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Abstract

This paper investigates the implication of innovation on employment
at the firm and industry levels. The paper contributes to the literature in
two respects. First, it proceeds from the data of a catch-up country un-
dergoing a very rapid economic development. Most of the empirical in-
vestigations use data from developed and technologically leading coun-
tries. The second contribution concerns the nature of the data in use; we
develop a unique database merging the data of the Estonian Commercial
Register with two consecutive Estonian Community Innovation Surveys
(CIS), the CISIII for 1998-2000 and CISIV for 2002—2004. Our results
coincide with the results on developed economies in the respect that in-
novation activity has a positive effect on employment and that product
innovation has a stronger and a more positive employment effect. Both
of these effects are consistent over firm and industry levels. This re-
sult is also confirmed by the insignificance of the spillover effects of an
industry’s innovation on employment by firms.
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Non-technical summary

This paper investigates the implication of innovation on employment at
firm and industry level. Two different specifications are used, one capturing
the effect of the total innovative activity and one capturing the effect of distin-
guished product and process innovation. The paper contributes to the literature
in two respects. First it proceeds from the data of a catch-up country under-
going a very rapid economic development. Most of the empirical micro level
investigations use data from developed and technologically leading countries.
Besides, the paper gives a comprehensive treatment of innovation employment
effects: investigating firm and industry level effects as well as spillovers from
the industry and region to the firm level. The second contribution concerns
the nature of the data in use; we develop a unique panel merging the data of
the Estonian Commercial Register with two consecutive Estonian Community
Innovation Surveys (CIS), CISIII for 1998—-2000 and CISIV for 2002—2004.

For the firm level estimations the labor demand equation has been derived
using similar specification to Van Reenen (1997). The Arellano and Bond
(1991) dynamic panel data GMM estimation method has been used to estimate
the labour demand equation. Arellano and Bond (1991) propose an instrumen-
tal variable estimation for differenced dynamic panel data specification. The
lagged differenced dependent variable and other predetermined or endogenous
variables are instrumented by their earlier values in levels and by other strictly
exogenous or additionally specified instruments. This approach is often called
also as a GMM-DIF estimator (“differenced” GMM). For the industry level
estimations the industries’ job flow indicators have been regressed by indus-
tries’ innovation activity. Similarly to Greenan and Guellec (2001) the Davis
and Haltiwanger (1992) method has been used to calculate industry’s job cre-
ation and job destruction rates.

The estimation results indicate that in firm and also in industry level inno-
vation activity has positive and statistically significant effect on employment.
This confirms the results found on developed world (see Pianta, 2005). Dis-
tinguishing between product and process innovation reveals that product in-
novation tends to have stronger and significant positive effect on employment
than process innovation. The latter is robust to the level of analysis in terms
of firms or industries. Previous studies have not found this effect to be that
consistent over firms and industries. This result is also confirmed by the in-
significant spillover effects from firm’s main industry’s innovation to firm’s
employment. Weak linkages between industry and individual firm refer to the
small importance of business stealing effect from one firm to the rest of the in-
dustry. Although controlling for export makes the spillover effects somewhat
stronger, but these remain still insignificant.
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1. Introduction

The relationship between technology and employment is discussed exten-
sively in the discipline of economics. The industrial revolution driving work-
ers to destroy new “competitors”, the advent of machines, or the utilisation
of computers increasing the demand for skilled workers in 1970-80s are well
known examples of the implications of technological change on the labour
force. In this day and age, the life-cycle of products has shortened, while pro-
duction technologies are replaced more and more frequently and are often seen
spreading all over the world. Innovativeness has become a target of any firm
that wants to keep its market share or of any country that wants to become
or remain wealthy. Under this “run to the top” manner of innovation activity
the implications of innovation have become even more vital. Hence, although
the level of employment at a firm is a combination of various supply and de-
mand side factors, we concentrate on the effect of innovation (technological
changes) on employment.

The firm-level evidence from developed economies usually finds a positive
relationship between employment and innovation, but negative relationships
have also been found. Distinguishing between product and process innovation
allows for a more thorough investigation of the relationship in question. Pianta
(2005:572) quoted Schumpeter who defined product innovation as “the intro-
duction of a new good. . or a new quality of a good,” and process innovation
as “the introduction of a new method of productian or a new way of han-
dling a commodity commercially.” Most of the empirical firm-level studies
find a positive relationship between product innovation and employment; see
e.g., Van Reenen (1997), Harrison et al. (2006), Rennings et al. (2004), and
Greenan and Guellec (2001). In terms of process innovation the results are
more varied. Fung (2006) and Harrison et al. (2006) found the relationship to
be positive, Van Reenen (1997) found there to be a weak positive or no signifi-
cant relationship, while Evangelista and Savona (2003) found this relationship
to be negative.

As expected, these results depend on the method and data in use and the
type of firms included. Taking into account the high persistence of employ-
ment and the lengthy impact of innovation, the dynamic panel estimation of
the impact of innovation on employment has been a favourable methodology
for the analysis at firm-level (Van Reenen, 1997; Piva and Vivarelli, 2005;
Fung, 2006; Lachenmaier and Rottman, 2007). The industry-level impact of
innovation on employment can differ from firm-level effects. There are not
many studies analysing the impact of innovation on employment at the firm

1See Appendix 1 for an overview of firm-level studies and Appendix 2 for an overview of
studies on industry-level.



and sectoral levels (see Greenan and Guellec, 2001; Evangelista and Savona,
2003).

The purpose of this paper is to investigate the implication of innovation on
employment in a rapidly developing EU catch-up economy, such as Estonia.
This paper contributes to the literature in two respects. First, it proceeds from
the data of a catch-up country instead of a high-income country and provides
a comprehensive analysis about firm- and industry-level effects. Second, it
merges two rounds of CIS data with the Commercial Register to form a six-
year panel based on CIS innovation variables. Although with some limitations,
this dynamic panel data enables us to extend the cross-section manner of CIS
data and account for the high persistence of employment; while using the di-
rect measure of innovativeness.

