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3. Käärik, E. (2005). Handling dropouts by copulas. In: WSEAS Trans-

actions on Biology and Biomedicine, Ed. N. Mastorakis. Vol 1 (2),
93–97.
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Introduction

Longitudinal and/or repeated measures studies have extensive implemen-
tation in medicine, epidemiology, biology and social sciences. Repeated
measures studies contain data representing multiple measurements from a
single subject for a given variable.
Repeated measurements are often taken on the same experimental over
time, but they could be taken over space and/or under different conditions
as well. For example, in longitudinal analysis the measurements on subjects
are recorded over a certain time period. Since measurements made on the
same subject for a given variable are not independent, in repeated measure-
ments analysis one should model the dependencies between observations in
an appropriate way.

In practice, the sequence of measurements could often be terminated due
to reasons that are outside the control of the investigator, which yield in-
complete data. Missing values may cause complicated problems in many
statistical analyses, especially in case of small sample sizes. Common ap-
proach for treating missing data in repeated measurements studies is to
consider dropouts, where sequences of measurements on some units termi-
nate prematurely. It might be necessary to accommodate dropout in the
modelling process, which itself could be of scientific interest. The problem
of dropouts is extremely important for small samples where every value is
substantial.

Usually, dropouts should be distinguished from intermittent missing values,
where an observed sequence has some gaps, i.e. the set of intended times of
measurements is not common to all units (unbalanced data). As a matter of
fact, the only difference is that in order to handle intermittent missingness
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we could use information before and after the missing value, in case of
dropouts we do not have any information after dropouts.
Thus, the methodology suitable for handling dropouts can be used for han-
dling intermittent missingness as well, but it might not be the most effective
method in this case.

Though missing data cause the statistical analysis of available data to be
subject to bias, there are no universally applicable methods for handling
incomplete data. Imputation of the missing values is a widely used strategy
to deal with missing measurements. The basic idea of imputation is to fill
in the missing data by using existing values following certain model with
given assumptions. In general, imputation is a process used to determine
and assign replacement values for missing, invalid or inconsistent data.
Usually, the goal of imputation is not to predict missing values or describe
the data, but to preserve important relationships in data using the observed
values in order to do statistical inference with maximal effectiveness.

The first attempt to identify a missing data structure and impute the miss-
ing data was done by McKendrick in 1926 (see Meng, 2000). McKendrick
analyzed the data from an epidemic study of cholera in an Indian village.
The existence of unexposed households complicated the analysis, and to
avoid this problem McKendrick derived a zero-truncated Poisson model.
His algorithm is similar to EM-algorithm to obtain estimates from a sam-
ple with missing values.

Extensive development of the missing data theory began in 1970’s with
the case deletion and single imputation methods. In 1980’s the likelihood
based imputation procedures (EM-algorithm, etc.) and in 1990’s the mul-
tiple imputation method and joint models have been developed. There are
currently available many approaches to handle missing data. A compre-
hensive overview and guidelines for handling missing data can be found,
for example, on the website developed by J. Carpentier and M. Kenward1.

One possible approach for imputing dropouts is to use conditional distri-
butions. Therefore, we need to know the joint distribution of repeated
measurements which is a multivariate distribution with a special depen-

1www.lshtm.ac.uk/msu/missingdata
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dence structure. The main problem is that though there is a vast selection
of flexible parametric univariate distributions, only a few suitable multivari-
ate distributions are available beside the multivariate normal distribution.
Lindsay (Lindsay, 2000a) proposed a method for generating a useful fam-
ily of multivariate distributions by substituting one distribution into the
other (outer) distribution. Lindsey suggested the Pareto distribution for
outer distribution. The parameters of the outer distribution could then be
used to create the dependence structure between observations. The proce-
dure suggested by Lindsay is similar to that used in copula theory, but the
multivariate models obtained by Lindsay are not copulas.

Copula function creates the joint distribution with given marginals. The de-
pendence between successive repeated measurements and between dropout
and response can be modeled using copula function. Copula is one of the
most useful tools for handling multivariate distributions with dependent
components and it provides a convenient way to express joint distribution
of two or more random variables.

In particular, copulas are joint distribution functions of random variables
with standard uniform marginal distributions. There are two principal
ways of using the copula’s theory. We can extract copulas from well-known
multivariate distribution functions, but we can also create new multivariate
distribution function by joining arbitrary univariate distributions together
with copulas. These ideas are used in this work.

Copulas form a flexible tool for multivariate model construction because
no restrictions are placed on the marginal distributions.
Working with copulas has several advantages compared with working with
the given (classical) multivariate distribution. Firstly, it is more flexible in
applications. Secondly, in many cases it is complicated to specify a joint
distribution directly when distribution of the data does not fit to any known
family.

Copula theory is related to the study of multivariate distributions with
given marginals. A copula C is a function that links univariate marginal
distributions to the multivariate distribution. It is defined as a multivariate
distribution function on [0, 1]k, where k is the dimension of the distribution.
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The review of methods for constructing discrete and continuous joint dis-
tributions from the component marginal distributions is given in Miller and
Liu (2002, p. 263–264), who pointed out the paper Tiit and Käärik (1996)
as one of the origins of copula-based approach to data analysis.

In recent years, copula models became an increasingly popular tool for
modelling dependencies between random variables, especially in biostatis-
tics, actuarial and financial mathematics.
One advantage of copula models is their relative mathematical simplicity.
Another advantage is the possibility to build a variety of dependence struc-
tures based on existing parametric or nonparametric models of the marginal
distributions.

Using the copula approach to multivariate data, we can first estimate the
marginal distributions, and then construct a copula that captures the de-
pendence between the random variables. This two-step approach gives the
investigator many options in model specifications. Secondly, in a copula
model approach, we obtain a dependence function explicitly. Besides linear
correlation, there are several other measures of dependence, among which
Spearman’s ρ and Kendall’s τ are most popular in the copula model build-
ing. Rank correlations are useful because, unlike the Pearson’s product-
moment correlation, they are invariant under monotonic transformations
of marginal distributions.
A copula is called normal when it is created using the dependence structure
of multivariate normal distribution. The normal copula is useful as it is
defined for arbitrary dimension k and it is easy to simulate. This family
arises naturally in the case when data is multivariate normal. However
the model may also be used in many situations where the corresponding
marginal distributions are not normal.

If we have a multivariate distribution (classical or created by copulas),
we can find different conditional distributions. We will apply the idea of
imputing a missing value based on conditional distributions conditioned
to the history of measurements, which can be derived forthrightly as the
joint distribution is known. This conditional distribution gives complete
information about incomplete data and gives many possibilities to impute
missing values. The problem is that the joint distribution may be unknown,
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but using the copula approach it is possible to find joint and conditional
distributions modelling the data.
The aim of this work is to implement the concept of copula into the method-
ology for solving the imputation problem. As example, we will use Gaussian
copula to derive three simple imputation formulas according to the chosen
correlation structures using conditional mean as the imputed value.

The thesis is organized in the following way.

Chapter 1 describes the missing data problem and presents basic definitions
and hierarchy of missingness mechanisms. A brief overview of methods for
handling missing data with the emphasis to repeated measurements and
handling dropouts is given as well. In this chapter we consider the imputa-
tion problem when conditional distributions are used as a key problem of
the thesis and point out some open questions.
Chapter 2 introduces necessary tools in the copula theory. In particular,
Gaussian copula is considered as a tool for finding joint and conditional
distributions.
In Chapter 3 the correlation structure of repeated measurements is handled,
and three new imputation algorithms are derived using Gaussian copula. In
this chapter the following original results are presented: general form of im-
putation formula (3.3) (Proposition 3.1, Corollary 3.1) and its applications,
formulas (3.5), (3.8), (3.9), (3.11) (Propositions 3.2, 3.3, 3.4, Corollary 3.2–
3.5). An example with real incomplete repeated measurements data is given
to illustrate the work of the new proposed algorithm.
Chapter 4 consists of results obtained from simulation study carried out
to estimate the bias and effectiveness of new imputation rules. Simulation
study showed that the suggested new imputation techniques are appropriate
for imputing dropouts in the case of small sample sizes.

Most of the results given in Chapter 3 and 4 are published in Käärik (2005),
Käärik (2006a) and Käärik (2006b) and presented at international con-
ferences (WSEAS Mathematical Biology and Ecology (MABE’05) Udine,
Italy, January, 2005; Applied Statistics, Ribno, Slovenia, Sept, 2005; Comp-

stat 2006, Rome, August, 2006).
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Chapter 1

Missing data

”The topic of missing data is as old and as extensive as statistics itself –
after all, statistics is about knowing the unknowns” (Meng, 2000, p. 1328).

1.1. Basic assumptions and concepts

Incomplete or missing data is a common problem in empirical research and
occur in every study, including sample surveys, where nonresponse is often
a big problem, even in well-controlled situations. Whatever the reason,
thus missing data requires the analyst to consider additional issues.

Common notation is following. Let Y be partially observed data, Yobs and
Ymis be the observed part and the missing part of Y , respectively. Therefore
we can write full data Y as Y = (Yobs, Ymis).

Let M be the associated missing value indicator, which elements take the
values 1 and 0 indicating, whether the corresponding values of Y are ob-
served (M = 1) or missing (M = 0). Y can be a vector or a matrix, and
M has always the same dimension and is completely observed.

Usually it is assumed that M has a distribution which may be unknown.
The distribution of M is called the response mechanism or missingness

mechanism, but, to avoid some misunderstanding, Schafer and Graham
(2002) suggested for the distribution of M to use term the distribution of

missingness or the probabilities of missingness.
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The joint distribution of full data is

P (Y,M |θ, ψ),

where θ parameterizes the measurement distribution and ψ the missingness
distribution.
Missingness distribution, in general, depends on the full data Y , hence
missingness distribution can be described by

P (M |Y, ψ) = P (M |Yobs, Ymis, ψ).

In particular, Rubin (1976) and Little and Rubin (1987) made important
distinctions between different missing data processes. They introduced the
hierarchy of missingness mechanisms and characterized the assumptions
regarding the nature of the missing values (Rubin, 1976; Little and Rubin,
1987).

1. Missing Completely at Random (MCAR): missingness is independent
of the measurements P (M |Y, ψ) = P (M |ψ).

2. Missing at Random (MAR): missingness is independent of the missing
measurements, but depends on the observed measurements
P (M |Y, ψ) = P (M |Yobs, ψ).

3. Missing Not at Random (MNAR): missingness depends on the ob-
served and missing values P (M |Y, ψ) = P (M |Yobs, Ymis, ψ).

