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Abstract. The observability property of the nonlinear system, defined on a homogeneous time scale, is studied. The observability
condition is provided through the notion of the observable space. Moreover, the observability filtration and observability indices
are defined and the decomposition of the system into observable/unobservable subsystems is considered.
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1. INTRODUCTION

The theory of dynamical systems on time scales is a new and popular research area. From a modelling point
of view, dynamical systems on time scales incorporate both the continuous- and discrete-time systems as
special cases, allowing us to unify the study and consider the classical results as special cases of the new
theory. However, it is important to note that the discrete-time model in the time scale formalism is given in
terms of the difference operator, and not in terms of the more conventional shift operator as, for example,
in [1–3,13]. The difference-based models, often referred to as delta-domain models, are not completely
new for the description of discrete-time systems. They have been promoted during the last 20 years as the
models closely linked to continuous-time systems, being less sensitive to round-off errors at higher sampling
rates [12,20].

The properties (including observability) of linear systems, defined on time scales, were studied, for
instance, in [5] and [11]. In [4] the algebraic formalism in terms of differential one-forms has been developed
for the study of nonlinear control systems defined on homogeneous time scales and used later to study
different problems like transfer equivalence, irreducibility, reduction, and realization of nonlinear input-
output equations [7,17,18]. The formalism constructs the vector space of differential one-forms, defined
over the differential field of meromorphic functions, associated with the control system. In the present
paper we apply this formalism to define and construct the observable space for the nonlinear control system
on a homogeneous time scale and define the observability indices of the system. Moreover, we provide
the necessary and sufficient condition to check the single-experiment observability1 of the system using

∗ Corresponding author, vkaparin@cc.ioc.ee
1 The multi-experiment observability of nonlinear control systems, defined on time scales, was studied in [22].
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the notion of the observable space. Finally, we discuss the possibility of decomposing the system into
observable/unobservable subsystems.

The paper is organized as follows. Preliminary information about the time scale calculus and algebraic
framework is given in Section 2. The notions of observability, observability filtration, observable space,
and observability indices are provided in Section 3. In Section 4 the decomposition of the system into
observable/unobservable subsystems is studied. Section 5 provides brief conclusions.

2. PRELIMINARIES

2.1. Time scale calculus

For a general introduction to the time scale calculus see [6]. Here we recall only those notions and facts
that we need in this paper, in particular, the concept of delta derivative for real function defined on a
homogeneous time scale.

A time scale T is an arbitrary nonempty closed subset of the set R of real numbers. The standard cases
comprise the continuous-time case, T = R, and the discrete-time cases, T = Z and T = τZ for τ > 0. We
assume that T is a topological space with the topology induced byR. In the definition of the delta derivative,
the so-called forward jump operator plays an important role. For t ∈T the forward jump operator σ :T→T
is defined by

σ(t) := inf{s ∈ T | s > t} ,

while the backward jump operator ρ : T→ T is defined by

ρ(t) := sup{s ∈ T | s < t} .

In this definition we set in addition σ(maxT) = maxT if there exists a finite maxT. Obviously σ(t) is in
T when t ∈ T. This is because of our assumption that T is a closed subset of R. The graininess functions
µ : T→ [0,∞) and ν : T→ [0,∞) are defined by µ(t) := σ(t)− t and ν(t) := t−ρ(t), respectively. A time
scale T is called homogeneous2 if µ = ν ≡ const. Let Tκ denote a truncated set consisting of T except for a
possible maximal point such that ρ(maxT) < maxT.

Definition 2.1. Let f :T→R and t ∈Tκ . The delta derivative of f at t, denoted by f ∆(t), is the real number
(provided it exists) with the property that given any ε > 0, there is a neighbourhood U = (t−δ , t +δ )∩T
(for some δ > 0) such that

|( f (σ(t))− f (s))− f ∆(t)(σ(t)− s)| ≤ ε|σ(t)− s|

for all s ∈U. Moreover, we say that f is delta differentiable on Tκ , provided f ∆(t) exists for all t ∈ Tκ .

Example 2.2.
• If T= R, then µ(t)≡ 0 and the delta derivative is the ordinary time derivative.
• If T= τZ, τ > 0, then µ(t) = τ and f ∆(t) = f (σ(t))− f (t)

µ(t) = f (t+τ)− f (t)
τ is the difference operator.

For a function f : T→ R one can define the 2nd delta derivative f [2] :=
(

f ∆)∆ : Tκ2 → R provided
that f ∆ is delta differentiable on Tκ2

:= (Tκ)κ . In a similar manner one defines higher-order delta

derivatives f [n] :=
(

f [n−1]
)∆

: Tκn → R, where Tκn
=

(
Tκn−1

)κ
, n≥ 1. For notational convenience, denote

f [i...n] :=
(

f [i], . . . , f [n]
)
, for 0≤ i≤ n and f [0] := f .

