Proceedings of the Estonian Academy of Sciences,
2013, 62, 1,27-38
doi: 10.3176/proc.2013.1.04
Available online at www.eap.ee/proceedings

COMPUTER
SCIENCE

Implementing artificial intelligence:
a generic approach with software support

Teemu J. Heinimiki®* and Juha-Matti Vanhatupa®

4 Department of Mathematics, Tampere University of Technology, P.O. Box 553, FI-33101 Tampere, Finland
b Department of Pervasive Computing, Tampere University of Technology, P.O. Box 553, FI-33101 Tampere, Finland;
juha.vanhatupa@tut.fi

Received 18 August 2011, revised 25 November 2012, accepted 17 December 2012, available online 20 February 2013

Abstract. In computer games, one of the eminent trends is to create large virtual worlds with numerous non-player characters.
Usually their artificial intelligence (AI) is implemented by scripting, which can be a burden for the application developers involved.
This paper suggests an approach facilitating designing Al functionalities and striving to reduce, via software tool support, the
amount of hand-written Al script code needed. Our approach is suitable for, e.g., creating autonomous agents with personal
characteristics, capable of behaving in a natural manner. For instance, the goal-oriented agent paradigm can be applied easily with
the approach. The definitions needed are written using a script language. Therefore, the agent configurations can be tested rapidly.
We have extended an existing Al environment and created a script framework for implementing general-purpose Als. Moreover,
we have implemented software tools capable of generating script code for helping in the Al structure design and for simplifying
the actual code-writing task. For demonstrating the applicability of our approach, three example scenarios specialized from the

framework are presented.

Key words: artificial intelligence, autonomous agents, finite state machines, software tools.

1. INTRODUCTION

Over the recent years, virtual worlds of computer
games have expanded beyond measure. They have
become complicated constructs with numerous non-
player characters (NPCs) and places. Having a huge
number of NPCs makes it possible to offer lots of
possible opponents, allies, sources of information, and
trading partners. Thus, by increasing the number of
NPCs, the game can often be made more interesting.
However, this also means more time spent on implement-
ing artificial intelligence (AI) for these NPCs. The NPC
Al is a crucial aspect of computer games, but achiev-
ing sophisticated intelligent behaviour for a very large
number of NPCs is not possible using conventional Al
methods or engines [19]. The great challenge for the Al

Corresponding author, teemu.heinimaki @tut.fi
1

is to get the NPCs to behave in a believable, human-like
fashion. The player should be able to imagine that inter-
actions between real characters take place. The same
facts apply also when considering Al agents (without
graphical presentation) for, e.g., playing strategy or
board games.

In this paper we propose a novel script-based!
Al approach for computer game development. It is
applicable with several kinds of games, and can be
applied also outside the gaming domain. We use a
separate Al framework that can be attached to the actual
game engine or other program using the Al features. The
purpose of the Al framework is to offer virtually all the
Al support needed for creating interesting games. Thus,
the application developers can concentrate on the real
Al problems instead of writing lots of similar scripts

Nowadays, game Als are often implemented by means of scripting; scripts may be used, among other things, for

communication dialogues, decision logics, stage direction, and fighting tactics [1,3]. The separation of the Al code and the
main program simplifies the development process and makes it easier to modify the Al by different interested parties, like
game designers or end user “modders”. The matter of scripting Als is discussed more, e.g., in [5].



28 Proceedings of the Estonian Academy of Sciences, 2013, 62, 1, 27-38

for different agents. Scripting is used as a helping
method, but most of the actual work is done by the
framework. This paper is a derivative of the existing
conference article [7], and has been extended with
numerous additional considerations, clarifications, and
an extra demo scenario. Also the software tool support
has been extended and improved since the original paper.

Our approach is based on the famous idea of
dividing and conquering: we aim at splitting the
problem into smaller ones, and structuring the code
accordingly. Moreover, our goal is to facilitate the
work of Al developers by making it easier to design
the Al structure naturally, in terms of the temporal flow
of, e.g., the decision-making process. In addition, our
approach is meant to make it easy to take advantage
of personalization of the agents and goal-oriented
action planning (GOAP) [12] principles. For these
ends we have developed a general-purpose scripting
framework and software tools for creating specialized Al
implementations easily.

Our hypothesis is that using the approach, the
productivity of AI programmers can be increased, as
implementing Al features requires less work; the tools
help in saving time and work in many ways. The ultimate
goal of this work is to improve the quality of Als in
digital games by facilitating more efficient use of the Al
programmer resources.

The framework was obtained by extending, modify-
ing, and generalizing the Al support part of our existing
CAGE game engine [18] and by making it totally
independent from CAGE. At the beginning of this work,
CAGE supported directly only NPC Als implemented
via state machines, and the application developer had to
create more sophisticated Al implementations manually,
if needed. Since, CAGE AI framework was extended
with GOAP support, before the generalization and
separation into our current framework.

The approach of this paper combines the use of finite
state machines with the use of new kind of machines
for implementing general-purpose Als. With these
machines, e.g., goal-oriented agents can be implemented
easily. For testing the applicability of the approach,
we have programmed three example scenarios using the
framework. For taking advantage of our framework the
software tools created for specializing the framework are
essential.

The rest of the paper is organized as follows.
In Section 2 some background and related work are
covered. After that, in Section 3, we present our general
Al approach in more detail. In Section 4 we explain the
prototype Al framework — a realization of the general
idea. Then, in Section 5, the implemented software
tools and the benefits offered by them are discussed.
In Section 6 we present example scenarios featuring Al
implementations created by specializing the framework.
The concluding remarks are given in Section 7.