Most of the empirical studies use data from developed, technologically
leading countries, while the developing, transitional countries are less well in-
vestigated. The situation in developing countries is different in many respects,
as firms are often oriented towards low value-added production, or subcon-
tracting from abroad. The inward FDI is often a North-South type attracted
by low employment costs. In a European Union context, the new members
(which joined in 2004 and 2007) hold a considerably lower share of enter-
prises with innovative activities. In the EU12 (EU member states before 2004,
except Ireland, Luxembourg and the UK), the share of enterprises with inno-
vative activities was 44% in 1998-2000. In 8 of the new EU member states,
the same share was 24%, while the country under investigation, Estonia, held
the highest share of 36% within this group. In terms of the type of innovation
that is unlike those in developed countries, process innovation dominates in
post-soviet countries. (Eurostat, 2004)

The second contribution concerns the nature of the data in use. We develop
a unique database merging the data of the Estonian Commercial Register from
1994-2005 with two consecutive Estonian innovation surveys, the CISIII for
1998-2000 and CISIV for 2002—2004. The resulting database gives us a micro
panel of 1122 firms for the period of 1998-2004, with the exception of 2001,
which was not covered in the CIS surveys. The advantage of this dataset is
that we can incorporate the detailed information on the innovation process
from innovation surveys and the background variables of every firm back to
the year 1994 from the Commercial Register. So far the literature has not
used the joint data of consecutive CIS surveys. The high respond rates of the
Estonian survey and the small size of the economy allowed the CIS to survey
the whole population in many sectors making many respondents to overlap in
both surveys. This enabled us to obtain a representative number of objects to
use on the panel.



Our results indicate that overall innovation activity has a positive and statis-
tically significant employment effect at the firm and industry levels. Similarly,
product innovation also has a stronger and a more positive employment effect
at the firm and industry levels. Our estimations indicate no spillover effect
from industry or region.

The paper is organized as follows: The next section gives an overview of
the literature and describes innovation activities in European countries. Sec-
tion 3 derives a labour demand function and presents the estimation strategy.
Section 4 introduces and describes the data. Section 5 presents the results of
the empirical estimations and, finally, Section 6 summarizes the results.

2. Literature and background

2.1. Related literature

A popular proxy of the change in technology has been the notion of inno-
vation. Innovation is considered to be the first attempt to carry an invention
into practice (Fagerberg, 2005:4). As already mentioned, the usual conclu-
sion of the studies on the impact of innovation on employment is that there
Is a positive relationship between innovation and employment. Nevertheless,
the theoretical derivation behind the reduced form of equation(s), empirical
estimation methods and data characteristics differ.

Most of the studies differentiate between process and product innovation,
but there are studies that estimate only the overall effect. The result of process
innovation is a greater efficiency in production. As a result, production inputs
can be saved or production prices reduced. The usual outcome is a decrease in
employment, but when product quality is increased or the output price is re-
duced, it can also result in higher employment due to increased demand. New
products or services, radical innovation or imitation, usually enhance quality
and the variety of goods opening new markets as well as increasing produc-
tion and employment. The result can also be other way around — new goods
are innovated to reduce costs and in this way have similar effects to process
innovation. Product innovation can also have no effect on employment, such
as when new products replace old ones with minor economic effects. (Pianta,
2005:572-573; Smolny, 1998:365-366)

Van Reenen (1997) used the UK dynamic panel to derive the impact of
innovation on employment. Van Reener controlled for fixed effects, dynam-
ics and endogeneity, and found a significant positive effect that persists over
several years. He claimed that his positive relation could partly be a result
of the higher share of product innovations in the sample, as product innova-



tion “will be expected to have a stronger effect on employment” (Van Reenen,
1997:275). In terms of product innovation, he found the impact on employ-
ment to be positive; in terms of process innovation, he found no significant
effect. The production function was assumed to be a constant elasticity of
substitution production function; the demand for labour was derived and the
dynamic form of it estimated by GMM-DIF (Arellano and Bond, 1991). The
sample consisted of 598 UK manufacturing firms during the period of 1968—
1982. The proxy for innovation was the innovation count per firm.

Piva and Vivarelly (2005) used a specification similar to Van Reener (1997)
to derive and estimate the labour demand function. They found a positive,
although small, statistically significant effect of innovation on employment.
They also used a dynamic labour demand specification. As an extension to
the approach of Van Reenen (1997), Piva and Vivarelly used the GMM-SYS
as their estimation method, which is more suitable for the estimation of short
panels and in cases where a dependent variable is less persistent. The panel
data used covers 575 Italian manufacturing firms over the period of 1992—
1997. The innovation proxy was innovative investments.

At the European level, the cross-country comparable Community Innova-
tion Surveys (CIS) have been used for the investigation of the impact of in-
novations on employment. The disadvantage of this data is that CIS data
measures innovation as a discrete variable of firms’ innovation activity over
a three-year time period. This makes a single round CIS survey just a cross-
section in estimation terms. Although this cross-section counts differences
over a three-year time period and also collects information on firms’ future
expectations about the change in employment. However, the impact of inno-
vation on employment can be sluggish; that is why dynamic panel data ap-
proaches have an advantage over the single-round CIS data approaches. That
is why a single-round CIS estimates can also underestimate the impact of in-
novation on employment.

Nevertheless, various efforts are undertaken to estimate the impact of in-
novation on employment based on CIS data. Evangelista and Savona (2003)
estimated the Italian service sector CISII (1993-95) data, trying to determine
“the direct effect” of innovation on employment. They used a logit model
where the dependent variable is the increase in employment due to innovation.
They found that overall innovation expenditures and product innovation had a
positive impact on employment, while process innovation had no significant
impact.

