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Non-technical summary

Structural vector autoregressions are popular tools in modern empirical
macroeconomics, and they are widely used in monetary policy analysis and
other applications for examining dynamic interactions and the effects of vari-
ous shocks on real and nominal macroeconomic aggregates. A central issue of
this research is the identification of structural shocks, such as monetary pol-
icy, aggregate demand and aggregate supply shocks, for which the conventional
approach used in most of the empirical research in the area requires restric-
tions to be placed directly on the structural vector autoregression parameters.
However, recent literature has raised some criticism of the conventional ap-
proach, because even if the identifying assumptions that are imposed are based
on a widely accepted economic idea, there may still be a gap between the data
and the theoretical model, leading to a potentially biased inference of the dy-
namic reactions of the model variables, and confounding the development of
new theories. In this study we depart from the traditional approach to shock
identification and use the additional statistical information that is available in
many macroeconomic data series in the form of the time-varying volatility of
error terms to help in identifying structural parameters and the interpretation
of shocks. We model the volatility states of the errors with a hidden Markov
process, referring to the new framework as the Markov switching structural
vector autoregression. We show how existing mathematical results allow a sta-
tistical identification of the structural parameters for at least two volatility
regimes, without the need to impose any a priori identifying assumptions. We
apply Bayesian statistical inference for parameter estimation and shock iden-
tification in the new framework. The new methodology is validated using the
medium-scale monetary policy systems for the US and the euro area, and a
small-scale model with an interest rate premium for the Estonian economy.
Previous empirical research has shown that the US macroeconomic data since
mid-1960s are notable for the time-varying volatility of macroeconomic shocks,
while the remaining model parameters can be considered stable. A similar
set of results applies for the euro area macroeconomic data starting from the
early 1970s. We find sufficient volatility information in our data samples to be
able to identify and disentangle a full set of shocks for every estimated model
in our empirical applications. Furthermore, we undertake a careful economic
interpretation of the shocks that are identified, by looking at their short-run im-
pacts and impulse responses, comparing them with the existing literature, and
finding consistent economic narratives for every shock in our empirical models.
The shock identification in our models is achieved without the a priori identi-
fying restrictions that are common in other empirical studies. Although we are
mostly interested in monetary policy and risk premium shocks, our statistical
identification methodology enables us simultaneously to disentangle and attach
economic interpretations to other structural macroeconomic innovations, such
as aggregate demand, aggregate supply, and money demand shocks. We also
point out that the results of our statistical shock identification procedure are
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not always compatible with the traditional short-run and sign identification
schemes used in much of the recent empirical literature, which warrants further
careful validation and checking of the existing results using the new identifica-
tion methodology in this paper together with other alternative approaches.
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1 Introduction

Structural vector autoregressions (SVARs) firmly belong in the toolbox of
modern empirical macroeconomists and are widely applied in monetary pol-
icy research and related analyses to study interactions between the real-world
data and the set of hypothetical structural shocks that govern the observed
macroeconomic cycles. At the core of this vast econometric literature are the
mathematical and statistical properties of different identification schemes for
inferring the effect of structural shocks on the endogenous variables from the
set of estimated reduced-form parameters. The conventional identification ap-
proaches widely used in the empirical macroeconomic research typically require
some restrictions to be imposed directly on the SVAR system matrices; see Sims
(1980), Bernanke (1986), Blanchard and Watson (1986), Blanchard and Quah
(1989), Canova and De Nicoló (2002), Uhlig (2005), among many others. How-
ever, although the conventional identification assumptions are often based on
well-understood ideas from macroeconomics, a gap may still exist between the
real-world data and the theoretical models, leading to possible biases in the
estimated dynamic responses of endogenous system variables and potentially
confounding the development of new theories. This type of criticism of the
conventional just-identifying and sign restrictions is now new and was recently
re-asserted in contributions by Lütkepohl (2012) and Lütkepohl and Netšunajev
(2014).

In this study we eschew the conventional identification assumptions in favour
of additional statistical information, typically found in long stretches of macroe-
conomic data in the form of the time-varying volatility of reduced-form errors,
to identify structural shocks in a modified SVAR framework along the lines of
Rigobon (2003) and Lanne and Lütkepohl (2008). Specifically, we postulate a
number of discrete volatility states for the reduced-form residuals driven by a
hidden Markov process, akin to Lanne, Lütkepohl and Maciejowska (2010), and
refer to the overall framework as a “Markov-switching structural vector autore-
gression” (MS-SVAR). Our structural form identification approach proceeds
from the reduced-form parameters of a Bayesian VAR model with a Markov
switching volatility structure that satisfies a minimal set of a priori restrictions
to the full set of structural SVAR matrices that characterise the nature and
effects of the hypothetical structural shocks supported by the available sample
of real-world macroeconomic data. Building on the existing results in Lanne
et al. (2010), the first half of this paper contains two new propositions on the
structural-form identification in the class of MS-SVAR models with an arbitrary
number of volatility states. In particular, we derive sufficient conditions on the
reduced-form variance-covariance matrices that guarantee model identification
up to an arbitrary permutation order of the structural shocks. We then pro-
pose a new method of pinning down the specific order of the structural shocks
from the posterior simulations of the reduced-form parameters by employing
a computationally-intensive Bayesian clustering algorithm from the statistical
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literature; see Xu and Wunsch (2005).

Recently, a handful of empirical studies dealing with identification of struc-
tural shocks in SVAR models using the time-varying volatility of the residuals
have appeared in the literature, all of them applying the conventional maxi-
mum likelihood estimator to this particular setting; see Bacchiocchi and Fanelli
(2012), Netšunajev (2013) and Lütkepohl and Netšunajev (2014), among many
others. In the present study we depart from the conventional maximum likeli-
hood estimator in favour of the Bayesian statistical approach for the parameter
inference and shock identification in the MS-SVAR framework. In our view, the
latter offers a number of advantages over the conventional frequentist methods.
Firstly, going Bayesian yields a fuller picture of the posterior effects of differ-
ent shocks, even before their economic interpretations are ascertained, proving
invaluable in the empirical validation of the proposed MS-SVAR identification
methodology and in searching for suitable economic narratives for the observed
structural innovations. Secondly, the modelling philosophy pursued in this pa-
per, proceeding from the given macroeconomic data sample to the fully-fledged
statistical model with only a minimal set of required a priori assumptions for
attaining the structural shock identification, is quintessentially Bayesian. And
lastly, from the practical perspective, Bayesian methods are often less sensi-
tive to the likelihood irregularities and numerical maximization difficulties that
can be particularly daunting for the hidden Markov models; see Herwartz and
Lütkepohl (2014). On the downside, the full-fledged Bayesian inference requires
a choice of suitable priors, makes use of non-standard numerical algorithms and
tends to be computationally demanding.

The second half of this paper presents an empirical application of the new
methodology to the quarterly data series of the US output, inflation, real money
and monetary policy rates over the last 45 years. As pointed out by Primiceri
(2005) and Sims and Zha (2006), the US macroeconomic cycle since the mid-
1960s has been characterized by the time-varying volatility of macroeconomic
shocks, while the remaining reduced-form VAR parameters appear to be sta-
ble over the sample period. We find sufficient volatility information in these
data to disentangle four fundamental shocks, two of which additionally require
the application of the proposed statistical clustering technique to achieve full
identification. A successful economic interpretation of these shocks rests on
a careful analysis of their posterior short-run impacts and impulse response
functions, which are detailed in the empirical section of the paper, allowing us
to label two real (supply and demand) and two nominal (monetary policy and
money multiplier) structural shocks that govern the US macroeconomic dynam-
ics over the past 45 years. To reiterate, the statistical identification of the four
structural shocks in our empirical MS-SVAR example is achieved without any
conventional a priori restrictions on the SVAR system matrices, though these
are common in the recent applied macroeconomic literature.