2. BACKGROUND AND RELATED WORK

Almost all virtual worlds of computer games contain
less intelligent NPCs in the form of animals and humans
with simple behaviour; there are servants, guards,
shopkeepers, and so on. State machines are a suitable
method to model their behaviour. According to [12],
the most of the decision-making systems in current
games are implemented using state machines along with
scripting. A problem with state machines is their
rigidity: when encountering situations that have not been
foreseen, the resulting behaviour can be poor [6].

Game worlds may contain also more intelligent
agents, whose behaviours should be as complex as those
of the player characters (PCs). Alas, in practice, often Al
implementations — and thus, the resulting behaviours —
of these agents are too simple. It is quite common to just
stand still waiting for the interaction initiated by the PC,
or to live only to die by the sword of the PC. This kind
of simplified behaviour of NPCs can lead to boring, self-
repeating, and unnatural virtual worlds. Therefore, our
approach aims at facilitating creating intelligent agents
of high quality.

One possibility for a basis of creating a sophisticated
Al is to model personal characteristics, moods, and
knowledge of the agent for inducing its behaviour. Often
the AI can be improved by adding in-game interactions
between NPCs. (The significance of them is discussed,
e.g., in [17].) Also other methods for making games
more interesting, developed over several decades by the
multi-agent system community, can be used. However,
the basic problem remains: often simply too much work
is required to implement the wanted behaviour properly
with conventional methods. Our approach strives to
tackle this problem.

The usual approach for implementing new computer
games is to use game engines; modern games are
seldom developed from scratch [12]. Instead, a suitable
game engine is modified for the new game, which is
then implemented using the engine as a framework.
Often some scripting language is used in addition to a
conventional one. The differences between game engines
are huge; their capabilities and features, including Al
support features, differ a lot. It is common that the Al
implementation of a game is not really supported by the
game engine used, but the Al is somehow glued into
the main game. On the other hand, many commercially
used game engines offer some sophisticated Al support
features. However, to the best of our knowledge, none
of them use such a personal trait-based”> approach as
presented in this paper.

There is a wide array of publications on solving
different kinds of Al problems in game worlds by NPCs
and other agents. However, most of them seem to be
solving quite specific problems in specific environments.
Our framework, on the contrary, aims to be very generic.

2 Qur approach can be successfully used also without personality features, but the original CAGE Al framework extension was

designed especially for using them.



T. J. Heinimdiki and J.-M. Vanhatupa: Implementing Al: a generic approach with software support 29

Despite the genericity, it is as a rule easily applicable in
a given task. The exact easiness depends on the case, but
the lack of artificial limitations in the framework and tool
support for specializing it help a lot.

The “Scripted Artificial Intelligent Basic Online
Tank Simulator” (SAI-BOTS) [2] lets the players script
the behaviours of their tanks using the Lua scripting
language and then fight each other with them. It
resembles, for instance, the CAGE system in the sense
that its main programming language is C++ and it
uses Lua for scripting. When using our approach, the
application developer writes definitions for agents, which
calculate their actions autonomously. In SAI-BOTS, on
the other hand, the behaviour of the tanks is pre-scripted
conventionally. Moreover, CAGE is a prototype game
engine, which can be used to develop computer games
of different genres. SAI-BOTS, instead, is a specific,
scriptable computer game.

The AI structure of “being-in-the-world” [4],
a multi-user dungeon (MUD) agent, consists of
two asynchronously working modules. The reasoning
module includes, e.g., logical reasoning and goal
maintenance, while the real-time coping module deals
with the world. The basic structure of the solution
could be implemented using our approach, while it might
not be the best possible way to perform ontological
reasoning. The solution of being-in-the-world resembles
that of the CAGE engine for goal-oriented agents. While
our Al framework uses Lua, being-in-the-world has been
written in Common Lisp. The framework presented in
this paper is general enough to be suitable for different
kinds of games and other purposes, but being-in-the-
world is a MUD agent created for surviving in a certain
kind of MUD.

Basketball Artificial Intelligence Tool (BAiT) [16] is
a data-driven software tool system for implementing Al
for a basketball game. It aims at offloading work from
programmers by transferring some of it to designers.
Our approach strives to offer help for generic Al
implementation — not only for implementing a finite
set of Al features for a single game (or genre). This,
on the other hand, means that we cannot offer as
high a level of abstraction as BAIT does; we expect
the users of our tools to know as much of the target
system and its interfaces as if they were to script
the Al conventionally. (Of course, application-specific
simplified scripting interfaces can be offered to be used
via our tools, if necessary.) BAiT takes benefit of the fact
that basketball as an activity is sequential by nature. This
is the case in most sports. Also our approach is extremely
suitable for creating Als for such sequential activities.

3. ARTIFICIAL INTELLIGENCE APPROACH

For ensuring suitability for different needs, our approach
includes both state machines and more advanced
methods intended originally to be used with autonomous
agents with personalities. We divide artificial agents into
two categories according to the methods used: there are
state machine agents (SMAs) and advanced Al agents
(AAIAs). Instead of state machines, AAIAs use a new
kind of AI machines (AIMs) for behaviour generation.
The focus of this paper is on AAIAs, but the support for
SMAs is included in our approach, as sometimes trying
to mimic complex human-like “thinking” processes for
inducing actions can be an overkill. This matter is
discussed, e.g., in [10].