Harrison et al. (2006) proceeded from four CIS innovation surveys of the
European Union’s largest countries — France, Germany, Spain and the UK —
to compare the impact of process and product innovation on employment at



the firm level. Harrison et al. (2006) proceeded from the production function
where old and new products are produced. The labour demand equation was
derived in such a way as to identify both the process and product innovation
impact on employment. The estimation method was two-stage least squares
and its data originated from CIS3 1998-2000. They concluded that the effects
on employment were similar across countries. Process innovation brought on
the replacement of workers, but the compensation effect due to the reduction
of production prices dominated, resulting in a positive total effect. Product
innovation brought on no displacement effects and a significant compensation
effect dominated even when the decrease in the production of the old product
was taken into account. In the service sector, the displacement effect was less
evident and the total employment effect was weaker.

In this paper we address the limitations of CIS surveys by merging two con-
secutive CIS surveys. This enables us to use a direct measure of innovativeness
from CIS surveys and also introduce a longer time-span. Unfortunately, CIS
surveys do not provide innovation count data. Innovation count data can be a
supreme measure of innovativeness, but so far CIS data is the best innovation
data available for Estonia.

In terms of the type of economy analyzed, empirical investigations usu-
ally proceed from the data of high-income countries. Among the low income
economies Lundin et al. (2007) found there to be no effect of science and
technology investments on employment in China. This was firm-level study
from a panel of manufacturing firms. Pradhan (2006) found a negative relation
between technology variables and share of unskilled workers in India. This
analysis was conducted at subindustry level of manufacturing sector. There
are also some studies of developing countries estimating the impact of in-
novation on aggregated employment. Kang (2007) found that technological
innovation has positive impact on overall employment in Korea and that this
effect is stronger in manufacturing. Kang (2007) used structural VAR for es-
timations. Ucdgruk (2006) found that innovators have higher employment
growth in Turkish manufacturing sector. Overall, it is difficult to generalize
these results as estimation techniques differed a lot. The study using the most
sophisticated estimation technique found the impact of innovation on employ-
ment to be insignificant (Lundin et al., 2007, for China).

The net effect of innovations on employment at the aggregate industry level
can differ from survey-based firm-level results. The firm-level analysis does
not allow for the expanding of these results to the whole industry. There are
several reasons why these firm-level results cannot be applied to the industry
level (Harrison et al., 2006; Piva and Vivarelli, 2005):

e it is not possible to distinguish between market expansion and the busi-
ness stealing effect; e.g., if employment is increased by an innovating



firm, the market share of other firms will diminish;

¢ the entering and exiting of firms is not observed, innovators may close
down non-innovators;

¢ totally new economic branches may surface and create completely new
jobs.

Piva and Vivarelli (2005) gave an overview of the advantages and disadvan-
tages of the microeconometric estimation of the employment effects of inno-
vation. The main disadvantage was that the results of the micro studies cannot
be generalized, because all the sectoral and macroeconomic effects were not
captured. For instance, if one uses a sample with only innovating firms, “busi-
ness stealing” effects will be neglected. The advantage of micro studies is that
innovation can be measured more precisely; for example, process and product
innovation can be distinguished.

There is evidence that innovation has a positive effect on employment at
the firm level as well at the sectoral level. Innovative firms and sectors create
more employment compared to non-innovative ones (Greenan and Guellec,
2000; on a French panel). However, the positive effect of process innovation
dominates at the firm level and the positive effect of product innovation domi-
nates at the industry level (the possible effect of market expansion). Similarly,
Antonucci and Pianta (2002) found on a panel of manufacturing industries of
the developed European countries that process innovation had a negative ef-
fect on employment, while product innovation had a positive, but insignificant
effect. Evangelista and Savona (2003) found that in the Italian service sector
firm-level estimations showed more positive results on employment due to in-
novation than industry-level estimations. In sum, the simultaneous surveys on
firm and industry levels do not equally give the same results across the level
of analysis undertaken, especially when distinguishing between product and
process innovation.

2.2. Innovation patterns of high- and middle-income coun-
tries

There have been disagreements about the causality between the innova-
tiveness and income of the economy. According to one version, innovative-
ness determines economic growth (endogenous growth theory); the other ver-
sion states that the level of economic development determines innovativeness.
Differentiation between product and process innovation does not provide a
clearer picture. On the one hand, empirical literature suggests that product and
process innovation are interdependent; see e.g., Reichstein and Salter (2006)



about UK manufacturing industries. On the other hand, microeconometric
studies find that the determinants of product and process innovation differ.
Product innovation is related to disembodied forms of technology (a stock of
knowledge or a set of capabilities), while process innovation benefits from
capital embodied technology (fixed productive capital) (Rouvinen, 2002).

Figure 1 presents the relation between the share of product and process
innovative firms in the 25 European countries. There is a positive relation be-
tween the share of product and process innovative firms, but this relation tends
to be non-linear. The share of process innovative firms increases faster at lower
levels of innovativeness and the share of product innovative firms increases
faster at higher levels of innovativeness. These country-level observations are
weighted by countries’ GDPer capitain euros; the larger the country marker
is in Figure 1, the higher the country’s GDP per capita also is. Evidently, coun-
tries with a higher level of income tend to have more innovative firms and tend
to create more product rather than process innovations.
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Figure 1: Relationship between product and process innovativeness, weighted
by GDP per capita (2004, in euros).
Note: The process innovation numbers drawn from the Eurostat database do not contain

process innovation created jointly by firms and outside partners.
Source: IV European Community Innovation Surveys, 2002—-04 (Eurostat, 2008).
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Three groups of countries emerge from the figure. The first group com-
prises countries with a fixed low level of product innovation and varying low
level of process innovation. These countries all have relatively low income
levels in the European context and consist of Bulgaria, Hungary, Malta, Slo-
vakia, Romania, Poland and Lithuania. The second group contains countries
with middle levels of product and process innovation. This group includes
countries where process innovation dominates and which are characterised by
middle and high levels of income: Spain, Italy, France, Portugal, Cyprus and
Greece. There are also countries in the second group where product innovation
dominates and this group includes high income countries: The Netherlands,
Norway, Finland, and as an outlier, the Czech Republic. The final group com-
prises countries with high innovativeness dominated by product innovation.
This group contains high income countries such as Denmark, Belgium, Swe-
den, Austria, Luxembourg, Germany and Ireland. Ireland is an exception that
possesses a remarkably high share of process innovative firms. The country
under investigation in this paper, Estonia, is also a part of this group. Estonia
is a clear outlier there having high rates of innovativeness, but a low level of
income.