2 Although the closed interval [a,b] is also an example of a homogeneous time scale, we restrict our consideration to infinite
homogeneous time scales T= R and T= τZ for τ > 0.
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2.2. Algebraic framework

In this subsection we recall some notions and facts from [4], necessary for our study.
Consider a multi-input multi-output (MIMO) nonlinear control system, defined on the homogeneous

time scale T, and described by the state equations

x∆ = f (x,u),
y = h(x),

(1)

where x : T→ X⊂ Rn is an n-dimensional state vector, u : T→ U⊂ Rm is an m-dimensional input vector,
and y : T→Y⊂Rp is a p-dimensional output vector. Moreover, f :X×U→X and h :X→Y are assumed
to be real analytic functions.

Remark 2.3. Note that we are focusing neither on local nor global, but on the generic properties of the
system, i.e. the properties that hold almost everywhere, except on a set of measure zero. Although the
notion of generic property does not make sense, in general, for systems defined by C∞ functions, the choice
of analytic functions allows us to employ the generic approach. Morover, unlike the ring of C∞ functions,
the ring of analytic functions is integral domain, meaning that it can be embedded into its quotient field
whose elements are meromorphic functions.

Assume that the map (x,u) 7→ f̃ (x,u) := x+ µ f (x,u) generically defines a submersion, i.e. generically

rank
∂ f̃ (x,u)
∂ (x,u)

= n (2)

holds. Assumption (2) is not restrictive, since it is a necessary condition for system accessibility [13] and
is always satisfied in the case of µ ≡ 0. Consider the infinite set of (independent) real indeterminates
C := {xi, i = 1, . . . ,n; u[k]

υ , υ = 1, . . . ,m, k ≥ 0}. Let K denote the field of meromorphic functions in a
finite number of variables from the set C . Thus for each F ∈K there is k≥ 0 such that F depends on x and
u[0...k]. Let σ f : K →K be the forward shift operator defined by

Fσ f
(

x,u[0...k+1]
)

:= F
(

x+ µ f (x,u),u[0...k] + µu[1...k+1]
)

.

Under the submersivity assumption, σ f is injective endomorphism and so the operator σ f is well defined on
K (see [4]). Furthermore, define the operator ∆ f : K →K by

F∆ f
(

x,u[0...k+1]
)

=





Fσ f
(
x,u[0...k+1]

)−F
(
x,u[0...k]

)

τ
if T= τZ,τ > 0,

∂F
∂x

(
x,u[0...k]

)
f (x,u)+ ∑

k≥0

∂F
∂u[0...k]

(
x,u[0...k]

)
u[1...k+1] if T= R.

Proposition 2.4. Let F : K →K , G : K →K . The delta derivative satisfies the following properties:
(i) Fσ f = F + µF∆ f ,

(ii) (αF +βG)∆ f = αF∆ f +βG∆ f , f or α,β ∈ R,
(iii) (FG)∆ f = Fσ f G∆ f +F∆ f G (generalization of the Leibniz rule),
(iv) on a homogeneous time scale operators ∆ f and σ f commute, i.e.

(Fσ f )∆ f =
(
F∆ f

)σ f
.

An operator ∆ f satisfying the rule (iii) of Proposition 2.4 is called a σ f -derivation [9]. A commutative
field endowed with a σ f -derivation is called a differential field. The field K is endowed with a σ f -
differential structure determined by system (1), and there exists the differential overfield K ∗, called the
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inversive closure of K . In [4] the construction of the inversive closure K ∗ for system (1) is given. The
extension of σ f to K ∗ is an automorphism [9].

Consider the infinite set of symbols dC = {dxi, i = 1, . . . ,n; du[k]
υ , υ = 1, . . . ,m, k≥ 0} and denote by E

the vector space over the field K ∗ spanned by the elements of dC , namely

E = spanK ∗dC .

Any element of E has the form

ω =
n

∑
i=1

Aidxi + ∑
k≥0

m

∑
υ=1

Bυkdu[k]
υ ,

where only a finite number of coefficients Bυk are nonzero elements of K ∗. The elements of E will be
called the differential one-forms.

Let us define the operator d : K ∗→ E as follows:

dF
(

x,u[0...k]
)

:=
n

∑
i=1

∂F
∂xi

(
x,u[0...k]

)
dxi +

k

∑
l=0

m

∑
υ=1

∂F

∂u[l]
υ

(
x,u[0...k]

)
du[l]

υ . (3)

Let ω = ∑i Aidζi be a one-form, where Ai ∈ K ∗ and ζi ∈ C . We define the operators ∆ f : E → E and
σ f : E → E by

ω∆ f := ∑
i

(
A∆ f

i dζi +Aσ f
i d

(
ζ ∆ f

i

))
(4)

and
ωσ f := ∑

i
Aσ f

i d
(

ζ σ f
i

)
.