In modelling and developing agents, the goal
orientation as a paradigm is increasingly recognized [15].
AATAs support fully creating goal-oriented agents
(GOAs ) that model and use goals and motivations in their
action-generating processes. We consider them as a sub-
category of AAIAs. The agent types of our Al approach
are depicted in Figs 1 and 2.

In our approach, the application developer describes
— depending on the type of the agent — either the
agent behaviour as a finite state machine or AIMs for
generating behaviour autonomously. (This is the original
idea of using AIMs, but they can be applied freely
and offer benefits also in other kinds of settings.) The
descriptions are given using a script language®. Script-
ing allows rapid application development and testing.
Downside of this is the lack of efficient debugging
capabilities. However, it is possible to implement the
needed machines piece by piece and to test each added
code block separately, without any need to recompile the
framework during the process.

|State Machine Model 3

|State Machine Model 2

State Machine Model 1

N
AAAA

SMAs

Fig. 1. State machine agents. Several agents may share the
same state machine model.

3 Using script languages or writing scripts are not bad things per se; the important thing is how and when to script. When
scripting Al traditionally, the application developer writes the whole Al implementation with the given language somehow.
Various methods can be used, including using state machines. This means that we recognize the usefulness of some traditional
scripting methods in some cases. However, at least as far as the AAIAs are considered, instead of giving the application
developers a language and free hands to use it, we want to reduce their workload by defining a clear structure and making
automatic code generation possible without taking away their freedom to apply their creativeness.



30 Proceedings of the Estonian Academy of Sciences, 2013, 62, 1, 27-38

AIM Set 1 AIM Set 2 GOA AIM Set
AIM 1 AIM 2 AIM 3 AIM 4 AIM 5 Goal-gengrating Task—gengrating Action-geperating
machine machine machine

AAlAs

/N

A special case of AAIAs: GOAs

Fig. 2. Advanced Al agents. Goal-oriented agents can be seen as a special case.

Our approach enables the creation of huge virtual
worlds with lots of different inhabitants with diverse
Al capabilities. ~ Of course, when the number of
agents grows enough, making any kind of individual
Al calculations for all of them in real time will
become impossible. While our approach cannot solve
this fundamental problem, it facilitates and speeds up,
nevertheless, the creation of a large number of believable
Alimplementations. The AAIAs are not only suitable for
advanced NPCs, but also for believable and seemingly
intelligent co-players or adversaries. AAIAs can even be
used in implementing different decision-making systems,
planners, and so on. Similarly, SMAs can be used for
various purposes.

3.1. State machine agents

Although the main focus of this paper is in AAIAs,
we have included the support for conventional state
machine-based agents as well for convenience. Simple
behaviour, after all, is easily achieved using them.
Another good side (in some cases) in them is the
high predictability of the actions*. Moreover, finite state
machines are not generally computationally expensive
[11].

State machines could easily be implemented using
AlIMs. However, we choose to use a specific structure
for implementing them. They are, after all, rather simple
constructs that do not really benefit from being imple-
mented as AIMs.

The application developer describes the state
machine models by scripting. This work includes defin-
ing the states, state transitions, and inputs capable of
firing the state transitions. It is possible to define a
separate state machine model for each agent, but several
agents having similar behaviour can also share one. This
reduces the needed amount of copying and pasting code.
An example state machine model is depicted in Fig. 3.

In [7], the general idea was that each agent using
state machines has its own state machine instances and

[safe place]

Retreat

N
ead] [lots|of damage taken]

[enem
[noise|heard]
\ 4

Search

Attack

[enemy seen]

Fig. 3. An example state machine model.

can be in a different state than other agents regardless
of whether they use the same state machine model or
not. Connecting only one agent to a state machine
instance was suggested for simplicity and general
implementability. However, currently we are focusing
on using shared state machines. This requires keeping
track of states of individual agents, either by themselves
or by the state machine construct, but in many cases con-
siderable space savings can be achieved by not replicat-
ing similar machines.

3.2. Advanced Al agents

In our approach, every AAIA uses a number of AIMs
that may modify its personal parameters, possibly adding
also new ones. The application developer defines these
attributes for the agent, as well as the set of AIMs to
calculate new agent parameters, for example, goals and
means to acquire them, and to modify the existing ones.
The AIM set establishes the desired Al architecture.

The composition of a single AIM is depicted in
Fig. 4. Each machine can contain several layers of
calculation nodes (CNs). A CN may perform com-
parisons, calculations, and basically any program code.
However, the idea is to keep the logics of an individual
CN as simple as possible. The layers are iterated through
in a fixed order according to their numbering (in Fig. 4,
from Layer 1 to Layer n). Inside of a layer, the execution

4 Of course, there are numerous state machine-based approaches that use probabilities and randomness, but they are out of the

scope of this paper.



T. J. Heinimdiki and J.-M. Vanhatupa: Implementing Al: a generic approach with software support 31

Initial
attributes

Functions for running
the machine

Intermediate
layers

Layer n

Final
attributes

Helper functions for
simplifying the CN code blocks

Fig. 4. The components of an AIM.

order of CNs is not fixed’. (By executing a CN we mean
running its respective code block.) Because of this, the
code of a CN must not depend on attributes altered on the
same layer. It may only trust that the operations of the
previous layers have been performed. Possible common
initialization or input filtering code can be run before
executing the CN layers. Feedforward artificial neural
networks can be seen as special cases of AIMs.