First two types of missingness are called also noninformative or ignorable

nonresponse. MNAR is called informative or nonignorable nonresponse.

Missing completely at random exists when missing values are randomly
distributed across all observations. A missing value does not depend on
the variable itself or on the values of other variables in the database. It
means that the probability of an item being missing is unrelated to any
measured or unmeasured characteristic for that unit and this is a very
strong assumption.

Missing at random is a condition which is fulfilled when missing values are
not randomly distributed across all observations but are randomly distrib-
uted within one or more subsamples. The probability of missing data of
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any variable is not related to its particular value. The pattern of missing
data is traceable or predictable from other variables in the database, but
there is no residual relationship, the missingness is completely described by
the observed variable.
Under MNAR there exists some residual dependence between missingness
and Y after accounting for the observed variable (Schafer and Graham,
2002, p. 151).

In case of MAR the probability of an item being missing depends only
on other items that have been measured for that unit. This is a weaker
assumption underlying most imputation methods, since they use the ob-
served data to predict what is missing. There are some misunderstandings
and problems in definition of MAR which are explained in Kenward and
Molenberhgs (1998), Shafer and Graham (2002).

Missing not at random is the most problematic form, existing when missing
values are not randomly distributed across observations and depend on the
values that are missing. Thus, missingness is related to the variables under
study, which is the weakest assumption, but complicated. The pattern of
data missingness is non-random and it is not predictable from other vari-
ables in the data. It implies that the missing observations if measured,
would have a different distribution from that predicted from what is ob-
served. It is not possible to correct data by a nonignorable mechanism,
except by using outside information.
In fact, missing data are closely related with other concepts, such as coarse

data1, which includes missing data as special case, or latent variable con-
cept, which handles with unobservable quantities and several models (see
Schafer and Graham, 2002; Roy, 2003).

1Heitjan and Rubin proposed a general model of data incompleteness and defined data

to be coarse when one observes not the exact value of the data but only some set that

contains the exact value. That is, data are neither entirely missing nor perfectly present

(Heitjan and Rubin, 1991).

16



1.2. Dropout

We focus on the longitudinal or repeated measurements study with miss-
ing data. A characteristic of repeated measurements design is that each
subject (unit) is observed at several different time points or under different
experimental conditions. Unfortunately, repeated measurement studies are
rarely balanced and complete.

A convenient framework for longitudinal study is the following.
LetX = (X1, . . . , Xm) be an outcome variable with repeated measurements
at time points t1, . . . , tm. In this work we consider discrete time points and
instead of t1, . . . , tm we will write 1, . . . ,m.
Suppose that n units are sampled repeatedly over time. The aim is to
measure each unit m times (in general, at the same time points), but due
to dropouts some of them are measured at s ≤ m time points.

Definition 1.1. Dropout or attrition is missingness in data which occurs
when subject leaves the study prematurely and does not return.

In the subsequent, we consider a sample of n measurements Xj that form
a data matrix X = {xij}, i = 1, . . . , n; j = 1, . . . ,m, in which due to
dropouts some values are missing. In general xij can be a vector of several
measurements on the i-th subject at the j-th time point (unit of measure-
ments). Usually, xij means one measurement on the i-th subject at the j-th
time point (item of measurements). In sample surveys, the corresponding
missing values are called unit nonresponse or item nonresponse (see, for
example, Lundström and Särndal, 2001; Durrant, 2005).
In our framework we do not distinguish between response and covariates,
that is, between missing values in dependent variables and missing values
in independent variables, therefore all variables are denoted as X.

Definition 1.2. In the case of dropouts, the missingness matrix is said to
be monotone if, whenever an observation xik is missing, xis is also missing
for all s > k.

Monotonicity of the missingness matrix follows from two natural assump-
tions:

1. Subject which drops out does not return (Definition 1.1).
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2. Order of subjects in sample does not matter, important is, that one
dimension of the data matrix (time) has the fixed ordering.

All observations on a subject are obtained until a certain time point, after
which all measurements are missing. Let nj denote the number of subjects
for which Xj is observed. If the pattern is monotone, then nj ≥ nj+1, j =
1, . . . ,m−1. Hence, there always exists a permutation of the measurements
such that a measurement earlier in the permuted sequence is observed for
at least those subjects that are observed at later measurements. That is,
in general, we can order the measurements so, that n corresponds to the
subject which drops out first, n−1 corresponds to the subject which drops
out secondly, etc. (see Figure 1, here n− 1 = nk).

Definition 1.3. Let k be the time point at which the dropping out process
starts. The vector H = (X1, X2, . . . , Xk−1) is called history of measure-
ments.

Herewith, natural assumption is that a history always has complete data.

Let k be the time point when the dropping out process starts. Without
restrictions we can assume, that until the time point k−1 we have complete
data and that the rows have been sorted as in Figure 1.

               Time  → 

 X1    X2   …   Xk-1  Xk    …    Xm-1   Xm

      Subject
       1
        2

                                    …                      …

      nm

      nk

      n
    

                          History 

Figure 1. Monotone missing data pattern with repeated measures and blocks
representing data. Dropping out started at the time point k.
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Thus, in a longitudinal study, where the measurements are made over time,
we can say that dropout in the sense of Definition (1.1) and monotone
missingness (Definition 1.2) are equivalent. Generally, for any correlated
measurements, the monotone missingness in the case of dropouts may be
not obvious. Monotone missingness can appear also in the case of nonre-
sponse in survey samples when the pattern of missingness is nested. By
nested we mean that variables can be ordered in such a way that once
a subject has a missing value at one observation, then it is subsequently
missing everywhere else (see Little, 1992).

Analogously to general missing data approach, we can use here the missing
data indicator matrix M , which elements are equal to 1 or 0 depending on
whether the corresponding observation is taken or not. Diggle and Kenward
(1994) used the concept of the dropout time D which is a random variable,
such that 2 ≤ D ≤ m identifies the dropout and D = m + 1 (or D = 0)
identifies no dropout. Particularly, D = k for some subject, if this subject
drops out between the (k − 1)th and kth timepoint, namely, if dropout
process starts at timepoint k.

For longitudinal data we usually observe two types of missingness patterns:
intermittent missing and dropout. Dropouts are distinguished from inter-
mittent missing values, in which the set of intended times of measurements
is not common for all units and which sometimes will be handled as unbal-
anced data.

For simplicity, hereafter we use notations without subscript for the subject’s
indicator i. Usually, the lowercase letter is used for subject which drops
out and subscript denotes the time point.
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1.3. Types of dropout

Consider the probability model for dropout time D which depends on the
history H of a measurement process

P (D|X1, . . . , Xk) = P (D|H,Xk),

where D = k is the dropout time and H = (X1, . . . , Xk−1). That means,
in general, that the dropout probability depends on the observed measure-
ments history H and the unobserved variable Xk.

The classification of dropout processes is analogous to Rubin (see, for ex-
ample, Little, 1990; Diggle and Kenward, 1994)

• Completely random dropout (CRD): dropout and measurement pro-
cesses are independent

P (D|H,Xk) = P (D);

• Random dropout (RD): dropout process depends on observed mea-
surements but not on unobserved measurements

P (D|H,Xk) = P (D|H);

• Informative dropout (ID) – dropout process depends additionally on
unobserved measurements, i.e. those measurements that would have
been observed if the subject had not dropped out.

By Hogan et al (2004) there does not exist a unified terminology for de-
scribing dropout mechanism in longitudinal studies. They introduced the
notion Sequential Missing at Random, which in their opinion, naturally fits
to stochastic process formulation.

Definition 1.4. The dropout process is called Sequential Missing at Ran-

dom (S-MAR), when conditionally on history the dropout process does not
depend on current or future measurements.

S-MAR has definite meaning in general repeated measurements design
where several covariates and responses are measured repeatedly. If we con-
sider only one variable X, which is observed at m time points X1, . . . , Xm
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and there is monotone missingness, then we do not have any measurements
of given object after dropout process has started. Thus, in our case there
is no difference between MAR and S-MAR processes2.

1.3.1. The risk of dropout

Lindsey (2000) proposed another typology of randomness for dropouts that
relies on a survival model for the dropout process. In terms of a stochastic
process, dropping out corresponds to a change of state of the subject. All
subjects which do not drop out are censored in terms of dropout process.
In this case, the repeated measurements data and dropout process can be
modeled simultaneously, each conditional on the complete previous history.
According to Lindsey (2000, p. 510), there are three types of missingness
processes based on the risk3 of dropout.

• The dropout is random if risk of dropout for all subjects can be
described by the same homogeneous Poisson process, so that the risk
of dropout for all subjects is not varying in time over the period in
study.

• The dropout process is ignorably nonrandom if risk of dropout varies
over time or depends on some factors in the same way for all subjects.

• The dropout process is nonignorably nonrandom if risk of dropout
depends on any of the variables relevant to the process under study,
including any specially collected as reasons for dropping out.

To model the dropout process given by these definitions, Lindsay proposed
to implement some procedure for the survival data. He demonstrated how
parametric proportional hazards model for failure time data can be fitted
by Poisson regression.

Applying Lindsay’s definitions there may be a good possibility to use sur-
vival copula and achieve good results in modelling dropouts, but it is not
our task here. We considered the traditional approach to dropouts.

2See also Robins et al comment to his assumption 2a (Robins et al, 1995, p. 107).
3Risk or hazard function is the probability that a subject having not failed up to time

t will fail during the small interval t +4t. Mathematically h(x) = f(x)
1−F (x)

.
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1.4. Objectives relating to dropouts

Dropping out is a difficult problem which often occurs in repeated measure-
ments study. Depending on the missingness mechanism, different strategies
can be used to analyze the data. Though a lot of research has been carried
out, there does not exist the best approach valid for all situations. Non of
the considered method dominates in the practical data analysis.

In the case of CRD the dropout does not dependent on data as subjects
are randomly selected to dropout. This yields unbalanced data and one
has adjust available statistical methods to this situation.

If the dropout process is RD, then the dropout is determined by the ob-
served variables. In practice this means, that we usually know the reasons,
why each subject has dropped out. Thus, a valid analysis can be performed
using a likelihood method that ignores the dropout mechanism: the para-
meters describing the measurement process are functionally independent of
the parameters describing the dropout process. However, it may be difficult
a priori to justify the assumption of random dropout.

In the case of ID, the dropout depends on an unobserved variable at the
time of dropout. All analysis may be biased unless we do not have some
additional information, sensitivity analysis may be reasonable in this case.

