object. The attempts of 

explaining a common concept of structure can be noticed only in Continental European reference books 

[14, 18]. However, also over there are discrepancies. There existing different views, whether the 

structure is permanent or mostly permanent, whether is it an inexplicable relationship or the relationships 

between the elements. At the same, have come to an agreement that the structure is an inseparable 

attribute of all the really existing objects. In connection with multi-aspect of systemic objects (i.e. 

different possibilities to decomposing a system into components) is the system multi-structural. It is 

alleged that the structure is an abstraction of the system, where its elements and relationships have lost of 

its empirical meanings, but retain their differences in the form of positions in the structure. To end be 

understand that the essence of structure is related to the invariance and its explanation attribute is a 

graph. 

 

The essence of a position is trivial. Let graphs GA and GB present the structure of objects A and B: 
 

  2  3    2  3   

  �  �    �  �   

1    4  1    4  

�  GA  � ≅≅≅≅ �  GB  �  

             

  �  �    �  �   

  6  5    6  5   

 

All the elements of A have a common position. The elements 5 and 6 of B have an “end position”, the 

elements 2 and 3 a “middle position” and elements 1 and 4 an “intervening position”. Positions have 

also the relationships between elements. 

 

On the aspect of structure constitutes a graph only the initial data for recognition the structure, i.e. graph 

is only a list of adjacent elements or an adjacent matrix. Isomorphic graphs have the equivalent 

structures. Structure is a complete invariant for the isomorphic graphs. All the structural properties are 

expressed in the graphs, and properties of the graphs are the structural properties. The structure is 

reasonable to represent in a manner that represents all the relationships and positions and enables 

distinguish one structure from another. One structure differs from another by their binary relations 

between elements and by their positions. Position is an equivalence class that in the aspect of group 

theory to transitivity domain of automorphisms or the orbit called. The difference here lies only in the 

detection technique. 

 

For recognition the structure designed a structural model (model of structure, structure’s model). 

Pictorially says, structural model is a complemented and decomposed adjacent matrix that represent all 

the binary relations and positions [22, 25, 34, 37]. The structure of many empirical objects, such as 

chemical compounds, ecological communities, genetic formations, communication networks, etc are 

presentable in the form of a graph where the structural models enable to study and explore these from the 

structural view-point. 

 

In this paper has tried the nature of structure and its application to set forth shortly, simply and 

pictorially. 
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1. GRAPH OF STRUCTURE and STRUCTURE OF GRAPH 
 

1.1. Structural equivalence and isomorphism 
 

 

Indeed, structure is presentable in the form of a graph and the graph has a certain structure. Let’s we start 

from a hypothetical but workable principle that the structure S is an identifiable (measurable) attribute of 

graph G: 

S= FFFF(G). 

Let to identify the binary relations (vertex pairs ij) their intersection of surroundings Ni ∩∩∩∩Nj as a sub-

graph or binary graph gij. Corresponding algorithm SIA fixes for each binary graph gij its invariant or 

binary sign ±d.n.m.ij, where +d is collateral- and  –d custom distance, n – number of vertices and m – 

number of edges in this binary graph. The ordered system of binary signs – structure model SM – 

identifies the relationships between the elements, as well as positions [16, 28]. 

 

The position of an element in the structure is determined with the binary relations with other elements. 

The position of an element-pair in the structure is determined with these positions of the elements and 

with the binary relation between these. In the aspect of group theory is position an orbit [25, 34, 37]. 

 

The possibilities for complementary identification the relationships between vertices exist some (Prop. 

1.1). Talking about the structure is preferred in place of the word vertex to use the element, and in place 

of edge to use connection (relation). 

 

Example 1.1. Graphs GA and GB, their binary signs and structure models SMA and SMB: 

 
  3-1  1-3    3-1  1-3   

  �  �    �  �   

5-3    6-2  6-1    2-2  

�    � ≅≅≅≅ �    �  

             

  �  �    �  �   

  4-1  2-3    4-3  5-3   

 
A:-2.5.7; B:-2.5.6;    A:-2.5.7; B:-2.5.6; 

C:+2.3.3; D:+2.5.7; E:+3.6.10.  C:+2.3.3; D:+2.5.7; E:+3.6.10. 

 
|1  1| 2| 3  3  3|       ui   k   si  |1  1| 2| 3  3  3|      ui    k   si 

|3  4| 6| 1  2  5|  i  ABCDE     123 |3  6| 2| 1  4  5|  i  ABCDE     123 

|0  D|-B| C  C  C|  3  01310  1  103 |0  D|-B| C  C  C|  3  01310  1  103 

    0|-B| C  C  C|  4  01310  1  103     0|-B| C  C  C|  6  01310  1  103 

     | 0| E  E  E|  6  02003  2  003      | 0| E  E  E|  2  02003  2  003 

        | 0 -A -A|  1  20201  3  210         | 0 -A -A|  1  20201  3  210 

             0 -A|  2  20201  3  210              0 -A|  4  20201  3  210 

                0|  5  20201  3  210                 0|  5  20201  3  210 

Explanations: 

a) The column ui of model consists of the frequency vectors, which for the element i show its 

relations with other elements. On the basis of vectors ui are arranged the positions in model. 

b) The column si of model consists of the position vectors that represent the connections of element 

i with elements in corresponding positions k. If on the framework of frequency vectors arises 

differences of position vectors, then by lasts does a complementary partition into classes. 

c) Different graphs GA and GB have equivalent structure models SMA ≈≈≈≈ SMB! This means that the 

structures are equivalent and the graphs isomorphic GA ≅ GB. 

d) The structural elements are divided to three positions (equivalence classes, orbits) ΩΩΩΩVk and 

element pairs to five positions ΩΩΩΩRn, where the adjacent elements or “edges” divided to three 

binary(+)positions (full line, a dotted, dashed-line) that coincides with binary signs C, D, E 

correspondingly. 
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Here it may be noted that the first primitive “distance matrix” was presented already in 1973 by S. Toida 

[41], as isomorphism identification attribute. Indeed, the distance matrix can detect the isomorphism or 

“non-isomorphism” for quite many graphs, but it is by no means reliable. 

 

The binary signs ±d.n.m.ij have a meaning, these have a semiotic character. This is essential for studying 

the nature of the structure. The first member of minus sign, i.e. of the binary(–)sign, represents the 

shortest paths (distance) –d between the elements i and j, where it is fixed by all the different paths 

(chains). The second member of binary(–)sign represents the number of elements n and m the number of 

connections (edges) in corresponding binary graph gij. Disconnected elements are represented with the 

binary sign –u.2.0. The first member of the plus sign, i.e. binary(+)sign, represents the collateral distance 

+d, i.e., belonging the element pairs (and their connection) to the girth (circle) with length +d+1. An 

exemption forms the binary sign of branching, +1.2.1, which show the distance d=1. 

 

Example 1.2. Binary graph g3.4 of element pair 3-4 (D: +2.5.7) of GA (Example 1.1), its binary signs and 

structure model SM3.4: 

 
A:-2.4.5; B:-u.2.0; C:+2.3.3; D:+2.5.7. 

 
 3-1  1-3   | 1  1| 2| 3  3  3|       ui    k  si   

 �  �   | 3  4| 6| 1  2  5|  i   ABCD     123 

5-3    6-2  | 0  D|-B| C  C  C|  3   0131  1  103 

�    �       0|-B| C  C  C|  4   0131  1  103 

              0|-B -B -B|  6   0500  2  000 

 �  �            | 0 –A -A|  1   2120  3  200 

 4-1  2-3                 0 -A|  2   2120  3  200 

                       0|  5   2120  3  200 

 

By dealing with the structure of a graph G is a desirable to show also its complement G, because it 

opens up the structure as a whole. 

 

Example 1.3. The complement GA of graph GA (Example 1.1) and its structure model: 

 
A:-2.3.2; B:-u.2.0; C:+1.2.1; D:+2.3.3. 

 

| 1  1  1| 2| 3  3|       ui   k   si  

 3-3  1-1   | 1  2  5| 6| 3  4|  i   ABCD     123 

 �  �   | 0  D  D|-B|-B -B|  1   0302  1  200 

5-1    6-2       0  D|-B|-B -B|  2   0302  1  200 

�    �          0|-B|-B -B|  5   0302  1  200 

               | 0| C  C|  6   0320  2  002 

 �  �               | 0 -A|  3   1310  3  010 

 4-3  2-1                    0|  4   1310  3  010 

 

Explanations: 

a) The element positions ΩΩΩΩVk of GA and its complement GA coincides (as the positions are 

arranged by new frequency vectors ui then there exist a correspondence between positions, in 

present case 1→3, 2→2, 3→1). 

b) Coincides also the binary positions ΩΩΩΩRn, which are in the complement GA with opposed signs, 

for each binary(+)position (“edge”-position”) corresponds a binary(–)position (“non-edge” 

position”), and vice versa. 

 

It is useful look to other co-graphs, such as sign- and adjacent graphs. To these we arrive by dealing 

with structural changes. 

 

It is obvious that a large part of the binary signs are not complete invariants of element pairs. Some of 

large symmetric structures require a perfection of binary signs. There are several ways [27, 29, 37]. 
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Propositions 1.1. Perfection of binary signs: 

P1.1.1. Using the complementary binary signs dnmij
m

 of the high degree m binary graphs gij
m

, i.e. 

binary graphs, that remain between elements i and j of G after removing the preliminary binary 

graph gij. 

P1.1.2. Using the complementary binary signs of local structure models SMij of binary graphs gij. 

P1.1.3. Using the complementary binary signs of sign structures GSp, that consist of element pairs 

with a certain class of pair signs, independently from their positions, 

P1.1.4. Using complementary binary signs of the product of adjacency matrix E×E×E×…=E
n
 where 

up to certain degree n the values of elements e
n

ij as well as the number p of their differences 

become larger, and then make a halt. 

 

The preliminary binary signs their meanings do not lose, these remains characterize belonging the 

elements and connections to the paths and girths that is needed by treatment of the structure. Perfected 

binary sign constitutes a quintuplet ±d.n.m.e
n

ij, where the last represents the perfecting. 

 

Example 1.4. Two “very similar” poly-symmetric graphs PraA and PraB (designed especially for 

isomorphism testing) their common and adjusted binary signs, structure models and isomorphism testing: 

 

  
 

Common basic binary signs of PraA and PraB: 

 
A:-3.8.10; B:-3.6.7; C:-2.4.4; D:-2.3.2; E:+2.4.6; F:+3.8.16. 

 

Adjusted by matrix product E
n=5

 binary signs and structure model SM of graph PraA: 

 
Marking the basic pair signs 0 -A -B -C -D E F 

Productive pair signs e
5
   180 125 110 165 160 80 231 233 210 

Adjusted pair signs 0 -A -B -C1 -C2 -D E1 E2 F 

 
| 1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20|  i  ABCCDEEF   k  

| 0 E2 E1 E1  F C2 C1 C1  F C2 C1 C1  D  A  B  B  D  A  B  B|  1  24422212   1 

     0 E1 E1 C2  F C1 C1 C2  F C1 C1  A  D  B  B  A  D  B  B|  2  24422212   1 

        0 E2 C1 C1  F C2 C1 C1  F C2  B  B  D  A  B  B  D  A|  3  24422212   1 

           0 C1 C1 C2  F C1 C1 C2  F  B  B  A  D  B  B  A  D|  4  24422212   1 

              0 E2 E1 E1  D  A  B  B  F C2 C1 C1  A  D  B  B|  5  24422212   1 

                 0 E1 E1  A  D  B  B C2  F C1 C1  D  A  B  B|  6  24222212   1 

                    0 E2  B  B  D  A C1 C1  F C2  B  B  A  D|  7  24222212   1 

                       0  B  B  A  D C1 C1 C2  F  B  B  D  A|  8  24222212   1 

                          0 E2 E1 E1  A  D  B  B  F C2 C1 C1|  9  24222212   1 

                             0 E1 E1  D  A  B  B C2  F C1 C1| 10  24222212   1 

                                0 E2  B  B  A  D C1 C1  F C2| 11  24222212   1 

                                   0  B  B  D  A C1 C1 C2  F| 12  24222212   1 

                                      0 E2 E1 E1 C2  F C1 C1| 13  24222212   1 

                                         0 E1 E1  F C2 C1 C1| 14  24222212   1 

                                            0 E2 C1 C1 C2  F| 15  24222212   1 

                                               0 C1 C1  F C2| 16  24222212   1 

                                                  0 E2 E1 E1| 17  24222212   1 

                                                     0 E1 E1| 18  24222212   1 

                                                        0 E2| 19  24222212   1 

                                                           0| 20  24222212   1 
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Adjusted by matrix product E
n=7

 binary signs and structure model SM of graph PraB: 

