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There is little evidence on the efficiency of the early stage of the capital market in transition 
countries, although market structure developments and the learning process could define the 
framework for efficient markets. The article tries to find out whether financial markets are 
efficient in the three Baltic States and if not, whether there are any signs of evolving to the 
efficient capital market. To answer these questions the analysis combines the methodology for 
testing the efficiency of capital market using the variance ratio robust to heteroscedasticity 
with the state-space representation, which enables us to use an efficient filtering technique – 
the Kalman filter – to get time varying autocorrelations. The official Estonian, Latvian, and 
Lithuanian stock exchange market indices TALSE, DJRSE, and LITIN comprising the most 
liquid parts of the stock market in a respective country are analysed. The main conclusion to 
be drawn from the analysis is that financial markets in the Baltic States are, with some 
turbulence, approaching weak form of efficiency. 
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Introduction 
 
The question of the financial market efficiency is crucial for transition economies, as it 
determines the possibility to diversify non-systemic risks of portfolios to forecast stock prices 
and returns. In general, efficiency will determine the financial market capacity to allocate free 
capital efficiently (see Fama (1970, Grossman (1989), Stiglitz (1981)). This article explores 
whether financial markets in the three Baltic States are efficient. 
 
The major original contribution of this article is the analysis of efficiency during transition 
process. To be more precise, we specify the requirement for a statistic to be suitable to 
evaluate the information efficiency state and its changes in a transition economy’s capital 
market and propose a statistic, which is consistent with these required properties.  
 
Our general view is that the financial market has gradually moved towards efficiency as the 
Baltic States were going through the transition process. As pointed out in other papers on 
transition economies (see Hall (1993), Hall and O’Sullivan (1994), Hall and Koparanova 
(1995), Greenslade and Hall (1996), Ghysels and Cherkaou (1999), Basdevant (2000)), 
econometric modelling can still be a useful tool, but it must take an explicit account of the 
form of change that has taken place. In the theoretical literature on financial markets (see 
Campbell, Lo, and MacKinlay (1997), Malkiel (1989)) efficiency is defined rather as a static 
characteristic and the alternative is efficient market versus inefficient or relatively inefficient. 
Therefore, it is not surprising that capital markets of transition economies were not even 
found weakly efficient with frequent data (Emerson et al (1996), Macskasi (1996)). This 
especially holds in the early transition stages when institutional and informational market 
structure is poorly defined1. Nevertheless, the economic system transformation encourages 
financial relationships and markets to change. Hence, to better understand economic processes 
in transition economies, one should focus on understanding whether transition also leads to an 
improvement in market efficiency. Using standard econometric techniques would lead to test 
efficiency versus inefficiency on the whole sample and; therefore, the result might be biased 
by the structural change happening at the beginning of the period. This is why it is expedient 
to use other techniques that allow integrating the structural change more explicitly. In this 
article, we apply time varying variance ratios estimated by the Kalman filter technique. The 
capital markets of Estonia and Lithuania are shown to move towards efficiency with some 
turbulence and the Latvian capital market structure does not seem to be satisfactory for the 
establishment of weak form efficiency.  
 
Despite the fact that markets are globally incomplete, it is possible to identify informational 
efficient financial markets making an additional assumption on the equilibrium price 
formation model2. On a market in which prices always fully reflect available information is 
called efficient (see Fama (1991)), and finance theory usually distinguishes three types of 
efficiency: weak, semi-strong and strong, depending on the assumptions made on the 

�������������������������������������������������
1 This fact is consistent also with other emerging markets behaviour (Harvey (1994), Callen (1991)). The 
inefficiency could be extremely influenced by uncertainty and liquidity. Most likely, the liquidity constraint is 
the reason for the emergence of efficiency during Asian-Russian crises.  
2 Efficiency testing is always related to testing the joint hypothesis on the efficiency and a particular equilibrium 
asset price return model (Fama (1991), LeRoy (1989), Malkiel (1989)). Consequently, the rejection of the 
efficiency hypothesis could be due to deficiency in the pricing model and this is the common problem for all 
market efficiency tests. 
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information set available3. 
 