The purpose of suggesting the use of several
machines instead one is to simplify the overall Al
construction by splitting it into logical pieces. The whole
Al functionality is then achieved by chaining the AIMs,
as shown in Fig. 5. The arrows pointing downwards in

Initial attributes

>

Intermediate attributes

World
inputs *

>

>

Final attributes

Fig. 5. Overview of the approach. A chain of machines is used
to produce new data, like goals and actions to perform. The
different rectangle widths depict possible growth of the number
of the parameters.

the figure represent the flow of execution. Passing the
information from an AIM to another is accomplished
by simply modifying the attribute data to which the
machines have a shared access. Thus, defining any kind
of complex input/output interfaces is not necessary.

Naturally, the usage of AIMs is not limited into this
kind of single cascade structures. They are often viable
and sufficient, but if needed, several AIM cascades can
be run in parallel, or hierarchical AIM structures can be
built.

The initial attributes can contain many kinds of data,
including the personal traits and the moods of an agent.
These parameters are simple key—value pairs. Data
requiring more complex representation, like knowledge,
other history-related data, and perceptions, can also
be present, represented by suitable data structures. In
every stage in the process, the existing attributes can be
modified and new ones can be added, so the cardinality
of the set of the final attributes may be greater than that
of the set of the initial attributes.

The AIMs can be easily used to decide goals,
generate action possibilities, and eventually produce a
priority list of actions (or sequences of them) to carry
out. Thus AIMs are a suitable tool for applying GOAP
techniques. In Fig. 6, an example machine architecture,
the basic GOAP system of the CAGE framework, is
depicted. This architecture implements the general idea
of Fig. 5 and uses AIMs at three levels. First, there is a
machine for generating the goals based on the personality
and the environment. The next machine generates tasks
to be performed based on the most important goals given
by the first machine. Finally, there is a separate machine
for splitting the tasks into short-term actions. Effectively
all the machines manipulate the importance values of
their respective output parameters so that decisions can
be made based on priority lists. For keeping the goals

5 The purpose of not fixing the order is to make it possible to write parallel implementations easily.



32 Proceedings of the Estonian Academy of Sciences, 2013, 62, 1, 27-38

\ 4

Goal-generating
machine

Short-term goals | | Long-term goals Agent

attributes,
status
parameters,
personality
parameters,
and
knowledge

Environmental
inputs
Task-generating
machine

Action-generating
machine

Fig. 6. Architecture of the CAGE GOAP system.

and tasks updated, the machine chain for an agent is run
periodically, always when completing a task, and always
when important environmental events occur.

4. STRUCTURE OF THE F;I;A; FRAMEWORK

For implementing and evaluating our approach, we
defined the structure of the actual code so that the
development process could partly be easily automated.
The resulting high-level Al framework is called FiI,As.
The name comes from “Framework for Individually
Intelligent Autonomous Artificial Agents”. The frame-
work provides support for SMAs and AAIAs. It is also
possible for an AAIA to command SMAs and other
AAIAs belonging to its group using a simple message-
passing mechanism.

The FiIpAsz framework was obtained by extending
and generalizing the existing Al framework of the CAGE
game engine, so the language of choice is the scripting
language Lua [9]. It is a dynamically typed popular
language, which has been used in several games and
industrial applications [8]. Lua is also very fast [3].
Moreover, Lua is an easy language to bind with other
languages. This was an important factor when originally
deciding the scripting language to be used in the CAGE

Al framework. Thus, FiIpA3-based Al implementations
can be easily attached to different game engines or other
“main programs”.

4.1. Implementing state machines

The state machine implementation principles of FiIoAs
are basically those of the original CAGE Al framework
(although nowadays we use shared state machines
actively). For using CAGE state machines, the applica-
tion developer defines the state machine models consist-
ing of state models, and connects SMAs to them. The
state models include the state transitions on suitable con-
ditions, and are written in Lua.

An example F{I, A3 implementation of a state model
is shown in Fig. 7. The modelled state is an attack state
of a simple agent, which could be used, for example, in a
first person shooter game. When the agent is in the attack
state and sees a PC, it attacks. When there are no more
enemies in the vicinity, the agent falls asleep. If injured
severely, the agent will retreat.

In Fig. 7, the basic code-level structure of state
models can be easily seen: they are implemented as Lua
tables with three functions. One is called when entering
the modelled state, one when executing corresponding
state actions and triggering possible transitions, and one
when leaving the state. Besides individual state models,
state machine model implementations include functions
for creating agent tables, setting agent properties, and
running the modelled state machines for different agents.

4.2, Implementing advanced AI machines

Besides CNs, an AIM includes some metadata and
functions for running and cascading the machines. The
most important function is run_X (agent), in which X is
replaced by the machine name (that serves as a unique
identifier (UID)). This function is used for running the
code segments of the CNs in the order determined
by the machine structure. Using the agent parameter,
some suitable information about the agent for which the
machine is meant to be run is passed for it. The parameter
may, for instance, contain only a string containing the
name or the UID of the agent, or it can be a pointer
to a complex agent class with methods usable from the
Lua code. There are also helper functions (achievable
from the CN code blocks) for, e.g., sorting and handling
priority lists.

An example implementation of a CN of the CAGE
Goal Generating Machine is shown in Fig. 8. The CN is
responsible for updating the hunger status parameters of
the NPCs. Updating takes place each time the game time
passes.



