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INTRODUCTION 
 
Quantitative Structure-Activity Relationships (QSARs) are empirical models 
that relate experimental properties/activities of compounds with their molecular 
structures. The rapid development of quantum theory and ab initio 
computational methods have made it possible to predict molecular properties of 
small isolated molecules within experimental error. However, the majority of 
industrially and environmentally important chemical processes, and biochemical 
transformations in living organisms take place in heterogeneous condensed 
media and hence the use of QSARs that proceed directly from the endpoint of 
interest is an attractive and fast alternative to predict the molecular properties in 
complex environments. 

Documented evidence of a structure-activity relationship dates back to the 
year of 1863, to a PhD thesis by A. F. A. Cros, University of Strasbourg1 who 
observed an increase in the toxicity of alcohols to mammals, with decreasing 
water solubility. The potential of QSAR as of the present was revealed about a 
hundred years later. After the use of various empirical quantities in correlations 
with the studied properties of compounds, theoretical molecular descriptors, 
derived using only the information encoded in the chemical structure, began to 
emerge. QSAR became more attractive due to the development of new software 
tools2 and expanded rapidly to various areas of industrial and environmental 
chemistry. QSARs became extremely productive in pharmaceutical chemistry 
and in computer-assisted drug design3 including the development of 
ADME/Tox profiles. 

In recent years, QSARs have become essential tools for the estimation of the 
physicochemical, biological and environmental properties of chemicals for 
regulatory purposes. In 2003, the European Commission created a new chemical 
management system called REACH (Registration, Evaluation and Authorisation 
of Chemicals),4 which requires environmental and toxicology data for new and 
existing industrial chemicals. The use of valid QSARs was proposed as a source 
for primary data in the interests of time- and cost-effectiveness as well as 
animal welfare.5 Four years later, in June 1st 2007, the REACH legislation 
entered into force by opening the new European Chemicals Agency in 
Helsinki.6 Over a period of 11 years, about 30 000 chemical substances in use 
today (in volumes starting at 1 tonne) are to be registered with the required data 
for the risk evaluation. 

The main aim of the work presented in this thesis was the assessment of the 
environmental impact of organic pollutants by means of QSAR, namely, the soil 
sorption of organic pollutants and acute aquatic toxicity to the freshwater 
organisms, and the development of QSAR models of high predictive ability on 
the studied endpoints. In the course of the work, aspects of the QSAR 
methodology were assessed and improved. In Chapter 1, an overview is given 
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about the methodology and environmentally relevant properties, and in Chapter 
2, our original results of QSAR/QSPR modeling on selected activities/ 
properties are summarized. 
 

3
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1. LITERATURE OVERVIEW 
 

1.1. Quantitative Structure-Activity Relationships 
 
Quantitative Structure-Property Relationships (QSPRs) are mathematical 
models where structural descriptors are related to the chemical activity under 
study:  

Property = f (structure) 

In biological contexts, these are also called quantitative structure-activity 
relationships (QSARs). Once the QSAR model is established it can be used to 
predict properties of untested compounds based on their molecular structure. A 
number of steps and conditions apply for successful development of valid 
QSARs: 

1. Evaluation of the experimental data 
2. Optimization of the molecular geometries and generation of the 

molecular descriptors 
3. Formation of the representative training and validation sets 
4. QSAR model development  
5. Selection of the best model according to the statistical criteria and 

relevance of the model descriptors to the studied property; Consensus 
modeling 

6. Validation and interpretation of the model 
 
 

1.1.1. Selection of the data set 
 
Evaluation of the quality of the experimental data and the design of the training 
set are crucial steps in the model development. Reliable data are required to 
build reliable predictive models. Such data should ideally be measured from 
well-standardized assays and even in the same laboratory.7 Excellent examples 
of such procedures include the 96-h LC50 Pimephales promelas (fathead 
minnow) database of the United States Environmental Protection Agency 
Duluth Laboratory8; and the 40-h growth inhibition of the ciliated protozoan 
Tetrahymena pyriformis database9. High confidence and lower experimental 
error may be assigned to these data in the development of predictive QSARs.  
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1.1.2. Molecular descriptors 
 
Molecular descriptors are numerical representations of the molecular structure 
used as the independent variables in QSAR modeling. In order to encode 
structural information relevant to the specific modeling tasks, thousands of 
descriptors have been formulated.10 Empirical and theoretical descriptors can be 
distinguished.11 The empirical descriptors are usually experimentally measured 
physico-chemical properties, such as water solubility, or hydrophobicity. For 
the modeling of environmental and biological properties, the hydrophobicity, 
measured as n-octanol/water partition coefficient, is widely used because of the 
importance of partitioning phenomena between water and other phases in 
biological systems. Although a few reliable methods12,13,14 based on atom/ 
fragment contribution have been developed for the estimation of hydro-
phobicity, the experimental values are generally preferred if available. A 
shortcoming of empirical descriptors is that they can be difficult and costly to 
obtain, especially for unknown or hypothetical compounds. 