 
Basic pair signs 0 -A -B -C -D E F 

Productive signs e
7
 4410 3437 3276 3277 4081 4088 4011 3010 4831 4803 4445 

Adjust. pair signs 0 -A -B1 -B2 -C1 -C2 -C3 -D E1 E2 F 

 
|1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20|  i  ABBCCCDEEF   k 

|0 E1 E2 E1  F C1 C2 C3  F C3 C2 C1  D B2 B1  A  D  A B1 B2|  1  2222222212   1 

    0 E1 E2 C3  F C1 C2 C1  F C3 C2  A  D B2 B1 B2  D  A B1|  2  2222222212   1 

       0 E1 C2 C3  F C1 C2 C1  F C3 B1  A  D B2 B1 B2  D  A|  3  2222222212   1 

          0 C1 C2 C3  F C3 C2 C1  F B2 B1  A  D  A B1 B2  D|  4  2222222212   1 

             0 E1 E2 E1  D  A B1 B2  F C1 C2 C3  A  D B2 B1|  5  2222222212   1 

                0 E1 E2 B2  D  A B1 C3  F C1 C2 B1  A  D B2|  6  2222222212   1 

                   0 E1 B1 B2  D  A C2 C3  F C1 B2 B1  A  D|  7  2222222212   1 

                      0  A B1 B2  D C1 C2 C3  F  D B2 B1  A|  8  2222222212   1 

                         0 E1 E2 E1  A B1 B2  D  F C3 C2 C1|  9  2222222212   1 

                            0 E1 E2  D  A B1 B2 C1  F C3 C2| 10  2222222212   1 

                               0 E1 B2  D  A B1 C2 C1  F C3| 11  2222222212   1 

                                  0 B1 B2  D  A C3 C2 C1  F| 12  2222222212   1 

                                     0 E1 E2 E1 C3  F C1 C2| 13  2222222212   1 

                                        0 E1 E2 C2 C3  F C1| 14  2222222212   1 

                                           0 E1 C1 C2 C3  F| 15  2222222212   1 

                                              0  F C1 C2 C3| 16  2222222212   1 

                                                 0 E1 E2 E1| 17  2222222212   1 

                                                    0 E1 E2| 18  2222222212   1 

                                                       0 E1| 19  2222222212   1 

                                                          0| 20  2222222212   1 

 

Explanations: 

a) Graph PraA has five binary(-)positions by –A, -C2, and -D with power 20 and two pair 

positions by -B and –C1 with power 40. 

b) Graph PraB has seven binary(-)positions whit power 20. 

c) Thus, the structure models of PraA and PraB are non equivalent and graphs non isomorphic.. 

d) Both graphs have three pair(+)positions E1, E2 and F with power 20. 

e) The complement PrauCA of PrauA has pair signs –A:-2.14.68, -B:-2.12.47, C:+2.10.35, 

D:+2.10.36, E:+2.11.44, F:+2.12.48. 

 

The structure model SM is the canonical description of structure (graph) with exactness up to binary 

signs, positions, isomorphism and others structural attributes. The problem of canonical representation 

of the graphs was set by Lazlo Babai in 1977th [1]. The presentation modes are proposed much [4, 9]. 

Unfortunately, they do not contain almost information about the structure. 

 

Proposition 1.2. If the structure models of graphs G and H are equivalent SMG ≈ SMH then the graphs are 

isomorphic G ≅ H, [22, 25, 26, 34, 36]. 

 

The isomorphism problem is to design an algorithm that recognizes the isomorphism of two objects. The 

graph isomorphism problem came into prominence in 1857, when Arthur Cayley reported his research 

on organic isomers. Two graphs called isomorphic, if they differ only in the labeling of their vertices. An 

isomorphic mapping from graph GA to graph GB is a bijection ϕϕϕϕ: VA→VB: 

v1       v2   ... vi   …    vn 

ϕ(v1) ϕ(v2) ... ϕ(vi) ... ϕ(vn) 

A naive algorithm for isomorphism detection obviously exist – try all the possible permutations of the 

rows and columns of adjacency matrix of GB until it coincides with adjacency matrix of GA. However, 

this is an impossible task to perform for all practical purposes, since the number of permutations that one 

may need to check can go up to n! Nearly in all existing heuristic algorithms of isomorphism recognition 

to attempt in various ways avoid such situation, and only in a few algorithms detects it with exactness up 

to vertex substitutions. 

 

For example, in the algorithm [3] are used incomplete structure models, but isomorphism detection takes 

place on the level of vertex substitutions. In some algorithms do not suffice to detect the vertex 
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substitutions, but enable to measure the “similarity” of structures [15]. The formation of the structure 

models and detection their equivalence goes in such a way where it would be inappropriate to talk about 

the great complexity of the algorithm. 

 

Proposition 1.3. For recognition the equivalence of structure models SMA and SMB is necessary and 

sufficient: 

a) to detect the coincidence of the sequences of binary signs {±d.n.q.ij}A and {±d.n.q.ij}B; 

b) to detect the coincidence of the frequency vectors {ui}A and {ui}B; 

c) to detect the coincidence of the position vectors {si}A and {si}B. 

 

Probably do not need the fact that isomorphic graphs have the same structure, which expressed in the 

form of structural equivalence of models, here anew explanation. However, repeat: 

1) Isomorphism is a one-to-one correspondence between elements. 

2) Isomorphism detection does not detect the structure, but the structure model detects the structure 

with exactness up to isomorphism. 

3) Equivalence of structure models is a coincidence on the level of binary signs, binary- and 

element positions. 

4) Detecting the positions by binary signs is more simple than detecting the orbits on the ground of 

the group AutG. 

 

 

1.2. Structural properties 
 
Essential structural properties are regularity and symmetry Regularity and symmetry of structure are 

very rare conditions, but for that reason are more intriguing. With the symmetry of the graphs arise 

confusions. Some call to symmetric the simple graphs, because the edges are not directed. Others call 

symmetric the transitive of vertices or edges graphs, which meant the transitivity domain of 

automorphisms in AutG. With the latter must be consent. 

 

To the assumption of symmetry is regularity, but not vice versa. Regularities are several, and they are 

easily readable out from structure model SM [35]. We define these. 

 

Definitions 1.1. Kinds of regularity: 

D1.1.1. Structure (graph), where by each element i the number v of binary(+)signs +dnmij is constant is 

v-degree-regular. 

D1.1.2. Degree-regular structure (graph), where by each element i the number of partial signs –d of 

binary(–)signs –dnmij are constant is d-distance-regular 

D1.1.3. Degree-regular structure (graph), where by each element i the number of partial signs +d of 

binary(+)signs +dnmij are constant is (d+1)-girth-regular. 

D1.1.4. Degree-regular structure (graph), where each element i belong to a clique with the power n<|V| 

is n-clique-regular, where |V| is the number of structural elements. 

D1.1.5. Degree-regular structure (graph), where each pair of adjacent elements holds a≥0 common 

neighbors and each nonadjacent pair holds b≥1 common neighbors is strongly-regular. 

 

Propositions 1.4. Properties of regularity: 

P1.4.1. Each element vi of a clique- (or girth-) regular structure belongs to a≥1 cliques (girths) and 

each edge to eij to b≥1 cliques (girths). 

P1.4.2. The cliques of clique-regular structure are components, connected or intersected. The 

intersections can be in the aspect of elements or connections. 

P1.4.3. If structure consists of m component n-cliques then its complement is an m-partite complete 

graph, i.e. is an n-m-clique – and vice versa. 

Size Graph Its complement 

m Number of component cliques Number of parts 

n Power of these cliques Power of parts 
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P1.4.4. Complement of m-partite structure is in case of equal parts n n-clique-regular, with m non-

intersected n-cliques. 

P1.4.5. The n-m-clique contains s=n
m

 (ordinary)cliques with power m, this is m-clique-regular, i.e. 

bi-clique is 2-clique-regular, tri-clique 3-clique-regular etc. 

P1.4.6. All the n-m-cliques are strongly regular, but not contrary. 

P1.4.7. Connected complement of strongly regular structure is strongly regular. 

 

Symmetry is a structural property that expressed as recurrence of similar elements (particles) in the space 

or time [14, 18]. Indeed, what greater is a position then greater the structural symmetry. Symmetry of the 

structure depends on the number and size of positions [32, 34, 37]. We define it. 

 

Definitions 1.2. Kinds of symmetry: 

D1.2.1. Complete structure (graph) has one element- ΩΩΩΩVk and one binary position ΩΩΩΩRn and it is 

completely symmetric. 

D1.2.2. Transitive structure (graph), as it in graph theory called, has one element position ΩΩΩΩVk and it is 

element symmetric. 

D1.2.3. Element symmetric structure (graph), that has one binary(+)position („edge position“) ΩΩΩΩRn
+
  

and one binary(–)position („non-edge position“) ΩΩΩΩRn
–
 is bisymmetric (see Example 1.5). 

D1.2.4. Element symmetric structure (graph), that has one binary(+)position ΩΩΩΩRn
+
 and several binary(–

)positions ΩΩΩΩRn
–
 is (+)symmetric or edge symmetric (for example Hamilton graph et al). 

D1.2.5. Element symmetric structure (graph), that has several binary(+)- ΩΩΩΩRn
+
 and several binary(–

)positions ΩΩΩΩRn
–
 is poly-symmetric (see Example 1.4). 

D1.2.6. Structure (graph), that not element symmetric, but has one binary(+)position ΩΩΩΩRn
+
 is semi-

symmetric (see Example 1.6). 

D1.2.7. Structure (graph), that not element symmetric, i.e. that has more than one element positions, 

with at least one of these positions ΩΩΩΩVk has at least two elements is partially symmetric (see 

Examples 1.1 – 1.3, 2.1, 2.2). 

D1.2.8. Structure (graph), where the number K of element positions ΩΩΩΩVk equals to the number Vof 

elements (vertices) is 0-symmetric or completely asymmetric (see Example 1.13). 

 

Symmetry and regularity is quite strongly related to with each other. 

 

Propositions 1.5. On the relationships between symmetry and regularity: 

P1.5.1. Element symmetric (transitive) structure is girth- or clique-regular. 

P1.5.2. Complement of an edge symmetric girth-regular structure is clique-regular and vice versa. 

P1.5.3. Connected bisymmetric structure is strongly regular, 2-distance-regular and girth- or clique-

regular. 
P1.5.4. Strong regularity of bisymmetric structure is unavoidable, because it is 2-distance-regular and 

by existence only two binary signs –d.n1.m and +d.n2.m where –d=2 sow n1–2 the number of 

common adjacent elements. 

P1.5.5. If all the m component cliques are with equal power n, then structure and its component are 

bisymmetric (i.e. all the m-n-cliques are bisymmetric). 

 

We begin the explanations with the Petersen graph, because it has essential symmetry properties that are 

presented in various propositions. 

 

Example 1.5. Petersen graph Pet, the binary signs and structure model for Petersen graph and its 

complement PetC (the numbering starts here from the upper element and goes clockwise): 
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A:-2.3.2; B:+4.10.15.   A:-2.6.12; B:+2.5.8. 