The rest of the paper is organized as follows. Section 2 describes the MS-
SVAR model and discusses shock identification issues using the auxiliary statis-
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tical information contained in the time-varying volatility of the reduced-form
residuals. Section 3 provides a detailed overview of the Gibbs sampler and
Bayesian clustering algorithms required for the full statistical inference on the
effects of hypothetical structural shocks in a given data sample. Section 4
presents an empirical application of the MS-SVAR model to the US data sample
and illustrates the practical identification steps for structural shocks. Finally,
we conclude and provide some possible future directions for the theoretical and
applied research in this area.

2 Structural VAR identification via discrete volatility
states

Let the dynamics of an n× 1 vector yt of endogenous variables be given by
the following vector autoregressive model:

A0yt = k0 + k1t+ A1yt−1 + . . .+ Apyt−p + εt(st) , (1)

where k0 and k1 are (optional) deterministic intercept and linear trend pa-
rameters respectively, A0 is an unrestricted n× n contemporaneous parameter
matrix, A1, . . . ,Ap are autoregressive matrices, and εt(s) is a vector of serially
uncorrelated structural innovations that depends on the hidden discrete state
parameter s ∈ {1, . . . ,m}. We assume the following conditional distribution of
the structural innovations:

εt(s) | s ∼ Normal( 0,D(s) ) ,

where {D(s) : 1 ≤ s ≤ m} is a family of suitably distinct n × n diagonal ma-
trices, and where D(1) ≡ I is assumed for the identification purposes. When
m = 1, this model reduces to the conventional textbook SVAR case; see Hamil-
ton (1994), Amisano and Giannini (1997) and Lütkepohl (2005). When the
hidden discrete state process st is Markov and the number of states is greater
than one, we refer to model (1) as the “Markov-switching structural vector
autoregression”.

Assuming the non-singularity of the contemporaneous parameter matrix A0,
the model can be written in the familiar reduced-form VAR representation with
time-varying volatility of errors:

yt = c0 + c1t+ Φ1yt−1 + . . .+ Φpyt−p + ut(st) , (2)

where ci = A−10 ki for each 0 ≤ i ≤ 1, Φj = A−10 Aj for each 1 ≤ j ≤ p, and:

ut(s) | s ∼ Normal( 0,Σ(s) ) ,

where Σ(s) = A−10 D(s)A′−10 for each volatility state s ∈ {1, . . . ,m}, giving rise
to the family of reduced-form variance-covariance matrices {Σ(s) : 1 ≤ s ≤ m}.
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Model (2) provides the basis for writing down the likelihood function of the
sample data and obtaining statistical inference on the parameters; see Section 3
and the discussion therein.

The well-known SVAR identification issue in this framework arises due to the
essential non-uniqueness of the structural form (1) from the perspective of the
likelihood function and the associated reduced-form model (2). To make this
point precise, consider the structural model (1) premultiplied by an arbitrary
conformable unitary matrix U:1

UA0yt = Uk0 + Uk1t+ UA1yt−1 + . . .+ UApyt−p + Uεt(st) . (3)

The structural form identification problem in the case of m = 1 manifests itself
in the observational equivalence of the continuum of SVAR models in (3) from
the likelihood function standpoint, since all of them give rise to exactly the
same reduced-form VAR representation (2). Essentially, the matrix U in (3)
acts as an additional free model parameter, which needs to be pinned down to
achieve a unique SVAR identification from the reduced-form coefficients. The
conventional identification assumptions in the SVAR literature make use of
certain a priori restrictions on the system matrices A0, . . . ,Ap, broadly falling
into one of the following three categories:

• The orthogonalisation of reduced-form errors in Sims (1980) and the
recursive identification schemes of Christiano, Eichenbaum and Evans
(1999), and general non-recursive approach of Sims (1986), Bernanke
(1986) and Blanchard and Watson (1986) impose a priori exclusion (zero)
restrictions on the elements of A0 or A−10 , which are usually motivated
by the macroeconomic theory without prior testing of their statistical
validity;

• The long–run identification schemes of Blanchard and Quah (1989) re-
strict certain functions of A0 and the autoregressive matrices A1, . . . ,Ap

based on ex ante theoretical considerations, but this approach alone does
not suffice for the complete structural form identification and is difficult
to test for in the data;

• The sign restrictions of Canova and De Nicoló (2002) and Uhlig (2005)
use theory-based prescriptions about the likely directions of short-run
responses to certain shocks, leaving the underlying structural model es-
sentially unidentified; see Rubio-Ramírez, Waggoner and Zha (2005) and
Fry and Pagan (2011).

In contrast to these conventional approaches, the burden of structural form
identification in the class of MS-SVAR models is shifted from a priori restric-
tions on the system matrices A0, . . . ,Ap to certain conditions on the volatility

1A square matrix U is said to be unitary, if U∗U = I, where an asterisk denotes a
Hermitian adjoint. If U consists of real elements, it is called real orthogonal; see Horn and
Johnson (2013).
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structure of structural innovations in (1), which are made precise below. Con-
sider again the model (3) with m > 1; for each s ∈ {1, . . . ,m} the variance-
covariance matrix of the reduced-form errors Σ(s) is given by:

EA−10 U′Uεt(s)εt(s)
′U′UA′

−1
0 = [A−10 U′]·[UD(s)U′]·[UA′−10 ] =: Ã−10 ·D̃(s)·Ã′−10

(4)
In order words, instead of directly observing the structural matrices A−10 and
D(s) for s > 1 as they appear in (1), the statistical information contained in
the reduced-form errors will only provide evidence about matrices Ã−10 and
D̃(s) defined in the expression above. For an arbitrary unitary U and given
s > 1, the matrix D̃(s) in (4) is generally not diagonal and different from
the structural D(s) matrix; the same applies to Ã−10 in this expression and
its structural counterpart A−10 in (1). By imposing mild a priori assumptions
on the family of diagonal matrices {D(s) : 1 ≤ s ≤ m} in (1), we seek to
pin down the matrices Ã−10 and D̃(s), such that all essential dynamic features
and the economic interpretation of the original structural innovations in (1)
are preserved intact.2 In other words, the statistical identification in the class
of MS-SVAR models proposed in this paper proceeds by recovering the family
{D̃(s) : 1 ≤ s ≤ m} and the matrix Ã−10 from the reduced–form variance–
covariance matrices {Σ(s) : 1 ≤ s ≤ m} according to (4) and checking if
necessary model identification conditions are satisfied. The final recovery of
the structural matrix A0 then proceeds by addressing some possibly remain-
ing indeterminacies as appropriate, which guarantees the full resolution of the
dynamic effects of all the structural shocks in the model. The remaining part
of this section deals with the necessary identification conditions and remaining
indeterminacy cases in the class of MS-SVAR models.

At the very minimum, we will require the family {D̃(s) : 1 ≤ s ≤ m}
in (4) to be diagonal and D̃(1) = I, by analogy to the original assumptions
in the structural MS-SVAR model in (1). To attain this, we build on the
previous findings of Lanne et al. (2010), who provide a set of mild conditions
on {D(s) : 1 ≤ s ≤ m} for the mapping {Σ(1), . . . ,Σ(m)} 7→ A−10 to be
unique up to the column signs of A−10 in the case m > 1 in their Proposition 1
on page 130.3 In particular, they require each pair of structural innovations
in (1) to have distinct variances in at least one of the m volatility states of

2We seek to avoid imposing substantial restrictions on the family {D(s) : 1 ≤ s ≤ m}
in the class of MS-SVAR models because a priori we do not have enough information to
substantiate too many claims on the volatility structure of the innovations in (1). Most of
the applied work is driven by the data, and it is difficult to assert claims like “the volatility of a
technology shock is larger than the volatility of a preference shock” prior to estimating model
parameters and examining impulse responses and variance decompositions for a particular
sample.