• Weak efficiency holds if information contained in former prices is incorporated 
into market prices. 

• Semi-strong efficiency holds if publicly available information set is incorporated. 
• Strong form efficiency holds if all information known to any market participant 

is incorporated into market prices. 
 

The model we adopted is aimed at testing weak efficiency versus inefficiency. We limit the 
analysis to the weak form, because the financial market in the Baltic States – just like in other 
transition economies – is much less developed than that in western economies and we could 
hardly expect it to be even semi-strongly efficient, especially during its early development 
stage. Due to the short sample period, only daily data are analysed. We took DJRSE (for 
Latvia), LITN (for Lithuania), and TALSE (for Estonia) indices that are daily capital 
weighted indices of price movements (for more details see the Annex).  

�������������������������������������������������
3 According to a basic general equilibrium approach, any price on any market should summarise all the 
information needed for each participant to make a decision. When markets are incomplete, some information is 
not available and may bias the decision made by the participants. One of the greatest arguments to reject the 
assumption of efficient markets is that future markets and future prices are unknown. Hence, agents have to 
forecast future prices, knowing current and/or past prices. The problem is then to define the actual set of 
information relevant to forecast prices. 
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1. Methodology for Testing Efficiency 
�
In this Section, the methodology used for testing the efficiency is first described in short. 
Further, we specify the requirements to the statistic for evaluating the changing efficiency and 
propose a time varying variance ratio. It is based on time-varying autocorrelation coefficients 
and enables the model to capture a structural change that has occurred. The coefficients are 
estimated by the Kalman filter4. Those points are discussed further below, and the results are 
presented in Section 2. 
 
1.1. Martingale Hypothesis: the Null Hypothesis 
�
To denote an asset price5 at the moment t by pt, let the weak form efficiency information set, 
known by market participants, at date t−1 be 
(1) { },..., 211 −−− = ttt ppI . 

If a market exhibits the weak form efficiency, the price has the property  
(2) ( ) 11| −− =Ε ttt pIp , 

ie it is a martingale (see LeRoy S.F. (1989)). Hence, the price difference6 εt 
(3) 1−−= ttt ppε   

is a martingale difference given information in the set It-1. However, as mentioned earlier, 
there is no reason why the efficiency should hold during the first stage of transition, while it is 
likely that markets become more efficient as time goes. We therefore define the time varying 
autocorrelation  
(4) ( ) ktjttE ,, ρεε =−  

and for a particular moment t we test the null hypothesis  
(5) 00: ,0 =≠∀ ktjH ρ . 

We reject the null, when some significant auto-correlation is found 
(6) 00: ,1 ≠≠∃ ktjH ρ . 

Next, we discuss our proposal to use a time varying variance ratio statistic for 
heteroscedasticity consistent inference and a respective state-space model to get relevant 
estimates of autocorrelation coefficients.  
 
1.2. Testing the Null Hypothesis 
�
1.2.1. Desired Properties of the Test Statistic 
�
In order to assess properly whether an emerging market moves towards efficiency, we would 
like the statistic to have these properties: 
 

• The magnitude of auto-correlation should be allowed to change over time. 
• The structure of auto-correlation should be allowed to change over time. 
• The statistic must be able to take into account heteroscedasticity. 

�������������������������������������������������
4 For other testing procedures and market efficiency theoretical aspects see LeRoy (1989), Bollerslev and 
Hodrick (1992), Mills (1999, Ch.2 and Ch.4), Campbell, Lo, and MacKinlay (1997, Ch.2), Beechey (2000). 
5 Here the index value logarithm stands as a proxy for an asset basket price. We use price logarithm to avoid 
common problems related to theoretical non-positive price possibility when it is normally distributed (Campbell 
(1997), Ch.1) and non-pure martingale behaviour, only if the price without dividend is used instead of the rate of 
returns (LeRoy (1989)). 
6 Possibly adjusted for a mean. 
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• The structure of heteroscedasticity should be general, as it would be inconsistent 
to assume a fixed structure of heteroscedasticity, while the auto-correlation 
structure is allowed to change over time.  