 

| 1  1  1  1  1  1  1  1  1  1|     ui    | 1  1  1  1  1  1  1  1  1  1|  ui  

| 1  2  3  4  5  6  7  8  9 10|  i  AB  k | 1  2  3  4  5  6  7  8  9 10|  AB 

| 0  B -A -A  B  B -A -A -A -A|  1  63  1 | 0 -A  B  B -A -A  B  B  B  B|  36 

     0  B -A -A -A  B -A -A -A|  2  63  1      0 -A  B  B  B -A  B  B  B|  36 

        0  B -A -A -A  B -A -A|  3  63  1         0 -A  B  B  B -A  B  B|  36 

           0  B -A -A -A  B -A|  4  63  1            0 -A  B  B  B -A  B|  36 

              0 -A -A -A -A  B|  5  63  1               0  B  B  B  B –A|  36 

                 0 -A  B  B -A|  6  63  1                  0  B -A -A  B|  36 

                    0 -A  B  B|  7  63  1                     0  B -A –A|  36 

                       0 -A  B|  8  63  1                        0  B –A|  36 

                          0 -A|  9  63  1                           0  B|  36 

                             0| 10  63  1                              0|  36 

 

Explanations to show that it is possible to read out from the structure model: 

a) Petersen graph Pet is bisymmetric (i.e. has two binary positions). This has one greatest sub-

structure GS
sub

n=+B (reflected as its 15 possible isomorphic greatest subgraphs) and one smallest 

superstructure GS
sup

n=-A (reflected as its 30 possible isomorphic smallest super-graphs). 

b) From bisymmetry concludes strong regularity of Pet. 

c) Graph Pet is 5-girth-regular, there exist twelve 5-girths, in present case: (1): 1-2-3-4-5-1, (2): 6-

8-10-7-9-6, (3): 1-2-3-8-6-1, (4): 1-2-7-10-5-1, (5): 1-5-4-9-6-1, (6): 2-3-4-9-7-2, (7): 3-4-5-10-

8-3, (8): 1-2-7-9-6-1, (9): 1-5-10-8-6-1, (10): 2-3-8-10-7-2, (11): 3-4-9-6-8-3, and (12): 4-5-10-

7-9-4. Each element belongs to six girths, each edge belongs to four girths. 

d) Binary sign +4.10.15 means, that the element pair belongs to an assemblage of 5-girths, which 

consists of 10 elements and 15 connections (edges) – it is the complete invariant of Petersen 

graph, such sign do not have other structures. 

e) The complement of Petersen graph PetC is 4-clique-regular. Explicit clique sign do not exist, 

but binary graph of binary sign +2.5.8 contains the 4-clique. For example, the local structure 

model of binary graph with sign +2.5.8 for elements 1 and 3 contains the signs of 4-clique, 

+2.4.6, that shows the existence of 4-clique 1,3,9,10: 

 
-A: -2.4.5;  B: +2.3.3;  C: +2.4.6;  D: +2.5.8. 

 

| 1  3| 9 10| 7|   i   ABCD   k   123  

| 0  D| C  C| B|   1   0121   1   121  

     0| C  C| B|   3   0121   1   121  

      | 0  C|-A|   9   1030   2   210  

           0|-A|  10   1030   2   210  

              0|   7   2200   3   200  

f) And so exists in the complement five intersected 4-cliques, in present case with elements: (1): 

1,3,9,10; (2): 2,4,6,10; (3): 1,4,7,8; (4): 2,5,8,9; and (5): 3,5,6,7. Each element belongs to two 

cliques, each edge belongs to one clique. 

 

Not every strongly regular graph can be bisymmetric. Among the graphs with up to 20 elements exists 39 

bisymmetric & strongly regular & clique- or girth-regular graphs, including the 27 simply constructed n-

m-cliques and 12 “non-m-n-cliques”, where belongs also Petersen graph. As a rule, the lists of strongly 

regular graphs are incomplete. By help of the structure models succeeded these lists to supplement [29]. 

 

It is deal with partial coincidence of bisymmetry and strong regularity. Bisymmetry includes also the 

disconnected structures and strong regularity can be exists in the case of mono-, poly-, and partial 

symmetry, although among the structures with up to 20 elements it not been observed. Here has treated 

only symmetric structures, i.e. graphs that have large positions. Structure, where each element represents 

a separate position ΩΩΩΩVk (hence every pair of elements has its own position) is 0-symmetric, and their 

treatment goes by other ways. 

 

The positions make the structure to inner variety. Variety can be expressed by the power of positions and 

their number in the form of variety signs.  



 9 

Definitions 1.3. Variety signs: 

D1.3.1. Vector with elements |ΩΩΩΩV|
m

, where |ΩΩΩΩV| is the power of an element position and m the number 

of positions with such power is sign of element variety SVV. 

D1.3.2. Vector with elements |ΩΩΩΩR|
m

, where |ΩΩΩΩR| is the power of a binary position and m the number of 

positions with such power is sign of binary variety SRV. 

Variety signs of in the Example 1.1 showed structure GS22(6.10.4) (in [17] G189) are: SVV= 1
1
2

1
3

1
, 

SRV= 1
1
2

1
3

2
6

1
 where the sign of “edge variety” is SEV=1

1
3

1
6

1
. The values of variety are computable on 

the basis of the variety signs by Shannon formula as the information capacity. For example by SRV 

obtained HR=2.106. The regularity of binary positions expressed in the form SR = 1 – HR: log|R|, 

where 0≤≤≤≤SR≤≤≤≤1. In present case SR=0.46, were regularity of binary(+)positions SE=0.610 and regularity 

of elements SV=0.478. This is a specific form of regularity [33, 37]. 

 

Each position is “naturalizable” in the form of a position structure [33, 34, 37]. 

 

Definition 1.4. Position structure GSn is a structure that consists of element pairs, which belong to a 

certain binary position ΩΩΩΩRn. The number of position structure equal to the number of binary positions. 

 

The position structures opens some various “hidden sides” of the structure, that sometimes also 

“mystical” seems. In principle, the position structures are inevitable, so as the cowering, cliques and 

others structural attributes, where their identification to a very practical and necessary deemed. 

 

Example 1.6. Bipartite and semi-symmetric Folkman’s graph Fol, its binary signs, structure model and 

list of its position structures GSn: 

 

 
 

A:-4.14.21; B:-3.8.10; C:-2.6.8; D:-2.4.4; E:-2.3.2; F:+3.6.8. 

 
| 1  1  1  1  1  1  1  1  1  1| 2  2  2  2  2  2  2  2  2  2|        ui    k   si 

|11 12 13 14 15 16 17 18 19 20| 1  2  3  4  5  6  7  8  9 10|  i   ABCDEF     12 

| 0 -E -E -E -E -E -E -E -E –C| F -B -B  F -B  F -B -B -B -F| 11   061084  1  04 

     0 -E -E -E -E -E -E -C –E|-B  F -B -B  F -B -B -B  F  F| 12   061084  1  04 

        0 -E -E -E -E -C -E –E| F -B  F -B -B -B -B  F  F  B| 13   061084  1  04 

           0 -E -E -C -E -E –E|-B  F -B  F -B -B  F  F -B –B| 14   061084  1  04 

              0 -C -E -E -E –E|-B -B  F -B  F  F  F -B -B –B| 15   061084  1  04 

                 0 -E -E -E –E|-B -B  F -B  F  F  F -B -B –B| 16   061084  1  04 

                    0 -E -E –E|-B  F -B  F -B -B  F  F -B –B| 17   061084  1  04 

                       0 -E –E| F -B  F -B -B -B -B  F  F –B| 18   061084  1  04 

                          0 –E|-B  F -B -B  F -B -B -B  F  F| 19   061084  1  04 

                             0| F -B -B  F -B  F -B -B -B  F| 20   061084  1  04 

                              | 0 -A -D -D -A -D -A -D -D –D|  1   360604  2  40 

                                   0 -A -D -D -A -D -D -D -D|  2   360604  2  40 

                                      0 -A -D -D -D -D -D –A|  3   360604  2  40 

                                         0 -A -D -D -D -A –D|  4   360604  2  40 

                                            0 -D -D -A -D –D|  5   360604  2  40 

                                               0 -D -A -A –D|  6   360604  2  40 

                                                  0 -D -A –A|  7   360604  2  40 

                                                     0 -D –A|  8   360604  2  40 

                                                        0 –D|  9   360604  2  40 

                                                           0| 10   360604  2  40 
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Explanations: 

a) Graph Fol decompose correspondingly its binary positions –A, –B, –C, –D, –E and F to six 

position-structures: 

b) To binary position –A corresponds position structure Foln: –A is Petersen’s graph(!). This fact is 

showed also in partial model SM2.2, if there the sign –A replace with Petersen sign +4.10.15 and 

–D replace with sign –2.3.2 then it is equivalent with structure model of Petersen graph (see 

Example 1.5). 

c) To binary position –B corresponds position structure Foln=–B turns out to another semi-

symmetric graph, designed by V. Titov [40] that has also a position structure in the form of 

Petersen graph. 

d) To binary position –C corresponds position structure Foln=–C is a graph with ten components of 

2-cliques. 

e) To binary position –D corresponds position structure Foln=–D is the complement of Petersen 

graph (!). 

f) To binary position –E corresponds position structure Foln=–E is the complement of position 

structure Foln=–C, i.e. 2-quinta clique. 

g) To binary position +F corresponds position structure Foln=+F is naturally Folkman graph self. 

 

The importance of position structures lies in the explaining structural properties, but these also recognize 

the identical particles of various structures. For example, could be argued that the semi-symmetrical 

graphs with 20 elements represent a kind of “genetic group” that contains position structures in the form 

of Petersen graphs. Also, all the graphs of n-polygons are proven to be the widespread position 

structures. Such relationships between the position structures appear in various ways. If the structure is 

partited, or contain components, cliques, girths, etc., then appear the corresponding attributes in position 

structures in another forms [33, 34, 37]. 

 

Propositions 1.6. Properties of position structures: 

P1.6.1. Position structures GSn open the different “hidden” sides and particles of its initial structure 

GS. 

P1.6.2. Position structure is element symmetric, i.e. its elements belong to the same position ΩΩΩΩVk=1. 

P1.6.3. To the binary(+)position ΩΩΩΩRn
+
 corresponds a position(+)structure GSn

+
 is a partial structure of 

GS; to the binary(–)position ΩΩΩΩRn
–
 corresponds a position(–)structure GSn

–
 is a partial structure 

of complement GS. 

P1.6.4. To each binary(+)position ΩΩΩΩRn
+
 of structure GS corresponds the binary(–)position of 

complement GS where their position structures coincides, GSn
+≡GSn

–
. 

P1.6.5. Some position structure GSn can be appear isomorphic with initial structure, GS, GSn≅GS (for 

example, an position structure of the cube is also cube). 

P1.6.6. Different position structures GSn of initial structure GS or position structures of different 

structures can be isomorphic or coincides. 

 

 

Under the looking are also the position structures of position structures, i.e. second and high degree 

position structures. 

 

Propositions 1.7. Properties of high degree position structures: 

P1.7.1. Second or high degree position structure can be isomorphic or coincides with a lower degree 

position structure or initial structure. Coincidence of a position structure and initial structure 

constitutes a reconstruction of initial structure. 

P1.7.2. High degree position structures no open more complementary “hidden sides”, these begin to 

repeat. 

P1.7.3. Formation of high degree position structure is a convergent process, it finished with a crop up 

or reconstruction a low degree or initial structure 
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1.3. Structure of the natural objects 
 
Structural model of the chemical compound is a detailed submission of the classical structural formula, 

i.e. of a graph that represents this formula. 

 

This is the so-called systemic approach to the study of chemical compounds where different chemical 

elements (atoms) as a rule, are divided into different positions as subsystems. In case of more complex 

compounds, however, may also the same elements (atoms) belong to different positions (for example, 

ethanol, butane, propane, etc.). The main idea of such systemic approach consists in treatment of the 

whole on the basis of positions and the relationships between them. Structural models open up the 

possibility for additional investigation of chemical compounds. The structural models of some polymers 

and organic matters tend to be very large. Here is limited with moderates. 

 

Example 1.7. Structural formula of isobutan C4H10, its binary signs and structure model: 

 

 
 

A:-4.5.4;  B:-3.4.3;  C:-2.3.2; 

D:+1.2.1. 

 

| 2| 1  3  4|11| 5  6  7  8  9 10 12 13 14|       i    ui         si  

| C| C  C  C| H| H  H  H  H  H  H  H  H  H|   a       ABCD   k   1234  

| 0| D  D  D| D|-C -C -C -C -C -C -C -C -C|   C   2   0094   1   0310  

   | 0 -C –C|-C| D  D  D -B -B -B -B -B -B|   C   1   0634   2   1003  

        0 –C|-C|-B -B -B  D  D  D -B -B -B|   C   3   0634   2   1003  

           0|-C|-B -B -B -B -B -B  D  D  D|   C   4   0634   2   1003  

            | 0|-B -B -B -B -B -B -B -B -B|   H  11   0931   3   1000  

               | 0 -C -C -A -A -A -A -A -A|   H   5   6331   4   0100  

                    0 -C -A -A -A -A -A -A|   H   6   6331   4   0100  

                       0 -A -A -A -A -A -A|   H   7   6331   4   0100  

                          0 -C -C -A -A –A|   H   8   6331   4   0100  

                             0 -C -A -A -A|   H   9   6331   4   0100  

                                0 -A -A -A|   H  10   6331   4   0100  

                                   0 -C -C|   H  12   6331   4   0100  

                                      0 -C|   H  13   6331   4   0100  

                                         0|   H  14   6331   4   0100  

 

Explanation: Decomposition of the elements C and H to four positions should not cause questions. 