3Similarly to the case of Lanne et al. (2010), a unitary matrix U in expression (4) consisting
of ±1 on the main diagonal preserves the variance-covariance structure of the fundamental
shocks in (3). But this corresponds to the case of flipping the shock signs and presents just
a trivial normalisation issue, since the dynamic impact of structural innovations and their
economic interpretation remains unchanged.
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the model. For example, it rules out a configuration where for each s > 1
the diagonal matrix D(s) is an arbitrary scalar multiple of the identity matrix
D(1) ≡ I. In the former case, the unitary matrix U in expression (4) remains
unrestricted, leaving the structural form of the MS-SVAR model essentially
unidentified.

Below, we extend the previous result of Lanne et al. (2010) and explicitly
ascertain one of the central indeterminacy cases for the structural form identi-
fication in the class of MS-SVAR models:
PROPOSITION 1. Let the family of diagonal variance-covariance matrices
{D(s) : 1 ≤ s ≤ m} of structural innovations in the MS-SVAR model (1) satisfy
the Lanne et al. (2010) condition: ∀ 1 ≤ k, l ≤ n, k 6= l, ∃ s ∈ {1, . . . ,m} s.t.
dk(s) 6= dl(s), where dk(s) denotes the k-th diagonal element of D(s) for each
s ∈ {1, . . . ,m}. Then the family {D̃(s) : 1 ≤ s ≤ m} defined in (4) retains its
diagonal structure with the elements d̃k(s) = dσ(k)(s) for each s ∈ {1, . . . ,m},
1 ≤ k ≤ n and a permutation mapping σ : {1, . . . , n} 7→ {1, . . . , n} independent
of s. The matrix Ã−10 defined in (4) is a column and sign permuted version
of A−10 , where the order of column permutation is determined by σ and each
column can be arbitrary multiplied by ±1.

Proposition 1 makes explicit the sense in which the structural parameters
of the MS-SVAR model can be recovered from the reduced form VAR coef-
ficients: without any additional a priori information about the innovations
volatility in (1) or some prior sorting requirements on the diagonal elements of
{D(s) : 1 ≤ s ≤ m}, the order of equations and the structural shocks in (1)
is indeterminate from the perspective of the reduced-form VAR representation
in (2). In the classical inference case, where the point estimates of the pa-
rameters are sought, the solution to this issue would be to impose a certain
predetermined order of the diagonal elements of D̃(s) for a suitable subset of
s ∈ {1, . . . ,m} during the estimation. However, in the case of Bayesian in-
ference, which we use in this paper, this approach is not suitable, since the
diagonal elements of {D(s) : 1 ≤ s ≤ m} are diffuse and given by probability
densities. In order words, if a predetermined order is imposed on D̃(s) dur-
ing the posterior inference, it is likely to result in an arbitrarily intermixed
order of the structural equations and shocks across different posterior draws of
Ã−10 , D̃(2), . . . , D̃(m).

In order to overcome this difficulty and fully disentangle the order of struc-
tural equations and shocks in (1) from the posterior draws of the reduced-
form parameters, we propose the use of computationally-intensive clustering
methods applied to the posterior impulse response functions obtained from the
draws with mixed structural shocks order. This idea relies on the fact that, al-
though the column order of Ã−10 across different posterior draws is different, all
structural shocks retain their unique economic interpretation reflected in their
specific dynamic impact on the endogenous system variables. By clustering
together the posterior impulse response functions, we should finally be able to
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group the shocks and equations in (1) in a correct and coherent way.4 Specific
details of the statistical clustering technique that we propose to use as the final
identification step for the MS-SVAR model are provided in Subsection 3.2.

From the perspective of statistical inference, the main challenge is to re-
cover the matrices Ã−10 , D̃(2), . . . , D̃(m) from the reduced-form VAR model (2),
specifically from the family of variance-covariance matrices {Σ(s) : 1 ≤ s ≤ m}.
For the case of two volatility states, a known result in the matrix analysis states
that for any pair of Hermitian matrices Σ1 and Σ2, where at least one is posi-
tive definite,5 there exists a non-singular matrix A such that both A′Σ1A and
A′Σ2A are diagonal; see Theorem 7.6.4 in Horn and Johnson (2013). To the
best of our knowledge, no mathematical results of a similar generality exist for
the case of more than two matrices; in other words, without further assump-
tions, no diagonalizaton of a family of (positive definite) Hermitian matrices
Σ1, . . . ,Σm by joint ∗congruence can be achieved when m > 2.6 Moreover, the
order condition of Rothenberg (1971) suggests that without further restrictions
on {Σ(s) : 1 ≤ s ≤ m}, the structural matrices Ã−10 , D̃(2), . . . , D̃(m) in the
case m > 2 are likely to be over-identified.7

However, for the purpose of inferring the structural parameters directly from
the reduced-form family of {Σ(s) : 1 ≤ s ≤ m} in the general case m ≥ 1, it is
useful to characterise the Hermitian subspace from which the posterior draws
of Ã−10 , D̃(2), . . . , D̃(m) can be obtained. This results is given by the following
proposition:
PROPOSITION 2. The mapping between the set of reduced-form variance-
covariance matrices {Σ(s) : 1 ≤ s ≤ m} defined in (2) and the matrices Ã−10

and {D̃(s) : 1 ≤ s ≤ m} defined in (4) is one-to-one if and only if the family
{Σ(k) Σ(s)−1 : 1 ≤ s ≤ m} for a given 1 ≤ k ≤ m is commuting.

It follows from Proposition 2 that the cases m = 1 and m = 2 require no re-
strictions on the subspace of Hermitian matrices from which the reduced-form
variance-covariance matrices are simulated in the Bayesian context. However,
the general case m > 2 requires the family of {Σ(s) : 1 ≤ s ≤ m} to satisfy
the commutativity property stated in Proposition 2. A suitable computer al-

4Although the parameters are statistically identified, the resulting shocks lack economic
interpretations, since we do not impose any a priori meanings on the structural equations
in (1). A suitable narrative for the identified shocks ought to be found by a careful analysis
of the estimated short-run impacts and impulse responses, consulting the relevant theoretical
and empirical literature as necessary. This procedure is similar to the one used by Lütke-
pohl and Netšunajev (2014) for checking sign restrictions, and is illustrated in our empirical
application in Section 4.

5In full generality, it is sufficient that a real linear combination of Σ1 and Σ2 is positive
definite.

6Two square matrices B and C are said to be ∗congruent, if there exists a non-singular
matrix A such that A∗BA = C; see Horn and Johnson (2013).

7Lanne et al. (2010) exploit this observation and propose a test for over-identification in
A0 by imposing the necessary restrictions on the reduced-form variance-covariance matrices
directly during the estimation.
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gorithm to implement a random simulation of {Σ(s) : 1 ≤ s ≤ m} from this
restricted subspace, however, remains a practical challenge. Therefore, we limit
our empirical application in Section 4 to the case of two volatility states, where
the recovery of the contemporaneous parameter matrix A0 is guaranteed by
the existing mathematical results without any additional implementation diffi-
culties.