Since Aσ f
i = Ai + µA∆ f

i ,

ω∆ f = ∑
i

(
A∆ f

i dζi +
(

Ai + µA∆ f
i

)
d
(

ζ ∆ f
i

))
.

One says that ω ∈ E is an exact one-form if ω = dF for some F ∈K ∗. A one-form ω for which dω = 0
is said to be closed. It is well known that exact forms are closed, while closed forms are only locally exact.
Integrability of the subspace of one-forms may be checked by the Frobenius theorem below, where the
symbol dωi means the exterior derivative of one-form ωi and ∧ means the exterior or wedge product (for
details see [8]).

Theorem 2.5. ([8]). Let V = spanK ∗{ω1, . . . ,ωr} be a subspace of E . The subspace V is integrable if and
only if

dωi∧ω1∧·· ·∧ωr = 0

for any i = 1, . . . ,r.

3. OBSERVABILITY AND OBSERVABLE SPACE

Frequently the observability rank condition is used to check whether the continuous-time nonlinear system
is locally weakly observable [10,14]. This condition is sufficient for an arbitrary initial state and necessary
for almost all initial states. Thus, we introduce the definition of observability for nonlinear systems, defined
on homogeneous time scales, through the observability rank condition.

Definition 3.1. System (1) is called generically (single-experiment) observable if the rank of the observ-
ability matrix is generically equal to n, i.e. if

rankK ∗


∂

(
h1,h

∆ f
1 , . . . ,h[n−1]

1 , . . . ,hp,h
∆ f
p , . . . ,h[n−1]

p

)

∂x


 = n. (5)
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Observe that h
σ k

f
ν :=

(
h

σ k−1
f

ν

)σ f

for k ≥ 2 and take into account that for T= τZ, τ > 0 the higher-order

delta derivative can be computed explicitly as

h[i]
ν =

1
τ i

i

∑
k=0

(−1)kCk
i h

σ i−k
f

ν , (6)

where Ck
i is the binomial coefficient, i.e. Ck

i = i!
(i−k)!k! .

Proposition 3.2. For T= τZ, τ > 0, the following holds:

rankK ∗




∂
(

h1,h
∆ f
1 , . . . ,h[n−1]

1 , . . . ,hp,h
∆ f
p , . . . ,h[n−1]

p

)T

∂x




= rankK ∗




∂
(

h1,h
σ f
1 , . . . ,h

σn−1
f

1 , . . . ,hp,h
σ f
p , . . . ,h

σn−1
f

p

)T

∂x


 . (7)

Proof. Using (6), the arbitrary row of the left-hand side matrix in (7) may be rewritten as

∂h[i]
ν

∂x
=

1
τ i

i

∑
k=0

(−1)kCk
i ·

∂h
σ i−k

f
ν

∂x

for ν = 1, . . . , p and i = 1, . . . ,n−1. Separating the first addend of the above sum yields

∂h[i]
ν

∂x
=

1
τ i


∂h

σ i
f

ν
∂x

+
i

∑
k=1

(−1)kCk
i ·

∂h
σ i−k

f
ν

∂x


 .

Now the sum ∑i
k=1 in the above equality is the linear combination of the previous rows of the matrix and

therefore can be removed without changing the rank of the matrix. Since ∂h
σ i

f
ν /∂x is the row of the right-

hand side matrix of (7) for i = 1, . . . ,n−1, the statement of the proposition holds.

Remark 3.3. Since for T = R the delta derivative coincides with the classical time derivative, the
condition (5) is equivalent to the observability rank condition in [10]. By Proposition 3.2 in the discrete-time
case the condition (5) is equivalent to the observability rank condition given in [16].

Although Definition 3.1 may be applied to check observability, it is easier to be done using a concept
of observable space like in the continuous-time case [10]. Moreover, the observable space, if integrable,
allows us to decompose the system into observable/unobservable subsystems. In the remaining part of this
section we extend the concept of observable space to the case of (MIMO) systems, defined on homogeneous
time scales, and, using the notion of observable space, provide the necessary and sufficient observability
condition.

Given system (1), denote by X , Y k, Y , and U the following subspaces of differential one-forms:

X := spanK ∗{dx},
Y k := spanK ∗

{
dh[ j]

ν ,ν = 0, . . . , p,0≤ j ≤ k
}

,

Y := spanK ∗
{

dh[ j]
ν ,ν = 0, . . . , p, j ≥ 0

}
,

U := spanK ∗
{

du[l]
υ ,υ = 1, . . . ,m, l ≥ 0

}
.