 
Therefore, we first require the statistic to measure the changing autocorrelation magnitude for 
a particular lag, ie a time varying autocorrelation measure should be used. For a possible 
solution using the state-space framework and Kalman filtering as well as its application in 
practice see Emerson et al (1996), Rockinger and Urga (2001), Zalewska and Hall (1999). 
Nevertheless, the efficiency dynamics here was evaluated by the graphical inspection of only 
the first lag autocorrelation changes. However, this is not sufficient, because it only measures 
changes in a particular autocorrelation, while in an emerging market the correlation structure 
may also change significantly with time. For instance, when the autocorrelation of higher 
order is significant and does not diminish and the first-order autocorrelation coefficient does, 
the inspection of only the first-order autocorrelation would mislead to an inference on 
reaching the state of efficiency, and vice versa (see Simulation Results in Subsection 1.2.4). 
Consequently, inferences based only on the first-order time-varying autocorrelation parameter 
estimate without additional arguments should be drawn carefully.  
 
Therefore, the second requirement states a necessity to infer about the efficiency dynamics as 
a whole, ie to comprehend the autocorrelations of different lags with one statistic. This might 
not be so important for the study of a more developed capital market efficiency, because in a 
nearly efficient market new information should be incorporated as soon as possible and the 
first lag value is likely to account for – and adjust to – a huge part of new information. In the 
market of a transition country this might not be a reasonable assumption.  
 
If εt were from a fixed distribution with a finite variance, the joint null hypothesis on the non-
significance of different lag order autocorrelations could be tested using Ljung-Box statistic 
(Bollerslev and Hodrick (1992), Mills (1999), Campbell, Lo, and MacKinlay (1997, Ch.2)), 
with the only difference that the time-varying autocorrelation estimates should be used to 
satisfy the first requirement. However, heteroscedasticity is a common feature of financial 
time series and this may result in incorrect conclusions. Therefore, the statistic should be able 
to account for it. 
 
It is possible to model an explicit heteroscedasticity structure in a GARCH framework (see 
Bollerslev (1986), French et al (1987), Emerson et al (1996), Rockinger and Urga (2001)). 
However, there is no reason to assume the heteroscedasticity structure to be specific, ie time 
invariant, while all the circumstances in a developing market are assumed to change. This 
disqualifies the GARCH modelling for this particular case.  
 
1.2.2. Time-varying Variance Ratios  
�
To evaluate the efficiency state of the capital market in a transition economy, we suggest 
using the time-varying variance ratio, which allows getting a heteroscedasticity robust 
inference without specifying certain structure of conditional heteroscedasticity, and enables us 
to evaluate different structures of autocorrelation. 
 
To be more precise, we employ the variance ratio test (for a brief variance ratio description, 
important to our analysis and coupled with relevant references see the Annex) as a basis and 
define the time varying variance ratio (TVR) as follows: 
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(7) k
t

p

k
pt p

k
V ρ∑

=






+

−+=
1 1

121 , 

where p is the maximum time period of correlated price increments and k
tρ  is a k lag 

autocorrelation at time t. 
 
To estimate a time-varying autocorrelation k

tρ  for each k of the process described in equation 

(3), we set up p state-space models as follows7 for each value of k∈ {1..p}: 
(8) k

tkt
k
tt νερε += −  

(9) k
t

k
1t

k
t ηρρ += − , 

with ∀ k νk
t∼ nid(0, 2

kνσ ), ηk
t∼ nid(0, 2

kησ ),and ∀ k,j E(νk
t,ηk

t-j)=0. The set of equations (8) and (9) 

constitutes the state-space form that may be directly estimated by a Kalman filter (see the 
Annex)8.  
 