To recap, the MS-SVAR model (1) can be identified by imposing certain a
priori requirements on the number of volatility states, m, and the variance-
covariance matrices of the structural innovations {D(s) : 1 ≤ s ≤ m}, but
otherwise without any additional conventional prior restrictions on the system
matrices A0, . . . ,Ap. This offers a crucial advantage over the conventional iden-
tification schemes widely used in the applied macroeconomic research, where
the shape and nature of the orthogonalized impulse response functions may
be altered in the identification process. The time-varying volatility regimes of
the structural innovations, on the other hand, enable us to obtain a full and
unrestricted inference on the contemporaneous parameter matrix A0 together
with its sibling, the short-run impact matrix A−10 , and to disentangle different
shocks by looking at the estimated responses of system variables, in concert
with suitable economic narratives, without imposing a priori assumptions on
how they ought to affect the system dynamics.

3 Bayesian statistical inference for the MS-SVARmodel

We use the Bayesian approach for obtaining posterior statistical inference on
the structural parameters in the MS-SVAR model (1). The proposed statistical
inference procedure in this paper is divided into two phases. Firstly, we obtain
the desired number of posterior parameter simulations from the reduced-form
VAR model (2) using the Gibbs sampler approach of Chib (1996). Secondly, as
outlined in Section 2, the full structural form identification in the MS-SVAR
model will often require an additional Bayesian inference step to pin down
the order of structural equations and shocks from the initial simulations of
the reduced-form parameters. In this section we describe both phases of the
Bayesian inference procedure for the MS-SVAR models.

3.1 Gibbs sampler algorithm for the reduced-form model

In this subsection we consider the reduced-form Bayesian VAR model with
Markov switching volatility regimes for the error terms. It is well known that
the posterior inference based on the full likelihood function in hidden Markov
models is complex and computationally expensive; see Marin, Mengersen and
Robert (2005). Among several proposed solutions to this issue, the Gibbs
sampler combined with data augmentation is the most popular in the applied
literature. In this paper we use the Gibbs sampler in the context of a hidden
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Markov model for the volatility of innovations; see Carter and Kohn (1994),
Chib (1996), Krolzig (1997) and Sims, Waggoner and Zha (2008).

Assume, in the context of the reduced form VAR model (2), that the hidden
volatility state evolution over time is governed by:

st | st−1 ∼ Markov( P,η0 ) ,

where the m ×m matrix P governs the conditional distribution of state tran-
sitions, and s0 is distributed according to the m-dimensional vector η0. The
trajectory of the hidden states ST := {s1, . . . , sT } is obtained by simulation,
where T denotes the sample size and, conditional on a given trajectory, the
reduced-form variance-covariance matrices {Σ(s) : 1 ≤ s ≤ m} can be esti-
mated using the VAR model residuals split across different volatility states.
Bayesian inference on the remaining parameters β := vec(c0, c1,Φ1, . . . ,Φp)
is similar to the usual GLS estimator of the linear regression model with het-
eroscedastic innovations; see Geweke (1993) and Krolzig (1997).

More specifically, our Gibbs sampler for the Markov swathing Bayesian VAR
model includes the following four steps, repeated over a desired number of
iterations:8

1. ST is generated by drawing in reverse time order from the posterior dis-
tribution:

p(st |YT , st+1) ∝ p(st |Yt) · p(st+1 | st) , (5)

where the first term in the expression is generated recursively using the
Chib (1996) Bayesian simulation algorithm for hidden Markov models. It
involves the prediction:

p(st |Yt−1) =
m∑
s=1

p(st | st−1 = s) · p(st−1 = s |Yt−1) ,

and update steps:

p(st |Yt) ∝ p(st |Yt−1) · `(yt |Yt−1; β,Σ(st)) ,

where Yt denotes sample data up to 1 ≤ t ≤ T , and `(yt |Yt−1;β,Σ(st))
is the Gaussian likelihood function of yt for a given volatility state st ∈
{1, . . . ,m};

2. Given a simulated trajectory ST from the previous step, the Markov
transition kernel P is updated element-by-element, where for each s ∈

8As usual in the recursive Bayesian simulation algorithms, each step of the Gibbs sampler
partially depends on the previous iterative draw; see Robert and Casella (2004). We econo-
mize on the notation by only showing dependence on Gibbs draws within the same sampler
iteration. In addition, all Gibbs sampler expressions in this section are conditioned on the
“pre-sample” observations y0, . . . ,y1−p.
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{1, . . . ,m} the posterior probability of leaving the volatility state s is
given by the following discrete distribution:9

ps |YT , ST ∼ Dirichlet(αs1 + ns1(ST ), . . . , αsm + nsm(ST ) ) , (6)

where {αsk : 1 ≤ s, k ≤ m} are hyper-parameters of the Dirichlet prior
for P, and nsk(ST ) is the number of transitions from state s to state k in
the given trajectory ST ;

3. The posterior distributions of the reduced-form variance-covariance ma-
trices for each state s ∈ {1, . . . ,m} are given by:

Σ−1(s) |YT , ST ∼Wishart( [C(s) + C̄(s)]−1, τ(s) + T (s) ) , (7)

where the family of n× n non-singular matrices {C(s) : 1 ≤ s ≤ m} and
scalars {τ(s) : 1 ≤ s ≤ m} are hyper-parameters of the Wishart priors
for {Σ(s) : 1 ≤ s ≤ m}, and C̄(s) are estimated variance-covariance
matrices of model residuals belonging to a particular volatility state s,
and 0 ≤ T (s) ≤ T is the number of occurrences of s in ST :

C̄(s) :=
T∑
t=1

ūt(β) ū′t(β) · 1{st = s} , T (s) :=
T∑
t=1

1{st = s} ,

ūt(β) := yt − c0 − c1t−Φ1yt−1 − . . .−Φpyt−p ;

4. The posterior distribution of the reduced–form VAR coefficients is Gaus-
sian:

β |YT , ST , {Σ(s) : 1 ≤ s ≤ m} ∼ Normal( b̄, B̄ ) , (8)

where the parameters of this distribution are given by the expressions:

b̄ = B̄ (X′ ⊗ In) Ω(ST )y , B̄ =
[
(X′ ⊗ In) Ω(ST ) (X⊗ In)

]−1 ,
where the nT × nT block–diagonal matrix Ω(ST ) is defined as follows:

Ω(ST ) :=

 Σ−1(s1) . . . 0
...

. . .
...

0 . . . Σ−1(sT )

 ,

where y := (y′1, . . . ,y
′
T )′ is a nT × 1 data vector, and each row of a

T × (2 + np) data matrix X contains the following elements:

(1, t,y′t−1, . . . ,y
′
t−p) .

The most direct and computationally economical way of incorporating
normal informative priors about β into (8) is to use the dummy variable
approach of Theil and Goldberger (1961). We use this method of incor-
porating prior information into the model in our empirical application in
Section 4.

9For the mathematical details on Dirichlet and Wishart distributions see Poirier (1995).
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A recursive iteration of the Gibbs sampler algorithm described by equa-
tions (5) to (8) produces, after a pre-specified number of burn-in steps, a
sequence of posterior draws of ST , β, and the variance-covariance matrices
{Σ(s) : 1 ≤ s ≤ m}. This concludes the description of the Bayesian statistical
inference for the reduced-form VAR model with Markov switching volatility of
the error terms given in (2). The remaining part of this section is devoted to
the Bayesian statistical inference on the structural parameters of the MS-SVAR
model.