(8)
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By analogy with [10], the finite chain of subspaces

0⊂O0 ⊂O1 ⊂ ·· · ⊂Ok ⊂ ·· · ⊂Ok∗−1 = Ok∗ =: O∞, (9)

where
Ok := X ∩

(
Y k +U

)
, (10)

is called the observability filtration. Denote by O∞ the limit of the observability filtration. It is easy to see
that

O∞ = X ∩ (Y +U )

and analogously with [10] we call the subspace O∞ of X the observable space3 of system (1). The
unobservable space of system (1), denoted by XŌ, is defined as a subspace of X , which satisfies

XŌ
∼= X /O∞, XŌ⊕O∞ = X ,

where X /O∞ denotes the factor-space.
From (8), taking into account (3) and using the linear transformations, one obtains

Y k +U = spanK ∗

{
∂h[ j]

ν
∂x

dx,ν = 1, . . . , p,0≤ j ≤ k;du[l]
υ ,υ = 1, . . . ,m, l ≥ 0

}
.

Consequently, according to (10),

Ok = spanK ∗

{
∂h[ j]

ν
∂x

dx,ν = 1, . . . , p,0≤ j ≤ k

}
, (11)

yielding

O∞ = spanK ∗

{
∂h[ j]

ν
∂x

dx,ν = 1, . . . , p, j ≥ 0

}
.

Before studying the properties of the observable space we provide Lemma 3.4. Denote the one-forms which

generate the observable space O∞ as ων , j := ∂h[ j]
ν

∂x dx for ν = 1, . . . , p, j ≥ 0 and arrange them in the form of
the following matrix:

Ω =




ω1,0 ω1,1 ω1,2 · · ·
ω2,0 ω2,1 ω2,2 · · ·

...
...

...
ωp,0 ωp,1 ωp,2 · · ·


 .

Also denote the arbitrary row of the above matrix by Ων .

Lemma 3.4. If Ων contains the one-form ων,i, which is a linear combination of the former one-forms
ων,0, . . . ,ων ,i−1 from Ων , then the next one-forms ων, j for j > i can also be represented as a linear
combination of the one-forms ων ,0, . . . ,ων ,i−1.

The proof of Lemma 3.4 is given in the Appendix.

The proposition below describes the property of the subspace O∞.

Proposition 3.5.

dimK ∗ O∞ = rankK ∗


∂

(
h1,h

∆ f
1 , . . . ,h[n−1]

1 , . . . ,hp,h
∆ f
p , . . . ,h[n−1]

p

)

∂x


 .

3 Note that O∞ is in general not the observation space as in [23], associated with the concept of the multi-experiment
observability.
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Proof. Represent the observable space as

O∞ = O1
∞ +O2

∞ + · · ·+O p
∞,

where Oν
∞ is generated by the elements of Ων . Since Oν

∞ ⊆ O∞ ⊆ X and, as a consequence, dimOν
∞ ≤

dimO∞ ≤ dimX = n, it is enough to use n independent differential one-forms ων , j to generate Oν
∞.

Lemma 3.4 guarantees that the first n one-forms ων , j, 0≤ j ≤ n−1, span the subspace Oν
∞. Consequently,

spanK ∗

{
∂h[ j]

ν
∂x

dx,ν = 1, . . . , p, j ≥ 0

}
= spanK ∗

{
∂h[ j]

ν
∂x

dx,ν = 1, . . . , p,0≤ j ≤ n−1

}
.

Thus, the rows of the observability matrix


∂

(
h1,h

∆ f
1 , . . . ,h[n−1]

1 , . . . ,hp,h
∆ f
p , . . . ,h[n−1]

p

)

∂x


 (12)

with n columns can be regarded as the representation of the elements of the codistribution O∞. Therefore,
the number of linearly independent vectors of O∞, i.e. dimK ∗ O∞, can be found as the rank of the matrix
(12).

The following theorem is a direct consequence of Definition 3.1 and Proposition 3.5 and provides the
characterization of the observability of the system.

Theorem 3.6. A system (1) is (single-experiment) observable if and only if O∞ = X .

Example 3.7. Consider the continuous-time model of unicycle [10] and its discrete-time approximation,
based on the Euler sampling scheme, as a single model defined on the homogeneous time scale T:

x∆
1 = u1 cosx3,

x∆
2 = u1 sinx3,

x∆
3 = u2,

y1 = x1,

y2 = x2.