 

Example 1.8. Structural formula, binary signs and structure model of the amino acid proline C5H9NO2: 

 

 
 

A:-6.7.6;  B:-5.6.5;  C:-4.5.4;  D:-3.4.3;  E:-2.3.2; 

F:+1.2.1;  G:+4.5.5. 
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| 4| 3|15| 5|10| 2| 1| 8  9|12|17|16| 6  7|13 14|11|       i      ui  

| C| C| N| C| H| C| C| H  H| H| O| O| H  H| H  H| H|   a       ABCDEFG   k 

| 0| G| G| F| F|-E|-E|-E –E|-E|-E|-E|-D –D|-D –D|-D|   C   4   0005722   1 

     0|-E|-E|-E| G|-E| F  F|-D|-D|-D|-E –E|-D –D|-C|   C   3   0015622   2 

        0|-E|-E|-E| G|-D –D| F|-D|-D|-D –D|-E –E|-C|   N  15   0016612   3 

           0|-E|-D|-D|-D –D|-D| F| F|-C –C|-C –C|-E|   C   5   0045430   4 

              0|-D|-D|-D –D|-D|-D|-D|-C –C|-C –C|-C|   H  10   0057310   5 

                 0| G|-E –E|-D|-C|-C| F  F|-E –E|-B|   C   2   0123622   6 

                    0|-D –D|-E|-C|-C|-E –E| F  F|-B|   C   1   0124522   7 

                       0  E|-C|-C|-C|-D –D|-C –C|-B|   H   8   0156310   8 

                          0|-C|-C|-C|-D –D|-C –C|-B|   H   9   0156310   8 

                             0|-C|-C|-C –C|-D –D|-B|   H  12   0166210   9 

                                0|-E|-B –B|-B –B| F|   O  17   0453220  10 

                                   0|-B –B|-B –B|-D|   O  16   0454210  11 

                                      0 –E|-D –D|-A|   H   6   1236310  12 

                                         0|-D –D|-A|   H   7   1236310  12 

                                            0 –E|-A|   H  13   1245310  13 

                                               0|-A|   H  14   1245310  13 

                                                  0|   H  11   4532110  14 

 

si 

a   i   k   12345678901234  

C   4   1   01111000000000  

C   3   2   10000102000000  

N  15   3   10000010100000  

C   5   4   10000000011000  

H  10   5   10000000000000  

C   2   6   01000010000200  

C   1   7   00100100000020  

H   8   8   01000000000000  

H   9   8   01000000000000  

H  12   9   00100000000000  

O  17  10   00010000000001  

O  16  11   00010000000000  

H   6  12   00000100000000  

H   7  12   00000100000000  

H  13  13   00000010000000  

H  14  13   00000010000000  

H  11  14   00000000010000  

 

Structure model of proline also provides all the relationship between the elements. Its 17 elements are 

concentrated in 14 different positions. Presented separately position-vectors si constitutes an adjacent 

matrix of positions, which enable compose corresponding “position’s graph”. 

 

Example 1.9. The position’s graph of proline: 

 

 
 

 

The structural model of this position graph (“positions model”) we here no represents, we note only that 

this has 10 positions, in which joined former positions (2, 3), (6, 7), (8, 9) and (12, 13). 
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The structural model of chemical compound opens for chemist unfamiliar structural side, but this side 

does not advisable to ignore because the existence of structure is real. To this end, all of this is presented 

here. 

 

Exists also such a thing as a “chemical graph theory”, which can be regarded as the mainstay of chemical 

compounds in the field of work by Arthur Cayley in 1874 (although if the term “graph” was not yet 

used). The end of the last century, thousands of articles on the subject, and in 1980 published a two-

volume monograph of Nenad Trinaisti on Chemical Graph Theory. Proponents of this theory argue that 

it is giving valuable information about chemical phenomena, however, to the opponents seems it 

reasonable only in exceptional cases. I support the first. Moreover, the structural model is something 

perfect than a graph. 

* 

 

The genetic code in biology describes how genes that are composed of DNA are translated into proteins 

composed amino acids. The American bioinformatics William Seffens seems that genetic codes can be 

represented as graphs where the elements are amino acids. In his article, he justifies this view-point (). 

Here we limited with the treatment of graphs and structural model of the genetic code [19].  

 

Example 1.10. The graph with three components of Standard genetic code (ID=1), its binary signs and 

structure model: 

 
 

A: -4.7.9;  B:-4.7.8;  C:-3.6.8;  D:-3.6.7;  E:-3.5.5;  F:-3.4.3; 

G:-2.6.10;  H:-2.5.6;  I:-2.4.4;  J:-2.3.2;  K:-u.2.0; 

L:+1.2.1;  M:+2.3.3;  N:+2.4.5;  O:+3.4.4;  P:+3.5.6;  Q:+3.6.10. 

 

| L| E  K| V| R  G| N  D  Y| Q| F| S| A  T| H| P| M| I| W| C|      a  

|11| 7 12|20| 2  8| 3  4 19| 6|14|16| 1 17| 9|15|13|10|18| 5|  i      deg k 

| 0| O  O|-K|-K -K|-K -K -K| L|-I|-K|-K -K|-K|-K|-K|-K|-K|-K| 11  Leu  3  1 

     0 -I|-K|-K –K|-K -K –K|-J| O|-K|-K –K|-K|-K|-K|-K|-K|-K|  7  Glu  2  2 

        0|-K|-K –K|-K -K –K|-J| O|-K|-K –K|-K|-K|-K|-K|-K|-K| 12  Lys  2  2 

           0|-K –K| P  P  P|-K|-K|-K|-K –K| L|-K|-J|-H|-K|-K| 20  Val  4  3 

              0 –G|-K -K –K|-K|-K| N| M  M|-K| Q|-K|-K|-J|-I|  2  Arg  4  4 

                 0|-K -K –K|-K|-K| N| M  M|-K| Q|-K|-K|-J|-I|  8  Gly  4  4 

                    0 -I –I|-K|-K|-K|-K –K|-J|-K|-F| P|-K|-K|  3  Asn  2  5 

                       0 -I|-K|-K|-K|-K –K|-J|-K|-F| P|-K|-K|  4  Asp  2  5 

                          0|-K|-K|-K|-K –K|-J|-K|-F| P|-K|-K| 19  Tyr  2  5 

                             0|–E|-K|-K –K|-K|-K|-K|-K|-K|-K|  6  Gln  1  6 

                                0|-K|-K –K|-K|-K|-K|-K|-K|-K| 14  Phe  2  7 

                                   0| N  N|-K|-I|-K|-K|-E|-I| 16  Ser  4  8 

                                      0 –G|-K|-I|-K|-K|-E| Q|  1  Ala  4  9 

                                         0|-K|-I|-K|-K|-E| Q| 17  Thr  4  9 

                                            0|-K| L|-D|-K|-K|  9  His  2 10 

                                               0|-K|-K| L|-C| 15  Pro  3 11 

                                                  0|-B|-K|-K| 13  Met  1 12 

                                                     0|-K|-K| 10  Ile  3 13 

                                                        0|-A| 18  Trp  1 14 

                                                           0|  5  Cys  2 15 
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                    ui                        si  

  i    a    ABCDEFGHIJ  K LMNOPQ   k   123456789012345  

 11   Leu   0000000010 15 100200   1   020001000000000  

  7   Glu   0000000011 15 000200   2   100000100000000  

 12   Lys   0000000011 15 000200   2   100000100000000  

 20   Val   0000000101 13 100030   3   000030000100000  

  2   Arg   0000001011 12 021001   4   000000012010000  

  8   Gly   0000001011 12 021001   4   000000012010000  

  3   Asn   0000010021 13 000020   5   001000000000100  

  4   Asp   0000010021 13 000020   5   001000000000100  

 19   Tyr   0000010021 13 000020   5   001000000000100  

  6   Gln   0000100002 15 100000   6   100000000000000  

 14   Phe   0000100010 15 000200   7   020000000000000  

 16   Ser   0000100020 12 004000   8   000200002000000  

  1   Ala   0000101010 12 021001   9   000200010000001  

 17   Thr   0000101010 12 021001   9   000200010000001  

  9   His   0001000003 13 200000  10   001000000001000  

 15   Pro   0010000030 12 100002  11   000200000000010  

 13   Met   0100030001 13 100000  12   000000000100000  

 10   Ile   0101000100 13 000030  13   000030000000000  

 18   Trp   1000300002 12 100000  14   000000000010000  

  5   Cys   1010000030 12 000002  15   000000002000000  

 

All three components are by Seffens represented as a common graph, because in case of alternative 

genetic codes exists relationships between the components. The numbers by relations indicate the 

number of edges (multigraph’s existence). The cycles exist in standard genetic code with a length of 3 

and 4. Disconnections with the other components represent binary sign K:–u.2.0. Twenty amino acids 

form the fifteen positions. We can see that the common positions k in the genetic code have the 

following amino acids 

k=2) glutamic acid (Glu) ja lysine (Lys); k=4) arginine (Arg) ja glycine (Gly); 

k=5) aspargine (Asn), aspartic acid (Asp) ja tyrosine (Tyr); k=9) alahine (Ala) ja threonine (Thr). 

 

If is accepted the positions in genetic code, then should also be accept the relationships between positions 

(position vectors si), which constitutes the adjacent matrix of positions. The corresponding graph plotted 

from here does not make sense, but the structural model can be set up. Existing there double and triple 

connections can be ignore, because these characterize only the number of amino acids that having a 

common position. 

 

Example 1.11: Binary signs and structure model of position’s relationships of Standard genetic code: 

 
A:-4.5.4;  B:-3.4.3;  C:-2.3.2;  D:+u.2.0;  E:+1.2.1;  F:+2.3.3. 

 

                                                               ui  

| 1  2| 4| 3| 9| 5 10| 6  7| 8|11|12 13|15|14|   k   ABC  D EF   k* 

| 0  E|-D|-D|-D|-D –D| E –C|-D|-D|-D –D|-D|-D|   1   001 11 20   1  

     0|-D|-D|-D|-D –D|-C  E|-D|-D|-D –D|-D|-D|   2   001 11 20   1  

        0|-D| F|-D –D|-D –D| F| E|-D –D|-C|-C|   4   002  9 12   2  

           0|-D| E  E|-D –D|-D|-D|-C –C|-D|–D|   3   002 10 20   3  

              0|-D –D|-D –D| F|-C|-D -D| E|–B|   9   011  9 12   4  

                 0 –C|-D –D|-D|-D|-B  E|-D|–D|   5   011 10 20   5  

                    0|-D –D|-D|-D| E –B|-D|-D|  10   011 10 20   5  

                       0 –B|-D|-D|-D –D|-D|–D|   6   011 11 10   6  

                          0|-D|-D|-D –D|-D|–D|   7   011 11 10   6  

                             0|-C|-D –D|-C|-B|   8   012  9 02   7  

                                0|-D –D|-B| E|  11   012  9 20   8  

                                   0 –A|-D|–D|  12   111 10 10   9  

                                      0|-D|–D|  13   111 10 10   9  

                                         0|–A|  15   112  9 10  10  

                                            0|  14   121  9 10  11  
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                               si  

 k|  12345678901   k*         a  * 

 1|  10000100000   1     Leu 

 2|  10000100000   1     Glu, Lys * 

 4|  00010011000   2     Arg, Gly * 

 3|  00002000000   3     Val      * 

 9|  01000010010   4     Ala, Thr * 

 5|  00100000100   5     Asn, Asp,* 

10|  00100000100   5     His, Tyr * 

 6|  10000000000   6     Gln      * 

 7|  10000000000   6     Phe      * 

 8|  01010000000   7     Ser      * 

11|  01000000001   8     Pro      * 

12|  00001000000   9     Met      * 

13|  00001000000   9     Ile      * 

15|  00010000000  10     Cys      * 

14|  00000001000  11     Trp      * 

 

In the structure model of position’s relationships are some previous positions k merged into new 

positions k*, the number of previous positions was 15, now 11. Also here represent the position vectors a 

new adjacent matrix, on which it could continue to operate. However we limited, because the genetic 

significances of the obtained results are not covered here. 

 

Alternative genetic codes differ from standard code a greater or lesser extent. Different components of 

the codes can be isomorphic. For example, the second and third component of Euplotid Nuclear code 

(ID=10) is isomorphic with the corresponding components of Standard genetic code, etc. The differences 

expressed as a few different loop, a new relationship (edge) in component or between components. 