3.2 Structural form identification using Bayesian clustering al-
gorithm

This subsection deals with the Bayesian statistical inference on the structural
parameters of the MS-SVAR model (1). The posterior sampling of Ã0 defined
in (4) relies on the matrix decomposition result in Horn and Johnson (2013)
for the case of two volatility states:10

Σ−1(1) = Ã′0Ã0 , Σ−1(2) = Ã′0 D̃(2)−1Ã0 , (9)

which is guaranteed to exist for any two positive definite Hermitian matrices
Σ−1(1) and Σ−1(2) produced by the Gibbs sampler, and is unique up to the
column order and signs of A0 as detailed in Section 2. Given the posterior
simulations of Ã0 and the reduced-form parameters Φ1, . . . ,Φp, the impulse
responses can be computed in the usual manner; see Hamilton (1994) and
Lütkepohl (2005).11

As was previously emphasised in Section 2, the posterior simulations of
Ã0,Φ1, . . . ,Φp from the Gibbs sampler do not generally lead to the complete
structural form identification in the Bayesian context. In particular, the unique
structural A0 matrix remains in most cases unidentified, since the posterior
draws of Ã0 from the Gibbs sampler can have arbitrary permuted column
orders and signs relative to A0. However, the underlying structural shocks and
their dynamic impacts on the endogenous model variables in the MS-SVAR
framework remain intact regardless of the permutations of A0 in the simulated
Ã0 matrices. In this section we show how a Bayesian clustering algorithm
applied to the set of impulse response functions computed from Ã0 pins down
the unique order of the structural equations and shocks in the estimated MS-
SVAR model.

Specifically, we propose to use Bayesian learning algorithms to group the
10The proof of Theorem 7.6.4 (a) on page 487 of Horn and Johnson (2013) can serve as a

template for the computer implementation of this matrix decomposition result.
11Since our model generally contains multiple volatility regimes, we calculate the impulse

response functions with respect to a standardised unitary stimulus. These impulse responses
are then used as an input to the Bayesian clustering algorithm. After the final identification
of A0, the estimated posterior impulse responses can be re-adjusted to any desired initial
stimulus.
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structural shocks automatically by exploiting the initial posterior draws of im-
pulse response functions from the Gibbs sampler. The problem of detecting
similarities in the data is not new and has been of interest in a variety of fields
such as biology or informatics and is referred to as cluster analysis. Therefore
we rely on the existing clustering tools and proceed to learn similar shocks from
the data in two steps. First, we group (cluster) the pairs of impulse responses
that are most similar in terms of their shape. At this step clustering is meant
to separate pairs of shocks with different labels into the most suitable clusters.
In this way, pairs of “supply-demand” ordered shocks are separated from the
“demand-supply” ordered pairs. Second, clustered pairs of impulse responses
should be merged on the basis of the similarity of shocks. In other words, re-
gardless of the ordering of shocks in a cluster, we have to find all the demand
shocks and all the supply shocks and merge them.

Proceeding to step one, we separate the impulse responses of the two central
shocks into four (k = 4) clusters by the means of k-medoids algorithm proposed
by Kaufman and Rousseeuw (1987). We use four clusters as potentially there
are positive/negative supply and demand shocks to be detected. A medoid
here is a pair of impulse responses from Gibbs sampler draws whose average
dissimilarity to all other pairs of impulse responses is minimal. Clustering is
performed on the output of the Gibbs sampler without normalizing the signs of
impact effect of shocks. The divisive algorithm proceeds in the following steps:

1. Randomly select k pairs of impulse responses as the initial medoids.

2. Associate each pair of impulse responses with the closest medoid.

3. For each medoid m and each pair of impulse responses p associated with
m, swap m and p and compute the dissimilarity of p to all the data points
associated with m. Select the medoid p with the lowest dissimilarity. We
use Euclidean distance as a measure of dissimilarity.

4. Repeat steps 2 and 3 until there is no change in the assignment of the
medoids.

After obtaining four cluster of impulse responses we further have to agglom-
erate the impulse responses associated with each shock. Put differently, in this
step we merge the shocks that have most similar effects on the variables. Prior
to agglomeration we standardize the signs of the impact effects of each shock
such that (i) the impact effect on the first two variables with the minimal stan-
dard error is positive; the other shock is standardized to have a positive impact
on the remaining variable automatically; (ii) the mean reaction of output to
both shocks is positive. This facilitates agglomeration as the shocks are set to
have a similar effect on output among the four clusters. Note that the ordering
of shocks is still unknown. To learn it we agglomerate the impulse responses
of the shocks using hierarchical clustering known as the unweighted pair-group
method using the centroid approach (UPGMC). This method uses the data
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from the four clusters and involves merging the shocks from the four clusters
with the most similar median vectors (see Everitt, Landau, Leese and Stahl
(2011)). The agglomerative algorithm includes the following steps:

1. Select the cluster with the lowest standard deviations of the impulse re-
sponses as the initial (merged) cluster;

2. Calculate the distance between the median of the impulse responses of
the merged cluster and the means of all the other clusters for each shock
separately;

3. Merge the shocks mostly similar to that in the merged cluster. The second
shock is merged automatically with the remaining shock in the merged
cluster;

4. Repeat steps 2 and 3 until all clusters are merged.

The two-step procedure is iterated until changes in the resulting mean matrix
of impact effects are negligible.

4 Empirical application to the US macroeconomic
dynamics

In this section we provide an empirical illustration of the new approach for
identifying structural shocks in the context of a medium-scale Bayesian MS-
SVAR model applied to the US macroeconomic data over the last 45 years. In
particular, we demonstrate the effectiveness of the Bayesian clustering method
for pinning down the order of structural equations from the initial posterior sim-
ulations of the reduced-form parameters. Since the new identification approach
does not provide any a priori labelling of the observed shocks, this section also
strives to illuminate the steps needed to find persuasive economic narratives for
the dynamic interactions that are revealed between the shocks and the data.

Stock and Watson (2002), Primiceri (2005), Sims and Zha (2006), Justini-
ano and Primiceri (2008) and some other researchers hold the view that the
US macroeconomic dynamics since the mid-1960s have been characterized by
a time-varying volatility of shocks, while the remaining reduced-form VAR pa-
rameters can be considered essentially constant.12 This view is consistent with
what is known as the “good luck” explanation of the Great Moderation since
the mid-1980s.13 In this paper we make use of this particular view of the US
macroeconomic history for exploring the structural dynamics of the data and

12A similar claim is made in Rubio-Ramírez et al. (2005) for the euro area macroeconomic
data starting from the early 1970s.

13A comprehensive account of the Great Moderation and an up-to-date literature survey
on the topic can be found in Davis and Kahn (2008).
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Figure 1: The US macroeconomic data series from 1964Q2 to 2009Q4

statistically identified shocks via the prism of the MS-SVAR model presented
in Section 2.

The US macroeconomic data are quarterly and seasonally adjusted, cover-
ing the time period from 1964Q2 to 2009Q4. The data are supplied by the
Federal Reserve Bank of St. Louis FRED database.14 Per capita aggregates
are computed using the US civilian non-institutional population aged from 16
years up. Figure 1 displays the sample data:15

• Output growth rate (∆yt) is defined as scaled quarter-on-quarter log real
GDP per capita changes;

• Inflation rate (πt) is defined as scaled quarter-on-quarter log changes of
the personal consumption expenditures core price index;

• Real money balances (Mt) is defined as the sum of de-trended log inverse
money velocity16 and log real output per capita;

• Monetary policy interest rate (rt) is defined as the average quarterly fed-
eral funds rate.

We now proceed to a detailed presentation of the new approach for iden-
tifying structural shocks within the context of a Bayesian MS-SVAR model
estimated using the US macroeconomic data in Figure 1. The first phase of our
empirical application consists of the initial data exploration and reduced-form
model selection and estimation in full isolation from any structural interpre-
tations ascribed to the data by the MS-SVAR model. The most important

14All data series are downloaded from research.stlouisfed.org/fred2
15As a robustness check, in all our applications in this section we have used de-trended

output in place of the output growth rates as an alternative business cycle measure, and a
GDP deflator-derived inflation measure as a substitute for headline consumer inflation. Our
main empirical results and conclusions remain unchanged.