After getting a vector estimate of Vpt, we define the variance ratio statistic Mpt, robust to 
heteroscedasticity 

(10)     ( ) ( ) ( ) 2
1

2

1

2

1

22

1

2

1141ˆ
−

=+= −= + 




 


−−= ∑∑∑ T

t t

T

kt ktt

p

k p
k

ptpt VM εεε , 

which is asymptotically standard normally distributed and is consistent with the required 
properties described earlier. Under the null hypothesis (5) the following holds: ∀ (k,t) 0k

t =ρ  

and respectively Vpt=1 and asymptotically Mpt=0. 
 
However, one relevant question remains open – how to choose the maximum autocorrelation 
lag order p? If some specific price-generating model was specified, the respective 
autocorrelation structure might be derived. However, we do not test for a specific alternative 
hypothesis and just test the null against a broad range of alternative hypothesis by taking 
several different lag orders to evaluate the respective price increment autocorrelations. The 
minimum p=1 and maximum p=7 orders for test statistics comprising one and seven 
autocorrelation lags were chosen because of inspection of the price increment autocorrelation 
function.  
 
1.2.3. Some Properties of the Proposed Statistic 
�
When dealing with real data we do not know the true data generating process (DGP), 
therefore, some behavioural properties of the proposed statistic are described. These are 
mainly predetermined by the autocorrelation function (ACF) behaviour of DGP. We utilise 
the properties of stationary ARMA processes (for their ACF description see Hamilton 
(1994)). 
 
If data are generated by a moving average (MA) process, the time varying variance ratio 
statistics (TVRS) of different order should not differ a great deal after the true order of DGP 
has been reached, because the ACF of MA process drops to zero after the true MA order is 
�������������������������������������������������
7 Data are adjusted with respect to the mean (εt=lnPt−lnPt−1-µ∆lnP, where Pt is the index value at date t and µ∆lnP is 
an estimate of unconditional mean of price logarithms changes). 
8 Having the entire data sample for the construction of VR, we use the smoothed estimates (see ibid), ie we 

estimate ( )T
k
t

k
Tt E εερρ ...ˆ 1| = . 
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reached. However, they differ slightly, because increasing p will change the weights attached 
to the same values of the time-varying correlation estimates. If data are generated by an 
autoregressive process (AR), the different order TVRS may considerably differ from each 
other because the ACF of AR does not drop to zero, but decays as a mixture of dumped 
processes. The relationship between TVRS for different p will be even more complicated 
because of changing weights. Nevertheless, the difference should disappear when the order of 
p differs much from the real order of the process. For a more general ARMA process, the 
described AR properties hold when p is greater than the order of MA, and prior to that the 
behaviour of the test statistic is more complicated than for a separate process.  
 
Note that, under specific circumstances, TVRS does not completely satisfy our second 
requirement, ie to comprehend the autocorrelations of different lags with one statistic and to 
be robust to different autocorrelation structures. A higher order TVRS might become not 
significant in the presence of several separate significant autocorrelations with different signs. 
This is because the positive and negative autocorrelations of a more complex process might 
counteract one another. Therefore, the Ljung-Box statistic with squared autocorrelations 
robustified to heteroscedasticity might be preferred. Negative autocorrelation is less 
expectable in our case, and we employ the TVRS to estimate the dynamics of efficiency. 
However, to assess the state of efficiency we propose not to rely on a particular lag order p 
statistic, but to test it for different p. In case any of them are significant, the null hypothesis is 
rejected. Investigation of several statistics has also some advantages, because different trends 
of TVRS may reveal the changing autocorrelation structure. 
 
1.2.4. Simulation Results 
�
In order to get an understanding of time varying variance ratio capability to reflect the 
changing parameters and to cope with the changing autocorrelation structure, we present the 
results of simple simulation. Only the homoscedastic processes are simulated.  
 