These differences in cross-country product and process innovativeness can
be a result of different industry mixes in these countries. Antonucci and Pi-
anta (2002) concluded on the example of European countries’ manufacturing
industries that the same industries across countries were characterised by sim-
ilar shares of new or improved products in sales or share of process innovation
in sales. In other words, the distribution of countries between product and
process innovativeness can be explained by industry specificity rather than
by country factors (Antonucci and Pianta, 2002:300). Their estimations were
based on CISII data from 1994—-96. Contrary to our paper, they found a neg-
ative relationship between product and process innovation. This may be a
result of a different measure of innovativeness; they used the share of new
or improved products in sales or share of process innovation in sales. It can
also be a result of different levels of aggregation; they used the manufacturing
industry level instead of the country level.

The empirical analysis of this paper employs Estonian data. One must no-
tice that in terms of the level of innovativeness Estonia is the most innovative
among the group of low income new EU members. Additionally, the share
of product innovative firms in Estonia is higher than the share of process in-
novative firms. The high share of innovative firms may also show that these
innovations are far from major technological shifts. The CISIV survey for
Estonia shows that most of the firms’ innovation activity is related to the pur-
chasing of machines and equipment or computer hard- and software (Viia et
al., 2007:9). Another EU-wide innovation survey, the European Innovation
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Scoreboard, has also ranked Estonia as one of the most innovative countries
among the new EU members. Still, the Estonian innovation system is very un-
balanced. Estonia has developed its innovation drivers (tertiary education), in-
novation and entrepreneurship (SMEs innovation activity) well, but performs
badly in transferring these into knowledge creation (low R&D activity) (Pro
Inno Europe, 2007).

3. The labour demand function of firms

The empirical literature investigating the employment effects of innovation
(or technological change) usually proceeds from the neoclassical production
theory with a predetermined shape of the production function. The labour
demand is derived from profit maximizing conditions and estimated using var-
lous econometric methods.

The specification used in this paper proceeds from the one employed by
Van Reenen (1997). There the constant elasticity of substitution (CES) pro-
duction function has been used to derive the labour demand function. A per-
fectly competitive firm operates according to a CES production function:

— o o— o U/(O.il)
Q=T|(AN)" V7 4+ (BK)“V

1)

where( is output, T is the Hicks-neutral technology parametgis labour
augmenting Harrod-neutral technolodyis the Solow-neutral technical change,
N is employment, and( is capital. In a perfectly competitive world without
distortions, the marginal product of labour should equal real wagés’).
Proceeding from this assumption and solving for labour demand results in the
following labour demand function:

log N =log@ — olog (W/P) + (¢ — 1) log A (2)

Next, equalizing the marginal product of capital with the real price of capi-
tal and substituting via this second order condition for the output in the labour
demand function (2), gives the following labour demand function:

log N = (0 —1)log(A/B) —olog(W/P)+log K +ologR  (3)
Next, Van Reenen (1997) replaced the unobserved technology variables

with innovation and produced the stochastic form of the labour demand func-
tion. In our paper the first part of the right hand side variables in (3) is proxied

12



by technology level instead of innovations (change in technology). Our labour
demand function is derived as follows:

nig = o TECH_levely + Bswy + Baki + T + Uit (4)

Lower case letters stand for logarithmMiSEEC'H _level indicates the level
of technology;r; represent time dummies, ang is a white noise error term.
The superscript indicates the firm andthe time period. The price of capital
is assumed to be constant across firms, but variable over time; i.e., proxied by
time dummies.

In empirical studies the latter static specification of labour demand should
be extended with dynamic adjustment for employment and innovation. The
database used for this paper reports innovation as a discrete variable over
two 3-year periods, 1998-2000 and 2002-2004. Hence, the simultaneous
introduction of the yearly lagged innovation variables is not possible here
(corINNOVy,INNOV,,_1) = 1). Assuming that any adjustment in em-
ployment due to a development in technology is gradual, the technology vari-
able is lagged by one time period. After counting for employment persistence
the following labour demand equation results:

nig = froTECH_levely+ Bimii—1+ Banit—a+ Bswir + Bakis+ 1 +wie, (5)

where the constant represents a unified constant for every firm at every pe-
riod of time and two AR terms of employment have been added. As usual in
a panel data models, the residugl has two components, a traditional white
noise one and a firm specific part.

4. Data

This paper uses data from three different sources: The Estonian Commer-
cial Register (register) of 1994—-2005, the third Community Innovation Survey
of 1998-2000 (CISIII) and the forth Community Innovation Survey of 2002—
2004 (CISIV). The Estonian Ministry of Justice collects the register data and
as itis compulsory for enterprises to report their economic indicators correctly,
this database is taken to be the most reliable one. Thus, when a variable like
employment is reported in both databases (in both the register and innovation
surveys) the register data has been used.