16Inverse money velocity is calculated as a ratio of the quarterly sweep-adjusted M2 money
stock and quarterly nominal GDP; see Cynamon, Dutkowsky and Jones (2006).
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goal of the first phase is to ensure that the data contain sufficient statistical
information in the form of time-varying volatility of the reduced–form errors.
The second phase of our empirical application will then make use of this addi-
tional information for the statistical identification of structural shocks as viewed
through lens of the MS-SVAR model and supported by the data.

Using the previously described data, we start by estimating a reduced-form
VAR using the Gibbs sampler detailed in Subsection 3.1. The following reduced-
form model priors are used for the US macroeconomic data sample: the hyper-
parameters of the Dirichlet prior on the elements of the Markov transition
kernel P are αsk = 10 for s = k and αsk = 1 for s 6= k, where s, k ∈ {1, 2}.
The Wishart prior hyper-parameters on the reduced-form variance-covariance
matrices Σ(1) and Σ(2) are given by C(1) = C(2) = I · (4.80, 0.60, 4.80, 0.12)′,
τ(1) = τ(2) = 12. For β, the Minnesota-type dummy observation priors de-
scribed in Subsection 3.1 are used, with the tightness hyper-parameters set to
1.5.

Table 1: Marginal data density for alternative reduced-form model specifica-
tions
Models p = 1 p = 2 p = 3 p = 4 p = 5 p = 6

m = 1 −485.648 −445.153 −450.497 −454.256 −456.697 −466.481
m = 2 −372.274 −335.396 −323.728 −312.723 −317.406 −322.309
m = 3 −360.126 −331.081 −313.793 −303.658 −302.254 −315.769

Notes: Here m denotes the number of volatility states and p denotes the lag augmentation
length in the reduced-form VAR model. The marginal data densities are computed using the
algorithm proposed in Chib (1995).

The augmentation choice and the number of volatility regimes are driven
by the Bayesian model selection procedure based on the estimated marginal
data density as follows. The estimated marginal data densities for the reduced-
form models with different numbers of volatility regimes and lag augmentation
lengths are shown in Table 1. One can observe that models with time-varying
volatility of the reduced-form errors are uniformly preferred to standard VAR
models for this particular data sample. Comparing two and three-state volatil-
ity models, the data clearly support a three-state model with five lags of aug-
mentation. However, we note several shortcomings that are associated with the
data-favoured model. Most importantly, our structural identification theory de-
tailed in Section 2 still lacks the full generality needed to work with a number of
volatility regimes greater than two. In this application we want to rely on the
solid mathematical decomposition results shown in Subsection 3.2, making the
two state model preferable.17 Furthermore, the interpretation of the two state
model fits nicely into standard narrative of the post-war US macroeconomic

17We also note that the third state in our model tends to capture outliers with extremely
high volatility. Across the simulations, the average duration of the third volatility state tends
to be around 20 periods, which clearly limits the additional statistical information that can
be used for identification purposes.
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Figure 2: Average of the simulated ST trajectories for the reduced-form model

history, as we show below. For these reasons we proceed with the reduced-form
model with two volatility states, opting for the lag augmentation length p = 4
suggested by the marginal data density in Table 1.

The average of the simulated ST trajectories for the selected reduced-form
model is shown in Figure 2. On this figure, the upper panel displays the elevated
volatility state, which can clearly be associated with the periods of economic
downturn and uncertainty following the first and second oil crises in the early
1970s and 1980s, and the 2007–2009 Global Financial Crisis. The lower panel
depicts the normal volatility state, capturing several short tranquil periods in
the 1960s, the mid-1970s, and the long Great Moderation period from the mid-
1980s until the outbreak of the 2007–2009 Global Financial Crisis. The two
volatility states are prominent in the US sample and are well in line with the
profession’s consensus on US macroeconomic history over the last five decades;
see Stock and Watson (2002) and Sims and Zha (2006). Economic history aside,
from the perspective of this paper, the well pronounced volatility regimes in
the US data should allow us to pin down a full set of statistically identified and
economically meaningful shocks in the context of a structural VAR model.

Table 2: Posterior credible sets for the diagonal elements of D̃(2)

D̃(2) [ 2.30% 16.0% 50.0% 84.0% 97.7% ]
d̃1(2) 0.033 0.039 0.051 0.065 0.074
d̃2(2) 0.136 0.159 0.208 0.286 0.343
d̃3(2) 0.146 0.177 0.252 0.332 0.392
d̃4(2) 0.519 0.607 0.762 0.961 1.118

Notes: The estimated posterior 96% and 68% confidence sets
and the median before the Bayesian clustering procedure are
displayed in the columns. The total number of Gibbs simula-
tions is 10000, of which the last 5000 are used for the posterior
inference.

We now move from the initial data exploration and the reduced-form model
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Figure 3: Prior and posterior distributions of D̃(2) for the structural model

selection phase of our empirical example to the structural data analysis. We
first decompose the reduced-form variance-covariance matrices Σ(1) and Σ(2)
generated by the Gibbs sampler using the exact decomposition result in (9).
The necessary identification conditions in a two-state MS-SVAR model require
all diagonal elements of D̃(2), denoted here by d1(2), . . . , d4(2), to be distinct;
see Proposition 1 in Section 2 and Lanne et al. (2010). The prior and posterior
densities of these elements for the US macroeconomic data are shown in Fig-
ure 3. While the data are clearly informative about d1(2), . . . , d4(2), the middle
two elements of D̃(2) appear to have very similar posterior distributions. The
estimated 68% and 90% posterior credible sets and the corresponding medi-
ans are shown in Table 2. It follows that d1(2) and d4(2) are sufficiently well
separated from the middle two elements of D̃(2), corroborating the graphical
evidence in Figure 3. On the other hand, the posterior credible sets of d2(2)
and d3(2) overlap in both the 68% and 90% cases. This has a very strong im-
plication for the posterior inference in the structural model: while the first and
the fourth shocks are likely to be sufficiently well identified, it may be quite
difficult to pin down the second and third shocks in the estimated MS-SVAR
model. In order to recover the structural shocks corresponding to the two mid-
dle elements of D(2) we need to resort to the clustering procedure proposed
and described in detail in Section 2 and Subsection 3.2 of this paper. The long
dash posterior densities displayed in Figures 3 and 4 highlight the effects of this
new identification technique and will be discussed further in this subsection.

Additionally, we wish to clarify the Bayesian interpretation of the results in
Table 2. Proposition 1 in Section 2 requires the elements of D̃(2) to be distinct
for any attempt on the subsequent structural data analysis to be meaningful.
The Bayesian statistics admits an interpretation of a well-defined statistical
model having a unique “true” value of the parameters, but quantifies the in-
evitable statistical uncertainly about these parameters in any given finite sam-
ple using the posterior distributions. Looking through this Bayesian prism,
there is ample evidence in Table 2 that the diagonal elements of D̃(2) are dis-
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Figure 4: Prior and posterior distributions of Ã−10 for the structural model

tinct,18 but the posterior uncertainty about the middle two elements of D̃(2)
implies that the associated shocks are likely to be intermixed across the poste-
rior simulations generated by the Gibbs sampler.

Recall from Section 2 that the short-run impact matrix Ã−10 is generally
identified only up to the order and signs of its columns. In the empirical appli-
cation to the US data, and before the use of the Bayesian clustering procedure,
we sign-normalize the short-run impact matrix such that the initial effects of
the first shock on rt (column one of Ã−10 ), of the second shock on πt (column
two of Ã−10 ), of the third shock on ∆yt (column three of Ã−10 ), and of the fourth
shock on Mt (column four of Ã−10 ) are all positive. The prior and posterior
distributions of the sign-normalized columns of Ã−10 are shown in Figure 4. We
find the US data to be reasonably informative about Ã−10 ; most clearly this is
the case in the first and the last columns of the matrix. On the other hand, be-
fore clustering is applied, one clearly observes wide bi-modal posterior densities
in the two middle columns of Ã−10 in Figure 4, which is a direct consequence
of the structural identification issues associated with the overlapping posterior
intervals of d2(2) and d3(2) noted before.