Currently we are interested in missing outcome variable, i.e. measurements
that potentially could be obtained. Dropout may be an important outcome
itself. In many theoretical and practical tasks it is necessary to know the
values of missing measurements, and there exists a long list of single and
multiple imputation methods such as conditional and unconditional means,
hot deck, linear prediction, etc. Next we will give a short overview about
the most popular methods of handling missing data.
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1.5. Handling missing data

In the literature there is a variety of methods proposed to deal with incom-
plete data (for example, monographs: Rubin, 1987; Little and Rubin, 1987;
Schafer, 1997; Verbeke and Molenberghs, 2000). This area has been devel-
oped particularly in biostatistical and biomedical applications (see Schafer
and Graham, 2002; Fitzmaurice, 2003; Hogan et al, 2004; Durrant, 2005;
Hedeker and Gibbons, 2006). Among others, there are new techniques for
imputation non-respondents in survey processes, developed by Laaksonen
(see Laaksonen, 2002).
In fact, the proper method for handling incomplete data depends on the
missingness mechanism.

1.5.1. Traditional approaches

Traditional approaches for handling missing data are well known. The
simplest way to deal with missing data is to omit incomplete cases from
analysis or case deletion:

(i) Listwise (case wise) deletion uses only complete cases,

(ii) Pairwise deletion uses all available cases.
The method is ordinary when analyzing two variables together and
all cases observed in both variables have been analyzed. In general,
the method is also useful for 3−, 4−wise etc. deletion, that means in
a statistical procedure the complete subsets of data are in use.

Listwise deletion omits cases which do not have data for all variables. This
approach is implemented as the default method of handling incomplete
data by many statistical procedures in commonly-used statistical software
packages.
Pairwise deletion omits cases which do not have data on two variables used
in the current calculation only. This means that different calculations (for
example, different correlation coefficients) will use different cases and will
have different samples. This effect is undesirable and may cause serious
misinterpretations. As parameters are estimated from different sets, it is
difficult to compute standard errors (Schafer and Graham, 2002).
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Listwise deletion is preferred over pairwise deletion when sample size is large
compared with the number of cases which have missing data. Already Little
and Rubin (1987) have demonstrated the danger of simply deleting cases.
Case deletion strategies assume that the deleted cases form a relatively
small proportion of the entire dataset and they are representative. Rule
of thumb: if a variable has less than 5% missing values with completely
random missingness, then we can use case deletion.

Deletion of cases may cause two problems: (a) sampling-theoretical: the
rest of sample may be not random and representative for the population;
(b) loss of information, especially crucial in case of small samples and big
amount of missing values.

In longitudinal study with dropouts, the listwise deletion means that we
exclude all subjects which do not attend the study until the end. It means
we lose a lot of information and in the case of small sample sizes we cannot
allow this, the reduction in the number of subjects will lead to a reduction
in statistical power which causes additional problems (Fitzmaurice, 2003).
An alternative approach to case deletion is the correction of the missing
values.

Definition 1.5. Imputation (filling in, substitution) is a strategy for com-
pleting missing value in the data with plausible value which is an estimate
of the true value of the unobserved observation.

Imputation replaces a missing value for a variable with an imputed value,
which has to be as correct as possible with regard to the true but unknown
value. In general, the basic aim of imputation is to fill in the missing data
by using values based on a specific model with certain assumptions.

There are methods based on a single imputation and methods based on
multiple imputation, which, instead of filling in a single value for each
missing value, one replaces each missing value with a set of plausible values.
As result of imputation, missing data are filled-in (imputed) and all the
statistical tools available for the complete data may be applied.
The parameter estimates could be obtained then from imputed data, the
general aim is to get unbiased and efficient estimates by choosing an appro-
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priate imputation method, which ideally has to be robust under misspeci-
fication of underlying assumptions.
As a result of imputation we get the point estimate of a missing value
and sometimes it may be the aim in itself, but usually researchers are more
interested in some statistics or models constructed from the completed data.
Usually the imputation procedure starts by substituting the missing values
for the variable with the fewest missing values from variables with complete
data. Then the complete and imputed values are used to predict the missing
values for the next variable, and so on until all the missing data are replaced.
There could be a problem with this method, since variables that have their
data replaced first using reduced model lack some important dependencies.
Thus, it is important to know missing data mechanism.

The list of most popular methods for handling missing data is the following.

• Single imputation methods. Missing value is replaced with a single
value.
1. Mean substitution. Replace each missing value by the mean of
observed values.
2. Regression methods. Replace each missing value by the predicted
value from a regression model estimated from the observed data.
3. Last observation carried forward (LOCF) approach.
4. Hot Deck approach, nearest neighbor imputation.
5. Expectation Maximization (EM) approach.

• Multiple imputation methods (MI). A simulation-based approach to
missing data.

• Model based analysis.

Next we will give a short overview of above mentioned methods accen-
tuating to longitudinal data and introduce the method of imputation by
conditional distribution which is of main interest in our work afterward.

1.5.2. Single imputation methods

1. Mean substitution. Replace a missing observation of the variable with
its sample mean computed from available cases to fill in missing data values
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on the remaining cases. When using longitudinal data, we can replace
a missing value with the mean of the individual responses from earlier
measurements for this individual. The essential drawback here is that the
trend in the data is not considered. Mean substitution was once the most
popular method for imputing missing values but is no longer preferred.
The problem is, when the data is MAR, this approach leads to biases in
both, the standard errors and the parameters. The method shifts possible
extreme values to the middle of the distribution, and it reduces variance
in the variable being imputed; the correlations are inflated as well. Thus,
mean substitution is no longer recommended.

2. Regression-based imputation4. In this approach a regression equa-
tion based on complete case data for a given variable is used to obtain pre-
dictions for missing values. When longitudinal data are used, an individual-
specific regression can be used to predict the missing value.
This is probably one of the best simple approaches, but this underestimates
standard errors by underestimating the variance. A simple remedy is to add
some random error to the predicted value (called stochastic substitution)
from the regression, but this rises another question concerning the distri-
bution that should the error follow. The regression method assumes that
missing values are MAR. The regression method also assumes that the same
model explains the data for the non-missing cases as well as for the missing
cases, which, of course, is not necessarily true.

3. Last observation carried forward (LOCF). This method is imple-
mented specially in the case of repeated measurements, the last observed
value is used to fill in the missing values at later points. That means we
assume that the value at the time of dropout is the same as the previous
one. Method can be accepted if measurements are expected to be relatively
constant over time (the assumption of constant profile) or when the main
interest is the outcome at the endpoint of the study, but typically using
LOCF produces bias (Molenberghs et al, 2004).
Roy and Lin (2005) called this method a naive method as well as those

4Sometimes called also as conditional mean imputation (see, for example, Schafer and

Graham, 2002)
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using baseline measures5 and ignoring missing data completely (Roy and
Lin, 2005). This method assumes that an individual’s missing value follows
the same distribution as the previously measured values for that individual.
Despite criticism by statisticians, the LOCF-method is still used to handle
dropout in clinical trials because of its simplicity. The method may be
useful for single use but certainly not for sequential imputation.

4. Hot deck imputation. Hot deck procedures contain the imputation
methods in which missing values are replaced with values from another
(most similar) subject in the current sample.
The hot deck procedures have some advantages (especially conceptual sim-
plicity) and disadvantages. Hot deck can be superior to case deletion, and
mean substitution approaches for handling missing data.
The methods are ordinarily used for the imputation of non-response in
sample surveys and they are widely accepted as providing accurate samples
of study population (see, for example, Fuller and Kim, 2005).
Using the hot deck imputation methods, the standard variance estimates
are reduced because of the additional variability due to missing values and
imputation is not taken into account. Hot deck imputation has a long
history of use and there are many complementations made since Rao and
Shao (1992), who suggested a jackknife method for estimation of variance
in hot deck imputation.
Hot deck methods may be particularly difficult to implement in the case
of continuous variables, they are simpler to use in practice with categorical
data. The more variables are used to match the missing observation, the
better, but also the less likely to find a match.

4a. Nearest neighbor imputation or distance function matching (see
Chen and Shao, 2000; Durrant, 2005) is an approach where a random
selection is made from several closest nearest neighbors. This imputation
method is one of the hot deck methods used in sample surveys. The suitable
distance measure is defined, the observed unit with the smallest distance
(the nearest neighbor) to the missing observation is identified, and the

5Baseline approach considered that measurements are not changed since baseline and

some baseline value is used to fill in the missing value
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missing value is substituted by the value of the nearest neighbor.

5. Expectation Maximization (EM) approach. The EM algorithm
(original from Dempster et al, 1977; comprehensive assay from Schafer,
1997) is a method that finds maximum likelihood estimates for incomplete
data using an iterative procedure that proceeds in two steps. First, the
expectation step (E-step) calculates the conditional expectation for missing
data of the complete-data log likelihood, given the observed data and the
parameter estimates.
The maximization step (M-step) substitutes the missing data by the ex-
pected values obtained from the E-step and then maximizes the likelihood
function as if no data were missing to obtain new parameter estimates. The
procedure iterates through these two steps until it converges.
EM-algorithm is simple to program and each iteration always increases the
likelihood, but the convergence is often too slow. The algorithm is more
used to obtain parameter estimates than to create imputation for individual
missing data.

In general, single imputation methods have two general drawbacks. Firstly,
the standard errors due to imputation are almost never calculated to ac-
count for the uncertainty behind imputed data, and secondly, they may
cause systematic bias.

1.5.3. Multiple imputation methods

Multiple imputation (MI) avoids both problems associated with single im-
putation. Proper standard errors are estimated as a part of the process,
thereby reflecting additional uncertainty that comes from using imputed
data. In addition, MI produces unbiased estimates of the eventual statis-
tics under reasonable assumptions.

Multiple imputation (Rubin 1987; Rubin, 1996; Schafer, 1997; Horton and
Lipsitz, 2001; King et al, 2001) is a strategy of replacing each missing value
with a set of plausible values that represent the uncertainty about the
right value to impute. The multiple imputed data sets are then analyzed
using the standard procedures for complete data and the results from these

28



analyzes are combined. Since each multiple imputation represent a random
sample of missing values, this process yields valid statistical inference that
properly reflects the uncertainty due to missing values. So, the multiple
imputation inference involves the following three distinct phases:

1. Missing data are filled in q times to generate q complete data sets.

2. The q complete data sets are analyzed using standard statistical meth-
ods.

3. The results from the analysis of q complete data sets are combined
to produce inferential results.

It has been shown that the efficiency of data imputation using MI is high
even when the number of imputed datasets is low (in the range 3 to 10).
The amount of calculations and the circumstance that we do not have single
imputed value itself (which sometimes is important to know), may cause
problems.