(13)

Using (11), the observability filtration (9) of system (13) may be computed as follows:

O0 = spanK ∗ {dx1,dx2} ,

O∞ = O1 = spanK ∗ {dx1,dx2,dx3} .

Since the observable space O∞ = X , the system is observable. Alternatively, one may check that direct
application of Definition 3.1 yields the same result but requires more computations:

rankK ∗


∂

(
h1,h

∆ f
1 ,h[2]

1 ,h2,h
∆ f
2 ,h[2]

2

)

∂x


 = rankK ∗




1 0 0
0 0 −u1 sinx3
0 0 a
0 1 0
0 0 u1 cosx3
0 0 b




= 3,
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where

a :=





u1 sinx3−
(
u1 + τu∆

1
)

sin(τu2 + x3)
τ

if T= τZ,τ > 0,

−u1u2 cosx3− u̇1 sinx3 if T= R,

b :=




−u1 cosx3 +

(
u1 + τu∆

1
)

cos(τu2 + x3)
τ

if T= τZ,τ > 0,

−u1u2 sinx3 + u̇1 cosx3 if T= R.

Given a system of the form (1), its observability filtration (9), like in the continuous-time case [10],
defines a set of structural indices σ j for j = 1, . . . ,k∗ by

σ1 = dimK ∗ O0,

σ j = dimK ∗ (O j−1/O j−2) , j = 2, . . . ,k∗.
(14)

Another set of indices si, for i = 1, . . . , p, being dual to the set
{

σ j, j = 1, . . . ,k∗
}

, is defined by

si = card
{

σ j | σ j ≥ i
}

and called the set of observability indices of system (1). The integer σ j represents the number of observ-
ability indices si which are greater than or equal to j, and duality implies that σ j = card{si | si ≥ j}.

Observability indices determine how many delta derivatives of the respective output components one
needs to use for computation of the initial state x on the basis of the inputs and outputs and their delta
derivatives. The following proposition describes the key property of the observability indices.

Proposition 3.8. Given a system of the form (1), one has

dimK ∗ O∞ = s1 + · · ·+ sp.

Proof. Note that dimK ∗ (O j−1/O j−2) = dimK ∗ O j−1−dimK ∗ O j−2. Using (14), one can write

k∗

∑
j=1

σ j =
k∗

∑
j=1

dimK ∗ O j−1−
k∗

∑
j=2

dimK ∗ O j−2. (15)

Separating the last addend of the first sum in the right-hand side of (15), replacing in this sum index j by
j−1, and taking into account that Ok∗−1 = O∞, we obtain

k∗

∑
j=1

σ j = dimK ∗ O∞ +
k∗

∑
j=2

dimK ∗ O j−2−
k∗

∑
j=2

dimK ∗ O j−2 = dimK ∗ O∞. (16)

The relation between indices σ j and si can be expressed by means of a k∗× p table, whose ( j, i)th element
is defined by ( j = 1, . . . ,k∗ pointing to the row and i = 1, . . . , p to the column)

a j,i =

{
1, 1≤ i≤ σ j,

0, (σ j +1)≤ i≤ p,
=

{
1, 1≤ j ≤ si,

0, (si +1)≤ j ≤ k∗.

Thus, the indices σ j and si are the sums of elements in the jth row and ith column, respectively, i.e.

σ j =
p

∑
i=1

a j,i, si =
k∗

∑
j=1

a j,i. (17)
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Taking (16) and (17) into account, one obtains

p

∑
i=1

si =
p

∑
i=1

k∗

∑
j=1

a j,i =
k∗

∑
j=1

σ j = dimK ∗ O∞,

which completes the proof.

Example 3.9. (Continuation of Example 3.7). One has σ1 = 2, σ2 = 1 and so the observability indices are
s1 = 2, s2 = 1. Taking delta derivatives of y1 and y2 up to the orders s1−1 and s2−1, respectively, we obtain
y1 = x1, y∆

1 = u1 cosx3, y2 = x2, yielding

x1 = y1,

x2 = y2,

x3 = arccos
y∆

1
u2

.

4. DECOMPOSITION

For certain applications it will be useful to have system representations in which observable and
unobservable state variables can be explicitly distinguished. For a continuous-time nonlinear control system
the decomposition into observable/unobservable subsystems has been carried out both via differential
geometric [15,21] and linear algebraic methods [10] and is proved to be always possible. For example,
in [10] the decomposition was first carried out for a linearized system defined in terms of one-forms, and
then, it was proved that the observable subspace of differential one-forms is always (generically) integrable.
Therefore, the observable subspace of one-forms can be (at least locally) spanned by exact one-forms whose
integrals define the observable state coordinates. As demonstrated in [16], for the discrete-time nonlinear
control systems described in terms of the shift operator σ f the decomposition at the level of equations (state
variables) is not always possible since the observable space of one-forms is not necessarily completely
integrable. Moreover, the paper [19] provides a general subclass of systems with a non-integrable observable
subspace.