 

Example 1.12. First component of Euplotid Nuclear code (ID=10), its binary signs and structure model: 

 

 
A:-4.8.14;  B:-3.7.13;  C:-3.5.5;  D:-2.6.11;  E:-2.6.10;  F:-2.5.8; 

G:-2.4.4;  H:-2.3.2; 

I:+1.2.1;  J:+2.3.3;  K:+2.4.5;  L:+2.5.7;  M:+3.6.10. 

 

| G  R| S| T  A| P| W| C|        a          ui               si  

| 8  2|16|17  1|15|18| 5|   i         ABCDEFGHIJKLM   k   123456  

  0 -E| K| J  J| M|-H|-F|   8   Gly   0000110102101   1   012100  

     0| K| J  J| M|-H|-F|   2   Arg   0000110102101   1   012100  

        0| L  L|-G|-C| K|  16   Ser   0010001000320   2   202001  

           0 -D|-G|-C| J|  17   Thr   0011001003010   3   210001  

              0|-G|-C| J|   1   Ala   0011001003010   3   210001  

                 0| I|-B|  15   Pro   0100003010002   4   200010  

                    0|-A|  18   Trp   1030000210000   5   000100  

                       0|   5   Cys   1100020002100   6   012000  

 

Euplotid Nuclear code is an adjacent superstructure of Standard code (see chp. 2.2). Addition of the 

relation between Ser-Cys changes the structure, but the positions will be retained. W. Seffens has treated 

15 genetic codes, which on the structural aspect forms a “space of genetic codes”. 
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* 

 

It is appropriate to note that symmetry (i.e. existence the positions with more than one element) in natural 

structures is an extremely phenomenon. The structure of natural objects, such as communication and 

other networks, are usually 0-symmetric (i.e., each element is in a separate position and the same binary 

signs can exist only in the different positions) [34, 37]. Let us here make a “living example”. 

 

Since real communication networks are very large. Imagine here one a peculiar companionship Z 

consisting of Adolf, Berta, Charles, Diana, Erik, Frieda, George, Helen, Ingvar and Jane. They are 

mutually agreed that everyone communicates with the five, known to us, parlor companions. The latter 

circumstance had required of coordination, and someone had to do it. 

 

Adolf – Berta, Charles, Diana, George, Jane; 

Berta – Adolf, Charles, Helen, Ingvar, Jane; 

Charles – Adolf, Berta, Diana, Erik, George; 

Diana – Adolf, Charles, Erik, Frieda, Ingvar; 

Erik – Charles, Diana, Frieda, Helen, Jane; 

Frieda – Diana, Erik, George, Helen, Ingvar; 

George – Adolf, Charles, Frieda, Helen, Jane; 

Helen – Berta, Erik, Frieda, George, Ingvar; 

Ingvar – Berta, Diana, Frieda, Helen, Jane; 

Jane – Adolf, Berta, Erik, George, Ingvar. 

 

This situation constitutes a five-valence-regular structure in which all the members seem to be in “equal 

position”. To represent this situation, make the structure model of Z. 

 

Example 1.13. Structure model of situation Z: 

 
A:-2.6.10;  B:-2.6.9;  C:-2.5.8;  D:-2.5.7;  E:-2.5.6;  F:-2.4.5;  G:-2.4.4; 

H:+2.3.3;  I:+2.4.5;  J:+2.5.7;  K:+3.10.25. 

 

| 1| 2| 3| 4| 5| 6| 7| 8| 9|10|              ui 

| F| A| D| H| C| B| I| J| E| G|  name    ABCDEFGHIJK   k  

  0|-G| I| J|-D|-F| I|-E| I| H|  Frieda  00011111310   1  

     0| H|-G| J| I|-D| I|-D| I|  Adolf   00020021310   2  

        0|-C| I|-D| H|-E| I|-D|  Diana   00121002300   3  

           0|-E| H| I|-B| H| H|  Helen   01101013110   4  

              0| H|-G|-A| H| H|  Charles 10011013110   5  

                 0| I| I|-E|-A|  Berta   10011102300   6  

                    0| H|-A|-D|  Ingvar  10020012300   7  

                       0| K| H|  Jane    11002002201   8  

                          0|-B|  Erik    11011002201   9  

                             0|  George  11020004100  10  

 

Unfortunately, the structure Z is 0-symmetric, there do not “equality”, each member has its own private 

position. Different position means different connectivity, "relationships" with other members. Between 

ten members exists 11 different relationships, which is characterized by the binary signs (see frequency 

vectors ui). The problem lies here in the grouping of strictly differentiated members. This fact leads us 

back to the sign structures GSp (see P1.1.3). In selection of the sign must be proceeds from: 

1) Selected sign must be exits in case of each structural element. 

2) To keep in mind the meaning of sign, because the sign structure be formed on the aspect of sign. 

 

In principle is the companionship decomposable to eleven inseparable component sign structures GSp, 

and gives different groupings. This is inappropriate, and useful to go the other way. 

 

Let to it is the rearranging the members by their “direct communication signs” HIJK of frequency-

vectors in Example 1.13. 
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Example 1.14. Rearranged by HIJK structure model Z: 
 

| 1| 2| 4| 5| 3| 6| 7| 8| 9|10|               ui 

| F| A| H| C| D| B| I| J| E| G|   name    k   HIJK   R  

  0|-G| J|-D| I|-F| I|-E| I| H|   Frieda  1   1310   1  

     0|-G| J| H| I|-D| I|-D| I|   Adolf   2   1310   1  

        0|-E|-C| H| I|-B| H| H|   Helen   4   3110   2  

           0| I| H|-G|-A| H| H|   Charles 5   3110   2  

              0|-D| H|-E| I|-D|   Diana   3   2300   3  

                 0| I| I|-E|-A|   Berta   6   2300   3  

                    0| H|-A|-D|   Ingvar  7   2300   3  

                       0| K| H|   Jane    8   2201   4  

                          0|-B|   Erik    9   2201   4  

                             0|   George 10   4100   5  

 

The resulting grouping corresponds to the requirement of “direct communication signs”, where the ten 

positions k reduces to five groups, with the members: 

R1= (Frieda, Adolf), R2= (Helen, Charles), R3= (Diana, Berta, Ingvar), 

R4= (Jane, Erik) and R5= (George). 

 

For finding the “similarity” of members can be use also approximate or rounded-off binary signs. 

 

Example 1.15. Using the rounded-off binary signs: 
 

Rounding-off: a= [A:-2.6.10; B:-2.6.9], b= [C:-2.5.8; D:-2.5.7; E:-2.5.6], 
c= [F:-2.4.5; G:-2.4.4], d= [H: +2.3.3; I:+2.4.5; J: +2.5.7], e= (K: +3.10.25). 
Rounded binary signs:  a:(A, B) ≈ –2.6, b:(C, D, E) ≈ –2.5, c:(F, G) ≈ –2.4, d:(H, I, J) ≈ +2 ja e: K ≈ +3. 

 
|  1  | 2|     3     |  4  | 5|          | a| b | c| d |e|       u*i  

| F| A| D| H| C| B| I| J| E| G|  name     AB|CDE|FG|HIJ|K   k  abcde   k* 

  0|-G| I| J|-D|-F| I|-E| I| H|  Frieda   00|011|11|131|0   1  02250   1 

     0| H|-G| J| I|-D| I|-D| I|  Adolf    00|020|02|131|0   2  02250   1 

        0|-C| I|-D| H|-E| I|-D|  Diana    00|121|00|230|0   3  03050   2 

           0|-E| H| I|-B| H| H|  Helen    01|101|01|311|0   4  12150   3 

              0| H|-G|-A| H| H|  Charles  10|011|01|311|0   5  12150   3 

                 0| I| I|-E|-A|  Berta    10|011|10|230|0   6  12150   3 

                    0| H|-A|-D|  Ingvar   10|020|01|230|0   7  12150   3 

                       0| K| H|  Jane     11|002|00|220|1   8  22041   4 

                          0|-B|  Erik     11|011|00|220|1   9  22041   4 

                             0|  George   11|020|00|410|0  10  22050   5 

 

The resulting grouping by rounded-off binary signs: 

k*1= (Frieda, Adolf), k*2= (Diana), k*3= (Helen, Charles, Berta, Ingvar), 

k*4= (Jane, Erik) and k*5= (George). 

 

We can see that there exist coincidences between the results of “direct communication signs” and 

rounding-off. The first way shall be considered as more distinct and therefore more reliable. The 

“rounding” of binary signs may prove to be quite arbitrary. Mention must be the specific role of Jane and 

Erik in this companionship, to their relationship K: +3.10.25 includes all members and relationships, and 

they may be coordinators. 

 

Such 0-symmetric structures can be treats, investigate, and elements grouped in several ways: 

1) Investigation of the selected sign structures GSp. 

2) Investigate on the basis of some selected binary signs formed the so-called complex sign 

structures. 

3) Reordering the structural model by the given binary signs (Example 1.14). 

4) For reducing the positions to use the connected or “rounded” binary signs (Example 1.15). 

 

All of this requires a good knowledge of the subject and suitable choices the aspects for the investigation. 
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2. STRUCTURAL CHANGES 
 

2.1. Elementary structural changes 
 
Elementary structural changes expressed in two modes: 1) As a greatest subgraph G

sub
, obtained by 

removing an edge G\eij of G; 2) As a smallest supergraph G
sup

, obtained with adding an edge G∪eij to 

G. The number of G
sub

 equals to the number of edges and the number of G
sup

 to number of “non-edges. 

 

Definition 2.1. Greatest subgraphs G
sub

 and smallest supergraphs G
sup

 called adjacent graphs G
adj

 of 

graph G. 

 

Proposition 2.1. If the edge operations f in the framework of a binary position ΩΩΩΩRn= ΩΩΩΩ(rij1,…,rijq)n are 

separated {(fij)1∨…∨(fij)q}n, then the adjacent graphs are isomorphic, i.e. form an isomorphism class 

Гn={(G
adj

n)1 ≅≅≅≅…≅ ≅ ≅ ≅ (Gadj
n)q} . 

 

Now we must do the difference between adjacent graph G
adj

 and adjacent structure GS
adj

. Structure can 

be represented by the arbitrary designed and labeled graphs of the isomorphism class Гn, because they 

structures are equivalent [22, 27, 34, 37]. 

 

Proposition 2.2. Adjacent graphs G
adj

, which belong to one isomorphism class Гn have equivalent 

structure models SM and represent the adjacent structure GS
adj

n. The number of adjacent structures 

equals to the number of binary positions ΩΩΩΩRn. 

 

Definition 2.2. Disjunctive edge operation Fn={(fij)1 ∨…∨ (fij)q}n, which changes the structure GS to its 

adjacent structure GS
adj

 called morphism Fn, Fn: GS→→→→GS
adj

. 

 

Morphisms are the principal instruments of elementary structural changes. 

 

Proposition 2.3. Morphism Fn: GS→→→→GS
adj

n has a morphism probability, PF=card|ΩΩΩΩRn|:card|R|, where 

card|ΩΩΩΩRn| is the power of binary position and card|R| the number of corresponding element-pairs in the 

structure GS, i.e. the number of edges or “non-edges” in the graph, 

 

 

Example 2.1. Structure GS.37(6.9.4) (see [30, 37]) with two element positions and two “edge” positions, 

its graph, structure model, characteristics of changes and morphisms: 

 
A:-2.4.5; B:-2.3.2; 

C:+2.3.3; D:+2.4.5. 

 

| 1  1  1| 2  2  2|       ui    k  si  

 2-2  3-1  | 1  3  5| 2  4  6|  i   ABCD     12 

 �  �  | 0  D  D| C –A  C|  1   1022  1  22 

1-1    4-2      0  D| C  C -A|  3   1022  1  22 

�    �         0|-A  C  C|  5   1022  1  22 

              | 0 -B -B|  2   1220  2  20 

 �  �                0 -B|  4   1220  2  20 

 6-2  5-1                   0|  6   1220  2  20 

 
GSadjn 1 2 

 

GS.37 

GSsupn- 
k.k’(p) 

PFsupn- 

29 

2.2 (-B) 

3/6 

30 

1.2 (-A) 

3/6 

 

GS.37 

GSsubn+ 
k.k’(p) 

PFsubn+ 

72 

1.1 (+D) 

3/9 

76 

1.2 (+C) 

6/9 
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Explanations: 

a) GS
sup

n– and GS
sub

n+ denotes the ordering numbers of adjacent superstructures and adjacent 

substructures in the system of structures with six elements (see Example 2.5); 

b) k,k’ – index of partial model SMk,k’, where belong the binary position (p); 

c) PFn – morphism probability. 