By examining the last row of Ã−10 in Figure 4, we can single out a prima facie
candidate for the “monetary policy shock” in the estimated model: rt shows the
strongest immediate reaction to the first shock in our system, while in all other
cases the biggest initial reactions are associated with different variables.19 The

18For example, the posterior medians of d1(2), . . . , d4(2) in Table 2 are all clearly mutually
distinct.

19Since the identification in MS-SVAR models is based on statistical arguments with no
prior restrictions on the system matrices and associated structural innovations, it is necessary
to carefully study all available statistical evidence before attaching economic interpretations
to the observed shocks. Any structural data interpretations should be based on the short-run
impacts, estimated posterior impulse responses and prior theoretical and empirical knowledge
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first shock raises the policy rate as a result of sign normalization, with an esti-
mated immediate positive impact on prices and a slightly negative one on the
real money balances, while the instantaneous reaction of real output remains
ambiguous. In terms of the short-run impact, our provisional “monetary policy
shock” is close to its sibling in Uhlig (2005), apart from the opposite reaction
of πt. More specifically, we also find that the initial real output response is
ambiguous and the money supply tends to tighten on impact. The opposite
reaction of prices, on the other hand, is likely to be explained by the imposed
identification assumption in Uhlig (2005), while in our case the positive ini-
tial reaction of πt appears to be a feature of the US data delivered by our
identification methodology. We note that the immediate response of πt to our
provisional “monetary policy shock” in Figure 4 is supported predominantly on
the positive half-line, which has strong implications for the sign identification
methodology of Uhlig (2005): while the negative initial effects on both πt and
Mt from the monetary policy shock are not ruled out by our results, the pos-
terior probability of this response mix for the US data in our empirical model
is rather low.20

Similar discrepancies in terms of the immediate monetary policy impact on
πt are observed between the conventional recursive and non-recursive identifi-
cations of Christiano et al. (1999) and Gordon and Leeper (1994) on the one
hand and our empirical results in Figure 4 on the other. It is common in the
conventional approaches to allow the money supply to tighten on impact, while
assuming a reaction lag of both real output and prices to a contractionary
monetary policy shock. Our statistical identification approach, however, yields
a strong positive reaction of prices on impact, taking us back to the classical
“price puzzle” result of Sims (1992). In contrast to the more recent literature,
Sims (1992) allows for an immediate response of real and nominal quantities to
a monetary policy shock and documents a well–defined initial effect on prices
that is common across several alternative datasets and model specifications. In
light of our empirical analyses for the recent US macroeconomic data, further
investigation into the strong positive response of πt to a contractionary mon-
etary policy shock and its consequences for the conventional identification in
the empirical SVAR literature may be warranted.21

about the particular sample, all carefully weighted and examined simultaneously. On its own,
the strongest initial reaction of rt to the first observed shock may not be sufficient to justify the
labelling; our interpretation of this shock also considers the corresponding posterior impulse
responses, which are discussed later in this section.

20In a tri-variate monetary SVAR, estimated without the real money balances and identified
using sign restrictions, Castelnuovo and Surico (2010) relax the assumption of non-positive
response of prices to a monetary policy shock and find strong evidence in favour of the “price
puzzle”. However, they claim that this finding is limited to the pre-1980 US sample, before
the start of the Volcker reserve targeting regime; see also Boivin and Giannoni (2006).

21A possible explanation of this empirical result, proposed by Sims (1992), suggests a reac-
tion of the monetary authority to an anticipated inflationary pressure, creating a statistical
illusion of a causal link between the monetary policy shocks and subsequent price increases.
Although the MS-SVAR framework, presented and empirically illustrated in this paper, al-
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The last column of Ã−10 in Figure 4 reveals the immediate impact of the
fourth shock on the US macroeconomic variables in our empirical analysis. As
shown in Table 2, the last diagonal element of D̃(2) that corresponds to this
shock is well separated from all the other elements of the matrix, resulting in
clear and regularly-shaped posterior densities in the last column of Ã−10 . The
observed shock raises the real money balances because of the sign normalization
and shows a positive impact on the real output, a negative impact on the
policy rate, and an ambiguous price effect. We attach a provisional “money
multiplier shock” label to this response profile, because its nature bears a strong
resemblance to the available empirical evidence in Favara and Giordani (2009)
and Peersman and Wagner (2014).

Up to this point we have provisionally identified two out of four structural
shocks in our empirical analyses. Before the application of the clustering pro-
cedure, the structural model identification issues are visible in the case of two
remaining shocks in Figures 4 and 5. As explained earlier in this section when
discussing the results in Table 2, this happens due to the randomly permuted
order of the two middle columns of Ã−10 when the Gibbs sampler posterior
draws are generated by our algorithm. As manifested by wide bi-modal poste-
rior densities in the middle part of Figure 4 and completely uninformative before
the clustering posterior impulse responses in the second and fourth columns of
Figure 5, the underlying structural nature of the remaining two shocks in our
empirical model remains shrouded prior to the full resolution of the identifica-
tion issues. As suggested by our theoretical results in Section 2, all necessary
statistical information needed to group the structural shocks according to their
specific economic footprint in the model can be found in the posterior simula-
tions of Ã−10 and the reduced-form parameters Φ1, . . . ,Φp. We now carry out
the Bayesian clustering procedure, described in detail in Subsection 3.2 of the
paper, on the two hitherto unidentified shocks in our empirical model in order
to fully resolve the structural dynamics in the US macroeconomic data.

After the clustering, the structural nature of the two previously unidentified
shocks clearly emerges in Figures 4 and 5. In particular, after the clustering
the posterior impulse responses in the middle part of Figure 5 are sufficiently
sharp to confidently discern the statistical effects of the two shocks on real
output and prices. Judging by the median responses of yt and πt, the third
column is consistent with a positive “aggregate demand shock”, pushing the real
output and prices in the same direction and inducing a pronounced, if somewhat
delayed, counteraction from the monetary policy authority. Similarly, the fifth
column of Figure 5 conforms to a positive “aggregate supply shock”, since the
median responses of the real output and prices go in opposite directions. Our
empirical results indicate that the Federal Reserve may choose not to react to
the aggregate supply shock, as suggested by the wide 68% posterior credible
sets around the response profile of the policy rate rt.

lows us to provide strong statistical evidence in favour of the “price puzzle”, it is not intended
to test the Sims’ hypothesis.