First of all, from 1000 values of normally and identically distributed random errors9 
εt~nid(0,0.00023) we simulated the dynamics of the MA(1) and AR(1) with time varying 
parameters. For comparison, several estimated different order Mpt statistics are presented (see 
Figures 1 and 2).  
 

�������������������������������������������������
9 For variance we use the whole sample estimated variance value of rt =log(LITINt)− log(LITINt−1) -µ∆lnP. 
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Figure 1. Test of the statistic Mpt suitability for a time-varying parameter AR(1)10 

Model: εt=ρtεt-1+vt, vt~nid(0, 0.00023), ε0=0, ρt=
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Figure 2. Test of the statistic Mpt suitability for a time-varying parameter MA(1) 

Model: εt= vt+ρtvt-1, vt~nid(0, 0.00023), ε0=0, ρt=
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�������������������������������������������������
10 The 95% upper and lower confidence levels are denoted as UCL and LCL, respectively. 
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The TVRS of different order of p behaves according to earlier described properties.   
 
The ability of time varying variance ratio statistic to reflect a changing correlation structure is 
presented by simulating MA(2) and AR(2) processes with time varying parameters. The first 
parameter value is decreasing and the second parameter value for a particular observation just 
increases as much as the first parameter value decreases. Thus, if we did not regard the fact 
that sooner incorporation of information could be viewed as a sign of improving efficiency, 
the whole impact of two parameters would always result in a constant inefficiency measure. 
The respective test statistics for AR(2) and MA(2) processes are presented in Figure 3 and 4, 
respectively.  
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Figure 3. Test of the statistic Mpt suitability for a time-varying parameters AR(2) 

Model: εt=ρ1tεt-1+(0.5-ρ1t)εt-2+vt, vt~nid(0, 0.00023), ε0=0, ρ1t=
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Figure 4. Test of the statistic Mpt suitability for a time-varying parameters MA(2) 

Model: εt= vt+ρ1tvt-1+(0.5-ρ1t)vt-2, vt~nid(0, 0.00023), ε0=0, ρ1t=
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Due to different weightings in different order VR, the M3t and M7t statistics slightly differ, 
however the difference will diminish with an increasing p value. The TVRS again captures 
the dynamics of the parameters and higher order statistics clearly indicate significant 
autocorrelations. However, if only first order autocorrelation were analysed, the conclusion 
would be misleading. 
 
2. Dynamics of Efficiency 
�
In this Section, the dynamics of the efficiency of the three capital markets in the Baltic States 
is described. The autocorrelations are calculated from the returns of Estonian TALSE, Latvian 
DJRSE, and Lithuanian LITIN indices. The methodology described in Subsection 1.2 is 
implemented, and the robust to heteroscedasticity time-varying statistics M1, M3, and M7 with 
95 per cent confidence level for the null hypothesis are plotted in Figure 5, 6, and 7. 
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Figure 5. Dynamics of the standardised time-varying heteroscedasticity robustified 
variance ratio statistic Mpt for TALSE returns 
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Figure 6 Dynamics of the standardised time-varying heteroscedasticity robustified 
variance ratio statistic Mpt for DJRSE returns  
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Figure 7. Dynamics of the standardised time-varying heteroscedasticity robustified 
variance ratio statistic Mpt for LITIN returns 

2.1. Estonia 
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2.2. Latvia 
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2.3. Lithuania 
�
The capital market in Lithuania is clearly approaching the weak-form efficiency, although not 
as steadily as the Estonian one, but rather with some repeating smaller turbulences. The last of 
them is actually not significant. Therefore, the case of Lithuania is consistent with our 
expectations of improving market conditions and the efficiency state as well. We also note 
that the different order TVRS dynamics for LITIN is very similar indicating no significant 
change in the structure of autocorrelation.  
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3. Conclusion 
�
Standard techniques are not fit to test the weak-form capital market efficiency of a transition 
country and the testing statistic should satisfy some special requirements. Combining the 
variance ratio methodology with the state-space framework, we suggest using the time-
varying variance ratio statistic robust to heteroscedasticity based on time-varying 
autocorrelations, which are estimated using the Kalman filter technique. This enables us to 
monitor the trajectory of the efficiency state without specifying the particular 
heteroscedasticity structure. Countersign autocorrelations might distort the picture though, 
and to avoid this the time-varying heteroscedasticity robustified Ljung-Box statistic might be 
an extension to consider for future research.   
 