Depending on the patterns of missingness, various methods of multiple
imputation can be implemented, the most well-known of them are the fol-
lowing:
(1) parametric regression method or propensity scores (non-parametric
method) for the data sets with monotone missing patterns;
(2) Markov Chain Monte Carlo (MCMC) method for data sets with arbi-
trary missing patterns.

1.5.4. Model based analysis

Consider the joint distribution of the full data and dropouts with density
function f(Y,D|ψ, θ) (see notation in subsections 1.1 and 1.3), where θ pa-
rameterizes the measurements distribution and ψ the dropout distribution.
Choosing the model implies specification for the density function. The joint
distribution can be factored in different ways (Little and Rubin, 1987). Ac-
cording to the factorization there are two types of models: selection models

and pattern-mixture models. Both of them do not require random missing-
ness. Nice overview of the implementation of these models to informative
dropouts in longitudinal data is given in Fitzmaurice (2003).

29



1. Selection Model. The measurement model and the dropout model
can be fitted separately, provided that the parameters of the measurement
process θ and the dropout process ψ are statistically independent of each
other. If the interest is only in the measurement model, the dropout model
can be ignored.
In selection models we use the following factorization

f(Y,D|θ, ψ) = f(D|Y, ψ)f(Y |θ),

where f(Y |θ) is the density of Y and f(D|Y, ψ) is the conditional density
of D given Y .

2. Pattern-mixture model. The alternative factorization of the joint
distribution is

f(Y,D|θ, ψ) = f(Y |D, θ)f(D|ψ),

which corresponds to pattern-mixture models. This model classifies sub-
jects according to their missingness and describes the observed data within
each missingness group (pattern).

There are some suggestions in literature how to deal with these models
(Rubin, 1987; Little and Rubin 1987; Verbeke and Molenberghs, 2000).
Pattern-mixture models are very sensitive to the assumptions made about
the distributions of the variables with missing data and there is no standard
way to test these assumptions. Hence the most important requirement is
the good a priori knowledge of the mechanism of generating missing data.

3. Latent dropout class model. This approach is an alternative to
the pattern-mixture models. Here the missingness pattern membership
is unobserved itself, but the probability of being in a particular dropout
pattern is determined by the dropout times. The correlation between the
response and dropout time is modeled separately from serial correlation of
the response (Roy, 2003).

In general, there is a relationship between pattern-mixture model and the
structural equation modelling procedure (Schafer and Graham, 2002).

4. Sensitivity analysis. Sensitivity analysis (see, for example, Rotnitzky
et al, 1998, 2001; Verbeke and Molenberghs, 2000; Daniels and Hogan, 2000;
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Troxel et al, 2004) is a set of analyses showing the influence of different
methods of handling missing data in the study. In sensitivity analysis we
explore the results of the imputation method under a range of plausible
assumptions about the dependence of dropout, etc. If informative dropout
is assumed we have to collect more information on reasons of missingness
to get better outcomes.
If the results of the sensitivity analysis are similar and consistent, then
the robustness is guaranteed and missing values are acceptable. If the
sensitivity analysis gives inconsistent results, then the validity of the chosen
method may be questioned.
When substantial amounts of data are missing, the only analysis that mat-
ters is often the sensitivity analysis.

1.5.5. Imputation by conditional distribution

Beside other methods we are interested in imputation by conditional dis-
tribution. A full distribution model allows us to impute values from the
distribution of missing observations conditional upon observed data. Using
this approach we have to formulate the conditional distribution and draw
a value from it.

In our repeated measurements framework complete data are presented by
history H = (X1, . . . , Xk−1) until the time point k−1 and the measurement
Xk at time point k, which has at least one missing value xk for some
subject. In general, we can assume that data have a k-variate distribution
with joint density function fH,Xk

. Then the conditional density function of
Xk, conditioned by the history, can be expressed as

fXk|H(xk|x1, . . . , xk−1) =
fH,Xk

(x1, . . . , xk−1, xk)
fH(x1, . . . , xk−1)

.

Imputation from the conditional distribution usually means simulation or
drawing value from fXk|H (Schafer and Graham, 2002). We will use a some-
what different approach. Our goal is to find the imputed value that would
be observed most likely, that is, we shall find the argmax of conditional
density function in order to estimate the dropout xk. The procedure is
technically similar to the maximum likelihood estimation. That means, we
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can find the conditional mean as the imputed value using the maximum
likelihood method.

Thus, the conditional distribution approach consists of the following steps:

1. Construct the joint distribution function FH,Xk
and the density func-

tion fH,Xk
using marginals F1, . . . , Fk−1, Fk.

2. Find the conditional density function fXk|H .

3. Find the argmax of the conditional density function to estimate the
dropout, and then use it as imputed value

x̂k = arg max
xk

[fXk|H(xk|x1, . . . , xk−1)].

Hence, we will apply the idea of imputing a missing value based on condi-
tional distributions conditionally to all observed variables up to dropout.
The idea of using conditional distribution is distinguished and extensively
used. Conditional distribution contains all the information about the his-
tory of measurements (as condition) and about marginal distributions (un-
conditioned information that is specified using this condition).

Using conditional distribution of the missing value conditioned to the his-
tory of measurements we can solve the following tasks.

1. Estimate all distribution parameters using any method for estima-
tion of parameters. For example, we can use the maximum likeli-
hood method to estimate conditional mean (the most likely value of
dropout), median, etc.

2. Estimate the dropout using some other loss-function for estimation
of missing value (for instance, when losses of overestimation and un-
derestimation are different).

3. Estimate the precision of an estimate (confidence interval, standard
deviation) using standard statistical methods.

4. Find possible extreme values (or quantiles) for dropout.
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5. Generate one or several draws from conditional distribution. In the
case of several generated draws we obtain the multiple imputation
rule.

Further we will use the conditional mean or the expected value as an im-
puted value.
The main problem is that the joint distribution may be unknown and find-
ing conditional distribution may be therefore impossible. By using the
copula theory the approximate joint and conditional distributions can be
still found, which motivates us to use the copulas later on.

1.5.6. Cautions to imputation

Missing data analysis procedures do not generate something out of noth-
ing. Missing data analysis procedures do make the most out of the data
available, maximizing precision of estimation and eliminating biases.

In many papers in this field we can read the following cautionary citation
of Dempster and Rubin6:

The idea of imputation is both seductive and dangerous. It is seductive
because it can lull the user into the pleasurable state of believing the data are
complete after all, and it is dangerous because it lumps together situations
where the problem is sufficiently minor that it can be legitimately handled
in this way and situations where standard errors applied to the real and
imputed data have substantial biases.

Of course, we have to take into account that even through imputation we
have complete data, inference, in particular point estimation, is valid only
if the additional underlying assumptions are satisfied. Most conventional
methods are inefficient and produce biased estimates, except under strict
assumptions.

There are many open questions here and many solutions for missing data
problems have been available in the statistical literature for some time now,
the best or most reasonable procedure for imputing is often complicated to

6See for example Verbeke and Molenberghs, 2000, p. 224.
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choose. No universally best and generally accepted approach for handling
missing data exists.
The researcher must assume that missing observations differ from observa-
tions where values are present. The problem with missing data is mostly
the possibility that the remaining data are biased not so much that the
sample size is reduced.

In general, most of the missing data handling methods deal with incom-
plete data primarily from the perspective of estimation of parameters and
computation of test statistics rather prediction of values for specific cases.
Important is to remember that imputation of the dropout does not give us

qualitatively new additional information but enables with maximal effec-

tiveness to use all available information about the data for achieving our

purpose in the best way.

As a matter of fact we are interested in small sample sizes where every
value is important and imputation results are of scientific interest itself.
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Chapter 2

Copula

A fundamental problem in mathematical statistics is to determine a re-
lationship between a multivariate distribution function and its lower di-
mensional margins. In many situations we are interested in construction of
multivariate distribution with given marginal distributions and dependence
structure. The problem of existence multivariate distribution function with
discrete marginals was introduced by Tiit and Käärik some years ago (Tiit
and Käärik, 1996).

One of the most useful tools for handling multivariate distributions with
dependent components is the copula. We give here a brief review of some
important concepts of copula.

Copula is a function that allows to represent a joint distribution of random
variables as a function of marginal distributions specifying the dependence
structure. Copula links univariate marginal distribution functions to their
joint multivariate distribution function.

In fact, copula function was introduced independently in 1940s by Ho-
effding and Fréchet, whose research area consisted of the analysis of the
relationship between a multidimensional probability distribution and its
lower-dimensional marginals, especially in case of maximal and minimal
distributions. Basic developments of the properties of the copula function
can be found in three fundamental papers by Hoeffding (1940–1942) in
German and these were long time unnoticed (see Fisher, 1997).
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Sklar (1959) defined and provided some general properties of copulas. He
established the copula function and showed that any joint distribution func-
tion can be considered as a copula function.

There exists rapidly growing literature in copula theory. The first principal
books in this area were written by Joe (1997) and Nelsen (1999), for an
exhaustive overview see Lindskog (2000) or Embrechts et al (2001).
Applications of copula theory appeared in econometrics, finance and ac-
tuarial science (see, for example, Frees and Valdez, 1998; Embrecht et al,
1999, 2001; Clemen and Reilly, 1999) and have been rapidly developing
in recent years. Copulas have been applied to a wide range of problems
in biostatistics (Lambert and Vandenhende, 2002; Vandenhende and Lam-
bert, 2002, 2005; Lindsay and Lindsay, 2002) and recently to hydrology and
environmental data as well (see, for example, Dupuis, 2006; De Michele and
Salvadori, 2006; Zhang and Singh, 2006).

Recently, there have appeared some critical remarks about fast growing
copula applications (Mikosch, 2005).

2.1. Basic definitions and theorems

Definition 2.1. A copula is a function C : [0, 1]k → [0, 1] which has fol-
lowing properties

1. C(u1, . . . , uj−1, 0, uj+1, . . . , uk) = 0 (is grounded);
C(1, . . . , 1, uj , 1, . . . , 1) = uj for all j ∈ {1, . . . , k}, uj ∈ [0, 1];

2. C(u1, . . . , uk) is nondecreasing in each component uj ;

3. For all (u11, . . . , uk1), (u12, . . . , uk2) ∈ [0, 1]k with ui1 ≤ ui2 we have
the rectangle inequality:

2∑
i1=1

. . .
2∑

ik=1

(−1)i1+...+ikC(u1i1 , . . . , ukik) ≥ 0.