T. J. Heinimdiki and J.-M. Vanhatupa: Implementing Al: a generic approach with software support 33

1 ——Attack state of an agent
2 State_Attack = {}
3 State_Attack ["Enter”] = function(agent)
4 agent.draw_weapon()
5 end
6 State_Attack [”Execute”] = function(agent)
7 print(”[Lua]: Executing the attack state™)
8 if agent.hp < 0.2 x agent.max_hp then ——lots of damage taken:
9 change_state(agent, ”’State_Retreat™)
10 return
11 end
12 if safe(agent) then ——enemy probably dead
13 change_state(agent, ”State_Sleep”)
14 return
15 end
16 agent.attack()
17 end
18 State_Attack [“Exit”’] = function(agent)
19 agent.holster()
20 end

Fig. 7. An attack state model implementation. In this case, agent is a Lua table that stores necessary properties and functions of an

Al agent using the state machine model.

—— gc_attributes is a table containing
—— attributes of NPCs, which
—— is indexed with an agent name

function calculation_node_1_2()
an=agent:get_name()
ge_attributes[an].hunger =
ge_attributes[an].hunger +
ge_attributes[an].hunger_step *
ge_attributes[an].time_tick;
end

—_— O 0 0 39 Lt AW N~

—_

Fig. 8. An example calculation node implementation. The
variable agent that has been given to the machine-running
function as a parameter can be used inside the CNs. In this case,
agent refers to a class instance with a method called ger_name()
callable from the Lua code.

5. TOOL SUPPORT

In the case of AAIAsS, specializing the FiI, A3 framework
requires fixing the number and the layer structure of
CNs and writing their respective code blocks. It is
easy to automate the generation of the other parts of
a normal specialized Al implementation. So, to help
application developers in the creation of AIMs, we have
implemented a software tool, called Machine Creator, for
building them. Defining the layer structure of a machine
and inserting the required script code for the CNs can
easily be done via the graphical user interface (GUI)
offered by it. A screenhot of the Machine Creator GUI is
shown in Fig. 9.

After the structure of the machine under construction
has been defined and the desired content of the CNs has
been added, one can order the software to generate the
AIM in F I, A3 format. In the Machine Creator version
used in [7], the agent parameter value initializations had
to be added to the script files by hand, but nowadays,
an arbitrary initialization code can be added via the
GUI Everything else is generated automatically. The
tool support speeds up the machine creating process
considerably.

The Machine Creator tool has been implemented
using the Qt framework [14] in order to get an easily
portable tool for different platforms. It has been success-
fully used in Linux and Microsoft Windows environ-
ments.

Besides adding the possibility of giving the
initialization code via the GUI, we have improved the
Machine Creator tool in many other ways since [7]
was published. The GUI has been enhanced visually,
and alternative ways of performing actions have been
added. Nowadays, the Machine Creator can also load
the generated scripts from files for further modifications.
Moreover, a syntax checking feature has been added: the
tool can check the syntactical correctness of each code
block. This makes debugging — and in the first place,
generating bugless machines — considerably easier. Also
Lua syntax highlighting support was added for making
code-writing more pleasant and less error-prone.

Our AAIA approach would only have little use
without the Machine Creator: GUI, syntax checking,
and realization of our framework by automated code
generation are the means for trying to achieve our goal
of reducing the burden of AI developers. The time and



34

_ _ Machine Creator v. 1.5

Machine Name:

Proceedings of the Estonian Academy of Sciences, 2013, 62, 1, 27-38

if not check_basic_buildings() then

if basic_defences_ok then

SKIP=true if attack_count==0 then
return - print{"ATTACK COUNT 0, FREE TO
end = w
I 1t code o= g JTHER AN ASSAULT TEAM.")
= ather_assault_team()
th_ordered=false "

TestMachine

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

(debug) (check) (build) (troops) (exec.)

11 2.1 S 4.1 51
i = * M Bl cnsa =la] x I
resoi (8 gatherng a — | -
b thon .7 & --[[ T we have asked for the permission to attack,

l] the troops must also be ready. 1]

. CN11 = S| 42 SPECIAL NODE if perm then

- —— - |®K = | J ‘I print{"OK, This is it! ATTACK!")
print("round "..tostring(apina)) bosi denot | =1l 4 = ) ArﬂakaWit:FthtE(i) i
| @pina=apina+1 e - . N3 1 | (=] ! attack_count=attack_count+

—Otherwise a "reserve set” is generated...
AiForce(7,{"unit-archer”, 0, "unit-footman”, 0})
end

barracks_ordered=false
Im_ordered=false

goal_get lumber=true
goal_get_gold=false
goal_build=false

Code check OKi

rint("ALREADY ATTACKED!")

goal_gather_troops=false
goal_idle=false
goal_sttack=false

lumberjacks=0
builders=0
miners=0
general_workers=1

———

Fig. 9. The Machine Creator user interface.

work savings come from multiple sources; the main

benefits of using the tool (and our general approach) are

o the possibility of implementing scripts naturally, based
on temporal (decision-making etc.) flows;

o the easiness of locating the relevant pieces of code,
when necessary;

o the easiness of implementing agent personalization and
GOAP features;

e the savings obtained due to automation of imple-
menting logics related to the execution order;

e helper functions offered;

e syntax checking in the code block level; and

e casiness of writing code to be executed truly con-
currently®.

Of course, the actual savings in the amount of
work or time used when implementing an Al are highly
case-dependent. In some cases, our approach might
not offer any benefit, while in other cases, the savings
could be considerable. We do not try to make any
numerical comparison against conventional scripting, as
it is impossible to choose a generally applicable and fair
baseline; if some Al feature was fixed to be implemented
first conventionally and then with our tool, the results
would not mean much, as there are many ways to
solve a problem in either way. However, based on
our experiments (see Section 6), we claim that at least
in some cases using our AAIA approach and Machine
Creator is truly beneficial.