°The lagged time periods introduced go up to 2 periods as employment lags become
insignificant after this lag length (yearly estimates).
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The Estonian Community Innovation Surveys’ data is collected by Statis-
tics Estonia. The methodology of CIS surveys proceeds from the methodol-
ogy suggested by the European Commission (see European Commission Oslo
manual 1997 for details). The CIS survey is conducted every 4 years. In Es-
tonia, the first survey was conducted for 1998-2000. Enterprises are asked to
report information on their innovation activities retrospectively; i.e., reporting
innovation activity from 1998 to 2000 in 2000, and innovation activity from
2002 to 2004 in 2004. (Kurik et al., 2002; Viia et al., 2007)

The CIS survey sample has been made selecting firms by the size and the
field of their activities. The field of activities included are mining and selected
manufacturing and service sectors (the traditional public sectors in services
sectors are excluded). Not all production sectors are included in the innova-
tion surveys; e.g., agriculture, construction, hotels, education, and health care
are excluded from the sample (see Table 1). Thus, the CIS survey does not
represent the innovativeness of all Estonian enterprises. Table 1 shows that the
manufacturing and transportation sectors are overrepresented, while wholesale
and retail trade, real estate and rentals are underrepresented. Nevertheless, em-
ploying a comparable methodology in different countries (following the Oslo
manual) ensures the comparability of the data across countries (Kurik et al.,
2002:21; Viia et al., 2007:18).

Table 1: Distribution of Estonian enterprises across fields of activity in the
Estonian Commercial Register and in innovation surveys

Register 1999 CIS 1998-2000 Register 2003 CIS-2z2a
NACE Count Share Counf Share Count Share Counthare
A 1.727 4.45 2.359 4.64
B 171 0.44 163 0.32
C 103 0.27 24.5 0.79 97 0.19 19.8 1.18
D 5.103 13.16 1.490.1 48.19 6.046 11.89 883.9 50)5¢
E 301 0.78 104.0 3.36 281 0.55 49.8 2.8p
F 2.593 6.69 3.884 7.64
G 13.859 35.75 517.8 16.75 14.623 28.76 370.2 21]1¢
H 1.544 3.98 1811 3.56
I 2.977 7.68 396.2 12.81 3.962 7.79 2956 16.92
J 530 1.37 102.6 3.32 1.226 2.41 24.4 140
K 7.724 19.92 456.7 14.77 13.412 26.38 103.3 591
L 0 0 5 0.01
M 404 1.04 511 1
N 521 1.34 876 1.72
(6] 1.211 3.12 1591 3.13
Total 38.768 100 3.092 100.00 50.847 100 1.747  Q00Q.
CIs
sample 3.161 1.747

Note: The numbers for CIS are weighted by weights supplied by data collectors (later estimates proceed from
unweighted numbers).
Source: Estonian Commercial Register, CISIII and CISIV, own calculations.
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In CISIII, all enterprises employing more than 10 employees were ques-
tioned. A random sample was made for smaller firms. In CISIV, all enterprises
employing more than 50 employees were questioned, and a random sample
was made of firms employing 10—-49 employees. In CISIV, the smallest enter-
prises, with 0—10 employees, were not covered. The response rate was high
in both surveys; namely, 74.3% in CISIII and 79.3% in CISIV. The response
to the CISIII was voluntary, while the CISIV was a part of the compulsory
national collection of enterprise statistics (Kurik et al., 2002:21; Viia et al.,
2007:18).

In this paper information on innovation comes from the CIS data, while
register data provided information on capital and employment costs. Employ-
ment was covered in both data sets; primarily register data was used. If an
observation was not available in the register data but was available in the CIS,
then the information from the CIS was used.

The information on innovation is collected for a period of three years,
so it is unclear in which exact year within the 3-year period the innovation
took place. Innovation is presented as a discrete variable in CIS surveys; i.e.,
whether the firm innovated within the 3-year period or not. Based on this in-
formation we calculate an innovation variable that takes the value 1 for every
year within the 3-year period being considered if the firm was innovating and
takes the value 0 for every year within the 3-year period if the firm was not.
The constructed innovation variable can be interpreted as a summary proxy
for a firm’s average innovation activity over the 3-year period in question.

Table 2 presents the descriptive statistics of innovative and non-innovative
firms. The capital stock is calculated by summing tangible fixed assets and
intangible fixed assets, and subtracting goodwill. The capital stock measure is
in the prices of the year 2000. The GDP deflator at the one-digit NACE level
has been used to deflate the capital stock. The NACE codes are taken from the
register data; in cases where register data is missing, observations have been
drawn from CIS data.

The wage is calculated by dividing total remuneration costs of the enter-
prise (including social security and pension payments) by the number of work-
ers in the firm. The real wage is calculated by deflating with GDP deflator at
the one-digit NACE level. All the variables are reported at the firm level.

The number of observations after merging CIS and register data is 3161
for CISIIl and 1747 for CISIV. The number of enterprises that are covered
in both CIS rounds is 1122. The larger and innovative firms are somewhat
overrepresented in this merged data set. The descriptive statistics of these
1122 firms in the panel are presented in Table 2. The share of product and
process innovators is of the same magnitude, amounting to one third in the
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Table 2: Descriptive statistics, 1998-2000 and 2002—-2004

All firms Innovators Non-innovaors

Mean S.D. Mean SD. Mean S.D.
Innovation (%) 46.2
Product innovation (%) 34.4
Processinnovaion (%) 33.9
Employment 100 331 139 422 66 222
Red wage? 102333 | 282438 | 111751 89443 96041 396473
Red capital dodk (in
millions ?;quEK) ( 35.3 365 61.3 537 141 110
Number of observations

Note: a) Yearly real remuneration costs per employee in Estonian kroons (EEK) (1 EEK = 1/15.65 EUR).
Source: Estonian Commercial Register, CISIII and CISIV, own calculations.

sample. The share of firms with any innovative activity amounts to 46%. The
innovators are bigger firms in terms of employment and capital stock and their
remuneration costs per employee are higher. The empirical analysis uses a
panel of 830 enterprises, for which all the information needed is available.