Theoretical descriptors are attractive due to the available computational 
methods and tools that require only the chemical structure of the compound as 
input. The simplest descriptors involve counts of certain structural features, 
such as atoms, bonds or functional groups. Simple algorithms can also be used 
to generate molecular connectivity indices15, that are often used to characterize 
atomic constitution, size and steric effects. The number of descriptors that can 
be calculated expands greatly when the three-dimensional (3D) structure and 
charge distribution of molecules are considered. The molecular geometries can 
be optimized using molecular mechanics or quantum mechanical methods. The 
charge distributions can be obtained either empirically or from quantum 
mechanical calculations; the latter approach is usually preferred. The 
semiempirical AM1 Hamiltonian16 has become a method of choice over more 
rigorous ab initio methods in calculation of molecular descriptors. In a 
comparative study of the effectiveness of the AM1 Hamiltonian and density 
functional (B3LYP/6-31G**) method, it was concluded that for large-scale 
predictions the use of precise but time-consuming ab initio methods did not 
offer considerable advantage compared to the semiempirical calculations.17 
Among the so-called 3D descriptors mention could be made of various shape 
and surface area descriptors18, partial atomic charges and reactivity indices, 
including frontier orbital energies. New descriptors are continually formulated 
for different modeling tasks. For example, the intermolecular terms of the 
modified scoring function obtained from the docking results were used as 
descriptors in prediction of the binding affinity of ligands to protein.19 
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1.1.3. Formation of training set 
 
QSARs are based on structural similarity and therefore, prediction of the 
properties is possible only if the training set adequately represents the domain 
of the studied chemicals. In publication II of the present thesis, the use of PCA 
as a multivariate clustering method was investigated for the selection of a 
representative training set. PCA is an unsupervised learning method that takes 
molecular descriptors as input and transforms them into uncorrelated latent 
variables or principal components.20 Another useful method for clustering the 
chemicals by structural similarities is Kohonen artificial neural networks or self 
organizing maps (SOM).21 PCA and SOM, both being unsupervised learning 
methods cluster the compounds according to their structures represented by the 
molecular descriptors and then from each cluster a specified number of 
representatives can be selected in the training set. D-optimal design, a method 
of statistical experimental design, has also proven to provide a well-balanced 
structural representativity of the data space considering both the descriptors and 
the response.22,23 The simplest approaches are random selection and activity 
sampling both of which do not proceed from the molecular structure. Use of 
these methods is recommended only for homogeneous or large data sets of 
hundreds of compounds.  

Presently, intense discussions are being held on the subject of the 
applicability domain of the QSAR models for regulatory purposes.24 The 
applicability domain of a QSAR model is considered to be the response and 
chemical structure space in which the model makes predictions with a given 
reliability.25 According to the international recommendations, the application 
domain of the model must be clearly defined and carefully considered when the 
model is used for predictions.26 It is due to the reductionist nature of QSARs 
that does not allow extrapolations. In the formation of the training set the 
applicability limitations of the model are consequently determined. 
 
 

1.1.4. Modeling methods 
 
Linear methods. Multilinear regression27 is the simplest of the linear methods 
for relating the descriptors to the property producing the equation: 

Property = constD
n

i
ii +∑α  

where i is the serial number and n is the total number of descriptors involved in 
the model, Di denote the descriptors (with low multicollinearity), αi and const 
are adjustable coefficients found by the least-squares method. This approach is 
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characterized with the statistical parameters: mean square errors and t-values of 
the regression coefficients, the F-value, the standard deviation (s), and the 
square of the correlation coefficient (R2).  