We noticed a clearly expressed motion to the weak-form efficiency in the Estonian and 
Lithuanian capital markets. Although there is yet relatively small inefficiency in these two 
markets (especially in the Estonian one), a slight autocorrelation observed in the frequent data 
could be explained by standard reasons, such as transaction costs, expenses for acquiring 
information, etc (Grossman and Stiglitz (1980)). In the Latvian market, we have found a huge 
inefficiency even at the very end of the analysed period, possibly indicating that the capital 
market structure is not developed enough to ensure even the nearly weak-form efficiency. 
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Annex 
 
Variance ratio test 
 
The variance ratio test makes use of the fact that the variance of a random walk process 
increases linearly with time, so that the q period variance of the iid residuals is equal to q 
times the variance of it. Even without restricting to a random walk, assuming pt to have one 
unit root and using the stationarity of εt, the variance ratio could be expressed, as showed by 
Cochrane (1988), as a function of autocorrelation coefficients 
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 where ρk is a kth order autocorrelation coefficient of εt. If the process is a pure random walk, 
the autocorrelations are zeros and Vq=1.  
 
In our case, we do not assume the returns εt to be iid, although even in the presence of 
conditional heteroscedasticity under certain assumptions (see Lo and MacKinlay (1988,1989) 
or Campbell, Lo, and MacKinlay (1997, p.54)), implying the asymptotically uncorrelated εt, 
the variance ratio must still approach to one as the number of observations increases. For a 
statistical inference that Vq=1, we use the robustified test statistic, proposed by Lo and 
MacKinlay (1988).  
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where qV̂  is an empirical analogue of qV  in (11). (12) is a special case for the process in (3) 

and its general expression can be found in Lo and MacKinlay (1988, 1989) or Campbell, Lo, 
and MacKinlay (1997, p 55). Despite the presence of general heteroscedasticity under the null 
hypothesis of random walk the robustified variance ratio statistic is asymptotically normally 

distributed ( )1,0~ NM
a

q , so that we test in the usual way, whether the value of the statistic in 

(12) differs significantly from zero.  

Also note that, in the text, we use a slightly changed notation, i.e., instead of q we use p+1. 
This is because, in our case, the autocorrelation order p=q-1 is important, but not the q period 
difference.  
 
The state space form and the Kalman filter 
�
This section illustrates how the Kalman filter (see Kalman (1960) and (1963)) is 
implemented. A more detailed presentation can be found in Gourieroux and Monfort (1995), 
Hamilton (1994), Harvey (1987, 1989), Hall et al (1992), or Hall (1993). 
Let 
(13) tttt AZY ε+=  

 
be the measurement equation, where Yt is the vector of measured variables, At is the state 
vector of unobserved variables, Zt is the matrix of parameters and ( )tt H,0N~ε .  The state 

equation is then given as follows 
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(14) t1ttt ATA η+= −  

 
where Tt is the matrix of parameters and ( )tt Q,0N~η . The disturbances εt and ηt are assumed 

to be uncorrelated at all lags. 
 
Let at be the optimal estimator of At based on the observations up to and including yt, and at|t-1 
is the estimator based on the information available in t-1. We can define that 
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Given at-1 and Pt-1, the optimal estimator of At is: 
 
(16) 1tt1t|t aTa −− =  

 
while the covariance matrix of the estimator is: 
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When Yt is known, the estimator can be updated: 
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Equations (16) to (19) represent then the Kalman filter equations. 
 