The size of the script code overhead generated for
structuring the AIMs and using them grows a (small)
constant amount for each CN and a constant amount
for each AIM. Compared to the size of the hand-written
code, the size of the automatically generated code may
be considerable with simple Al implementations with
several AIMs and CNs and negligible with complex
implementations with only a few AIMs and CNs. Ideally,
all the code written by the AI developer should be
“effective” and closely Al-related, but the exact number
of the lines of the code needed for some implementation
depends on the skills of the programmer and the chosen
way to use our tool.
We also have implemented another tool, called State
Machine Editor, for creating and modifying finite state
machines via a GUI and for generating Lua implementa-
tions automatically. The GUI is demonstrated in Fig. 10.
With this tool, our goals are to
e provide a visual view to the logics and thus help in the
design process and

espeed up the development: the time savings gained
by generating the state machine code automatically
are substantial.

The Qt framework has been used also for imple-
menting the State Machine Editor for the same reasons
as it was used in the Machine Creator implementation.
Also the State Machine Editor runs at least in Linux and
Microsoft Windows environments.

6 Tt is trivial to split the generated code to pieces to be run concurrently, and the GUI of the Machine Creator helps with

visualization of the code parallelization.



T. J. Heinimdiki and J.-M. Vanhatupa: Implementing Al: a generic approach with software support 35

File Edit View tings  Help

v A .]
8 x

~ | state Madne

m
2
o
=
sTa[s[=

type:
[C] sufficent Condition
[ Inhibitory

B X 1nitCode - 8 x

set_state("008","Stateliachine00]_State Attack”) D

W s,
BN [l = * X ?
categories:
Sleep.

< w ]

tate ) B

General | Execute | Enter | Exit create_agent("007")

=T set_property (1007

agent.hp = agent.hp + 1

o0’ teMachine001 State Attack”)

Loaded TT from fil i - working #tin125+16-341 ms.

Fig. 10. The State Machine Editor GUI.

6. EXAMPLE SCENARIOS

We have implemented three example scenarios by
specializing the FiI,A3 framework to test our AAIA
approach. The first one is a scenario called Gunslinger,
in which the PC plays a role of a sheriff in the situation
in which a group of bandits has stolen a chest full of
gold. The purpose of this scenario was to verify the
applicability of FjIpAj3 for its original intended task,
creating NPC Al implementations. (The problem domain
analysis considering the role of a sheriff is omitted here
for brevity because it is not crucial given our goal.)

The second scenario is called Gomoku. It was
implemented to demonstrate that it is possible to create
also a board game opponent Al using the framework.
The third scenario, Wargus Al, was implemented to
test the applicability of FiI,A3 for creating hierarchical
manager systems. We created a simple strategy manager
Al for playing a real-time strategy (RTS) game.

6.1. Gunslinger

In the Gunslinger scenario, initially there are five bandits
guarding a chest full of gold. All the bandits use the
same AIM, but differ in personal traits. Additionally,
one of the bandits is the leader of the group. The leader
can command the others, and the commandments are
normally obeyed.

State machines could have been used for this basic
operation of the bandits. However, the bandits are meant

to model human beings, and human beings have different
personal urges. For modelling these, AIMs are handy.
So, if some personal need of a bandit to do something,
for instance to flee, outweighs the authority of the leader,
the bandit can also commit “rebellious acts”.

The personalities of the bandits are modelled by
the following parameters: authority, bravery, alertness,
tiredness, and greed. The tiredness value grows as
time passes. The observations about the environment
affect also: the PC can be seen, as can be the gold
chest. Moreover, the bandits are aware of the casualties.
In this simple scenario, there are five possible actions
the bandits can perform: guarding, sleeping, attacking,
alarming, and fleeing. In addition, the leader can
command the others to perform these tasks.

As the game engine (providing the graphics, the
game loop, etc.) we used CAGE run in Ubuntu 10.04.
Attaching the AIM to it was trivial and required only
minor modifications as CAGE already was capable of
running Lua scripts. A screenshot, in which the PC is
attacking a bandit, is shown in Fig. 11a.

By using the Machine Creator tool, the implementa-
tion of the scenario, in which the individual charac-
teristics of the bandits are clearly reflected into their
behaviours, required roughly 40 hand-written lines of
Lua code for the CN logics. There were a total of
eight CNs forming an AIM used by all of the bandits.
The scenario implementation clearly demonstrated that
the Machine Creator tool and our approach in general
could be successfully used for speeding up NPC Al
implementations.



36 Proceedings of the Estonian Academy of Sciences, 2013, 62, 1, 27-38

key: 16777251

Options  Agents (2) Nodes (20) Edges (0) Routes (0) Real time:0 s
Coefficient 500

Sim time: 0.00 h

Start simulation

Latest selected node
" | capacity . change
Level Node type

Node table

I M| ©  Default | Y| 5> Add new node

Fig. 11. Screenshots from example scenarios: (a) the Gun-
slinger scenario, (b) the Gomoku scenario.

6.2. Gomoku

The FiIpAsz framework is meant to be a general-purpose
Al framework. Thus, it should be applicable not only
in creating the Als for NPCs, but also in creating
Als that could be used as opponents or co-players.
For demonstrating this, an Al for playing Gomoku
(also known as Five-in-a-row) was implemented. This
scenario was created for a self-made, general-purpose
simulator software run in Ubuntu 10.04. A screenshot
from a game between an AAIA and a human being is
shown in Fig. 11b.

