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Abstract. We present an infinitesimal interpretation of the control theory, particularly of the part concerning dynamic systems. We
use the original concept of a bundle connection, which lies in the idea of fibre transportation along a path on the base manifold. The
control of a process leads also to the transportation of fibres, and the control strategy, i.e. the choice of a suitable system control
in order to optimize the process corresponds to the choice of a path on the base manifold. The triple of crucial terms of control,
aim–control–strategy, translates in the terms of connections as fibre–connection–curve. Such a scheme is quite convincing, but it
also works well in dynamic systems analysis.
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1. INTRODUCTION

When controlling a system, we not only apply one control model but also try to find a more suitable control
model among the possible ones, i.e. we search the control strategy. We distinguish the following stages:
controlled process – control correction – strategy choice.

Let us describe the mathematical setting. Let X ,Y , and Z be three vector fields and let us denote by

at = exp tX , bσ = expσY, cτ = expτZ

the appropriate flows. If we understand the flow as a motion, the vector field can be seen as stopping the
motion at the precise moment (stop-scene). Shortly, a vector field is an infinitesimal representation of the
flow.

The flow cτ of the vector field Z represents the controlled process (it is also possible to replace it by a
transport of an arbitrary tensor field along the flow cτ ). Furthermore, the flow bσ acts on the vector field Z
flow cτ as follows; see [1,3]:

cτ Ã bσ cτb−1
σ , Z Ã Zσ .

This corresponds to the change of control. If in addition the flow at acts on bσ , we have a control strategy

bσ Ã atbσ a−1
t , Y Ã Yt .
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Concerning the strategy {X Ã {Y Ã Z}}, it is obtained as a composition of the action of bσ on cτ and the
action of at on bσ ,

cτ Ã bσ cτb−1
σ Ã (atbσ a−1

t )cτ(atbσ a−1
t )−1.

The vector field Y plays the role of the one controlled by the vector field X and the role of the controlling
field over Z.

The main goal of the paper is to describe the transformation of the parameters when the process Z is
changed according to the strategy appropriate to the vector field X under the action of the vector field Y .

2. VECTOR FIELDS

Let M be a smooth manifold. The derivatives of a function f : M → R along the vector fields X , Y , and Z
are defined by

X f .= ( f ◦at)′t=0, Y f .= ( f ◦bσ )′σ=0, Z f .= ( f ◦ cτ)′τ=0.

The vector field Y is transported along the flow of X , which can be understood as an infinitesimal
interpretation of such transportation (stop-scene) – the bracket of vector fields, i.e. Lie derivative LXY =
[X ,Y ].

Remark 1. One can obtain the bracket of two vector fields [X ,Y ] = XY −Y X by double differentiation of a
function f along the vector field flow atbσ a−1

t w.r.t. σ and then w.r.t. t:

f ◦ (atbσ a−1
t )−1 (.)′σ=0−→ −(

Y ( f ◦at)
)◦a−1

t
(.)′t=0−→ (XY −Y X) f .

Next, the transport of an arbitrary smooth tensor field along a vector field flow is defined by the Lie–
Maclaurin series. For example, the transport of a vector field Z along the flow bσ is defined by

Z Ã Zσ = Z +Z′σ +Z′′
σ2

2
+ . . . =

∞

∑
k=0

Z(k) σ (k)

k!
,

where the coefficients Z(k) = LY Z(k−1) , k = 1,2, . . . , are Lie derivatives of Z with respect to Y .
In our situation, the vector field X plays three roles:

1. The vector field X itself causes the process as a motion in its flow at .
2. The operator LX transforms the control Y Ã [X ,Y ].
3. The operator LLX defines the control strategy – control of control LY Ã [LX ,LY ] = L[X ,Y ]. Note that

the above equality can be obtained from the Jacobi identity:
[
[X ,Y ],Z

]
+

[
[Y,Z],X

]
+

[
[Z,X ],Y

]
= 0

or equivalently [
[X ,Y ],Z

]
=

[
X , [Y,Z]

]− [
Y, [X ,Z]

]
.