The purpose of this section is to study the possibility of decomposing the nonlinear control system
defined on a homogeneous time scale into observable and unobservable subsystems. Since the delta-domain
model obtained via sampling [12] behaves similarly to the continuous-time system and at the limit, when
the sampling frequency increases infinitely, approaches the continuous-time system, it was our working
hypothesis that the delta-domain models are, in general, decomposable into observable/unobservable parts.
This would mean that the respective observable space O∞, as a space of differential one-forms, is completely
integrable. In [10] the observable space O∞ is proved to be integrable in the case of µ ≡ 0 (T = R).
Unfortunately, unlike the case T= R for the case T= τZ, τ > 0, O∞ is not necessarily integrable. We give
a number of counterexamples.

Example 4.1. Consider the control system, defined on a homogeneous time scale:

x∆
1 = x3 +ux3− x1,

x∆
2 = u− x2,

x∆
3 = ux1− x3− x2,

y = x3.

(18)

By (9), for this system, O∞ = O2 = spanK ∗
{

dx3,2dx2 +
(
u∆−µu∆−2u

)
dx1,dx2 − udx1

}
. If T = R,

then µ ≡ 0 and obviously4, O∞ = X . If T = τZ, τ > 0, then O∞ = X , except for the case µ =
4 Of course, for µ ≡ 0 the result also follows from continuous-time theory [10].
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τ = 1 where O∞ = spanK ∗ {dx3,dx2−udx1}, which is a non-integrable subspace by Theorem 2.5, since
d(dx2−udx1)∧dx3∧ (dx2−udx1) = du∧dx1∧dx2∧dx3 6= 0.

The next example demonstrates that the loss of integrability does not necessarily occur only at µ = 1.

Example 4.2. Consider the system
x∆

1 = x2− x1

3
,

x∆
2 = ux1 + x3− x2,

x∆
3 = eu2x1+ux3 − x3

3
,

y = x2.

(19)

The observable space of the system

O∞ = O2 = spanK ∗

{
dx2,udx1 +dx3,

(
u∆− µu∆

3

)
dx1

}
.

Like in the previous example, ifT=R, then µ ≡ 0 and O∞ = X . If T= τZ, τ > 0, then O∞ = X , except for
the case µ = τ = 3 where O∞ = spanK ∗ {dx2,udx1 +dx3}, again non-integrable by the Frobenius theorem.

Finally, we provide an example of the system for which the observable space O∞ is integrable for every
choice of the value of µ .

Example 4.3. Consider the system

x∆
1 = tan(x1− x2)u1,

x∆
2 = u1 tan(x1− x2)−u2 cos2(x1− x2),

x∆
3 = u1,

y1 = x3,

y2 = x1− x2.

(20)

The observable space O∞ = O0 = spanK ∗ {dx1−dx2,dx3} is obviously integrable by direct inspection.

To conclude, we conjecture that the observable space O∞ is in general integrable, except for a few
possible µ values where these values correspond to the sampling frequencies at which the state transition
map of the sampled system is not reversible. The following example illustrates this conjecture.

Example 4.4. (Continuation of Examples 4.1–4.3). The state transition map of system (18) is

x+
1 = µ (x3 +ux3− x1)+ x1,

x+
2 = µ (u− x2)+ x2,

x+
3 = µ (ux1− x3− x2)+ x3,

(21)

where we use the notation x+ := x(t + µ). In order to check the reversibility of the system, one needs to
verify whether the Jacobian matrix ∂ f̃ (x,u)/∂x is nonsingular. The Jacobian matrix of system (21) is

∂ f̃ (x,u)
∂x

=




1−µ 0 µ(1+u)
0 1−µ 0

µu −µ 1−µ


 .

One can verify that the above matrix is singular for µ = 1, implying that the state transition map (21) is
not reversible at the sampling frequency equal to 1. Next, consider the state transition map of system (19),
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which reads as
x+

1 = µ
(

x2− x1

3

)
+ x1,

x+
2 = µ (ux1 + x3− x2)+ x2,

x+
3 = µ

(
eu2x1+ux3 − x3

3

)
+ x3.

(22)

The Jacobian matrix of system (22), i.e.