The basic implementation is simple: all the possible
places for setting a counter are evaluated each round
and the one with the best evaluation score is chosen.
The scoring is based on the overall numbers of counters
in the horizontal, vertical, and diagonal rows around
the potential place and the lengths of continuous rows
around it. Immediate victory moves and the rows of three
counters with open ends are recognized as the special
cases.

For making the AI behave like a human, the
evaluation is affected by three parameters: ac, r, and

absent-mindedness
interest
tendency to get nervous
aggression
pedantry

absent-mindedness
interest ac
tendency to get nervous r
aggression asvm
pedantry

Fig. 12. Generating the playing parameters from the player
agent characteristics using an AIM.

asvm. Their values are evaluated for each ply of the
game, using a single AIM, as depicted in Fig. 12.
The “attacking coefficient” ac tells how strongly the
decisions are biased towards considering only the
agent’s own counters. If the value of ac is low,
the agent will play defensively considering mostly the
opponent’s possibilities of winning the game. Random-
ness coefficient r is used for making random mistakes
in the counter placement, and the parameter asvm
represents the ability to spot places leading to victory.

The base parameters for different player agents
are absent-mindedness, interest in playing the game,
tendency to get nervous during the game, aggression,
and general pedantry. By altering these initial values,
the playing style of an agent changes to reflect the given
characteristics.

The AIM uses only four CNs, each having only one
Lua line of code. In addition, some code was needed for
binding the parameter values to the actual game-playing
code. Still, the amount of the code and time for creating
an opponent Al was minimal, and the resulting Al seems
to work as expected.

Based on this scenario, the Al approach presented
in this paper seems to be suitable also for non-NPC
Al implementations. In this scenario, as well as in
the Gunslinger scenario, the benefit gained by using the
Machine Creator tool was obvious. Without using it,
the corresponding Al features would have required much
more time to be implemented.

6.3. Wargus Al

RTS games are often seen as ideal test-beds for Al
development. They offer a wide variety of challenges
to be coped with. Wargus is a clone/modification of the
well-known RTS game Warcraft II: Tides of Darkness
(Blizzard Entertainment 1995). Instead of the original
engine, Wargus runs on an open-source engine called
Stratagus. The Stratagus engine has been previously used
in different Al studies [13]. Therefore it seemed also to
be a relevant test environment for our framework and we
chose to implement a test scenario for it.



T. J. Heinimdiki and J.-M. Vanhatupa: Implementing Al: a generic approach with software support 37

Al system

i Executing level

—

——{ Economy manager AIM

Wargus
scripting

interface

Fig. 13. The structure of the Al system implemented for Wargus using AIMs.

We tested cascading and hierarchical use of AIMs
by creating an Al implementation for Wargus 2.2.6. It
tries to beat its opponent by gathering an attack force and
attacking the enemy relatively early in the game without
giving the enemy much time to prepare; i.e. it does not
rely on supremacy gained by developing technologies,
but on speed. The structure of the Al implementation is
depicted in Fig. 13.

The AI is two-tiered: there are command and
executing levels. The executing level consists of two
AIMS in a cascade. The first of them manages the
economy, i.e. recruits peasants for workforce and
gives orders about how to balance the efforts between
gathering different resources, like lumber or gold.
The second one issues orders related to constructing
buildings, gathering army, and organizing attacks. This
machine, however, is not allowed to work totally
autonomously, but it must ask permissions to proceed.
The command level consists of a single AIM that may
give or deny these permissions.

The three AIMs needed were constructed using the
Machine Creator. A total of 13 CNs were defined. The
normal approach for implementing an Al for Wargus
would have been writing a lengthy Lua script giving
different orders concerning different things. We, instead,
used such a normal Al script only for running our
machines (which were implemented, of course, also as
Lua scripts). Although the AI implemented was rather
simple, it still took hundreds of lines of code. Writing
and organizing it would have been more difficult without
using the Machine Creator tool, which let us organize
the code block execution with visual feedback, check
the syntactical validity of each block separately, and
split the total AI implementation into several simple
machines without practically any additional work: while
working already in a Lua scripting environment, the tool
was able to generate all the code needed to run the
machines automatically. Due to sharing the attribute
data between the AIMs of an AAIA — in this case, our
Wargus Al system — it is extremely easy to implement
systems requiring message-passing between different
components. This was also verified in implementing the
Wargus scenario. A screen capture taken along the way
of developing the Wargus Al using the Machine Creator
is shown in Fig. 9.

7. CONCLUSIONS

In this paper we presented a general Al approach suitable
for computer games and different kinds of simulations
using intelligent, autonomous agents. The approach
can ease the development of computer games containing
large virtual worlds considerably. A crucial part of the
contribution of this paper was introducing a new kind of
artificial intelligence machines.

The approach was organized into a framework.
Using the support offered by it, application developers
can define their agents and create living virtual worlds
with relatively little effort. The applicability of the
framework was tested by creating tools for specializing
it easily, and finally by implementing example scenarios.
The preliminary results are promising: we were able to
create believable and naturally behaving Als quickly and
easily.

7.1. Future work

The future work includes creating more different test
scenarios and honing the framework structure and the
Machine Creator tool based on the observations. We
intend also to conduct tests with the State Machine Editor
and demonstrate its usefulness. (This issue was left out
of this paper, as the focus was on AAIAs.)