Note that the process can be influenced only by some outer process, not by it itself. Indeed, if we admit
that the operator LX acts on the control by the process X , we obtain:

LX X = [X ,X ] = 0.

We assign the following operators to the vector fields X ,Y , and Z:
1. the operator Z implementing the process (motion in the flow cτ );
2. the operator LY implementing the control of the process Z Ã [Y,Z] (motion of the flow cτ in the flow bσ );
3. the operator LLX defining the control strategy LY (motion in the flow at of a motion of the flow cτ in the

flow bσ ).
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3. CONTROL AND CONNECTION

We will follow the notations appropriate to the theory of connections on fibred manifolds; see, e.g., [1,4].
Let us consider a vector bundle π : M1 → M with n-dimensional base manifold M and r-dimensional

fibres. The standard fibre is isomorphic to Rr. On a neighbourhood U ⊂ M1 we have local coordinates
(ui,uα), where (ui) denotes the base coordinates and (uα) the fibre coordinates. Precisely, ui = ūi ◦π , where
ūi denotes the local coordinates on the neighbourhood π(U)⊂M. The coordinates (uα) are the coordinates
of Rr. Latin indices i, j, . . . range from 1 to n, Greek indices α,β , . . . range from n+1 to n+ r.

We define two vector fields:

Y = yα∂α and Z = zα∂α .

Here zα are the functions depending on the fibre coordinates uα only, while yα are the functions of all
coordinates (ui,uα). The flow bσ = expσY is defined on the neighbourhood U by a system of ODEs

duα

dσ
= yα(u i,uβ ). (1)

Indeed, now we can see the connection between dynamic systems, see [2], and the controlling parameters
(u i). As mentioned above, these parameters are lifted from the base π(U) ⊂ M to the neighbourhood
U ⊂M1, i.e. u i = ū i ◦π .

On every fibre, the vector field Y induces a family of trajectories – phase portrait. When the fibre is
changed, the vector field Y changes too and so does the phase portrait, i.e. the control {Y Ã Z}. A question
arises: how do the parameters (u i) affect the controlling process?

Let us consider the coordinate map

Φ : (u i,uα) Ã (u i,s, Iκ), k = n+2, . . . ,n+ r,

where s is a canonical parameter, i.e. LY s = 0, and Iκ is a system of r− 1 independent invariants of the
vector field Y . The coordinates (ui, Iκ) form a complete system of local invariants of Y on the manifold M1.
Now we can define the submersion of the manifold M1 onto the fibre Rr,

ϕ : M1 → Rr : (u i,uα) Ã (s, Iκ).

A fibre of the submersion ϕ has the dimension n and forms the family of the integral surfaces which define a
horizontal distribution 4h. Thus on the fibration π , a zero torsion connection structure 4h⊕4v is defined.
Let us consider the adapted basis

(Xi Xα) =
(

∂
∂u j

∂
∂uβ

)
·
(

δ j
i 0

Γβ
i δ β

α

)
,

(
ω i

ωα

)
=

(
δ i

j 0
−Γα

j δ α
β

)
.

(
du j

duβ

)
,

where the vector fields

Xi =
∂

∂ui +Γα
i

∂
∂uα

form a base of the distribution ∆h and the forms

ωα = duα −Γα
i du i

vanish on the distribution ∆h. The number of parameters Γα
i equals nr and they define the distribution