 

Example 2.2. Representing the adjacent superstructure GS
sup

n=–B, (GS.29, [30, 37]) of structure GS.37 

(Example 2.1) isomorphic graphs, their common binary signs and equivalent structure models SM1 ≡ 

SM2 ≡ SM3 that obtained by adding the connections 2-4, 2-6 and 4-6 (dashed line) to binary(–)position  

–B of GS.37: 
A:-2.5.8; B:-2.4.5; C;-2.3.2; 

D:+2.3.3; E:+2.4.5. 

 

| 1| 2| 3  3| 4  4|       ui        si 

 2-4  3-1   | 3| 6| 1  5| 2  4|  i  ABCDE  k  1234 

 �  �   | 0|-B| E  E| E  E|  3  01004  1  0022 

1-3    4-4     | 0| D  D|-C -C|  6  01220  2  0020 

�    �        | 0  E| D -A|  1  10022  3  1111 

                 0|-A  D|  5  10022  3  1111 

 �  �               | 0 D*|  2  10121  4  1011 

 6-2  5-3                    0|  4  10121  4  1011 

 
| 1| 2| 3  3| 4  4|       ui        si 

 2-4  3-3   | 1| 4| 3  5| 2  6|  i  ABCDE  k  1234 

 �  �   | 0|-B| E  E| E  E|  1  01004  1  0022 

1-1    4-2     | 0| D  D|-C -C|  4  01220  2  0020 

�    �        | 0  E| D -A|  3  10022  3  1111 

                 0|-A  D|  5  10022  3  1111 

 �  �               | 0 D*|  2  10121  4  1011 

 6-4  5-3                    0|  6  10121  4  1011 

 
| 1| 2| 3  3| 4  4|       ui        si 

 2-3  3-3   | 5| 2| 1  3| 4  6|  i  ABCDE  k  1234 

 �  �   | 0|-B| E  E| E  E|  5  01004  1  0022 

1-3    4-4     | 0| D  D|-C -C|  2  01220  2  0020 

�    �        | 0  E|-A  D|  1  10022  3  1111 

                 0| D -A|  3  10022  3  1111 

 �  �               | 0 D*|  4  10121  4  1011 

 6-4  5-1                    0|  6  10121  4  1011 

 

Explanation: Equivalent structure models differ from each other only numbered elements in different 

positions in the division. 

 

Example 2.3. Representing the adjacent superstructure GS
sup

n=–A, (GS.30, [30, 37]) of structure GS.37 

(Example 2.1) isomorphic graphs, their common binary signs and equivalent structure models SM1 ≡ 

SM2 ≡ SM3 that obtained by adding the connections 1-4, 2-5 and 3-6 (a dashed line) to binary(–)position  

–A of GS.37: 
A:-2.4.5; B:-2.3.2; 

C:+2.3.3; D:+2.4.5; E:+2.6.15. 

 

| 1| 2  2| 3| 4  4|       ui        si 

 2-4  3-2   | 1| 3  5| 4| 2  6|  i  ABCDE  k  1234 

 �  �   | 0| E  E|D*| C  C|  1  00212  1  0212 

1-1    4-3     | 0  D| D| C -A|  3  10121  2  1111 

�    �          0| D|-A  C|  5  10121  2  1111 

               | 0|-A –A|  4  20030  3  1200 

 �  �               | 0 -B|  2  21200  4  1100 

 6-4  5-2                    0|  6  21200  4  1100 
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| 1| 2  2| 3| 4  4|       ui        si 

 2-3  3-2   | 5| 1  3| 2| 4  6|  i  ABCDE  k  1234 

 �  �   | 0| E  E|D*| C  C|  5  00212  1  0212 

1-2    4-4     | 0  D| D|-A  C|  1  10121  2  1111 

�    �          0| D| C -A|  3  10121  2  1111 

               | 0|-A –A|  2  20030  3  1200 

 �  �               | 0 -B|  4  21200  4  1100 

 6-4  5-1                    0|  6  21200  4  1100 

 
| 1| 2  2| 3| 4  4|       ui        si 

 2-4  3-1   | 3| 1  5| 6| 2  4|  i  ABCDE  k  1234 

 �  �   | 0| E  E|D*| C  C|  3  00212  1  0212 

1-2    4-4     | 0  D| D| C -A|  1  10121  2  1111 

�    �          0| D|-A  C|  5  10121  2  1111 

               | 0|-A –A|  6  20030  3  1200 

 �  �               | 0 -B|  2  21200  4  1100 

 6-3  5-2                    0|  4  21200  4  1100 

 

Explanation: The adjacent structures that are obtained by the same binary position ΩΩΩΩRn are equivalent, 

but by different binary positions obtained adjacent structures are non-equivalent. It is valid also in case of 

adjacent substructures. 

 

Example 2.4. The adjacent substructures GS
sub

n=+D, (GS.72, [30, 37]) and GS
sub

n=+C, (GS.76) of structure 

GS.37 (Example 2.1) that obtained by removing the connection 3-5 from binary(+)position +D and 

removing the connection 5-6 from binary(+)position +C correspondingly. Their non-isomorphic graphs, 

different binary signs and non-equivalent structure models SMA and SMB: 

 
A:-2.4.4; B:-2.3.2; 

C:+2.3.3; D:+3.4.4. 

 

| 1  1| 2| 3  3| 4|       ui       si 

 2-1  3-3   | 2  6| 1| 3  5| 4|  i  ABCD  k  1234 

 �  �   | 0 -B| C| C –B|-B|  2  0320  1  0110 

1-2    4-4       0| C|-B  C|-B|  6  0320  1  0110 

�    �        | 0| C  C|-A|  1  1040  2  2020 

               | 0–A*| D|  3  1121  3  1101 

 �  �                 0| D|  5  1121  3  1101 

 6-1  5-3                    0|  4  1202  4  0020 

 
A:-3.5.6; B:-2.4.5; C:-2.3.2; 

D:+1.2.1; E:+2.3.3; F:+2.4.5. 

 

| 1| 2| 3| 4| 5| 6|        ui        si 

 2-1  3-3   | 3| 1| 5| 2| 6| 4|  i ABCDEF  k  123456 

 �  �   | 0| F| F| E|–C| E|  3 001022  1  011101 

1-2    4-4       0| E| E| D|-B|  1 010121  2  101110 

�    �        | 0|-B|-C| E|  5 011021  3  110001 

               | 0|C*|-C|  2 012020  4  110000 

 �  �                 0|-A|  6 103100  5  010000 

 6-1  5-3                    0|  4 111020  6  101000 

 

Explanation: By different binary positions obtained adjacent structures are non-equivalent. 

 

 

Proposition 2.4. Each structure GS is an adjacent substructure GS
sub

n or adjacent superstructure G
sup

n of 

some other structures. 
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2.2. Adjacent structures and Ulam Conjecture 
 
Proposition 2.5. Morphism F is reversible – in each adjacent structure GS

adj
 of GS exist an “reverse 

position” ΩΩΩΩR
rev

, whereat used reverse morphism F
rev

 reconstruct the initial structure GS, F
rev

: 

GS
adj→→→→GS. 

 

Let the structure on Example 2.2 is an initial structure GS that has an adjacent substructure GS
sub

n in the 

forms of structure on Example 2.1. Then GS can be reconstruct by adding a connection to the reverse 

position –B of GS
sub

n with morphism probability PF
rev

=3/6.  

 

The reversing of morphism is valid both in the case of adjacent sub- GS
sub

n+ and super-structures Gs
sup

n-. 

Indeed, structure GS can be reconstructed by each of its adjacent structure GS
adj

 separately. On the set 

{GS
adj

n} of all the adjacents of GS there exists certain set of opposite morphisms {F’n}, n∈[1, N], such 

that each its disjunctive element (F’1: GS
adj

1→GS)∨…∨(F’N: GS
adj

N→ GS) reconstructs the structure 

GS separately. 

 

Thus, to be precise, the morphisms exist between the binary positions of structures. 

 

Proposition 2.6. If morphisms Fn: GS→GS
adj

n are applied to binary positions ΩΩΩΩR1,…,ΩΩΩΩRn,…,ΩΩΩΩRN of GS 

disjunctivelly, F1∨…∨Fn∨…∨FN, then GS is decomposed (deconstructed) to its adjacent structures 

GS
adj

1,…,GS
adj

n,…,GS
adj

N. 

 

Non-decomposable structures do not exist. 

 

Proposition 2.7. If structure GS is decomposed (deconstructed) to its adjacent substructures 

GS
sub

1,…,GS
sub

n,…,GS
sub

N, then their union ∪∪∪∪(GS\eij)n, n
+∈[1, N

+], reconstruct (recompose) the 

structure GS. 

 

This applies in particular for union of adjacency matrices ∪∪∪∪(E\eij)n = E. 

 

Proposition 2.8. If structure GS is decomposed (deconstructed) toi ts adjacent superstructures 

GS
sup

1,…,GS
sup

n,…,GS
sup

N, then their intersection  ∩(GS∪eij)n, n–∈[1, N
–], reconstruct (recompose) the 

structure GS. 

 

Conclusion. Thus, the reconstructing (restoring) of structure is inevitable, non-reconstructive structures 

do not exist. 

 

The reconstruction problem is known as Ulam’s Conjecture and constitutes the isomorphism relations 

between two graphs and their (G\vi)-subgraphs [43]. It is formulated as follows: “Let graph G has p≥3 

vertices vi and H has p≥3 vertices ui. If for each i, the sub-graphs Gi=G\vi and Hi=H\ui are isomorphic, 

then the graphs G and H are isomorphic”. 

 

This problem has been over the past half century, one of under active consideration graph theoretical 

problem, but the ultimate solutions have only some graph classes. Why so? Evidently be interested on 

the question: contain the collection of sub-graphs G\vi of G enough information about graph G itself? On 

the structural aspect is the wording of this conjecture nonsense, because, if given graphs G and H then on 

the ground of structure models we obtain the complete information about their isomorphism and 

isomorphism of their adjacent graphs. 

 

Ulam’s Conjecture treats the reconstruction on the aspect of removing of the vertices, but we treat it on 

the aspect of adding and removing of edges. This not changes the essence of reconstruction, because all 

remains to the frame of graphs (structures) and their adjacent graphs (-structures). Already old master W. 

T. Tutte emphasized that reconstruction-problem must be solve on the basis of isomorphism classes, that 

we also have followed [42]. 
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2.3. Genesis of the structures 
 
Genesis of the structures constitutes generating of all adjacent structures of the structures with |V| 

elements, i.e. adjacent structures of the adjacent structures or successors of the successors [22, 34, 37]. 

 

The idea of structural genesis is simple. Let the number of elements (vertices) of the genesis’s condition 

is fixed. In the first step of genesis arises there a first relationship (edge). The second step is a bit more 

complex: there can arise a relationship with an element, which already has relationship with another 

element, but can also appears a relationship between elements that do not yet have relationship. The latter 

is more likely. Thus, after the second step the genesis is branched to two, i.e. appear two possible 

“successors”. 

 

In the third step the right genesis, i.e., the branching of possible successors only begins. With further 

addition of relationships, the structure dense and the branching increase, until it reaches the middle-

phase of genesis. From the middle-phase the branching begins to decline, although thickening continues. 

Middle phase is the bisector of genesis, where for each structure in first half of genesis correspond its 

complement in the second half of the genesis. To the last step of genesis being the adding of last 

relationship to the very thicken (dense) structure, to achieve the complete structure. 

 

Generating of the structures takes place by help of the structure models. It is presentable in the form of 

lattice, where the elements are structures GS and to relationships morphisms F. In present case we have 

begin from complete structure. 

 

Example 2.5. First half of the lattice of genesis the structures with six elements: 
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Explanations: 

a) |R
+
| denote the structural level, i.e. the number of relationships in the structures.  

b) Each graph represents there its isomorphism class or structure. 

c) Each structure in this lattice is an adjacent structure of some other structures. 

d) In the Examples 1.1 – 1.3 and 2.1 – 2.4 showed structures are in this lattice represented by their 

ordering numbers  

e) The complements of represented structures placed symmetrically in the second half of the lattice. 

 

The complete explanation of structural genesis is represented the following issues: 1) Genesis of 

structures with five elements in [34]; 2) Genesis of structures with six elements [37].  