5. Empirical results

5.1. Firm-level evidence

This paper proceeds from a labour demand specification similar to Van
Reenen (1997), see Section 3. A simple OLS estimation of the labour de-
mand of equation 5 will give a biased estimator for the lagged dependent vari-
able AR as the firm specific part of the error term will be positively corre-
lated with lagged dependent variable. The standard way out is to use within
group estimation or model in differences to get rid of object-specific effects.
However, neither of these strategies will give satisfactory estimates for our
dynamic labour demand equation. For the within group estimator, the trans-
formed lagged employment (deviation from within group mean) would be
negatively correlated with the transformed error terms (deviation from within
group mean). This bias, also called the Nickell bias, diminishes Whenoo
(Nickell, 1981), but in our sampl# is small. Estimating the dynamic panel
model in differences would again give a correlation between lagged differ-
enced employment and the error term, but this correlation can be addressed by
introducing instruments to lagged differenced employnient.

Considering the above complications, instrumental variable techniques are

3For a good methodological description of the estimation of labour demand equations, see
Lachenmaier and Rottmann (2007).
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the most preferable ones for dynamic panel data estimations. The Arellano and
Bond (1991) dynamic panel data GMM estimation method has been used in
this paper. They proposed an instrumental variable estimation for differenced
dynamic panel data specification. The lagged differenced dependent variable
and other predetermined or endogenous variables are instrumented by their
earlier values in levels and by other strictly exogenous or additionally speci-
fied instruments. This approach is also often called as a GMM-DIF estimator
(“differenced” GMM).

Table 3 presents the results of the panel estimates. The second and the third
columns in Table 3 present the result of the OLS estimations. The technology
variables have been lagged by one year as compared to the immediate effect;
the effects were more significant in this case.

Table 3: Employment and R&D activity or innovation, R&D and innovation
variables from 1999-2001 and 2003-2005

Two-ste
OLS (pooled) @ | Within estimator ® | Arel Iano—B‘())nd Two-step Are”g‘;*
ab) Bond (GM M)
(GMM)
Estima- Rgtbdust Estima- Rgtb; s Estima- Std. Estima- d. Err
tor Err. tor Err. tor Err. tor

R&D activity (t—1) 0.0440 | 0.0077 | 0.0284 | 0.0102
Innovation (t — 1) 0.0127 | 0.0079
Product innovation (t — 1) 0.0148 0.0081
Processinnovation (t— 1) 0.0011 0.0099
Employment (t — 1) 0791 | 0.0495 | 0.4202 | 0.0553 | 0.5616 | 0.0511 | 0.5608 0.0500
Employment (t —2) 0.0996 | 0.0446 | 0.0963 | 0.0379 | 0.0477 | 0.0209 | 0.0464 0.0207
Real wages -0.1276 | 0.0259 | -0.5495 | 0.0584 | -0.4633 | 0.1255 | -0.4373 [ 0.1230
Real capital 0.0481 | 0.0053 | 0.1102 | 0.0108 | 0.3006 | 0.0785 | 0.2764 0.7405
Sargan test (20) 27.87 28.47

p-value 0.1124 0.0988
AR(1): no autocorrdation -3.68 -3.72

p-value 0.0002 0.0002
AR(2): no autocorreation 0.67 0.74

p-value 0.5053 0.4579
No. of observations 3962 3962 3521 3521
No. of groups 845 830 830

Note: a) Time dummies have been used as additional explanatory variables.

b) Estimation on differences. The set of instrumented variables includes: lagged differenced employment,
differenced real wages and differenced real capital stock. The set of exogenous variables includes: innovation
variables and time dummies. The set of instruments includes: lagged employment, real wages, real capital in levels
and lagged differenced exogenous variables. The maximum lag length for instruments is 2 to satisfy Sargan test of
no over identification.

The parameter estimates have expected signs and are of reasonable mag-
nitude. As expected, the GMM estimator of lagged employment lies between
the upward biased OLS estimator and the downward biased within estimator.
The same applies for the estimator of real wages. In the estimations, R&D
activity has been used as a proxy for the level of technology (see the second
and the fourth columns in Table 3). R&D activity is a three-year average dis-
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crete variable similar to innovation activity. In the estimations of differences,
innovation activity has been used as a proxy for change in the level of tech-
nology (see the sixth and the eight columns in Table 3). R&D activity has a
strong positive effect on innovation in OLS and within group estimations. In
GMM estimation the impact of innovation on employment weakens, but it still
remains significant around an acceptable level of significance.

In this paper innovation is taken as a differenced level of technology in
the Arellano and Bond approach. Intuitively, innovation reflects an applied
change in technological level. As principle choices on capital and wages can
affect the next period’s employment decisions, capital and wages are treated
as endogenous. Sargan tests indicated the use of a maximum of two time
lags for employment and endogenous predetermined variables as instruments.
For example, differenced employmentin 2003 is instrumented by employment
levels in 2002 and 2001, plus other instruments arising from predetermined
endogenous variables and exogenous variables introduced by the same logic.

In order to check the results for robustness, innovation was also instru-
mented. In this case patents were used as an additional instrument as these
are correlated with innovation, but not with employment. Van Reenen (1997)
used patents as a successful instrument for innovations. Nevertheless, in our
estimations, instrumenting innovation did not change the estimation results.
Hence, innovation was taken to be strictly exogenous in the baseline case.

The next step is to distinguish between process and product innovation in
the labour demand equation. The estimation results are presented in Table 3.
In this specification both product and process innovation are positively related
to employment. The impact of product innovation is much stronger, but this
estimator is significant within the weakest bounds of significance. Other para-
meter estimates remain broadly unchanged compared to the first specification
with either of the innovation activities.

5.2. Industrial and regional spillover effects

Overall innovation activity in a firm’s parent industry or around its geo-
graphical location can also alter a firm’s employment. Tentatively it is impos-
sible to predict these effects. On one side, a positive spillover could emerge as
a high innovation activity of the enterprises in the same industry or within a
particular geographical region making it easier (cheaper) to copy the innova-
tion. As a result, firms may experience a higher net effect from innovation and
experience a stronger impact from innovation on employment. On the other
side, the higher an industry’s innovation activity is, the lower its firms’ ability
to gain a relative advantage in the market due to innovation will be.
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Table 4 presents the results of exercises on possible spillover effects. Nei-
ther the parent industry’s innovation nor its region’s innovation has any signif-
icant effect on a firm’s employment.