∂ f̃ (x,u)
∂x

=




1− µ
3 µ 0

µu 1−µ µ
eu(ux1+x3)µu2 0 1− µ

3 + eu(ux1+x3)µu


 ,

is singular for µ = 3. Consequently, the state transition map (22) is not reversible at the sampling frequency
equal to 3. Finally, the state transition map of system (20) is

x+
1 = µ tan(x1− x2)u1 + x1,

x+
2 = µ

(
u1 tan(x1− x2)−u2 cos2(x1− x2)

)
+ x2,

x+
3 = µu1 + x3

(23)

and its Jacobian matrix reads as

∂ f̃ (x,u)
∂x

=




1+ µu1
cos2(x1−x2)

−µu1
cos2(x1−x2)

0
a 1−a 0
0 0 1


 ,

where a := µ
(

u1
cos2(x1−x2)

+u2 sin(2(x1− x2))
)

. One can verify that the above matrix is nonsingular for any
µ ≡ const, meaning that the state transition map (23) is reversible at any sampling frequency. To conclude,
comparing the above result with those presented in Examples 4.1–4.3, one can observe the consistency of
the sampling frequencies at which the state transition maps are not reversible and the values of µ for which
the observable spaces O∞ are not integrable. These examples support our conjecture.

If O∞ is integrable, and therefore, has locally an exact basis {dζ1, . . . ,dζr}, one can complete the set
{dζ1, . . . ,dζr} to a basis {dζ1, . . . ,dζr,dζr+1, . . . ,dζn} of X . Then, in the coordinates {ζ1, . . . ,ζn}, the
system can be decomposed into observable and unobservable subsystems

ζ ∆
1 = f1 (ζ1, . . . ,ζr,u) ,

...

ζ ∆
r = fr (ζ1, . . . ,ζr,u) ,
y = h(ζ1, . . . ,ζr)

and

ζ ∆
r+1 = fr+1 (ζ ,u) ,

...

ζ ∆
n = fn (ζ ,u) ,

respectively.
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Example 4.5. (Continuation of Example 4.3). Integrating the observable space O∞ of the system, we get
the set of the observable state variables ζ1 = x1 − x2 and ζ2 = x3. Next we complete this set to a basis
{ζ1,ζ2,ζ3} of R3, taking, for example, ζ3 = x1. In these coordinates the system equations read as

ζ ∆
1 = u1,

ζ ∆
2 = u2 cos2 ζ2,

ζ ∆
3 = u1 tanζ2,

y1 = ζ1,

y2 = ζ2,

where the first two equations (together with the output equations) define the observable subsystem. The
state ζ3 is unobservable.

5. CONCLUSIONS

Although the theory of continuous- and discrete-time dynamical systems as presented in the literature is
different, the analysis of time scales is nowadays recognized as a right tool to unify the seemingly separate
fields of discrete dynamical systems (i.e. difference equations) and continuous dynamical systems (i.e.
differential equations). In the paper we studied the observability of multi-input multi-output control systems
on a homogeneous time scale, which allows us to unify continuous- and discrete-time theories, presenting
both of them simultaneously under the same language. The presented approach covers the continuous- and
discrete-time cases in such a manner that those are special cases of the formalism. Since the delta derivative
(used in our paper to describe the dynamical systems) coincides with the time derivative for the continuous-
time case, the results available in the literature can be obtained from our results as a special case, namely
the case in which the time scale is a set of real numbers. On the other hand, our formalism includes the
description of a discrete-time system based on the difference operator description (delta-domain approach),
for which the results shown in the paper are new, since previous results have been obtained for discrete-time
systems considered on the basis of the shift-operator formalism. Therefore, in our paper the discrete-time
systems are described in terms of the difference operator, unlike in the majority of papers where the system
is described via the shift-operator. To conclude, although the computation of the delta derivative is different
in the continuous- and discrete-time cases, the results obtained by means of it are the same for both time
domains.

In the paper the notion of the observable space was used to provide the observability condition that
can be easily checked. However, note that the definition of the observability was introduced through the
observability rank condition, commonly used both in continuous- and discrete-time cases. One of the future
goals is to define the observability of the nonlinear system on a homogeneous time scale, using the concept of
(in)distinguishable states. Another goal is to find the conditions under which the nonlinear system defined
on a homogeneous time scale is transformable into the observer form, which allows construction of an
observer with linearizable error dynamics.
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APPENDIX

PROOF OF LEMMA 3.4

In order to prove Lemma 3.4, we need Lemma 5.1 below.

Lemma 5.1. For the homogeneous time scale T one has

∂h[i+1]
ν

∂x
=

∂h[i]
ν

∂x
∂ f (x,u)

∂x
+

(
∂h[i]

ν
∂x

)∆ f (
In + µ

∂ f (x,u)
∂x

)
, ν = 1, . . . p, i = 0,1, . . . , (24)

where In is the n×n identity matrix.