Another widely used method in this category is Partial Least Squares (PLS) 
regression. PLS uses variables transformed into orthogonal principal 
components in the model instead of original variables. The latent variables have 
been obtained similarly to the PCA except that they have been related to the 
property values, the dependent variable, through a weight vector.28,29  

Nonlinear methods. In the case of an intrinsically non-linear dependence 
between the experimental property of compounds and molecular descriptors, 
non-linear regression methods can be applied for the development of 
QSAR/QSPR equations. The intrinsic non-linear dependence may also be 
encoded in the respective artificial neural networks30 (ANNs) that are capable of 
modeling extremely complex functional relationships. Many different types of 
neural network architectures have been developed over the decades with various 
“training” algorithms.31 It has been argued, that the obtained ANN models lack 
“transparency”, i.e. it is not possible to determine the amount or direction of the 
influence of the model parameters controlling the property. Nevertheless, ANNs 
have continuously been shown to be able to model diverse data sets with higher 
accuracy than the linear methods.32 

Selection of descriptors to the models is a critical part of the QSAR 
development. It can be accomplished by logical reasoning according to the 
molecular forces governing the studied phenomenon. Or, in case of availability 
of a large pool of theoretical descriptors, a fully automated statistical procedure 
can be used for mining of the chemical information; the selected descriptors 
may reveal new knowledge and broaden understanding about the mechanism of 
action. An optimal set of descriptors for description of the studied property is 
the minimal set needed to reveal only the main similarities and differences 
present in the data in order to avoid over-fitting and loss of generalization. As a 
rule, the choice of the descriptor selection algorithm is made according to the 
nature of the modeling method. In publication IV of this thesis we have 
followed this direction by using a specific heuristic computational module to 
facilitate non-linear parameter selection for the neural network model 
development. For linear relationships PCA, simulated annealing or forward 
selection are frequently used; for non-linear modeling genetic algorithms can be 
utilized.33  

Usually, the modeling algorithm provides a battery of QSARs with similar 
statistical characteristics. The selection of the appropriate model is made by the 
analysis of the relevance of the molecular descriptors to the studied property 
and by the contribution of the individual descriptors to the improvement of the 
R2 and the cross-validated R2 of the model. However, recently, the concept of 
consensus modeling was introduced to the predictive QSARs. In this approach, 

4
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ten of the best QSAR models with nearly equivalent statistical characteristics 
but consisting of different descriptors are used to predict the property and the 
received values are averaged. As a rule, the consensus model appears to have 
higher fitting and prediction ability than any of the individual models.34 

For molecular science and engineering an open computing grid, 
OpenMolGRID, system has been recently created.35 It provides grid enabled 
components, such as a data warehouse for chemical data and software for 
building QSPR/QSAR models, including conformational search and geometry 
optimization, descriptor generation and the statistical tools for descriptor 
selection and model building. In addition, molecular engineering tools for 
generating compounds with predefined chemical properties or biological 
activities, i.e. for solving the reverse problem of QSAR, are provided. The 
effectiveness of this system in generating QSAR models is shown in publication 
II. 
 
 

1.1.5. Validation of the models 
 
Once the model is established, its reliability and predictive ability must be 
determined. It is argued that unless a QSPR model is validated neither 
predictions nor mechanistic interpretations based on the model descriptors 
should be made.36 Validation of the stability of the model can be done by a 
suitable internal validation method which employs regrouping of the data that 
was used in model development. The most common internal validation methods 
for MLR models are the leave-one-out and leave-many-out cross-validation, 
expressed by the respective squared correlation coefficients, R2

cv. In these 
methods, one data point or a certain part of the data, respectively, is predicted 
using a model developed on the rest of the data. The obtained values are then 
collected and correlated with the experimental values to provide the R2

cv. A low 
cross-validated coefficient compared to the R2 of the model, is an indication of 
instability of the model. 

Other internal validation strategies include randomization of the modeled 
property, also called Y-scrambling, and bootstrap resampling. In bootstrap 
resampling37 regrouping of the model data is made randomly. As a result, some 
data points occur in the same random sample more than once, while others may 
never be selected. Similarly to the cross-validation methods, high R2

cv value is 
expected for a reliable model. In the Y-randomization test38, the Y-vector of 
dependent variables, is randomly shuffled and a new QSPR model is developed 
using the original independent-variable matrix. This process is repeated several 
times and the R2 and R2

cv of the obtained models are expected to have low 
values. 
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The real criterion for the validity of a QSAR model is the predictivity of an 
external validation set that was not involved in the model development. The 
validation set should span the range of the property of the training set and cover 
the structural application domain of the model. If the prediction result, i.e. the 
squared correlation coefficient R2 of the relationship of the observed versus 
predicted values of the validation set, is considerably lower than that of the 
model, it is concluded that the model has either been over-fitted or poorly 
represented by the training set. A valid model with high generalization ability 
has the prediction R2 and standard deviation, s, similar to those of the model. 
Although better statistical parameters are desirable, the appropriate level is 
determined by the standard deviation of the experimental measurements. 