Because of these properties, a copula is the distribution function of a ran-
dom vector in Rk with uniform (0,1) marginals. Property 1 is necessary

36



for the existence of the marginal uniform distributions. Properties 2 and 3
correspond to the properties of distribution function.
If F1, . . . , Fk are univariate distribution functions, then C(F1(x1), . . . , Fk(xk))

is a multivariate distribution function with marginals F1, . . . , Fk because
Uj = Fj(Xj), j = 1, . . . , k, are uniformly distributed random variables.
In definitions standard uniform marginals are used, but in general the mar-
ginals might be arbitrary.

Theorem 2.1 (Sklar). Suppose that F is a distribution function on Rk

with one dimensional marginal distribution functions F1(x1), . . . , Fk(xk),
then there exists a copula C so that

F (x1, . . . , xk) = C(F1(x1), . . . , Fk(xk)). (2.1)

If F is continuous, then C is unique and is given by

C(u1, . . . , uk) = F (F−1
1 (u1), . . . , F−1

k (uk)) (2.2)

for u = (u1, . . . , uk) ∈ Rk, where F−1
i = inf{x : Fi(x) ≥ u}, i = 1, . . . , k, is

the generalized inverse of Fi.

Conversely, if C is a copula on [0, 1]k and F1, . . . , Fk are distribution func-
tions in R, then the function defined in (2.1) is a distribution function on
Rk with one-dimensional marginal distribution functions F1, . . . , Fk.

This theorem provides an easy way to form multivariate distributions from
known marginals that need not to be necessarily from the same distribu-
tion, combining them with a copula function and getting a suitable joint
distribution. There are two principal ways to use the copula idea. We can
extract copulas from well-known multivariate distribution functions. We
can also create a new multivariate distribution function by joining arbi-
trary marginal distributions together with a copula.

Hence, we have the random vector X = (X1, . . . , Xk) ∈ Rk, marginal distri-
bution functions F1, . . . , Fk, and the joint continuous distribution function
F , so that Xi ∼ Fi and X ∼ F . Suppose now that we transform the
random vector component-wise to have standard uniform marginal distrib-
utions U(0, 1). This can be achieved using probability integral transforma-

tion Xi 7→ Fi(Xi) = Ui. Thus from (2.1) and (2.2) we see that the copula
is the multivariate distribution which links univariate uniform marginals.
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The following theorem (see proof, for instance, Lindskog, 2000) shows one
important feature of the copula representation, namely that copula is in-
variant under increasing and continuous transformations of the marginals.

Theorem 2.2 (Invariance theorem). Consider k random variables X1,

. . . , Xk with a copula C. Then, if g1(X1), . . . , gn(Xn) are continuous strictly
increasing on the ranges of X1, . . . , Xk, then the random variables
Y1 = g(X1), . . . , Yk = g(Xk) have exactly the same copula C.

In the case where all marginal distributions are continuous it suffices that
the transformations are increasing.

This theorem shows that the dependence between the random variables
is completely captured by the copula, independently of the shape of the
marginal distributions. This property is very useful as transformations are
commonly used in statistical analysis. For example, no matter whether we
are working with X or logX, we get the same copula.

Another fundamental property of copulas is that Frechet-Hoeffding bounds
exist for copulas (Joe, 1997; Nelsen, 1999). For example, in two-dimesional
case, for any copula C and for all (u, v) ∈ [0, 1]

W (u, v) = max(u+ v − 1, 0) ≤ C(u, v) ≤ min(u, v) = M(u, v),

where W (u, v) are called the minimum copula and M(u, v) the maximum

copula which correspond to perfect negative and positive dependence, re-
spectively.

2.2. Joint and conditional density functions

We focus to the case where each marginal distribution Fi is continuous and
differentiable. If C and F1, . . . , Fk are differentiable, then the joint density

f(x1, . . . , xk) corresponding to the joint distribution function F (x1, . . . , xk)
can be written by canonical representation as a product of the marginal
densities and the copula density

f(x1, . . . , xk) = f1(x1) · . . . · fk(xk) · c(F1, . . . , Fk), (2.3)
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where fi(xi) is the density corresponding to Fi and the copula density c is
defined as derivative of the copula

c =
∂kC

∂F1 · · · ∂Fk
.

Copulas which are not absolutely continuous do not have joint densities.
Equation (2.3) is known as the density version of Sklar’s theorem: the joint
density can be decomposed into product of the marginal densities and the
copula density. Underlying theory of the equation (2.3) is essence of the
copula density, which is equal to the ratio of the joint density f to the
product of all marginal densities fi.

For example, in bivariate case the copula density can be found as follows.
Consider two random variables X1, X2, so that X1 ∼ F1 and X2 ∼ F2, and
let the joint distribution function F be defined by copula C, F (x1, x2) =
C(F1(x1), F2(x2)). The probability integral transformations of random
variables are U1 = F1(X1) and U2 = F2(X2), so we have X1 = F−1

1 (U1)
and X2 = F−1

2 (U2). These transformations are strictly increasing and con-
tinuous and we get:

c(u1, u2) =
∂2C

∂u1∂u2
= f(F−1

1 (u1), F−1
2 (u2))|J | =

f(F−1
1 (u1), F−1

2 (u2))
f1(F−1

1 (u1))f2(F−1
2 (u2))

,

where the Jacobian of the transformation is following:

J =

∣∣∣∣∣∂X1
∂U1

∂X1
∂U2

∂X2
∂U1

∂X2
∂U2

∣∣∣∣∣ ,
whith ∂Xi

∂Ui
= ( ∂Ui

∂Xi
)−1 = (∂Fi(Xi)

∂Xi
)−1 = f−1

i (Xi), and ∂Xi
∂Uj

= ∂Xj

∂Ui
= 0,

i 6= j, i, j = 1, 2.
�

The next essential notion is conditional distribution. Taking into account
the joint density defined by copula and univariate marginals (2.3) and basic
definition of the conditional density we get the conditional density defined
by copula as follows:

f(xk|x1, . . . , xk−1) =
f(x1, . . . , xk)
f(x1, . . . , xk−1)
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=
f1(x1) · . . . · fk(xk) · c(F1, . . . , Fk)

f1(x1) · . . . · fk−1(xk−1) · c(F1, . . . , Fk−1)

= fk(xk)
c(F1, . . . , Fk)
c(F1, . . . , Fk−1)

, (2.4)

where c(F1, . . . , Fk) and c(F1, . . . , Fk−1) are corresponding copula densities.

2.3. Gaussian copula

One of the most important examples of copulas is the normal or Gaussian
copula (Clemen and Reilly, 1999; Reilly, 1999; Song, 2000; Lindsay and
Lindsay, 2002; Lambert and Vandenhende, 2002). Gaussian copula be-
longs to the class of implicit copulas which are derived from distributions.
Implicit copulas do not have a simple closed form, but are implied by well-
known distribution functions (see, for example, Aas, 2005).

By definition, the k-variate Gaussian copula with k Gaussian marginals
corresponds to the k-variate Gaussian distribution. From copulas point of
view, the multivariate normal distribution has normal marginal distribu-
tions and Gaussian copula dependence. Gaussian copula handles depen-
dence in the same way as multivariate normal distribution, that means it
uses only pairwise dependencies among the variables, but it does so for
variables with arbitrary marginals.

Hence, the marginal distributions of k-variate normal copula are assumed
to be continuous and can substantially differ from normal ones and can, in
principle, be different. The advantage of using normal dependence structure
arises from its simplicity, analytical manageability and the easy estimation
of its only parameter, the matrix of pairwise dependencies.
For instance, the bivariate Gaussian copula is defined as

C2(u, v, θ) = Φ2[Φ−1
1 (u),Φ−1

1 (v), θ], u, v ∈ (0, 1), (2.5)

where Φ2 is the standardized bivariate normal distribution function with
correlation coefficient θ and Φ1 is the univariate standard normal distrib-
ution function. This notation can be easily extended to multivariate case
with replacing θ by a correlation matrix R.
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Definition 2.2. Let R be a symmetric, positive definite matrix with
diag(R) = (1, 1, . . . , 1)T and Φk be the standardized k-variate normal distri-
bution function with correlation matrix R. Then the multivariate Gaussian

copula is:

Ck(u1, . . . , uk;R) = Φk(Φ−1
1 (u1), . . . ,Φ−1

1 (uk)). (2.6)

Remark. Under linear independence (when R is the identity matrix) the
copula Ck(·, R) reduces to independence or product copula Π(·). The prod-
uct copula is defined as Π(u1, . . . , uk) = u1 · . . . · uk.

2.4. Modelling joint density of repeated measure-

ments by Gaussian copula

Let us use the whole history H of repeated measurements. Suppose there
is a subject i such that until the time point k − 1 the measurements
X1, X2, . . . , Xk−1 are observed and at the time point k the subject drops
out, thus the measurement Xk has a missing value.
Suppose the measurement Xj has continuous distribution function Fj (j =
1, . . . , k), in general we can normalize this using normalizing transformation

Yj = Φ−1
1 [Fj(Xj)], j = 1, . . . , k, (2.7)

where Φ−1
1 is the inverse of the standard univariate Gaussian distribution

function.
Then by using the k-variate normal copula we get the following expression
for the joint multivariate distribution function:

F (y1, . . . , yk;R) = Ck(u1, . . . , uk;R) = Φk[Φ−1
1 (u1), . . . ,Φ−1

1 (uk);R],

where uj ∈ (0, 1), j = 1, . . . , k; Φk is the standard k-variate normal distri-
bution function with the correlation matrix R.
For getting the normal joint density function we have to find the normal
copula density ck as a derivative from normal copula Ck. According to (2.3)
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the joint density function is the product of the marginal densities and the
copula density

φk(y1, . . . , yk|R) = φ1(y1) · . . . · φ1(yk) · ck[Φ1(y1), . . . ,Φ1(yk);R], (2.8)

where Φ1 and φ1 are the univariate standard normal distribution function
and density function, respectively.
From here we get the copula density

ck[Φ1(y1), . . . ,Φ1(yk);R] =
φk(y1, . . . , yk|R)
φ1(y1) · . . . · φ1(yk)

. (2.9)

The copula density contains information about dependencies among mar-
ginals and is called also dependence function.
Using standard normal density expressions we get the normal copula density
in the following form

ck[Φ1(y1), . . . ,Φ1(yk);R] =
exp[(−1/2)Y TR−1Y + (1/2)Y TY ]

|R|1/2

=
exp{−Y T (R−1 − I)Y/2}

|R|1/2
, (2.10)

where Y = (Y1, . . . , Yk) and I is the k × k identity matrix.
To construct a multivariate density for arbitrary marginals we now use the
marginal densities f1(x1), . . . , fk(xk) and copula density ck (2.10) as the
dependence function. Thus, we obtain the joint density, as follows

fk(x1, . . . , xk|R) = f1(x1) · . . . · f1(xk) ·
exp{−QT

k (R−1 − I)Qk/2}
|R|1/2

, (2.11)

where, following (2.7) we denoted Qk = (Φ−1
1 [F1(x1)], . . . ,Φ−1

1 [Fk(xk)]) to
stress on arbitrary marginals.