 

Genesis of the structures takes place as generation of the morphisms Fn, so that in the framework of 

structures GS of each structural level |R
+
| are formed their adjacent structures, i.e. the structural level of 

adjacent structures GS
adj

. In result of structural genesis is the system of structures G obtained. 

 

The first sample of non-isomorphic graphs with up to six vertices was represented by Frank Harary in 

1969th [6]. Later, F. Harary and E. Palmer had calculated the number of non-isomorphic graphs (i.e. 

structures) up to 24 vertices [7]. R. Read and F. Wilson were in “Graph Atlas” also given the diagrams of 

graphs up to seven vertices [17]. But so far do not are discussed about the relationships between adjacent 

graphs, i.e. morphisms. 

 

Example 2.6. General characteristics of some systems G of structures with |V| elements: 

 

Number of 

elements  

|V|  

Number of 

structures 

p 

Among this 

connected 

p*  

Number of 

levels 

m 

Number of 

morphisms 

q 

Number of 

binarypositions 

q* 

3 4 2 4 3 6 

4 11 6 7 14 28 

5 34 21 11 72 144 

6 156 112 16 572 1144 

7 1044 853 22   

8 12346 11117 29   

 

Explanation: 

The number m of structural levels |R
+
| equals to the number of relationships in complete structure plus 

one. Can be do note, that in case |V|=10 the number of structures is 12005156, in case |V|=20 

645490122795799841856164683490742749440, etc. 

 

Structure genesis is realizable in the way of successive formation the structure models. It is not possible 

that someone would have tried to do anything like on the base of combinatorics, algebra or other 

classical attributes. 

 

Propositions 2.9. Some properties of structure systems G
|V|

: 

P2.9.1. If the number of structural levels m in system G
|V|

 is even number (as in case |V|=6 and |V|=7), 

then is it lattice bilaterallly symmetric with regard its bisector, which separates the structures 

GS from their complements GS. 

P2.9.2. If the number of structural levels m in system G
|V|

 is odd number (as in case |V|=4, |V|=5, 

|V|=8 and |V|=9), then the bisector is a structural level in which be found structures GS, their 

complements GS and also self-complemented structures GS= GS. 

P2.9.3. Algebraic properties: a) The class of morphisms F form an additive group A in the meaning of 

the composition F&F. b) The class of structures GS together with the class of morphisms F 

forms a category C. 

 

In structural genesis has important role randomness. This manifests in the form of selection the adjacent 

structures, i.e. elementary structural changes. The probabilities of this system are related with internal 
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diversity of structure, i.e. binary positions, and have essential meaning in the research of structure 

systems. 

 

Propositions 2.10. Probabilistic characteristics of structure systems G
|V|

: 

P2.10.1. Randomness in the systems G based on the morphism probabilities PFn. 

P2.10.2. There exists transition probability Pij at a structure GSi to a non-adjacent structure GSj. 

P2.10.3. Transition probabilities Pij form the stationary Markov chain PM of structural genesis (see 

Example 2.8). 

P2.10.4. Existence probability PS of the structure GS in system G characterize its being among other 

structures on the structural level |R
+
|. This expressed in the form: 

PS=n=1∑∑∑∑N–
PS

sup
n×PF

sub
n=n=1∑∑∑∑N+

PS
sub

n–×PF
supp

n, 
where n is the structural index of binary position, PS

sup
n existence probability of adjacent 

superstructure and PF
sub

n  its morphism probability. 

P.2.10.5. The sum of existence probabilities PSm of structures in the structural level |R
+
| equal to one, 

∑∑∑∑PSm=1. 
P2.10.6. Existence probabilities of structure and its complement are equal, PS(GS)=PS(GS). 

P2.10.7. Existence probabilities PS are rational numbers, where their smallest common denominators 

are directly related with the degree of genesis |V|. 

P2.10.8. Distribution of probabilities PS in the structure level approaching to logarithmic normal 

distribution. 

 

Exist some real systems whose working (functioning) can represent in the form of successive changing 

their structure in the time. It can be argued that all the developmental, evolutionary and revolutionary 

phenomena are related to structural changes [10, 11, 22]. Structure model enables to select its possible 

immediate (direct) states (conditions). 

 

Successive structural changes are showed in the lattice of structure system G
|V|

 as a path. It is modeled 

proceeding from a concrete structure GS0. 

 

Definition 2.3. Successive morphisms F1&F2&…&Ft on the structures GS, 
F1:

GS0→→→→ F2:
GS1→→→→ F3:

GS2→→→→…
 Ft:

GSt–1→→→→GSt, 
forms a sequence of structural changes SF. 

 

Propositions 2.11. Properties of structural changes SF: 

P2.11.1. Sequence SF can be random or teleological, if the selection of morphisms takes place on the 

ground of certain requirements. 

P2.11.2. Sequences between non-adjacent structures GSi and GSj in system G
|V|

 constitute an 

assemblage of structural sequences. 

P2.11.3. Structural changes that take place on the basis of only F
+
morphisms or only F

−−−−morphisms 

constitute a “vertical sequence”. 

P2.11,4. Sequence SF, where the initial structure GSi and finish structure GSj belongs to the same 

structural level G
m

 is a “horizontal sequence”. Such structural changes based on the morphism 

pairs F
−−−−&F

+
 (or F

+
&F

−−−−), that constitute “replacing of a relationship” in the structure GS (see 

Example 2.6). 

P2.11.5. Sequence SF, where the values of structural characteristics change monotonically, is a 

monotonous sequence SFM on the apect of characteristics (see Example 2.8). 

P2.11.6. A random, with t steps successsion, has sequence probability PSF in the form of product of 

morphism probabilities: 

PSF=i=1∏∏∏∏t
PFi=PF1×PF2×…×PFt. 

 

 

Take a look to an assemblage of horizontal sequences between the symmetric structure GS.34 

(SR=0.751, PS=6:3003) and 0-symmetric structure GS.54 (SR=0, PS=432:3003) in the structural level 

G
m=9

. 
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Example 2.7. Assemblage of horizontal sequences between two structures: 

 
Explanation: 

The structures 22, 32, 33 belong to the structural level m=8, structures 34, 44, 52, 54 to m=9, structures 

57, 70, 73, 75, 78 belong to the level m=10. 

 

Example 2.8. The stationary Markov chain PM34,54 of this assemblage of horizontal sequences: 

 

GS 34 22 57 44 52 32 33 75 78 70 73 54 

34 0 1 

20250 

1 

30375 

2 

8100 

2 

16200 

3 

2160 

3 

2160 

3 

2160 

3 

4320 

3 

2160 

3 

2160 

4 

1728 

22 1 

3375 

0 2 

4050 

1 

10125 

2 

20250 

2 

2700 

2 

2700 

2 

2700 

2 

5400 

2 

2700 

2 

2700 

3 

2160 

57 1 

3375 

2 

2700 

0 1 

6750 

1 

13500 

2 

1800 

2 

1800 

2 

1800 

2 

3600 

2 

1800 

2 

1800 

3 

1440 

44 2 

450 

1 

3375 

1 

3375 

0 2 

4725 

1 

6750 

1 

6750 

1 

6750 

1 

13500 

3 

405 

3 

405 

2 

3600 

52 2 

350 

1 

3375 

1 

3375 

2 

1800 

0 1 

3375 

1 

3375 

1 

3375 

1 

6750 

1 

6750 

1 

6750 

2 

3600 

32 3 

60 

2 

450 

2 

450 

1 

3375 

1 

3375 

0 2 

1125 

2 

1125 

2 

2025 

2 

2700 

2 

2700 

1 

6750 

33 3 

60 

2 

450 

2 

450 

1 

3375 

1 

3375 

2 

1125 

0 2 

1125 

2 

2025 

2 

2700 

2 

2700 

1 

6750 

75 3 

60 

2 

450 

2 

450 

1 

3375 

1 

3375 

2 

1125 

2 

1125 

0 2 

2025 

2 

2700 

2 

2700 

1 

6750 

78 3 

60 

2 

450 

2 

450 

1 

3375 

1 

3375 

2 

1125 

2 

1125 

2 

1125 

0 2 

2700 

2 

2700 

1 

3375 

70 3 

60 

2 

450 

2 

450 

3 

420 

1 

6750 

2 

2700 

2 

2700 

2 

2700 

2 

1350 

0 2 

1350 

1 

6750 

73 3 

60 

2 

450 

2 

450 

3 

420 

1 

6750 

2 

2700 

2 

2700 

2 

2700 

2 

1350 

2 

1350 

0 1 

6750 

54 4 

24 

3 

180 

3 

180 

2 

900 

2 

1800 

1 

3375 

1 

3375 

1 

3375 

1 

3375 

1 

3375 

1 

3375 

0 

 

Explanations: 

a) Numbers 1 to 4 show the number of steps t, i.e. distance d. 

b) Numbers 24 to 30375 show the transition probabilities Pij, multiplied with 50625. 

c) Transition probability Pij from symmetric structure GS.34 to 0-symmetric GS.54 

P34,54=1728:50625 is 1728:24=72 times greater as in contrary direct, P54,34=24:50625! 

d) The difference of existence probabilities PS is also 72 multiple, where PS34=6:3003 and 

PS54=432:3003.  

In G
|V|=6

 exists only one monotonous sequence SFM, that thoughts all the structural levels.  

 

The structural changes in the system G
|V|

 can be describe also on the aspect of concepts of dynamical 

systems [8]. 
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2.4. About structural genesis of the natural objects 
 
There are natural objects in which their development, genesis, evolution is manifested in the form of 

changes in their structure. We take a look one of a sub phenomenon of ecological genesis, coenogenesis 

that mean the genesis of the plant community, i.e., its transformation and evolution. 

 

As a pioneer of the application of discrete mathematics in investigation of biological systems should be 

regarded N. Rashevsky, who created in years 1954-1957 the foundations of so-called topological 

biology. In the years 1958-1978 develop R. Rosen the relationic biology, which later became known as 

(M,R)-systems. In the period 1967-1972 represents N. Rashevsky the concepts of organismic sets that by 

I. Baianu and M. Marinescu in years 1968-1980 developed as the theory of organismic super category. 

 

It is widely believed that the biological system is to be considered as a large physico-chemical formation, 

where its behavior is depends from its structure, based on the laws of physics and chemistry. To this 

contradict the bio-semiotics, who wants to see a whole. Any system (as a whole), also biological is 

many-aspect, it can be treated on a given or an agreeable to the investigator aspect. Any case, it is related 

to the need to determine the sub-systems, elements and their relationships. 

 

Development of plant communities, i.e. coenogenesis expressed in the changing of abundance and 

nomenclature of species. This is related with the change in coverage and the associated competitive 

relationships. In other words, the coenogenesis constitutes a sequence of structural changes. 

 

The given simulation of coenogenesis on the title is based on the observation data – topographical 

diagrams and descriptions of epilithic lichen synusiae made by ecologist Jüri Martin on various age 

moraines on the glaciers called after L. S. Berg in the Polar Urals. Thus, to be precise, it is a simulation 

of lichogenesis. The observations have been made hundreds where for the simulations were selected 92, 

These include 60 species of lichens, mosses and flowering plants as well. In each synusiae was a fixed 4 

to 10 different species. The species are met in 92 synusiae squares 757 times forming 1120 pairs of 

species, that in their turn described by 3252 contacts among 4371 individual thalluses [10, 11]. 

 

The simulation is based on three principles, formulated by J. Martin  : 

1) Lichogenesis characterized by competition between species that are detected as direct contacts or 

connections between species. 

2) Each states of lichogenesis are presented in the form of the graphs, obtained by analyzing of the 

92 topographic scheme of synusiae (observation area 20x20 cm). 

3) Under normal environmental conditions the lichogenesis manifests itself in the form of an 

increase in the coverage of synusiae. 

 

The battle rages in the interests of living space and for characterization the development stages is useful 

to divide the states, on the basis of coverage’s coefficient c, c∈[ 0, 1], to nine steps: ct=1:(0<c≤0,05); 

ct=2:(0,05<c≤0,1); ct=3:(0,1<c≤0,17); ct=4:(0,17<c≤0,6); ct=5:(0,6<c≤0,7); ct=6:(0,7<c≤0,8); 

ct=7:(0,8<c≤0,87); ct=8:(0,87<c≤0,95); ct=9:(0,95<c≤1,0). 

 

Example 2.9. The graph of a state of lichogenesis, its binary signs and structure model: 

 
A:-3.4.3;  B:-2.3.2; C:+1.2.1;  D:+2.4.6. 