Observation of the residuals of the relationships between the observed versus 
predicted values may reveal compounds with highly over- or underestimated 
properties that are addressed as outliers to the model. Outliers are usually 
chemicals with an exceptional mechanism of action, or compounds outside the 
structural domain of the model. The latter can be determined by calculating the 
leverage39 for both training and new compounds. A training set compound with 
high leverage has great influence on the model parameters making the model 
unstable.40 High leverage of the new compound means that the predicted value 
is extrapolated from the model and therefore, is not reliable. 
 
 

1.2. Environmentally Relevant Properties 
 
Global development of chemical industry has brought up serious issues of 
human and environmental safety. According to the REACH legislation, in 
relation to the environment, the avoidance of chemical contamination of air, 
water, soil and buildings, as well as preventing damage to biodiversity are the 
major goals. Improved control of persistent, bioaccumulative and toxic (PBT) 
substances is of particular importance in this respect.41 To this end, the 
following properties need to be assessed: ecotoxicology, mobility, persistence 
and degradability, and bioaccumulative potential. The evaluation of the variety 
of risks posed by industrial chemicals is a step toward the use of safer 
alternatives. 

The properties named above are closely interrelated. For example, the fate of 
a chemical in soil is affected by biodegradation and abiotic transformation as 
well as its mobility in the soil. In real ecosystems, environmental variables, such 
as temperature, rainfall or sunlight, generally cannot be controlled and it may be 
difficult to distinguish whether an observed effect is a result of one fate process 
versus another. Model systems, known as microcosms, can be used to replicate 
the processes affecting the fate of a chemical in complex ecosystems. However, 
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QSAR methodology needs experimental values from reproducible standardized 
laboratory tests for modeling individual environmentally important phenomena. 

Atmospheric degradation of volatile organic compounds that cause damage 
to the ozone layer by reaction with photochemically generated oxidants, such as 
OH and NO3 radicals and ozone is characterized via oxidation rate constants. 
Hydroxyl radical reactions are the predominant pathway and they are typically 
grouped into four main types: (1) hydrogen atom abstraction, (2) addition to 
double and triple bonds, (3) addition to aromatic rings, and (4) reactions with 
nitrogen, sulfur, and phosphorus. Models have been developed both for the 
individual reaction types and including all four of the reaction classes.42,43 
Atkinson’s estimation method using group/fragment methodology combined 
with the knowledge of reaction mechanisms has been implemented in the US 
EPA’s AOPWIN estimation software.44,45  

Advances in the QSAR study of atmospheric degradation of chemicals are 
quite recognized,46,47 while modeling of biodegradability in water and soil has 
produced very modest results (R2 < 0.5)48. Biodegradability has been expressed 
in a diversity of parameters including half-lives, various biodegradation rates 
and constants, theoretical oxygen demand, biological oxygen demand (BOD), 
etc., and mainly models for homological compounds have been made. The 
group contribution technique based on BIODEG evaluated biodegradation data-
base presented by Howard et al.49 has been highlighted as the most advan-
tageous for use in broad screening for tendency to biodegrade. The assessment 
of CO2 and BOD allows an accurate determination of biodegradation processes, 
and continuous methods can be used for analysis. Especially the end product, 
carbon dioxide, is an important parameter in the estimation of the mineralization 
of a test compound. (CO2-evolution test is used for determination of the 
ultimate biodegradability of organic compounds by aerobic microorganisms.) 

The mobility and distribution of the pollutants or their degradation products 
in soil (as well as sewage sludge) can be assessed by the soil sorption 
coefficient, the partitioning capacity of the compound between soil and water, 
normalized to the content of organic carbon, KOC.50,51 With EPA’s Office of 
Pollution Prevention and Toxics, Meylan et al. developed a log KOC prediction 
method based on the first-order molecular connectivity index that is available as 
Pckoc program.52 The nonpolar compounds were correlated with the 
connectivity index. The second regression was developed by using the 
deviations between the measured log KOC and estimated log KOC values with the 
nonpolar equation and the number of certain structural fragments in the polar 
compounds. 

Considerable efforts have been devoted to the QSAR studies of acute 
toxicity to the aquatic species.53,54,55 Toxicity is viewed as one of the biggest 
challenges for QSAR modeling due to the biochemical complexity of the living 
organisms. Quantitative as well as classification models of the toxic 
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mechanisms have been developed to the various aquatic species, such as fish, 
water flea and algae, using median lethal or growth inhibitory concentrations as 
endpoints. All of these species have different susceptibilities to the toxicants 
that have to be taken into consideration. Inert organics reveal non-specific 
effects (baseline toxicity) on most aquatic organisms, e.g., algae, daphnids and 
fish, whereas inhibitors of photosynthesis that are specific toxicants towards 
algae, are often baseline toxicants towards daphnids and fish. A flow-through 
fish test is used in assessment of bioconcentration.56,23 For environmental 
toxicity measurements also such endpoints as earthworm toxicity, and honeybee 
oral or contact acute toxicity are suggested for testing.  
 