Table 4: Innovation spillovers from the parent industry and within the same
region, GMM, innovation variables from 1999-2001 and 2003—-2005

Two-step Arellano- | Two-step Arellano- | Two-step Arellano-
Bond (GMM)? Bond (GMM)? Bond (GMM)?
Esu:nao Std. Err. Esn:nato Std. Err.

Innovation (t— 1) 0.0133 0.0078 0.131 0.0079
Product innovation (t — 1) 0.0115 0.0080
Process innovation (t—1)
Employment (t— 1) 05634 | 00506 | 05657 | 0.0481 | 05650 | 00521
Employment (t—2) 0.0470 0.0211 0.0440 0.0205 0.0476 0.0209
Real wages -0.4656 0.1255 -0.4116 0.1180 -04591 0.1214
Real capital 0.2869 0.0765 0.2342 0.06%4 0.2970 0.0771
Industry export (t-1) 0.0024 0.0038
Innovation in industry ” -0.0068 | 0.0249 00071 | 0,0258
Product innovation ini ndustry ” 0.0115 0.008
Process innovation in industry ” 00054 | 0.0093
Innovation in region ™ 0.0003 | 0.0300 -0,0020 | 0,0306
Product innovation inregion® 00319 | 0.0224
Process innovation in region? -0.0383 | 0.0230
No. of observations 3509 3509 3493
No. of groups 830 830 830
Sargan test (20) 2828 2972 28.73

pvdue 0.1028 0.0744 0.0932
AR(1): no autocorrelation -3.68 -3.72 -375

pvdue 0.000 0.000 0.000
AR(2): no autocorrelation 0.65 0.82 0.75

pvdue 0.5157 0.4097 0.4508

Note: a) Estimation of differences. The set of instrumented variables includes lagged differenced employment,
differenced real wages and differenced real capital stock. The set of exogenous variables includes innovation
variables and time dummies. The set of instruments includes lagged employment, real wages, real capital in levels
and lagged differenced exogenous variables. The maximum lag length for instruments is 2 to satisfy Sargan test of
no over identification.

b) Industry’s and region’s innovation has been calculated as the share of employment of innovating firms in a
specific industry or region. The firm's own employment has been excluded from its industry’s or region’s innovation
variable to avoid any in-built multicollinearity with firms innovation variables. The number of industries is 46 (at
2-digit NACE) and the number of regions 20 (the 5 biggest cities and 15 counties).

*xx %% * denote that the coefficient estimate is significantly different from 0 at, respectively, the 1%, 5%, and 10%
levels.

This picture changes only slightly when product and process innovation
have been distinguished. In the latter case, statistical significance of inno-
vation variables slackens slightly, while an industry’s process innovation be-
comes significant at a weak significance level. Hence, despite what firm’s own
innovation activity is, when its parent industry is experiencing process innova-
tion, it also reduces the firm’s own employment. Overall, there seems to be no
significant spillover effect on a firm’s employment from its parent industry or
from its regional location. Van Reenen (1997) found a similar result in terms
of an establishment’s main field of activity. Controlling for export weakens
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this result only slightly. This weak business stealing effect actually indicates
that firms do not have to “steal” positions from other firms.

In summation, firm-level estimations indicate that innovation has a positive
effect on employment. Distinction between the types of innovation uncovers a
positive relationship between product innovation and employment. However,
these relations are significant only at the lowest acceptable significance levels.

5.3. Industry-level evidence

Different methodologies have been used to analyse industry-level innova-
tion impact on employment. See Appendix 2 for the selection of industry-level
studies. If information about the direct effect of innovation on employment
was available, the weighted share of firms with a positive effect per industry
could be calculated straightforwardly. This estimation strategy was used by
Evangelista and Savona (2003) on Italian services CISII (1993-1995) data.
They found a positive employment effect in knowledge-intensive industries
and a negative impact in traditional service sectors. Their firm-level results
were much more positive in terms of employment.

Unfortunately, direct information about innovation employment’s impact
is often lacking from the data. Hence, the consequent strategy is to calculate
industry-level employment changes and regress these with an industry’s inno-
vation activity. The identification of the innovation effect is the bottleneck in
this approach. Antonucci and Pianta (2002) employed this strategy on 8 old
EU countries manufacturing CISII data. They estimated the industry’s rate of
change of employment for 1994-1999 depending on innovation and other con-
trol variables from 1994-1996. They found a negative impact of innovation
on European manufacturing employment.

In addition to the extension of the leads of the employment variable one
can enhance the measurement of an industry’s employment change. Greenan
and Guellec (2001) disentangled the industry’s employment growth rate into a
job creation and a job destruction rate. They used the calculation of job flows
suggested by Davis and Haltiwanger (1992). There are clear advantages to
this approach compared to conventional industry employment growth. Let us
take an example where an industry experiences a zero net employment change,
but a positive number of jobs are created and abolished in the industry. Con-
sequently, the net employment change is not related to any of the industry’s
innovation variables; the jobs created in the industry might be due to product
innovation and the jobs lost might be due to process innovation. Without a
distinction between job creation and job destruction we could easily under-
estimate the role of innovation in real employment reallocation in the labour
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market. Greenan and Guellec (2001) found on their French manufacturing
panel that firm-level process innovation had a positive dominant effect and
industry-level product innovation had a positive dominant effect on employ-
ment.

In this paper, we proceed from the latter approach. Similarly to Greenan
and Guellec (2001), the Davis and Haltiwanger (1992) method has been used
to calculate an industry’s job creation and job destruction rates. The advantage
of this approach is that the resulting rates are interpretable as ordinary growth
rates. The disadvantage is that by definition there is much higher probability
of having larger job flows in smaller firms. E.g., if a worker’s job is abolished
in one firm, the probability of finding a new job in the same firm is much lower
in the case of a small firm. The way out is to introduce distinguished firm-size
groups for every industry (Greenan and Guellec, 2001).