 

| 1  1| 2  2| 3  3|      ui       si   

 17  26   |22 45|59 60|17 26|  i  ABCD  k  123 

 �  �   | 0  D| D  D| C -B| 22  0113  1  121 

22    45       0| D  D|-B  C| 45  0113  1  121 

�    �          0  D|-B -B| 59  0203  2  210 

                 0|-B -B| 60  0203  2  210 

 �  �                 0 -A| 17  1310  3  100 

 60  59                    0| 26  1310  3  100 
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Explanation: The elements are enumerated by species, where 17 – Lecanora polytropa, 22 – Lecanora 

atra, 26 – Umbilicaria cylindrica, 45 – Umbilicaria hyperborea, 59 – Rhizocarpon geographicum, 60 – 

Rhizocarpon hochstetteri. The species are here divided into three and the relationships to seven positions. 

 

For fixing the successors of conditions used here the maximum value of a successor coefficient δδδδ, δδδδ = 2ρρρρ 

: (na + nb), where  ρρρρ is the number coincides species in states a and b, and (na+nb) the number of speciesc 

in those states. 

 

Example 2.10. The graph of a successor state of preceding, its binary signs and structure model: 

 
A:-2.5.9;  B:+2.4.6;  C:+2.5.9. 

 
 17  26   | 1  1  1| 2  2|   i   ui        si  

 �  �   |45 59 60|17 26|  i   ABC   k   12  

    45    0  C  C| B  B| 45   022   1   22  

    �       0  C| B  B| 59   022   1   22  

              0| B  B| 60   022   1   22  

 �  �              0 -A| 17   130   2   30  

 60  59                 0| 26   130   2   30  

 

Explanation: The increasing of coverage is associated with the increasing of the number of competing 

pair of species, and resulted disappear here the species 22. This was to be expected, because with species 

45 had previously the same number of competitors, but on the level of individuals was competes more 

dense. The structure itself is thus simplified. Species 17 and 26 continue to hold their position. The 

species 59 and 60 have a common position with the 45. The species are here divided into two and the 

relationships to three positions. 

 

Since in lichens synusiae, unlike higher plant communities, there are no seasonal fluctuations then we 

can the relationships between species consider reasonably stable. If one species ousted from synusiae, 

then it is unlikely that it gets back there because the vacant space occupied by the fastest-growing and 

competing-ability species. 

 

Aside of coverage coefficient c is still under observation structural complexity ηηηη and ecological variety µµµµ 

(variety of life forms: crustaceous and folious lichens, fruticose lichens, mosses etc). Ecological variety 

characterizes the evolutionary stages of the community. For the simplified representation of lichogenesis 

are selected 24 conditions, that embrace all the evolutional stages and the probable successions. 

 

Example 2.11. The lattice L of lichogenitical conditions (structure models): 
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On the ground of lattice L and phase space R(ct, ηηηη, µµµµ) obtained various data about successions of 

lichogenetic states, behaviour of species, ecological niches, evolutionary stages and other: For instance: 

Emergence of lichen species in synusiae is various. There exist species that appear in the early stages of 

lichogenesis, species that are always present, and species that appear only in recent stages of 

lichogenesis. 

 

Using the structural models gives here new possibility: 

1) Detection the successions (sequences) of lichogenetic states. 

2) Detection the pairs of non-competed species. 

3) Detection the species that have common positions. 

 

* 

 

If coenogenesis proceeds in direction from empty structure to the dense complete structure, then behind 

all the known facts proceeds the ontogeny (genesis of an individuals) to an opposite direction: from a 

concentrated (spore) condition in the direction of branching and thinning. The central states of ontogeny 

are origin, maturity, and cessation. 

 

The elements of coenogenetic simulation were empirical structures that follow the ecological laws. On 

the framework of ontogeny hypothesis we attempt to find among the formal structures such successions 

(sequences) that follow provisions of ontogeny [22]. 

 

We depart here from seven postulates: 

1. Moses’ postulate (I Mos. 3, 19): “You're from the earth, and under the earth must again depart”, 

2. Ludwig von Bertalanffy’s postulate (1934): The essence of living phenomenon expressed on the 

level of its organizing (pro: structure). 

3. Norbert Wiener’s I postulate (1948): The complexity of living system increases monotonically, 

reaching its peak in maturity, and it starts to fall apart. 

4. Norbert Wiener’s II postulate (1948): During the life processes occurs a monotonic decrease of 

entropy. 

5. Teilhard de Chardin’s I postulate (1955): The living matter is granular, between these exist 

phenomenal-energetic relationships that ensure the fundamental integrity, unity. 

6. Teilhard de Chardin’s postulate II (1955): In the stage arising (origin) of living phenomena exist 

the maximum concentration phenomenal-energetic relationships, they breaking means the 

cessation of existence. 

7. (Une postulate a la s’est la vie): The probability of achieve (obtaining) the maturity stage is 

always less than the probability of cessation. 

 

The Mose’s postulate confirms the fact of cessation of the arised as also the possibility of new arising of 

the ceased. Both Ludwig von Bertalanffy [2] and Teihard de Chardin’s I postulate confirm the structural 

nature of the living system. The second postulate of Teilhard de Chardin [20] can be interpreted as a 

correspondence between complete structure and origination's state, and correspondence between empty 

structure and cessation. First postulate of N. Wiener [46] defines the genesis of life as a sequence of 

monotonous changing of the living structure, and monitors its changing of complexity. His second 

postulate added a requirement of decreasing of entropy. 

 

 

These requirements are tempting to interpret on the basis of structural genesis G, where: 

A. The states of living systems (ontogeny) can be characterized by the structures and represented in 

the form of structural models. 

B. Elementary structural changes can be presented as the morphisms between structures. 

C. The living process can be presented as a monotonous sequence (succession) of structures.  

D. The state of origin (arising) can be presented as a complete structure. 

E. The state of maturity can be constitutes as a structure with the maximum complexity. 

F. The state of cessation can be presented as an empty structure. 

G. The structural parameters, such as complexity, entropy, probability and others, are measurable. 
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The requirements A to G are satisfied only in one monotonous sequence (succession) SFM in the lattice 

of G
|V|=6

 (in the right edge), this is: GS1→→→→GS2→→→→GS4→→→→GS8→→→→GS17→→→→GS33→→→→GS53→→→→GS76→→→→GS100→→→→ 

GS122→→→→GS138→→→→GS146→→→→GS151→→→→ GS154→→→→GS155→→→→GS156. The parameters of this structural sequence 

(succession) be changed in the given order. This is a fact what allows it call to the ontogeny hypothesis 

(simulation). 

Example 2.12. Diagrams of parameters of the monotonous sequence (succession) SFM: 

 

 
The horizontal axis characterizes the sequence by the number of connections (edges), but the vertical axis 

represents the normalized parameters (first diagram) or absolute values (second diagram). Some 

parameters: CMP – structural concentration or density of the state; PS – probability of the condition; CR 

– structural (Option I); CPX - Complexity (Option II); HE – entropy.  
 

In the system G, the majority of such structures, which do not belong to living being. In case of larger 

structures the number of conditions and possible sequences enlarges exponentially. The larger the 

number of elements in the structure, the more complicated is the system. So Bertalanffy, Wiener and 

Teilhard de Chardin speak about the structure, its changes and the relationships between elements in a 

very general manner, and do not specify their biological nature. Here is suitable to agree with the view-

point of Teilhard de Chardin, that the structural elements are phenomenal and the relationships 

energetic. So, we can say that the talk is about a living super-structure, which here is taken to interpret. 

It is possible that the structural changes take place by the help of some “external influences”.  

 

Consider first the states of origin and cessation. They are opposites (as spore (germ)) and a corpse), 

which on structural aspect are complements – the firs is strongly related and the other is empty. However, 

their structural elements remain the same, identical, indistinguishable and form an element position 

ΩΩΩΩVk=1. But, the recurrence of the same constitutes symmetry, where the structures of origin and cessation 

are bi-symmetrical. 
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The living process takes place by way gradual elimination the relationships between the elements. Up to 

ripeness condition take place the increasing of structural (internal) diversity or complexity CR. The 

elements have not “good” or “bad” positions, but they have different positions ΩΩΩΩVk, that we cannot 

qualitatively characterize. The number of positions k will increase to the ripeness state and then decrease. 

 

In arriving to ripeness state is the structural diversity in maximum that is the stage of prosperity and 

stability. It is expressed in the structure as a maximum number of the positions, each element has its own 

position. After this, the number of positions, that is, the structural complexity and diversity decrease. 

 

It can be noted that in the second half of the life process begin to go through the “opposites” or 

complements of the conditions of the first half. Of course, in opposite ordering. But the process of 

removal the relations between elements continue to cessation state, i. e. to empty structure. 

 

So as exist a relation between the origin and cessation, so is it also between cessation and origin (arising) 

of a new. Nature does not like empty spot, empty structure begins to re-filling (nothing laziness for astral 

body!). Begins the process of reincarnation, arise the relationships between the elements. This is a 

“complement” of ontogeny, an opposite direction, we call it onto regenesis, the nature of which remains 

hidden for us. But also the “onto-regenesis” can be disrupted before the arriving to a “new origin”. 

 

The presented speculative hypothesis is based only on the interpreting of outside properties, but the 

existence of structural changes in the process is not advisable to ignore. 

 

Maybe someone will ever can be capable the conditional structures of ontogeny better to associate with 

the life processes. 

 

Comparing the ideal ontogeny hypothesis and pragmatic coegenesis simulation can note the following: 

1) The postulate of L. von Bertalanffy [2] about the structural essence of living phenomenon is 

universal. 

2) The first postulate of Teihard de Chardin [20] about the “graining” (“granular”) of living matter 

and existence the structure-forming “phenomenal-energetic” relationships between elements is 

valid also in case of plant communities. The first obtains in coegonesis the meaning of species 

variety and second the meaning of competition. 

3) The second postulate of Teihard de Chardin [20] about origin of living as maximum 

concentration of “phenomenal-energetic” relationships be valid only in the level of individual 

organisms. In case of communities, the situation is reversed: in the formation stage the 

competition relationships are not yet exist (the structure is “sparse”). The “moderate large” 

concentration reached in stage of maturity (characterized as coenigenetic homeostasis), which is 

also the end stage. The maximum of competition’s concentration can not be stable. 

4) The first postulate of N. Wiener [46] about increasing the complexity up to maturity stage is 

valid also in case of communities. Decreasing of complexity can be happens only by some 

changes in the environment. 

5) N. Wiener’s postulate about decreasing in entropy can also apply for the communities.  
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Conclusion 
 
 

Here is demonstrated that the nature of the structure is revealed on the base of the relationships between 

the elements and their positions. It is presentable in the form of structural model. The structure semiotic 

approach to investigation of essence of the structure can be to someone like or not like, but its 

propositions about structure and its changing works truely. In principle is all this provable with existing 

mathematical means – when someone has an interest. Unfortunately, the interests are concentrated by so-

called trends. 

 

Is the structure a matter about oneself? Exists an agreement that the structure is an inseparable attribute 

of all the really existing objects. Structure exists there where the relations between element pairs are 

recognizable. The relations are simple presentable in case of chemical compounds, genetic formations 

and some networks. In case of ecological and social communities must be previously to agree on the 

aspect of decomposition the object to its elements and their connections (relations). If is accepted the 

existence of structure, then is desirable accept also their attributes. For example, accept the positions and 

the relationships between these. Presumably, that such attributes for chemists, ecologists and others are 

the unaccustomed matters, but it is the structural reality. 

 

“Nonessential” problems with the graphs are also other. For example, exist the problem of involution 

(multiplication) the adjacent matrices. On this base has been developed a spectral treatment of the 

graphs, spectral graph theory. Unfortunately, is not known what constitute the elements as binary signs, 

themselves, and to what degree must the matrices to raises. There is only alluded that these elements 

characterize the longest paths between the vertices. This is doubtful, since these also appear in the main 

diagonal, while the relationships between the vertices, occasionally turn out to be zero. Obviously, this 

nobody not interested. In present case the elements of certain degree adjacent matrices found the 

application for perfecting the binary signs for some symmetric graphs. In principle, the structure model 

can be based only on the elements of graduated adjacent matrices, if would known the meaning of those 

elements. In present case we cannot distinguish from each other even adjacent and non-adjacent pairs of 

elements. The binary signs are indispensable (required), the more that in case of strongly regular graphs, 

matrices exponentiation works only partially. 

 

Already in 1976 were drawn attentions to the too one-sided approach to the graphs that impede the 

development of graph theory [13]. 

 

Hope, that this paper gives a sufficient overview about the nature of the structure 
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