5
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2. SUMMARY OF ORIGINAL PUBLICATIONS 
 

2.1. Outline of Methods for QSAR Model Development  
in Current Thesis 

 
In the current thesis, diverse and high quality data sets are used for QSAR 
model building and the main flow of the participating methods and software is 
outlined in Fig.1. The first three steps, including descriptor generation, are 
common in all articles. In article III, no dataset partitioning is used and in article 
IV, due to the very large size of the data set, one third of the data is extracted 
into the validation set by a simple activity sampling procedure: the data is sorted 
by the increasing activity values and every third compound is set aside for the 
validation set.  
 

SOFTWARE

MacroModel 8.0

MOPAC 6.01

Codessa/CodessaPro

Codessa/CodessaPro

Codessa add-on

TASK

Conformational search

Refining geometry, charge distrib.

Generation of descriptor space

Generation of QSAR models

Validation

METHOD

MCMM/MMFFs

SCF/AM1

BMLR - Heuristic 
Regression Analysis

Heuristic BNN

Formation of training and test setsSimca-P 9.0 PCA

 
 
Figure 1. Software and methods used in QSAR model building in the current thesis. 
(Literature references are provided in the original publications of thesis, I–IV) 
 
In all articles I–IV, BMLR is used to derive QSARs; ANN is used in article IV. 
For internal validation, leave-one-out and leave-many-out cross-validation are 
used. External validation is part of all publications with the exception of 
publication III of the comparative QSAAR of two aquatic species, ciliate and 
fish. 
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2.2. Soil Sorption Coefficients 
 
Evaluation of the soil mobility of chemicals is a primary task in estimating their 
environmental distribution. Soil sorption coefficient is the ratio between the 
chemical concentration in soil and in water, normalized to organic carbon 
(KOC). The typical model molecules for humic and fulvic acids, the constituents 
of the organic carbon layer of the soil, are shown in Fig. 2. 
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Figure 2. Typical model molecules for humic (above) and fulvic acids (below) 
(Stevenson, 1982, Langford et al., 1983) 
 
In publication I, global and class-specific multilinear QSAR models were 
developed for the prediction of logKOC for a structurally diverse set of 344 
organic pollutants. A two-parameter model was obtained for a representative set 
of 68 compounds (R2 = 0.76, s = 0.44) and a four-parameter model (R2 = 0.76,  
s = 0.41) for the full set of 344 compounds. According to the extensive analysis 
of the model performance by internal and external validation, and by the 
chemical classes, the 4-parameter model demonstrated higher stability and was 
proposed as the model for use in prediction of the soil sorption coefficients. The 
applicability domain of this QSAR was determined by the 14 chemical classes 
involved in the development of the model and by the range of the  
n-octanol/water partition coefficient, logKOW, from –1 to 7. Amides and 
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triazines were poorly described by this model; for these classes use of the class-
specific models was suggested.  

Modeling of the individual chemical classes resulted in one- to four-
parameter QSARs, logKOW being present only in four of them. Analysis of the 
descriptors and the model coefficients indicated that larger size and bulkier 
shape favor nonspecific interactions with the soil constituents and the humic 
matrix. The charge distribution describes nonspecific polar and specific 
interactions either with water while floating through the soil or with the soil 
reducing the mobility of the contaminants. The presence of reactivity indices in 
the QSAR models indicates that chemical reactivity affects soil sorption for 
some chemical classes. 
 
 

2.3. Data Splitting with Principal Component Analysis 
 
In publication II, the OpenMolGRID system was characterized in detail and 
used for the modeling of 80 non-peptide aspartyl protease inhibitors based on 
cyclic ureas (Fig. 3) as an example. Efficient inhibition of this enzyme can 
combat HIV-1 via the production of non-infectious viral particles. The 
inhibitory activity was expressed as log(1/Ki). 
 

N N

OH OH

R R
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Ph Ph
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Figure 3. Structures of the substituted six- and seven-membered cyclic ureas used in 
modeling. 
 