ACKNOWLEDGEMENTS

This work was partly funded by the Academy of Finland,
partly by the Graduate School on Software Systems and
Engineering (SoSE), and partly by the Tampere Doctoral
Programme in Information Science and Engineering
(TISE). Also the Foundation of Nokia Corporation has
supported the work.

REFERENCES

1. Bourg, D. M. and Seemann, G. Al for Game Developers.
O’Reilly Media, Inc., 2004.



38

10.

Proceedings of the Estonian Academy of Sciences, 2013, 62, 1, 27-38

Brandstetter, W. E., Dye, M. P., Phillips, J. D., Porter-
field, J. C., Harris, F. C., Jr., and Westphal, B. T. SAI-
BOTS: scripted artificial intelligent basic online tank
simulator. In Proceedings of the 2005 International
Conference on Software Engineering Research and
Practice (SERP ’05). 2005, 793-799.

Buckland, M. Programming Game Al by Example. Word-
ware Publishing, Inc., 2005.

DePristo, M. A. and Zubek, R. being-in-the-world. In Pro-
ceedings of the 2001 AAAI Spring Symposium on
Artificial Intelligence and Interactive Entertainment.
2001, 31-34.

Doulin, A. Scripting your way to advanced Al In Al Game
Programming Wisdom. Vol. 4. Charles River Media,
2008, 579-591.

Fairclough, C., Fagan, M., Mac Namee, B., and
Cunningham, P. Research directions for ai in
computer games. In Proceedings of the Twelfth Irish
Conference on Artificial Intelligence and Cognitive
Science. 2001, 333-344.

Heiniméki, T. J. and Vanhatupa, J.-M. Layered artificial
intelligence framework for autonomous agents. In
Proceedings of the 12th Symposium on Programming
Languages and Software Tools (SPLST’11). 2011,
102-113.

Ierusalimschy, R., Celes, W., and de Figueiredo, L. H.
About.  http://www.lua.org/about.html  (accessed
20.09.2011).

Ierusalimschy, R., Celes, W., and de Figueiredo, L. H.
The programming language Lua. http://www.lua.org/
(accessed 20.09.2011).

Khoo, A., Dunham, G., Trienens, N., and Sood, S. Effi-
cient, realistic NPC control systems using behavior-
based techniques. In Proceedings of the AAAI 2002
Spring Symposium Series: Artificial Intelligence and
Interactive Entertainment. 2002, 46-51.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Lecky-Thompson, G. W. Al and Artificial Life in Video
Games. Course Technology (CENCAGE Learning),
2008.

Millington, 1. Artificial Intelligence for Games. The
Morgan Kaufmann Series in Interactive 3D
Technology. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 2006.

Ponsen, M. J. V., Lee-Urban, S., Muiioz-Avila, H.,
Aha, D. W,, and Molineaux, M. Stratagus: an open-
source game engine for research in real-time strategy
games. In Papers from the IJCAI 2005 Workshop
on Reasoning, Representation, and Learning in
Computer Games. 2005, 78-83.

Qt — cross-platform application and Ul framework.
http://qt.nokia.com/ (accessed 20.09.2011).

Shen, Z., Miao, C., Tao, X., and Gay, R. Goal oriented
modeling for intelligent software agents. In Proceed-
ings of IEEE/WIC/ACM International Conference on
Intelligent Agent Technology, 2004 (IAT 2004). 2004,
540-543.

Snavely, P. J. Custom tool design for game Al. Al Game
Programming Wisdom, 2006, 3, 3—12.

Sterling, L. and Taveter, K. The Art of Agent-Oriented
Modeling. Intelligent Robotics and Autonomous
Agents. The MIT Press, 2009.

Vanhatupa, J.-M. and Heinimiki, T. J. Scriptable artificial
intelligent game engine for game programming
courses. In Proceedings of Informatics Education
Europe IV (IEE IV 2009) (Hermann, C. et al., eds).
2009, 27-31.

White, W., Demers, A., Koch, C., Gehrke, J., and
Rajagopalan, R. Scaling games to epic proportions. In
Proceedings of the 2007 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’07.
ACM, New York, 2007, 31-42.

Tehisintellekti rakendus: iildine lihenemine koos tarkvaratoega

Teemu J. Heiniméki ja Juha-Matti Vanhatupa

Arvutimingude realiseerimisel on tdhtis genereerida virtuaalne maailm, keskkond, kus tegutseb suur hulk mitte-
méngijatest tegelasi. Nende tegelaste jaoks loodav tehisintellekt (TI) teostatakse tavaliselt skriptidena (stsenaariumi-
dena), mille koostamine on mingu realiseerijatele lisakoormuseks. Kasitsi kirjutatavate skriptide hulga vihendamiseks
pakume kéesolevas artiklis 1ihenemise ja vastava tarkvaratoe TI funktsionaalsuse projekteerimiseks. Meie ldhenemise
abil voib méanguviljale luua niiteks erinevate omadustega loomulikul viisil kdituvaid ja eesmirgile orienteeritud
autonoomseid agente. Vajalikud mdisted spetsifitseeritakse vastavas skriptikeeles ja kohe seejarel saabki agentide
konfiguratsioone kiiresti testida. On vilja arendatud TI keskkond ja skriptide kirjeldamise raamistik, mis sobib ka
iildotstarbelise tehisintellekti loomiseks ning vastavate skriptide automaatseks genereerimiseks. Artiklis on ldhenemise
rakendatavust ndidatud kolme néite varal.