Eventually, considering (2.4) and (2.10) we can find the conditional density
of Gaussian copula. We will derive the conditional density after examining
structure of the correlation matrix and its partition in Chapter 4.
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2.5. Other copulas

The classical approach to describe dependence is based on the multivariate
normal distribution. The normal copula is useful because of easy imple-
mentation in practice and simple simulation rule.

Problem for normal copula is that it takes into account only second order
moments and all higher order moments are uniquely determined by them.
It follows that dependence structure of Gaussian copula considers only pair-
wise dependencies and does not account higher order dependencies. On the
other hand it should be pointed out that for estimating higher order de-
pendencies a lot of parameters are needed and this may be a complication
for practical usage.

However, there exist increasing evidences indicating that normal assump-
tions are inappropriate in many situations in the real world. In general, a
multivariate normal distribution is not an ideal model and is valid when
only measurement error is present, at the same time ignoring or poorly
modeling the dependencies between repeated measurements.
To solve this problem some other distributions and/or some other cop-
ulas for joint distributions can be applied. For example, Lindsey and
Lindsey (2004) suggested Student’s t-distribution, power-exponential or
skew Laplace distribution for modeling repeated responses instead of nor-
mal distribution (Lindsay and Lindsay, 2004). Lambert and Vandenhende
(2002) used normal copula when marginals were gamma, Weibull, inverse
Gaussian, normal, log-normal, Student and log-Student distributions (Lam-
bert and Vandenhende, 2002).

From the wide variety of copulas probably the elliptical and Archimedean
copulas are the most useful in applications.

2.5.1. Elliptical copula

A natural extension of the multivariate normal distribution is the class of
elliptical distributions. An elliptical distribution is the multivariate gen-
eralization of the family of univariate symmetric distributions. Classical
examples of elliptical distributions are the multivariate normal and the mul-
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tivariate t-distributions. The class of elliptical distributions shares many
tractable properties of the multivariate normal distribution and enables
modelling multivariate extremes and other forms of non-normal dependen-
cies. In the family of elliptical distributions, additionally to the correlation
matrix, the dependence structure takes into account the forth moments as
well.
Elliptical copulas are generally defined as copulas of elliptical distributions
(Bouyé, 2000; Lindskog, 2000; Embrecht et al, 2001; Demarta and McNeil,
2004). So they are useful when observed data are not normally distributed
and tend to have marginal distributions with heavier tails. Elliptical cop-
ulas are able to support tail dependencies. Tail dependence is a concept
that is relevant to dependence in extreme values. Joe (1997) introduced
the tail dependence to describe the tail behavior of copulas. The tail de-
pendence between the random variables exists when the probability of joint
extreme events is higher than what could be predicted from the marginal
distributions.
For example, in bivariate case the upper tail dependence is defined as fol-
lows.

Definition 2.3. Let X1 and X2 be random variables with continuous mar-
ginal distribution functions F1, F2 and copula C as the joint distribution.
The coefficient of upper tail dependence of two random variables is

λU = lim
u→1

P (X1 > F−1
1 (u)|X2 > F−1

2 (u)) = lim
u→1

1− 2uC(u, u)
1− u

.

For elliptical copulas the coefficient of upper tail dependence is equal to the
coefficient of lower tail dependence, since elliptical distributions are radially
symmetric.

One example of elliptical copulas is the Student t-copula defined as

Ct(u1, . . . , uk; ν,R) = Ψt(Ψ−1
1 (u1, ν), . . . ,Ψ−1

1 (uk, ν); ν,R),

where Ψt denotes the k-variate Students t distribution function, Ψ−1
1 de-

notes the inverse of the univariate Students t distribution function, ν is the
number of degrees of freedom and R is the correlation matrix.
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The main difference between Student’s and Gaussian copulas lies in the
probability of extreme events. A Gaussian copula has zero tail dependence,
that means that the probability that variables are in their extremes is
asymptotically zero unless linear correlation coefficient is equal to one, while
the Student t has symmetric, but nonzero tail dependence. Of course for
moderate values of the correlation coefficient, the Student copula with large
number of degrees of freedom may be close to the Gaussian copula.

There are, however, drawbacks of elliptical copulas: they do not have closed
form expressions and their applicability is restricted, asymmetries cannot
be modeled with elliptical copulas.

2.5.2. Archimedean copula

An important class of parametric copulas to model non-normal data is the
class of Archimedian copulas, which is often used in applications because
of easy construction and estimation (see Genest and MacKay, 1986; Genest
and Rivest, 1993; Frees and Valdez, 1998; Nelsen, 1999; Lindskog, 2000).

The term Archimedean1 copula first appeared in the statistical literature
in the paper by Genest and Mackay (1986).

In particular, Archimedean copulas belong to explicit copulas. They have
closed form expressions and are defined explicitly, not derived from multi-
variate distributions using Sklar’s theorem. A disadvantage of this model
is that extensions of bivariate Archimedean copulas to multivariate ones
need some technical assumptions about their parameters, so the choice of
free parameters is restricted.

Archimedean copulas are widely used in applications due to their simple
form and a variety of dependence structures.
The main advantages of Archimedean copulas are the following.

• Archimedean copulas can be easily constructed. In general, when
comparing with elliptical copulas, they have simpler, closed form ex-

1Nelsen explains the utilization of term Archimedean copula by Archimedean property

(see Nelsen, 2005, p. 2).
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pressions. For instance, the expression of the Gaussian copula in-
volves the inverse standard Gaussian distribution function, i.e. the
inverse of a function defined by an integral.

• Class of Archimedean copula allows to use a variety of dependence
structures. In particular, Archimedean copulas can have asymmetric
tail dependence.

Archimedean copulas are constructed using a continuous, strictly decreas-
ing convex function ϕ.

Definition 2.4. A copula function C is called Archimedean if it can be
written in the following form:

C(u1, . . . , uk) = ϕ−1[ϕ(u1) + · · ·+ ϕ(uk)]

for all 0 ≤ u1, . . . , uk ≤ 1 and for some continuous function ϕ (often called
the generator) satisfying three conditions

• ϕ(1) = 0;

• ϕ is strictly decreasing and convex.
That is, for all x ∈ (0, 1), ϕ′(x) < 0, ϕ

′′
(x) ≥ 0;

• ϕ−1 is completely monotonic on [0,∞).

A collection of twenty-two families of Archimedean copulas can be found
in Nelsen, 1999, pp 94–97.

As already mentioned, copulas do not always have densities. Copulas which
are absolutely continuous have densities, and for Archimedean copulas with
generator ϕ, the density is given by

fk(x1, . . . , xk) = ϕ−1(k){ϕ[F1(x1)]+· · ·+ϕ[Fk(xk)]}
k∏

i=1

ϕ(1)[Fi(xi)]F
(1)
i (xi),

where ϕ−1(k) = ∂k

∂x1...∂xk
ϕ−1, that means the superscript notation (k) is

used for the k-th mixed partial derivative.

The conditional density of Xk with given past H = (X1, . . . , Xk−1) is ac-
cordingly (Frees and Valdez, 1998)

46



fk(xk|H) = ϕ(1)[Fk(xk)]F (1)(xk)
ϕ−1(k−1){ck−1 + ϕ[Fk(xk)]}

ϕ−1(k−1)ck−1
,

where ck−1 = ϕ[F1(x1)] + . . .+ ϕ[Fk−1(xk−1)].

For Archimedean copulas the dependence measure can be expressed in
terms of the generator as shown in bivariate case (Genest and McKay,
1986).

Theorem 2.3 (Kendall’s tau). Let X1 and X2 be random variables with
an Archimedean copula C generated by ϕ, then Kendall’s tau of X1 and X2

is given by

τC = 1 + 4
∫ 1

0

ϕ(t)
ϕ′(t)

dt (2.12)

Example: Frank’s copula

In repeated measurements study the Frank’s copula from class of Archimede-
an copulas was implemented by Vandenhende and Lambert (2000, 2002)
to describe dependence between dropout and response. They used Frank’s
copula in the case of ordinal responses for the dropout model and tested
several marginal distributions (Cauchy, Gamma, log-normal). In Vanden-
hende and Lambert (2005) Archimedean copulas (among others the Frank’s
copula) are used for lifetime study of Danish twins.

The generator function of the Frank’s copula (Genest, 1987; Nelsen, 1999)
is

ϕ(t) = − ln
e{−αt} − 1
e{−α} − 1

,

with one parameter α, which measures strength of dependence between
marginals.
Hence, the k-variate Frank’s copula has the form

C(u1, . . . , uk) = − 1
α

(
1 +

∏k
i=1(e

−αui − 1)
(e−α − 1)k−1

)
.
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Genest (1987) gave the conditional mean function in the case of bivariate
Frank’s copula:

E(X2|X1 = x) =
(1− e−α)xe−αx + e−α(e−αx − 1)

(e−αx − 1)(e−α − e−αx)
, (2.13)

where relationship between copula parameter α and Kendall’s tau is the
following

τ = 1− 4(1−G1(α))
α

and
G1(α) =

1
α

∫ α

0

t

et − 1
dt.

The equation (2.13) can be used for imputation in the case of two repeated
measurements.

2.6. Modelling using copulas

The canonical representation for the joint density function (2.3) permits in
general a statistical modelling of copula to be decomposed into the following
steps:

• determination of the marginal distributions F1, . . . , Fk and estimation
their parameters (in our case marginals are distributions of repeated
measurements at the time points 1, . . . , k, where any univariate dis-
tribution can be used as a marginal),

• determination of the appropriate copula function which completely
describes the dependence structure of random variables (in our case
the dependencies between repeated measurements),

• determination of the joint and conditional distributions (in our case
the conditional distribution of the missing value conditioned to the
history of measurements).

This decomposition of modelling into steps is the main advantage of the
copula approach. Instead of estimating all the parameters of the distribu-
tion simultaneously, we can estimate parameters of marginal distributions
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separately from the joint distribution. Given the estimated marginal dis-
tributions we use appropriate copula to construct the joint and conditional
distribution.

Compared to using the joint distribution directly, working with the copula
model has several advantages.