One objective of this study was to investigate the potential of Principal 
Component Analysis (PCA) as a clustering method for designing a structurally 
representative training set for the QSAR modeling. Five clusters of structurally 
different HIV-inhibitors were identified from the score plots of the first two 
principal components (PCs) based on 394 calculated molecular descriptors. 
Further, for each cluster, a separate PCA was performed and five compounds 
(four from the corners and one from the center) from the score plots of the two 
first PCs were selected for the training set. In the end, the H-substituted 
compound of type 1, R=R’=H, was also included, to provide a set of 26 
compounds. Proceeding from this training set, the selected three-parameter 
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QSAR model had R2 = 0.86, R2
cv = 0.81, s = 0.71, and F = 44.88. The external 

validation of the model with 54 compounds gave R2 = 0.61 and s = 0.82. 
The cluster-based factor analysis resulted in a small representative training 

set and good statistical parameters for the developed QSAR model. The 
validation result was also satisfactory exceeding that of predictions obtained 
from other models that were trained on twice as many compounds but used less 
consistent methods, such as random selection and activity sampling, for training 
set formation. The relatively large difference between the R2 of the fit and 
prediction shows that there is still room for improvement of the structural 
representation of the training set which could also lead to a different descriptor 
content of the QSAR model. 
 
 

2.4. Comparative QSAAR for Toxicity to Tetrahymena  
pyriformis and Pimephales promelas 

 
The emphasis of the European REACH legislation in generating toxicological 
information is on methods and models that provide an alternative to the use of 
animals in toxicity testing. Using surrogate assays of lower species to predict 
the toxicity of higher species by Quantitative Activity-Activity Relationship 
(QAAR) methods has been recognized as a primary source to fill the existing 
data gaps in toxicological databases. Compared to in vivo testing, in vitro 
surrogates are more economical and rapid, allow extrapolations to other species 
and can broaden knowledge about mechanisms of toxic action. 

In publication III, relative toxic effects of 364 compounds common to both 
species were assessed to the freshwater fish Pimephales promelas log (1/LC50) 
and ciliate Tetrahymena pyriformis log (1/IGC50) endpoints. Good agreement, 
with the slope of unity, between toxic potencies (R2 = 0.75) was found using 
ciliate toxicity as a surrogate for the fish toxicity. The intercept of about half a 
log unit indicates the higher sensitivity of the fish test to the toxicants that is due 
to the flow-through design of the fish test as opposed to the static design of the 
ciliate assay and the longer duration of the fish test. With the addition of three 
theoretical molecular descriptors, the model was significantly improved  
(R2 = 0.82). The received Quantitative Structure-Activity-Activity Relationship 
(QSAAR) also showed high reliability according to the internal validation 
methods, the leave-one-out (R2CV = 0.818) and leave-50%-out cross-validation 
(R250 = 0.815). The structural features describing the difference of the two 
organisms were related to the average bond order of the carbon skeleton of the 
toxicant, its hydrogen-bonding ability and relative nitrogen content. Compounds 
considerably more toxic to the fish than the ciliate were small and intrinsically 
reactive via various electrophilic mechanisms. Among them were allyl and 

6
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propargyl alcohols that are pro-electrophiles that undergo oxidation via alcohol 
dehydrogenase to an α,β-unsaturated aldehyde or ketone which can act as strong 
electrophiles. 
 
 

2.5. Toxicity of Chemicals to Tetrahymena pyriformis  
 
For the assessment of the environmental impact of toxicants, the unicellular 
ciliated protozoan, Tetrahymena pyriformis, is attractive for its fast growth rates 
and inexpensive assays. In publication IV, median population growth impair-
ment concentration data (log(1/IGC50)) to Tetrahymena from a 40-h assay of 
1371 compounds spanning a variety of mechanisms of toxic action, including 
narcoses and electrophilic mechanisms, was used in QSAR development. The 
ability of a back-propagation ANN coupled to the heuristic feature selection 
algorithm (hBNN) to model compounds with a variety of toxic mechanisms in 
one global model was investigated. 

The BMLR model (R2 = 0.726, s = 0.551) showed very high stability 
according to the internal validation (R2

CV = 0.721) and external validation on 
457 compounds (R2 = 0.720, s = 0.561). The compounds with reactive mecha-
nisms that appear more toxic to Tetrahymena, were modeled with moderate 
accuracy revealing several series of chemicals with strongly underestimated 
toxicity. The largest residuals belonged to the group of carbonyl-containing  
α,β-unsaturated compounds that act via irreversible covalent mode of action as 
direct acting electrophiles. The second significant group of aliphatic chemicals 
with highly underestimated toxicity values was the α-haloactivated compounds 
that react preferably by the SN2 displacement mechanism with the halogen atom 
as a strong leaving group. From among the aromatic compounds, hydro-
quinones and p-substituted phenols had high residuals. These compounds are 
susceptible to oxidation to the respective quinones that react by free radical 
formation initiating a number of competing processes within the cell. All of 
these chemicals are typical outliers in linear QSAR models. 