∆h uniquely. On the other hand, the parameters Γα
i are determined by setting the functions ϕα equal to a

constant on the fibres of the submersion ϕ , more precisely by their differentials:

dϕα = ϕα
i du i +ϕα

β duβ = ϕα
β (duβ + ϕ̄β

γ ϕγ
i du i) = ϕα

β ωβ =⇒ Γα
i = ϕ̄α

γ ϕγ
i ,

where the coefficients of dϕα are the partial derivatives of ϕα . The matrix (ϕα
β ) is the integrating matrix

with respect to the forms ωα and its inverse is (ϕ̄β
α ).
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Theorem 1. The vector field Y is projected by the submersion ϕ : M1 → Rr onto the vector field T ϕY on
the standard fibre Rr. In the coordinates (s, I), where s denotes the canonical parameter and I is a system

of the base invariants, the vector field T ϕY represents the operator ∂s
.=

∂
∂ s

. The vector field Z is expressed

uniquely in the basis (∂s,∂I) and the process controlled by Z is, in the coordinate system (s, I), described by
the functions s◦ϕ and I◦ϕ . These functions depend on the parameters uα and the controlling parameters ui.

Proof. A family of the fibres corresponding to the submersion ϕ is defined by the solution of the system
of differential equations (uα)σ = ϕα(σ ,u i,uβ ); see system (1). Furthermore, an arbitrary section of the
fibration π can be extended into the system of imprimitivity appropriate to the flow bs, i.e. the family
of the fibres corresponding to the submersion ϕ . The vector field Y is ϕ-projected on the fibre Rr. An
integrable distribution ∆h = KerT ϕ in the fibration π defines a zero curvature connection and thus on the
neighbourhood U the basis and the co-basis of the distribution ∆h is defined as follows:

Xi = ∂i +Γα
i ∂α , ωα = duα −Γα

i dui.

Let us recall that an arbitrary vector field X̄ on the base manifold M can be lifted from M to the horizontal
distribution ∆h :

X̄ = x̄i∂̄i Ã X = xiXi, where xi = x̄i ◦ϕ.

In our notations, the basis Xi represents the operators ∂̄i from the neighbourhood π(U) lifted to the
distribution ∆h.

It is now clear that the vector field X behaves with respect to the vector field Y as an infinitesimal
symmetry, i.e. [X ,Y ] = 0, and thus the impact on the vector field Y vanishes. In other words, the process
appropriate to the vector field Z is defined on the fibre in the coordinates (s, I), where the functions s◦ϕ and
I ◦ϕ depend on the parameters uα and the controlling parameters ui. The vector field X affects the vector
field Z indirectly by means of the invariants of the vector field Y .

Remark 2. The components yα of the vector field Y depend linearly and homogeneously on the fibre
coordinates. Thus the defining system is described by the system of linear differential equations

duα

dσ
= yα

β (u i)uβ .

4. APPLICATION

On the bundle1

π : R3 → R : (u,x,y) Ã (u)

with the fibre coordinates (x,y) and the controlling parameter (or base coordinate) (u) we have the vector
field

Y =
∂
∂x

+ux
∂
∂y

.

We define its flow bs = expsY , the canonical parameter s, and the invariant I of Y as follows:

{
ẋ = 1
ẏ = ux ⇒

{
xs = x+ s
ys = y+u(xs+ s2

2 ),

{
s = x
I = y− ux2

2 .

We check that LY s = 1,LY I = 0. The trajectories on the fibres are parabolas depending on the parameter u.

1 Here, for the sake of simplicity, we denote the local coordinates by (u,x,y) instead of (u1,u2,u3) but note that the fibre
coordinates (x,y) are in no way related to the components (xi,yα ) of the vector fields X and Y .



30 Proceedings of the Estonian Academy of Sciences, 2014, 63, 1, 26–32

The submersion ϕ : R3 → R : (u,x,y) Ã (s, I) projects the space R3 onto the plane sI. The tangent
mapping T ϕ is defined by the following differentials and by the Jacobi matrix:

{
ds = dx
dI =− x2

2 du−uxdx+dy,

(
0 1 0
− x2

2 −ux 1

)
.

The vector field Y with the components (0,1,ux) is projected to the plane sI in which it forms the operator
T ϕY = ∂s (see Fig. 1).

Thus on the bundle π a horizontal distribution

4h = KerT ϕ

is defined. The co-basis on 4h is of the form

{
ω2 = ds = dx = (dx−Γ2

1du)
ω3 = uxds+dI = dy− x2

2 du = (dy−Γ3
1du) ,

and the connection coefficients are (
Γ2

1
Γ3

1

)
=

(
0
x2

2

)
.