Firstly, in many cases, it may be complicated to specify a joint distribution
directly within any well-known families. Besides, traditional representation
of multivariate distribution requires that all random variables come from
the same family of marginals. Using the copula approach we can first esti-
mate arbitrary marginal distributions. By changing the types of marginal
distributions and their parameters we can select the best model for data,
and then estimate the dependence structure as the copula parameter.

Secondly, in the copula model approach we obtain a dependence function
explicitly, which enables us to provide a more specific description of de-
pendence. In repeated measurements study the assessment of dependence
structure is extremely important. We can vary the dependence structure
by choosing different copulas or the same copula with different parameter
values.
Furthermore, the family of copulas is sufficiently large and allows a wide
range of multivariate distributions as models.

Now, we can summarize and present the following important features of
copulas:

• A copula describes how the marginals are connected together in the
joint distribution. Every joint distribution may be written as a copula
which entirely assigns the dependence between random variables and
the type of dependence is not limited only to correlation.

• The marginal distribution functions and the copula can be estimated
separately. Copula separates dependence structure and marginal be-
havior.

• Given a copula we can obtain many multivariate distributions by
selecting different marginals. Given marginal distributions we can
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vary different copulas and obtain different multivariate distributions
having different dependence structure.

Comparing copulas available for connecting arbitrary marginals to a multi-
variate distribution the Gaussian copula seems to be the best for practical
use because

1. It has good opportunities for describing the dependence structure: it
is possible to estimate all k(k−1)

2 dependence coefficients of a k-variate
random variable.

2. It is possible to find a dependence structure to describe models with
small number of parameters.

3. The conditional distribution of the missing value can be found for
every existing dependence structure.

4. For a simple dependence structure simple formulas can be found for
calculating conditional mean (as imputed value) or standard deviation
of conditional distribution.
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Chapter 4

Simulation study

The goal of the simulation study is to test the effectiveness of the original
imputation methods given by formulas (3.5), (3.9) and (3.11) by comparison
with some well-known imputation methods in the case of different missing
data mechanisms, dependence structure and sample sizes.
We start of comparisons with normally distributed data and then check the
robustness of the imputation methods by moving away from the normal
distribution. We have performed two simulation experiments:
(1) using standard normal distribution;
(2) using a skewed distribution.
At first we generated the complete dataset and then datasets with dropout
are formed using three missingness mechanisms from the complete set.
As a quality measure the standardized absolute difference between the ob-
served value and the imputed value was used.

4.1. Generation of the complete data

In the first simulation experiment we generated the complete data matrix
from a multivariate normal distribution using

(a) constant correlation structure;

(b) autoregressive correlation structure with the correlation coefficients
ρ = 0.5 and ρ = 0.7;
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(c) banded Toeplitz correlation structure with the correlation coefficient
ρ = 0.5 (here correlations ρ = 0.7 are not possible in Toeplitz struc-
ture, see Remarks in page 67).

We generated data from 3-, 6- and 12-dimensional normal distribution with
sample sizes n = 10 and n = 20, assuming that the data represent repeated
measurements. Small sample sizes are typical for studies with repeated
measurements.
The second simulation study we performed in the case of skewed marginals.
Suppose X = (X1, . . . , Xk) has the k-variate normal distribution. To get a
skewed marginals Z1, . . . , Zk the data were transformed using the following
rules

zij =


C1vi for maximum value vj = maxi xij ,

C2xij , for every other positive value xij ,

xij , otherwise.

The constants were chosen C1 = 10 and C2 = 5.

4.2. Generation and imputation of the dropouts

The dropouts occur at the last time point (in the random variable Xk, k =
3, 6, 12 ) and we examine 3 cases of missingness mechanism: CRD, RD and
ID (see section 1.3).
According to the definitions of the CRD, RD and ID, we delete a random
value, a value in the last variable when the first variable has maximal value,
and the maximal value in the last variable, respectively. Three methods
of imputation based on the derived formulas (3.5), (3.9) (3.11) were used
according to the correlation structure.
In both simulation studies these methods of imputation were compared
with two well-known methods:

1. Imputation by the formula (3.5) vs imputation by the linear predic-
tion, where the observation at the last time point was modelled using
previous time points Xk = β0 + β1X1 + . . .+ βk−1Xk−1.
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2. Imputation by the formula (3.9) vs imputation using the LOCF-
method (Last Observation Carried Forward)2.

3. Imputation by formula (3.11) vs imputation using the LOCF-method.

4.3. Experimental design and calculations

In both simulation studies we generated 3 × 2 × 2 × 3 = 36 different data
sets (for CS and AR correlation structures): k = 3, 6, 12 (data from 3-,
6-, 12-dimensional normal distributions), n = 10, 20 (small sample sizes),
ρ = 0.5, ρ = 0.7, and for 3 missingness mechanisms (CRD, RD and ID). In
the case of banded Toeplitz correlation structure 3 × 2 × 3 = 18 different
data sets were under consideration (for ρ = 0.5 only). For each combination
formed by the above simulation factors, 1000 runs were performed.

To analyze the obtained results, the average bias was calculated as aver-
age difference between observed values and imputed values. Results were
presented in units of standard deviation of given marginals.

Let wk be the observed value for the subject which drops out at the time
point k (i. e. wk = xk or wk = zk according to the simulation study), wkv be
the corresponding imputed value using (3.5), (3.9) or (3.11) (i.e. wkv = ŷCS

k ,
wkv = ŷAR

k or wkv = ŷBT
k , respectively) and let wkp be the corresponding

imputed value using classical well-known rules (linear prediction or LOCF).
The standardized biases SB1 (for (3.5), (3.9) or (3.11)) and SB2 (for linear
prediction or LOCF rules) are calculated as follows

SB1 =
wk − wkv

Sk
, SB2 =

wk − wkp

Sk
,

where Sk is the standard deviation of observed values at last time point k.

Mean biases B1 and B2 are found by averaging values of standardized biases
SB1 and SB2 over 1000 runs.

2When the main interest is the outcome at the endpoint of the study (for example in

clinical trials), the LOCF is the most frequently used approach for dealing with missing

values in continuous variables (see also pages 26–27).
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The average standard deviations of biases were calculated over 1000 runs
and denoted by S1 and S2, respectively.

4.4. Results

To estimate the effectiveness of new imputation rules, we compare the mean
biases B1 versus B2, and the standard deviations S1 versus S2.

In the case of compound symmetry, the results show the advantage of (3.5)
compared to the linear regression (see Table 1).

Table 1: Results of two simulation studyies in the case of compound symmetry

I CRD RD ID

B1 0.0247 0.0414 1.5109
B2 0.0485 0.0961 1.7835
S1 0.6895 0.7897 1.0236
S2 1.0945 1.5627 2.0957

II CRD RD ID

B1 0.0245 0.1173 1.8994
B2 0.0870 0.3035 2.0685
S1 0.6918 0.8216 1.0243
S2 1.4107 2.0112 2.0647

We can see that in all cases the new formula (3.5) gives better results: it has
smaller bias and is more stable compared with the imputation rule based
on the linear regression (B1 < B2, S1 < S2). Of course, in the case of ID
both methods do not perform well; nevertheless, the new one gives smaller
bias. In the case of informative dropouts, the bias is greater than in the
case of random or completely random dropouts, as is usual.

In Table 2 we present the results of the simulation studies in the case of
the first order autoregressive correlation structure.
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Table 2: Results of two simulation studies in the case of autoregressive

dependencies

I CRD RD ID

B1 0.0199 0.0629 2.1261
B2 0.0213 0.1787 1.0929
S1 0.8296 0.8528 0.9599
S2 0.8776 0.8959 1.4408

II CRD RD ID

B1 0.0426 0.0597 2.6449
B2 0.0870 0.3035 2.0685
S1 0.6918 0.8216 1.0243
S2 0.8776 0.8959 1.4408

Again, the new method (3.9) is more stable (S1 < S2 in all cases). In the
cases CRD and RD, the new method gives smaller biases compared with
the LOCF-method (B1 < B2 in the first two columns).
Formula (3.9) did not work well when we had informative dropouts. In
this case the bias was larger compared with the LOCF-method, but the
standard deviations were smaller (B1 > B2, S1 < S2 in the last column).

In Table 3 we see the results of two simulation studies in the case of the
1-banded Toeplitz correlation structure.

Table 3: Results of two simulation studies in the case of 1-banded Toeplitz

correlation structure

I CRD RD ID

B1 0.0045 0.0015 2.0120
B2 0.0069 0.2856 1.5027
S1 0.7879 0.7742 1.0217
S2 1.0033 0.9620 1.6687

II CRD RD ID

B1 0.0722 0.0907 2.2320
B2 0.0143 0.3193 1.9212
S1 0.8430 0.8437 1.0915
S2 1.0212 1.0562 1.5143
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From Table 3 it follows that in all cases imputation by formula (3.11) gives
more stable solution than with LOCF-method (S1 < S2).
In the first simulation study in the cases CRD and RD the imputation
formula (3.11) gives smaller bias (B1) compared with bias (B2) by the
LOCF-method. In the case of ID model both imputation methods did not
perform well, as expected.
The results of the second simulation study demonstrated that the formula
(3.11) is sensitive to the deviations from the normal distribution; in the
case of skewed distribution the estimated value was biased.

4.5. Analysis of dependence of experimental

design

Additionally to the primary comparative analysis of mean biases the depen-
dence of biases of the experimental design was examined. Linear regression
models were fitted for biases with design parameters as independent vari-
ables.

Thus, we were interested how the changes of sample size, number of the
time points or value of correlations affect the mean bias. Quite obvious
result is that when the correlation coefficient increases then the mean bias
decreases (negative relationship). In the case of normal distribution there
were no additional dependencies, but in case of skewed distribution, the
bias additionally depends on the sample size (positive relationship).

In the case of CS scheme, from the analysis of dependence of design, we got
that the bias B1 is smaller than B2 when we had more time points (sample
size n is larger), and the standard deviation S1 is smaller than S2 when the
correlation increases.

In the case of AR dependence of design analysis gave us, that if we look
only at random and completely random dropouts, we can see some positive
dependencies: the bias B1 depends only on the missingness type, but B2

(the rule LOCF) depends on the number of the time points as well.
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In the case BT, the results of dependence analysis from the first simulation
study (normal distribution) demonstrated that the bias B1 decreases if the
sample size n increases. The bias B2 did not depend on sample size n,
either on number of measurements k.
Dependence analysis from the second simulation studies (skewed distrib-
ution) did not show any dependencies between results and experimental
design.