Proof. By commutativity of operators d and ∆ f [4],

d
(

h[i+1]
ν

)
=

(
dh[i]

ν

)∆ f
. (25)

In what follows, we omit in (25) the parts involving the terms du[l]
υ in the expressions of total differentials,

therefore we have
∂h[i+1]

ν
∂x

dx+ · · ·=
(

∂h[i]
ν

∂x
dx

)∆ f

+ · · · . (26)

We compute the delta derivative of the one-form in the right-hand side of (26), using (4). Since (dx)∆ f =
d f (x,u), and again, omitting the parts involving the terms duυ , we get

(
∂h[i]

ν
∂x

dx

)∆ f

=

(
∂h[i]

ν
∂x

)∆ f

dx+

(
∂h[i]

ν
∂x

)σ f
∂ f (x,u)

∂x
dx+ · · · .

Since the vectors dx, duυ ,. . . , du[i−1]
υ are independent over the field K ∗, by comparing the coefficients of dx

at both sides of equality (26) we get

∂h[i+1]
ν

∂x
=

(
∂h[i]

ν
∂x

)∆ f

+

(
∂h[i]

ν
∂x

)σ f
∂ f (x,u)

∂x
.

Finally, applying (i) of Proposition 2.4 to
(

∂h[i]
ν

∂x

)σ f

, we obtain (24).

Now we are ready to prove Lemma 3.4.

Proof. According to the condition of the lemma,

ων,i :=
∂h[i]

ν
∂x

dx =
i−1

∑
k=0

αk
∂h[k]

ν
∂x

dx. (27)

We first prove that the statement of the lemma holds for j = i+1, i.e.

ων ,i+1 =
i−1

∑
k=0

βk
∂h[k]

ν
∂x

dx =
i−1

∑
k=0

βkων ,k (28)
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for some βk’s. By Lemma 5.1 and (27)

ων ,i+1 =
i−1

∑
k=0


αk

∂h[k]
ν

∂x
∂ f (x,u)

∂x
+

(
αk

∂h[k]
ν

∂x

)∆ f (
In + µ

∂ f (x,u)
∂x

)
dx.

Using (iii) of Proposition 2.4 for
(

αk
∂h[k]

ν
∂x

)∆ f

and then (i) of Proposition 2.4 for αk, we get

ων ,i+1 =
i−1

∑
k=0


 ∂h[k]

ν
∂x

(
∂ f (x,u)

∂x
ασ f

k +α∆ f
k

)
+ασ f

k

(
∂h[k]

ν
∂x

)∆ f (
In + µ

∂ f (x,u)
∂x

)

dx.

By Lemma 5.1 (
∂ h[k]

ν
∂x

)∆ f (
In + µ

∂ f (x,u)
∂x

)
=

∂h[k+1]
ν
∂x

− ∂h[k]
ν

∂x
∂ f (x,u)

∂x
,

yielding

ων ,i+1 =
i−1

∑
k=0

α∆ f
k

∂h[k]
ν

∂x
dx+

i−1

∑
k=0

ασ f
k

∂h[k+1]
ν
∂x

dx.

Changing the summation index of the second sum for s = k + 1, separating the last addend of the second
sum, and applying (27) to it, we obtain

ων,i+1 =
i−1

∑
k=0

(
α∆ f

k +ασ f
i−1αk

) ∂h[k]
ν

∂x
dx+

i−1

∑
s=1

ασ f
s−1

∂h[s]
ν

∂x
dx.

Separating the first addend of the first sum yields

ων,i+1 =
i−1

∑
k=1

(
α∆ f

k +ασ f
i−1αk +ασ f

k−1

) ∂h[k]
ν

∂x
dx+

(
α∆ f

0 +ασ f
i−1α0

) ∂hν

∂x
dx.

Denoting β0 := α∆ f
0 +ασ f

i−1α0 and βk := α∆ f
k +ασ f

i−1αk +ασ f
k−1, we get (28). Similar arguments can be applied

to the case j > i+1.
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Homogeensel ajaskaalal defineeritud mittelineaarse juhtimissüsteemi vaadeldav ruum

Vadim Kaparin, Ülle Kotta ja Małgorzata Wyrwas

On uuritud homogeensel ajaskaalal defineeritud mittelineaarse juhtimissüsteemi vaadeldavust, mis tähendab
võimalust määrata (leida) süsteemi mittemõõdetav algolek mõõdetavate juhttoimete ja väljundite abil.
Vaadeldavuse tingimus on esitatud vaadeldava ruumi mõiste kaudu. Juhul kui süsteem ei ole vaadeldav, aga
vaadeldav ruum, mille elementideks on diferentsiaalsed üksvormid, on täielikult integreeruv, on süsteem
dekomponeeritav vaadeldavaks ja mittevaadeldavaks alamsüsteemiks.