24



0 10 20
−0.5

0

0.5

∆y
t

Monetary policy shock

0 10 20

−1

0

1

Demand shock
(before clustering)

0 10 20
−1

0

1

Supply shock
(before clustering)

0 10 20
0

0.5

1

Demand shock
(after clustering)

0 10 20
0

0.5

1

Supply shock
(after clustering)

0 10 20

0

0.2

0.4

Money multiplier shock

0 10 20
−0.2

0

0.2

π t

0 10 20
−0.5

0

0.5

0 10 20
−0.5

0

0.5

0 10 20

0

0.2

0.4

0 10 20

−0.4

−0.2

0

0 10 20
−0.05

0

0.05

0.1

0 10 20
−2

−1

0

1

M
t

0 10 20
−2

0

2

0 10 20
−2

−1

0

1

0 10 20
−2

−1

0

0 10 20
−1

0

1

0 10 20
0

0.5

1

1.5

0 10 20
0

0.2

0.4

0.6

r t

0 10 20
−0.5

0

0.5

0 10 20
−0.2

0

0.2

0 10 20
0

0.1

0.2

0.3

0 10 20

0

0.2

0.4

0 10 20
−0.1

0

0.1

Figure 5: Posterior impulse response functions and 68% credible sets for the
structural model

Returning to the other two shocks, provisionally identified using the poste-
rior distribution of Ã−10 in Figure 4, we attempt to cross-validate a “monetary
policy shock” and a “money multiplier shock” against the results provided by
the estimated posterior impulse responses in our structural model. In the first
column of Figure 5, the response profile consistent with a contractionary mon-
etary policy shock emerges: the policy rate increase leads to a reduction in
the real money balances, a drop in real output, and the “price puzzle” reaction
of the inflation noted earlier.22 This reaction would be typical for a mone-
tary policy shock considered in earlier studies by Sims (1992), Christiano et al.
(1999), Sims and Zha (2006) and many others. The last column of Figure 5
displays the estimated posterior response profiles to the prima facie “money
multiplier shock”: an increase in the real money balances is associated with an
initial drop of the short-term policy rate, which then strongly rebounds as the
Federal Reserve reserve reacts to a boom in the real output and a strong and
persistent inflationary response of prices. This response profile corroborates
the recent finding in Favara and Giordani (2009) and lends further support
for the hypothesis that, contrary to the standard New Keynesian framework,
the money multiplier shock, which may be linked to the widening of the term
spreads, increasing stock returns or an exchange rate deprecation, leads to a
well-pronounced response of the real macroeconomic aggregates.23

22The “price puzzle” in our posterior impulse responses is robust to alternative model spec-
ifications. In particular, it remains virtually unchanged if we replace the real output growth
with its de-trended version, as suggested in Giordani (2004). Adding a global commodity
price index to the list of model variables makes the initial response of inflation to our “mon-
etary policy shock” smaller, so its 68% posterior credible set now contains zero, but it still
remains sufficiently large for the subsequent two to four quarters to be taken as credible
evidence in favour of the “price puzzle”.

23Andrés, López-Salido and Nelson (2009) re-visit the role of money in the New Keynesian
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In summary, we estimate a Bayesian four-variate two-state MS-SVAR model,
the econometrics of which is covered in Sections 2 and 3 of the paper, using
a quarterly sample of the US macroeconomic data over the last 45 years. In
the initial reduced-form model selection and estimation phase of this empirical
application, we uncover a rather familiar constellation of high and low-volatility
states spanning the last half century of US macroeconomic history. But most
importantly, the switching volatility regimes in the data provide us with suffi-
cient statistical information to fully identify the short-run impacts and impulse
responses to four structural shocks, which are found to be consistent with a
conventional monetary policy shock, a money multiplier shock and a pair of
aggregate supply-demand shocks. Once again, we want to emphasise that the
economic interpretations of these shocks emerge from the data by looking at
it through the lens of the MS-SVAR model and without the need for any con-
ventional a priori identifying restrictions. The first two identified shocks cor-
roborate many previous findings on the monetary policy and aggregate money
shocks. In particular, we report a robust and well-pronounced “price puzzle” in
response to our “monetary policy shock”, while our “money multiplier shock”
induces a strong response of the real output and prices in the US data. In or-
der to fully identify the remaining two shocks, we carry out the novel Bayesian
clustering procedure applied to the set of estimated posterior impulse responses
from the Gibbs sampler. The new clustering method delivers enough statisti-
cal evidence for us to confidently discern an “aggregate supply shock” and an
“aggregate demand shock” from the data. Finally, we point out that the results
of our statistical shock identification procedure are not always compatible with
the conventional a priori short–run and sign identification approaches used in
much of the recent empirical SVAR research.

5 Conclusion

Structural vector autoregressions are popular tools in modern macroeco-
nomics, used as empirical benchmarks for deconstructing and understanding
the nature of business cycles and for facilitating the development of new theo-
ries. Since their widespread adoption in the early 1980s, the on-going theoret-
ical and empirical research has focused on the most appropriate identification
strategies for uncovering the structural macroeconomic dynamics from the real-
world data.

In this paper we contribute to the literature on structural shock identifica-
tion by developing a Bayesian estimator for the vector autoregression with a
time-varying volatility of error terms that depend on a hidden Markov process.
We refer to this model as a “Markov-switching structural vector autoregression”

framework, finding that certain variations of these structural macroeconomic models imply a
forward-looking character of the real money balances, helping to predict future variations in
the natural interest rate and other real aggregates.
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(MS-SVAR). Given sufficient statistical information in the data, the multiple
volatility states of the structural innovations in the MS-SVAR model allow the
full identification of all structural matrices and impulse responses without the
need for conventional a priori parameter restrictions. Building on the existing
results in Lanne et al. (2010), the first part of the paper contains a new proposi-
tion on the structural-form identification in the class of MS-SVAR models with
an arbitrary number of volatility states. In particular, we derive necessary con-
ditions on the reduced-form variance-covariance matrices that guarantee model
identification up to an arbitrary permutation order of the structural shocks.
We then propose a novel approach for pinning down the specific shock order
from the estimated reduced-form parameters by applying a computationally-
intensive Bayesian clustering method from the statistical literature.

The new methodology is validated using the US macroeconomic data series,
where the nature of different shocks is empirically examined. In particular, we
identify the short-run impacts and impulse responses of four structural shocks,
which we label a “monetary policy shock”, a “money multiplier shock”, an “ag-
gregate demand shock” and an “aggregate supply shock”. We find a robust
and well-pronounced “price puzzle” in response to a “monetary policy shock”,
while the “money multiplier shock” induces a strong reaction in US real output
and prices. The full disentanglement of the “aggregate demand shock” and the
“aggregate supply shock” in the US data requires an application of the new
clustering method and illustrates its empirical success in this particular data
sample.

We also point out that the results of our statistical shock identification pro-
cedure are not always compatible with conventional a priori short-run and sign
identification restrictions used in many of the recent empirical SVAR models,
which warrants further careful validation and checking of the existing results
using the new MS-SVAR methodology and other alternative approaches.
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A Computational appendix

The performance of the Gibbs sampler in our application is assessed in Ta-
ble A1. Three types of diagnostics are shown: the proposed number of Gibbs
sampler draws and the dependence factor (DF) according to Raftery and Lewis
(1992), autocorrelation of the draws at the first lag and the Geweke (1992) z-
statistic. The statistics are available for each parameter separately, but to con-
serve space only summarized statistics are shown. Unsurprisingly, the VAR(2)
model is more efficient than the model with Markov switching. For the Markov
switching model the number of iterations proposed by the Raftery and Lewis
(1992) diagnostics is reasonable and the dependence factor indicates low corre-
lation of the draws. Low autocorrelation of the Gibbs draws is further indicated
by the estimated autocorrelations at lag one. Autocorrelation decays quickly
with increasing time lags. The Geweke (1992) test evaluates the stationarity of
the Gibbs draws by comparing the mean of the first 20% of the draws with the
last 20% of the draws. The values outside ±2 indicate the drifting mean of the
series. For our Gibbs sampler there may be some drift in individual parame-
ters but the median value indicates no problem. Hence the convergence of the
sampler for the US data is satisfactory and further inference can be made.

Table A1: Gibbs sampler diagnostics for the estimated reduced–form model

Raftery-Lewis Autocorrelation at lag 1 Geweke z-statistic
Ndraws DF Median Min Max Median Min Max

m = 1, p = 2 3701 0.99 -0.00 -0.04 0.04 -0.05 -2.85 2.16
m = 2, p = 4 3839 1.03 0.06 -0.01 0.24 0.62 -3.02 2.62
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