In the Gaussian model, the Kalman filter yields the conditional mean and covariance matrix of 
distribution of At given the information available at time t. Thus 
 
(20) ( )ttt Y|AEa =  

(21) ( )[ ] ( )[ ] 


 ′−−= ttttttt AEAAEAEP  

 
The conditional mean is the least minimum mean square estimate of At. The expression of this 
estimator applies to any set of observations. This estimator minimises the mean square errors 
when the expectation is taken over all the variables in the information set rather than being 
conditional on a particular set of values (see Anderson and Moore (1979) or Harvey (1989) 
for a detailed discussion). Thus the conditional mean estimator, at, is the minimum mean 
square estimator of At. This estimator is unconditionally unbiased and the unconditional 
covariance matrix of the estimator is the Pt matrix given by the Kalman filter. Proofs of these 
results can be found in Anderson and Moore (1979), Ducan and Horn (1972) or Harvey 
(1981). 
 
Until now, we assumed that the matrices Zt, Tt, Ht, Qt are known. In general they may depend 
on an unknown parameter vectorψ, which can be estimated by maximum likelihood provided 
sufficient regularity conditions are satisfied.  
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The Kalman filter results in the estimator at that gives the minimum mean square estimate of 
At having the data sample up to t (see (20)). However, having the entire data sample, we are 
interested in the smoothed estimate  

(22) ( )TtTt YAEa || = . 

The fixed interval smoothed estimates are calculated working backwards from the last value 
of the earlier estimate aT/T=aT, PT/T=PT as 

(23) ( )ttTtttTt aTaPaa 1/1
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| ++ ++= . 
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The principal characteristic of the time series model is that the observations are dependent. 
Hence, the standard formula is not applicable to compute the likelihood function. Instead, the 
definition of a conditional probability density function is used to write the joint density 
function (see Crowder (1976) and Schweppe (1965))  
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where N is the number of elements contained in the vector Yt, k is the number of periods 
needed to derive estimates of the state vector and with νt defined as follows 
 
(26) 1| −−= ttttt aZYν . 

 
The vector νt can be interpreted as the vector of prediction errors since the conditional mean 
is also the minimum mean square estimator of Yt. Hence, the likelihood function can be 
expressed as a function of the one-step-ahead prediction errors, weighted appropriately.  

Description of DJRSE, LITIN, and TALSE indices  

Country Index Index type Starting 
value 

Starting date Internet source 

Estonia TALSE Capitalisation 
weighted  

100 03.06.96 http://www.tse.ee/english/general/g
eneral.php?lk=overview/default.ht
ml%23Talse 

http://www.esm.ee/english/ 
Latvia DJRSE Capitalisation 

weighted  
100 02.04.96 http://www.rfb.lv 

http://www.rfb.lv/info/dowjones.ht
ml 

Lithuania LITIN Capitalisation 
weighted  

1000 07.04.97 www.nse.lt 
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Plots of indices and their returns 

Recall that rt =log(INDEXt)− log(INDEXt−1)−µ∆lnP =εt.  
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Estimated autocorrelations of index returns 

Table 1, 2 and 3 report the auto-correlations and respective “static” (see Variance ratio test in 
the Annex) heteroscedasticity robust variance ratio statistics for returns of a daily Estonian 
Tallinn Stock Exchange index (TALSE), Latvian Riga Stock Exchange index (DJRSE11), and 
the Lithuanian Stock Exchange index (LITIN). The periods are selected on a yearly basis. 