The adapted basis of the distribution 4h is characterized by the following:

X1 = ∂u +
x2

2
∂y,

(
ω2

ω3

)
=

(
dx
dy

)
−

(
0
x2

2

)
· (du) .

The operator X1 commutes with the vector field Y , i.e. [X1,Y ] = 0, and vanishes under the projection T ϕ ,
i.e. T ϕX1 = 0. The co-basis admits an integrating matrix as follows:

(
ω2

ω3

)
=

(
1 0
us 1

)
·
(

ds
dI

)
⇒

(
1 0
−ux 1

)
·
(

ω2

ω3

)
=

(
ds
dI

)
.
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Fig. 1. Mapping T ϕ : Y → ∂s.
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The direct impact of the parameter (u) on the operator Y is eliminated. Indeed, because the projection
ϕ targets on the fibre xy, it is possible to change the coordinates under the condition u = const from (x,y)
to (s, I), {

x = s
y = us2

2 + I ,

(
1 0
us 1

)
.

Using the Jacobi matrix (the right-hand side), we can change the basis to the new natural one and we obtain
the following frames and co-frames:

( ∂
∂x

∂
∂y

)
=

( ∂
∂ s

∂
∂ I

)
·
(

1 0
−us 1

)
,

(
dx
dy

)
=

(
1 0
us 1

)
·
(

ds
dI

)
.

Let us focus on the fibre. Note that the action of the vertical vector field Z can be understood as an action
on a tensor field. Concerning the action of the operator Y on the vector field Z in the form

Y Ã Z = µ
∂
∂x

+ν
∂
∂y

,

with the components (µ,ν), we can see that in new coordinates it reduces to the action of the operator ∂s on
the vector field Z̃ depending on the parameter u only:

∂s Ã Z̃ = µ∂s +ν∂I −uµs∂I .

Note that Z and Z̃ are the same vector field, only expressed in the coordinates (x,y) and (s, I), respectively.
The operators T ϕY and ∂s are the same operators expressed in different coordinate systems.

Thus we change the control:

{Y Ã Z } Ã {∂s Ã Z̃ }.

Remark 3. As an example, let us consider the operator of rotation

Z =−y
∂
∂x

+ x
∂
∂y

.

In coordinates (s, I), it can be written in the form Z̃ =−I∂s + s∂I +u(...), i.e. in such a form that some new
operator with coefficient u is added. Such a property holds for an arbitrary linear dynamic system.

The control {Y Ã Z } is described in the coordinates (x,y), while the control {∂s Ã Z̃ } is expressed in
the coordinates (s, I). The parameter u affects the controlled field Z̃ directly.

5. CONCLUSION

The control of a dynamic system is viewed by means of differential geometry as the vector field Y on the
bundle π : M1 →M with the standard fibre Rr and the base manifold M = Rn. The submersion ϕ is defined
in such a way that the vector field Y is projected to the fibre Rr. The distribution 4h = KerT ϕ gives rise
to the possibility of eliminating the dependence of the vector field Y on the controlling parameter u. The
change of variables to (s, I), where s is the canonical parameter and I is the invariant of the field Y , changes
the control (Y → Z) to the control {∂s Ã Z̃ }, where the field ∂s no longer depends on the parameter u while
the controlled field Z̃ does so.
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Seostused juhtimise teoorias

Maido Rahula ja Petr Vašı́k

Juhtimisel on kolm aspekti: juhitav protsess, juhtiv protsess ja juhtimise valik/strateegia. Matemaatiliseks
mudeliks on kihtkond, kus seostus mõjutab toimuvat kihil, ja baasiparameetrid, millest sõltub seostus. Need
määravad juhtimise strateegia. Osutub, et baasiparameetreid võib seostuse abil otsekohe kihile suunata, st
juhtivast protsessist juhitavasse.