The heuristic feature selection module incorporated to the ANN algorithm 
was able to relate different descriptors to the studied response compared to the 
multilinear procedure. Only the n-octanol/water partition coefficient, logP, was 
common in both models. The R2 of the hBNN model improved considerably in 
comparison with the multi-linear regression, from 0.726 to 0.826, respectively. 
Considering the very high diversity of the data set, the hBNN model provided 
excellent prediction with R2=0.794 and s=0.484 on the set of 457 compounds 
not used in model development.  
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2.6. Concluding Remarks 
 
In current thesis, the emphasis of QSAR model development was focused on the 
environmental properties and ecotoxicology. Models with good predictive 
power were obtained for the soil sorption coefficient and the acute toxicity to 
the aquatic unicellular organism, Tetrahymena pyriformis. Both data sets are 
recognized as of high quality for the study of environmental fate of organic 
industrial pollutants. 

Potential of the QSAR methodology was also explored for the possibility to 
use a nonvertebrate species as a surrogate in modeling the toxicity to the 
vertebrate as one way to reduce expensive animal testing. In this case, toxic 
potency of the unicellular ciliate, Tetrahymena pyriformis, was used to model 
the toxicity to the freshwater fish, Pimephales promelas. The ability of the 
molecular descriptors to take into account the interspecies differences was 
addressed in particular. Significant improvement in the correlation coefficient 
was obtained with including three easily interpretable molecular descriptors into 
the model. 

In the course of the work, several aspects of the QSAR methodology were 
evaluated or improved. HIV-1 aspartyl protease inhibitors were used as a 
suitable data set for investigating the ability of PCA as a multivariate clustering 
method to form a structurally representative training set for QSAR model 
development. Considerable improvement of the prediction was obtained 
compared to the models derived on the training sets obtained by more arbitrary 
selection methods carried out previously on the same data. 

In the publication about soil sorption coefficients it was shown that 
modeling with a small size of the training set benefits highly from the use of a 
validation set during the selection of the final model with the highest 
generalization ability and hence the highest potential prediction capability. This 
statement was proved by using an additional independent external validation set 
for making predictions compiled from a different source in the literature. 

And finally, a heuristic feature selection module incorporated to the ANN 
algorithm was tested with modeling the median population growth inhibition 
concentration to the ciliate Tetrahymena pyriformis. This method enabled to 
consider the nonlinear relationship of each descriptor with the studied property 
in course of the model development. The resulting model contained different 
descriptors and had significantly higher statistical parameters of prediction 
compared to the corresponding linear model. 
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SUMMARY IN ESTONIAN 
 

KESKKONNATÄHTSATE OMADUSTE KVANTITATIIVSED 
STRUKTUUR-AKTIIVSUS SÕLTUVUSED 

 
Kvantitatiivsed struktuur-aktiivsus sõltuvused (QSAR’id) on empiirilised 
mudelid, mis seovad ainete eksperimentaalseid omadusi nende molekulaar-
struktuuridega. Kvantteooria ning ab initio arvutusmeetodid võimaldavad 
eksperimentaalse täpsusega arvutada ainete omadusi väikestele isoleeritud 
molekulidele. Reaalsed tööstuslikud või biokeemilised protsessid elusorga-
nismides toimuvad aga erinevates kondenseeritud keskkondades ning seetõttu 
omavad QSAR’id, mis lähtuvad otseselt vaadeldavast aine omadusest, teatud 
eeliseid aineomaduste ennustamisel mistahes keskkonnas. 

Struktuur-aktiivsus sõltuvusi on dokumenteeritud juba alates 19. sajandi tei-
sest poolest. Oma täieliku potentsiaali saavutas meetod umbes sada aastat 
hiljem, kui algas teoreetiliste molekulaardeskriptorite formuleerimine, mis ei 
vaja mingeid eksperimentaalseid andmeid ja on seetõttu arvutatavad veel 
sünteesimata või hüpoteetilistele ainetele. Laialdasematest reakendusaladest 
võib nimetada meditsiini ja ravimidisaini. Hiljuti omandas QSAR olulise 
positsiooni rahvusvahelises seadusandluses, milles nähakse valideeritud QSAR 
mudeleid kui primaarsete andmete saamise allikat keskkonda ja toksilisust 
puudutavate andmete genereerimisel nii olemasolevatele kui ka tulevastele 
laialdaselt kasutatavatele kemikaalidele. Käesoleva väitekirja peamiseks ees-
märgiks oli hinnata saasteainete mõju keskkonnale, täpsemalt, ainete absor-
beerumiskonstanti mullas ja toksilisust magevee organismidele, QSAR meeto-
dite abil. Töö käigus hinnati ka mitmeid QSAR metodoloogilisi aspekte.  