We distinguish between 15 industries (1 digit NACE level) and 6 size
groups? The total number of groups is 90, while some groups remain empty
due to a lack of observations. The job flow rates are calculated over a three-
year period considering our innovation variable measuring firms’ average in-
novation activity over the three-year period. The job flow rates are calcu-
lated as follows (this designation has been adopted from Greenan and Guellec
(2001)):

Let
ge = Z x_get,get >0

eEESt st

neg T
gst - ZeeESt ﬂf_i get‘ 7get < O

net pos neg

gst = 9st — st

pOS

whereg?” indicates the job creation ratg, ¥ the job destruction rate and
g* the net job flow. The latter equals the conventional sector’'s employment
growth. Subscript denotes the firme¢ = 1,..., E; subscriptt denotes the
time, ¢t = 1995, ...,2005; and subscripts denotes the sector (by industry
and firm size)s = 1,...,90. The firm’s average employment,;, has been
calculated as:.; = (Let + Ler—1 + Let—2) /3 Where L., represents the firm’s
employment. The sector’s average employment, has been calculated as
Tst = D ccp,, Ter- Finally, the firm's employment growth rate,;, has been
calculated ag.; = (Let — Let—2) /et

4The size groups are less than 10 employees, 10-19 employees, 20-49 employees, 50—
199 employees, 200-499 employees, and 500+ employees.
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The job creation and destruction rates are essentially size weighted aver-
ages of the growth rate of growing firms and an absolute value of negative
growth rates of diminishing firms. One should notice that the calculated flows
underestimate actual job flows as employment is reported on a yearly basis, not
including job flows within a year (Greenan and Guellec, 2001). For the sake
of comparability, the same sample has been used as in firm-level analysis; i.e.,
including firms participating in both surveys.

Table 5 presents the estimation results between job flows and innovation. It
is well evident that product innovation has the strongest and most significant
effect on changes in job flows. A higher share of firms with product innova-
tion (weighted by employment) is related to a higher job creation rate and net
employment growth in a sector. Process innovation is also related to job flows
positively, but this effect is much weaker and less significant. Innovation vari-
ables tend to take effect more strongly one year after the innovation period.
For example, product innovation tends to have an immediate effect on job cre-
ation compared to a more lengthy effect on the job destruction rate. The same
applies to process innovation effects, but these estimates are statistically less
significant. The sluggish impact on the job destruction rate can also indicate
labour market rigidities in workers’ dismissal.

Table 5: Industry-level relationship between job flows and innovation

Dependent varisble g™ g g°
Robust. Robust. Robust.
Coef. Sd B | Coef S, Err. Coef. Std. Err.
(1) Tnnovation” 9 0,116 0,189 0,021 0,069 0,095 0,230
(2) Innovation ™ (t-1)? 0,168 0,134 -0,191 0,123 0,360* 0,190
(3) Product innovation®? 0,292* 0,159 -0,081 0,062 0,373* 0,190
(4) Productinnovation” (t-1)? 0,194* 0,115 0,208 0,108 0,402** 0,166
(5) Process innovation™ 9 0,244 0,198 -0,005 0,065 0,249 0,236
(6) Process innovation® (t-1)% 0,190 0,165 0,181* 0,108 0,371* 0,203

Note: a) The set of control variables includes firm size and time dummies;

b) Innovation variables are a three-year average share of employment of innovating firms to the total employment in
a sector. Similarly to job flow variables, innovation variables are calculated by industry- and firm-size groups.

¢) Models (1), (3) and (5) are estimated for 1998-2000 and 2002-04 averages.

d) Models (2), (4) and (6) are estimated for 1999-2001 and 2003-05 averages.

wx o+ % denote that the coefficient estimate is significantly different from O at, respectively, the 1%, 5%, and 10%
levels. .

The industry-level results overlap very well with the firm-level results. In
both cases product innovation tends to have a stronger positive effect on em-
ployment and the overall employment effect from innovation tends to also be
positive. These overlapping results have not been the case in previous surveys:
Evangelista and Savona (2003) found much more positive innovation effects
at the firm level. Greenan and Guellec (2001) found the process innovation
effect to be stronger at the firm level and the product innovation effect to be
stronger at the industry level.
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6. Final comments

In this paper, the effect of firm- and industry-level employment on innova-
tion was investigated using Estonian data. A dynamic panel of Estonian firms
was constructed to estimate the employment effects of innovation at the firm
level. Industries’ job flow indicators were calculated to investigate the effects
of industry-level innovation. Two different specifications were used, one cap-
turing the effect of total innovative activity and the other capturing the effect
of distinguished product and process innovation.

The estimation results indicate that firm- and industry-level innovation ac-
tivity have a positive and statistically significant effect on employment. This
confirms the results found in the developed world. Distinguishing between
product and process innovation reveals that product innovation tends to have
a stronger positive effect on employment than process innovation. However,
these effects are only moderately significant. The latter is robust to the level
of analysis in terms of firms or industries. Previous studies have not found
this effect to be that consistent over firms and industries. This result is also
confirmed by the insignificant spillover effects from a firm’s parent industry’s
innovation on a firm’s employment. Weak linkages between an industry and
its individual firms refer to the small importance of the business stealing effect
from one firm to the rest of the industry.

The insignificant effect of process innovation on employment probably re-
flects the very diverse incentives behind the firms’ process innovation activi-
ties. The enterprises of a catch-up country may be more heterogeneous, vary-
ing from non-innovative low-cost production firms to rapidly-developing inno-
vative firms. While the structure of innovation is expected to change towards
more product innovation under the catch-up process (i.e., to approach the in-
novation structure in the developed world), the positive employment effect of
innovation will probably get even stronger in the future.
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