 

Table 1. Autocorrelation of daily index increments (εt =log(TALSEt)−log(TALSEt−1))  
Autocorrelations Variance Ratios 

Price Data Period 
 
Sample 
Size ρ1 ρ3 ρ7 ρ10 

M1  

(Prob.) 
M3  

(Prob.) 
M7 

(Prob.) 
M10 

(Prob.) 
Total 06.03.96-

01.02.02 
1417 0.22 0.06 0.11 0.12 4.69 4.17 3.51 4.35 

1. 06.03.96-
01.02.97 

150 0.40 -0.09* -0.08* 0.17 2.35 1.48* 1.30* 1.54* 

2. 01.03.97-
01.02.98 

253 0.19 0.05* 0.24 0.16 2.43 2.64 1.73* 2.79 

3. 01.05.98-
01.04.99 

253 0.24 0.08* 0.02* 0.10* 4.27 2.86 1.92* 1.58* 

4. 01.05.99-
01.03.00 

253 0.19 0.00* 0.04* -0.03* 4.93 4.34 5.00 5.30 

5. 01.00.10-
01.02.01 

254 0.04* -0.07* 0.00* -0.01* 0.77* 0.43* 0.42* 0.56* 

6. 01.03.01-
01.02.02 

254 0.10* 0.10* 0.13 0.05* 2.19 3.18 4.78 5.46 

* The null hypothesis on uncorrelated returns is accepted at the 5% significance level  

�������������������������������������������������
11 Dow Jones Riga Stock Exchange Index. 
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Table 2. Autocorrelation of daily index increments (εt =log(DJRSEt)− log(DJRSEt−1)) 
Autocorrelations Variance Ratios 

Price Data Period 
Sample 
Size ρ1 ρ3 ρ7 ρ10 

M1 

(Prob.) 
M3 

(Prob.) 
M7 

(Prob.) 
M10 

(Prob.) 
Total 04.02.96-

01.02.02 
1343 0.16 0.06 -0.01* 0.09 2.44 3.38 3.34 3.46 

1. 04.02.96-
01.02.97 

88 0.00* -0.03* -0.12* 0.00* 0.00* -0.77* -0.75* -0.86* 

2. 01.03.97-
01.05.98 

247 0.20 0.11* 0.12 0.09* 1.72* 2.87 3.19 3.54 

3. 01.06.98-
01.04.99 

249 0.23 0.01* 0.09* -0.11* 2.72 2.24 3.30 3.77 

4. 01.05.99-
01.03.00 

252 0.13 0.04* -0.01* 0.10* 1.85* 2.54 3.06 3.56 

5. 01.04.00-
01.02.01 

253 -0.07* -0.10* -0.03* -0.04* -0.45* -0.10* 0.10* 0.18* 

6. 01.03.01-
01.02.02 

254 0.20 0.09* -0.13 0.21 3.03 5.58 3.08 1.98 

* The null hypothesis on uncorrelated returns is accepted at the 5% significance level  

Table 3. Autocorrelation of daily index increments (εt =log(LITINt)−log(LITINt−1))  

Autocorrelations Variance Ratios 
Price Data Period 

Sample 
Size ρ1 ρ3 ρ7 ρ10 

M1 

(Prob.) 
M3 

(Prob.) 
M7 

(Prob.) 
M10 

(Prob.) 
Total 04.04.97-

01.02.02 
1206 0.22 -0.01* 0.07 0.02* 4.81 4.96 4.77 5.14 

1. 04.04.97-
01.05.98 

192 0.28 -0.08* 0.20 0.06* 2.05 2.30 1.51* 2.29 

2. 01.06.98-
01.04.99 

255 0.35 -0.03* 0.07* -0.01* 4.61 4.64 4.72 4.75 

3. 01.05.99-
01.04.00 

254 0.02* 0.07* -0.08* 0.00* -0.16* -0.08* -0.27* 0.38* 

4. 01.05.00-
01.02.01 

252 0.21 -0.07* 0.02* 0.01* 4.00 4.53 3.91 3.97 

5. 01.03.01-
01.02.02 

253 -0.02* 0.09* 0.05* 0.02* -0.44* -0.36* 1.05* 0.79* 

* The null hypothesis on uncorrelated returns is accepted at the 5% significance level  
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