Esimene peatükk annab ülevaate QSAR metodoloogiast ja keskkonnatähtsa-
test omadustest. Tähtsaimad nõuded QSAR mudelite edukaks moodustamiseks 
algavad kõrge usaldatavusega ja ühtse määramistäpsusega eksperimentaalse 
andmebaasi valikust. Seejärel teostatakse vajalikul teooria tasemel molekulide 
geomeetria optimiseerimine ning arvutatakse molekulaardeskriptorid lähtudes 
saadud geomeetriast. Olulise tähtsusega on treeningkomplekti koostamine 
mudeli moodustamiseks, kuna sellega defineeritakse ühtlasi ka mudeli kasutus-
piirid. Järgneb sobiva statistilise meetodi valik deskriptorite selekteerimiseks ja 
regressiooni tuletamiseks, mille ennustusvõimet kasutuspiiride ulatuses hinna-
takse sõltumatu valideerimiskomplekti abil. 

Rahvusvaheliste keskkonnakaitse organite poolt on esitatud nõudmised 
ennustusvõimeliste QSAR mudelite moodustamiseks järgmistes valdkondades: 
õhu, vee, mulla ja ehitiste keemilise saaste ja loodusliku mitmekesisuse hävita-
mise vältimiseks. Selleks on vaja hinnata ainete transporti, keemilist stabiilsust 
või lagunemist keskkonnas, ning akumulatsiooni ja toksilisust elusorganis-
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mides. Nõuetekohased QSAR mudelid on loodud vaid üksikutele neid omadusi 
kirjeldavatele suurustele. 

Väitekirja teises osas on kokkuvõte tehtud uurimistöö raames saadud origi-
naalsetest tulemustest. Publikatsioonis I moodustati multilineaarse meetodi abil 
globaalseid ja aineklassi-spetsiifilisi QSPR mudeleid mulla absorptsiooni koe-
fitsiendile, log KOC, mis iseloomustab ainete mobiilsust mulla orgaanilist 
süsinikku sisaldavas kihis. Parima ennustusvõimega globaalne mudel saadi 
nelja deskriptori abil, kasutades kogu andmekomplekti, 344 ainet. Polaarsed 
ained käitusid erinevalt mittepolaarsetest, mistõttu mõnede suuremate kõrvale-
kaldujate puhul, nagu amiidid, soovitati kasutada klassispetsiifilist mudelit. 
Artiklis II uuriti põhikomponentanalüüsi (PCA) klastrimoodustamise võime 
kasutamist struktuuriliselt esindusliku treenimiskomplekti valikul QSAR mudeli 
formuleerimiseks HIV-1 aspartüülproteaasi inhibiitorite inhibeerimisvõime 
ennustamiseks. Võrreldes eelnevalt saadud ennustustega sama andmekomplekti 
jaoks, paranes tulemus uue treenimiskomplekti valikuga märgatavalt. Artiklis 
III kasutati magevee ainurakse organismi toksilist aktiivsust, log(1/IGC50), 
surrogaadina ehk ühena deskriptoritest toksilise aktiivsuse, log(1/LC50), 
ennustamiseks kalale. Saadud kahe liigi vahelisele korrelatsioonile lisati veel 
kolm teoreetilist molekulaardeskriptorit, mis tunduvalt parandasid korre-
latsiooni ja üldjoontes kirjeldasid liikidevahelisi erinevusi tundlikkuse suhtes 
uuritud ainetele. Publikatsioonis IV kasutati eriti mitmekesise struktuurse 
koostise ja mehhanistliku käitumisega toksilisuste andmebaasi (1371 ainet) 
ainuraksele magevee organismile Tetrahymena pyriformisele. Andmebaasi abil 
testiti heuristilist parameetrite selekteerimise meetodit ühenduses kunstlike 
närvivõrkudega (ANN), mis võimaldab deskriptorite valiku käigus arvesse võtta 
nende mittelineaarset iseloomu uuritud aktiivsuse suhtes. Võrreldes samadel 
tingimustel saadud multilineaarse mudeliga, sisaldas ANN mudel erinevaid 
deskriptoreid ning andis oluliselt parema ennustustulemuse andmekomplektile, 
mis oli eraldatud selleks otstarbeks enne mudeli ehitamise algust. 
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