4.6. Conclusions

In general, the results of all simulation studies showed that the imputa-
tion algorithms based on the copula approach are quite appropriate for
modelling dropouts.

• Bias is smaller in the case of CRD and RD missingness (smaller than
10%).

• Standard deviations are more stable.

• The formula (3.5) could be used for small data sets with several re-
peated measurements (k > n), when linear prediction does not work.

• The formulas (3.9) and (3.11) contains more information about data
than the LOCF-method.

• The formula (3.11) is sensitive to the distribution, it is not good to
use it for skewed marginals.

It is clear that in the case of informative dropouts we do not get good
results because the dropout process is not random, and without additional
information we cannot expect good results.

Thus, the new approach has essential advantages and therefore could have
widely implemented in to practice.
The following advantages can be pointed out.

1. Normality of marginal distributions is not necessary. Furthermore,
the marginals may be different. The normalizing transformation will
be used.
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2. The simplicity of formulas (3.5) and (3.9) for calculation.

3. High effectiveness, especially in the case of small sample size n relative
to the number of measurements (time points) k.

Certainly the Gaussian copula is not the only possibility to use in this
approach. Nevertheless, since multivariate normal distribution and linear
correlation coefficients form the basis for most models in data analysis,
Gaussian copula is a natural starting point in this kind of research.

The copula approach is also perspective in case when we can not derive
simple formulas. Copulas provide a natural approach to handle dependen-
cies between repeated measurements. They are not difficult to apply and
are reliable in many situations where the correlation structure is known.
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Summary in Estonian

Kordusmõõtmiste andmelünkade käsitlemine

koopulate abil

Kokkuvõte

Kordusmõõtmistega on tegemist juhul, kui sama objekt/subjekt on mõõde-
tud korduvalt ajas (ruumis). Kordusmõõtmistele on iseloomulik asjaolu, et
samal objektil/subjektil teostatud mõõtmised on omavahel seotud ja seda
seost ei tohi ignoreerida. Kordusmõõtmiste analüüsi kasutatakse paljudes
teadusvaldkondades – biostatistikas, biomeditsiinis, sotsioloogias jm. ning
enamasti on probleemiks, et ühel või teisel põhjusel pole võimalik koguda
täielikke andmeid.

Puuduvate andmete ehk andmelünkade probleemiga on tegeletud juba pikka
aega, süstemaatilise teooria rajajateks võib pidada D.B. Rubinit ja R.J.A.
Little’i, kes esitasid ka puudumiste tüpoloogia (Rubin, 1976; Little ja Ru-
bin, 1987). Puuduvate väärtustega andmete analüüsimiseks on välja töötatud
terve rida meetodeid, kuid samas pole olemas ühtegi, mida võiks pidada
universaalseks ja parimaks.

Lünkliku andmestiku käsitlemisel on põhimõtteliselt kaks ülesannet:
(a) hindamisülesanne, kus eesmärgiks on saada lünkliku andmestiku põhjal
mudeli parameetritele hinnangud, mis on võimalikult lähedased hinnangu-
tele, mida olnuks võimalik saada siis, kui need andmed oleksid olemas;
(b) imputeerimisülesanne, kus eesmärgiks on puuduva väärtuse võimalikult
täpne prognoosimine.

Antud töös on vaatluse all teine ülesanne, st lünkade täitmine ehk impu-
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teerimine, mis on eriti oluline praktilistes ülesannetes väikeste valimite kor-
ral. Prognoosiülesande lahendamiseks võib kasutada näiteks kas ainult vaa-
deldava tunnuse jaotust või kasutada tunnuse tinglikku keskväärtust, kui
teiste tunnuste väärtused on teada. Viimane oleks põhimõtteliselt parim
lahendus, mida aga tegelikkuses ei rakendata, sest tihti pole teada tunnuste
ühisjaotust ja seega ei saa leida ka tinglikku jaotust. Võimalikuks lahen-
duseks sel juhul oleks leida tee ühisjaotuse lähendamiseks, seejärel leida
puuduva väärtuse tinglik jaotus ja arvutada lähendatud tingliku jaotuse
põhjal tinglik keskväärtus (või ka mingi muu tingliku jaotuse karakteristik).
Puuduva väärtuse tingliku jaotuse kasutamise eesmärk on maksimaalselt
ära kasutada kogu olemasolev informatsioon andmetes:
(1) kasutada mõõtmiste ajalugu (moodustab tingimuse);
(2) kasutada vaatlustulemuste marginaaljaotusi – tingimatuid jaotusi, mida
oluliselt täpsustatakse tingimuse abil;
(3) kasutada seostestruktuuri mõõtmiste vahel.

Probleem on selles, et tuntud mitmemõõtmelised jaotused ei pruugi so-
bida ühisjaotuse kirjeldamiseks ja seepärast on võetud kasutusele koopulad.
Uudseks aspektiks antud töös ongi tingliku jaotuse leidmine koopulate abil.

Koopula on funktsioon, mis ühendab marginaaljaotused ühisjaotuseks. Ka-
sutades koopulat, saame eraldi hinnata marginaaljaotused ja seejärel arves-
tades seoste struktuuri määrata ühisjaotuse. Põhjalik teoreetiline ülevaade
koopulatest on antud H. Joe ja R. B. Nelseni monograafiates (Joe, 1997;
Nelsen, 1999).
Koopulad on algselt leidnud rakendust eeskätt kindlustus- ja finantsmate-
maatikas, viimasel ajal ka biostatistikas (meteoroloogias), biomeditsiinis ja
keskkonnastatistikas.

Kordusmõõtmiste analüüsis on koopulaid kasutanud vaid vähesed autorid.
Näiteks Lindsey ja Lindsey (2002) kirjeldavad Gaussi koopulat kordusmõõt-
mistega andmete korral, kuid nad ei käsitle lünkadega andmestikku. Lam-
bert ja Vandenhende (2002), Vandenhende ja Lambert (2002) on raken-
danud koopulate lähenemist mudelite leidmisel korduvmõõtmistega lünklike
andmestike korral, nad testisid erinevaid marginaaljaotusi (Cauchy, gamma,
log-normaalne) ja kasutasid Gaussi koopulat ning Franki koopulat, kirjel-
damaks seost uuritava tunnuse ja lünkade vahel.
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Koopulate kasutamisel on terve rida eeliseid klassikaliste meetodite ees.
Klassikalised mudelid baseeruvad mitmemõõtmelisel normaaljaotusel või
mõnel teisel mitmemõõtmelisel jaotusel, mis seavad teatud nõudmised ka
marginaaljaotuste kohta. Koopulamudel on paindlikum, ta lubab kombi-
neerida erinevaid marginaaljaotusi ja rakendada nende sidumiseks erinevaid
seostestruktuure. Saadud koopulamudeli sobivuse kontrollimiseks võib ka-
sutada klassikalisi sobivuse teste (χ2, AIC, BC ja nende modifikatsioone).
Võrreldes omavahel koopulaid, mis võimaldavad siduda suvalise arvu margi-
naaljaotusi mitmemõõtmeliseks jaotuseks, on kõige käepärasem Gaussi koo-
pula, sest

1. Gaussi koopula puhul on avarad võimalused seoste struktuuri kir-
jeldamiseks: on võimalik hinnata ja arvestada kõiki k-mõõtmelise
tunnusvektori k(k−1)

2 paarisseose kordajaid;

2. On võimalik leida seoste struktuuri kirjeldamiseks mudelid, mis sõl-
tuvad vähesest arvust parameetritest;

3. Puuduva väärtuse tinglik jaotus on igasuguse seoste struktuuri korral
leitav;

4. Lihtsate seosestruktuuride korral on võimalik tingliku keskväärtuse
(st asendusväärtuse) ja standardhälbe jaoks tuletada lihtsad valemid.

Antud töös kasutataksegi Gaussi koopulat.

Töö esimeses peatükis antakse ülevaade puuduvate andmete tüpoloogiast,
esitatakse lühiülevaade tuntumatest andmelünkade käsitlemismeetoditest
ja formuleeritakse imputeerimisülesanne.

Teine peatükk on pühendatud koopulate teooria põhimõistetele, põhjaliku-
malt on käsitletud Gaussi koopulat.

Kolmandas peatükis on esitatud enamus originaaltulemusi. Kõigepealt on
tutvustatud kordusmõõtmiste seostestruktuure, toodud korrelatsioonimaat-
riksi lahutus ja sellele vastavalt tuletatud üldine tinglikul keskväärtusel
baseeruv imputeerimisvalem (3.3) (Lause 3.1) ja selle üldistus (Järeldus
3.1). Edasi on vaadeldud erijuhtudena lihtsamaid korrelatsioonistruktuu-
re (konstantsed korrelatsioonid, esimest järku autoregressiivne sõltuvus ja
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tõkestatud Toeplitzi struktuur) ja tuletatatud nende korral lihtsad im-
puteerimise valemid (3.5), (3.8) (3.9), (3.11) (vastavalt Lause 3.2, 3.3, 3.4
ning Järeldus 3.2–3.5). Näitena on toodud esimest järku autoregressiivse
sõltuvusstruktuuriga reaalse andmestiku korral andmelünga asendamine
valemi (3.9) abil. Tulemus näitab, et metoodika on igati sobiv praktiliseks
kasutamiseks.

Neljandas peatükis on esitatud simulatsioonieksperimentide tulemused võrd-
lemaks erinevaid imputeerimismeetodeid ja selgitamaks välja koopula abil
imputeerimise plusse. Simulatsioonid näitavad, et esitatud metoodika on
sobiv rakendamiseks andmelünkade täitmiseks väikese valimi korral.

Enamus toodud tulemustest on avaldatud (Käärik, 2005; Käärik, 2006a;
Käärik, 2006b) ja ette kantud rahvusvahelistel konverentsidel.
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Citizenship: Estonian Republik
Born: September 14, 1950, Valga, Estonia
Marital status: married, 1 adult son
Address: J. Liivi 2–516, Institute of Mathematical Statistics, University
of Tartu, Estonia
Contacts: e-mail: Ene.Kaarik@ut.ee

Education:
1968–1973 University of Tartu, graduated with Diploma of mathematician
1992–1994 University of Tartu, post-graduate student, MsC in Mathematics
2001-2006 University of Tartu, PhD student in mathematical statistics

Professional employment:
1973–1992 mathemathician at the Department of Sports Medicine UT
1993–1994 researcher at the Institute of Mathematical Statistics UT
Since 1994 lecturer at the Institute of Mathematical Statistics UT

95



Curriculum Vitae

Nimi: Ene Käärik
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