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Numerical simulation of capillary gravity waves excited by an obstacle in
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Abstract. Capillary gravity waves excited by an obstacle are investigated by numerical simulations. Under the resonant condition
for which large-amplitude solitary waves are generated, solutions of the Euler equations show that the capillary effects induce the
generation of short waves both upstream of the solitary waves and downstream of the obstacle. Overall characteristics of these
waves agree with the weakly nonlinear theory, although the theory overestimates the wavelength of the upstream short waves.

Key words: capillary gravity wave, numerical simulation, weakly nonlinear theory.

1. INTRODUCTION

We consider the capillary gravity waves excited by an
obstacle in an open-channel flow of uniform velocity
(Fig. 1). In an inviscid fluid, the flow is governed by the
Bond number and the Froude number, which are defined
by

Bo =
T

ρgD2 , Fr =
U√
gD

, (1)

where T is the surface tension, ρ is the density, g is the
acceleration due to gravity, D is the fluid depth, and U is
the mean flow velocity. The Bond number represents the
ratio between the surface tension and the gravity force,
and the Froude number represents the mean flow velocity
relative to the velocity of the long wave. We should
mention here that the Weber number We = ρDU2/T ,
which is related to the Bond number by We = Fr2/Bo,
can be used instead of Bo.
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Fig. 1. Schematic figure of the problem.

While the small-amplitude waves are described well
by the linear theory [1], large-amplitude nonlinear waves
are resonantly excited when Fr ≃ 1, for which the
mean flow velocity agrees with the long-wave speed.
Therefore, several weakly nonlinear theories, including
the forced Korteweg–de Vries (fKdV) equation, have
been developed to describe the large-amplitude waves.

Nonlinear behaviour of pure gravity waves (Bo = 0)
under resonant condition (Fr ≃ 1) has been intensively
investigated experimentally [2,3] and numerically [4],
and the fKdV equation has been found to give good
results, including the generation of unsteady undular
bores upstream and downstream of the obstacle [5,6].
On the other hand, we have comparatively little
knowledge about the waves with capillary effects, and
the verification of weakly nonlinear theories such as the
5th-order forced KdV equation has yet to be done.

In this study, we have investigated the unsteady
behaviour of capillary gravity waves under the exactly
resonant condition of Fr = 1, by numerically solving the
Euler equations. At the same time, applicability of the
weakly nonlinear theories has been tested by comparing
their solutions with the solutions of the Euler equations.
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2. NUMERICAL METHODS

2.1. Euler equations

We assume a two-dimensional flow illustrated by Fig. 1.
The governing equations are the continuity equation and
the non-dimensional Euler equations, which are given by

∇ ·uuu = 0, (2)

and
Duuu
Dt

=−∇p− 1
Fr2 ẑzz, (3)

where uuu = (u,w) is the velocity with u and w being the
horizontal and vertical component, respectively; p is the
pressure; and ẑzz is the unit vector in the vertical direction.
In this study, we scale the length by D, the velocity by U ,
and the pressure by ρU2.

Two boundary conditions must be imposed on the
free surface, namely the kinematic boundary condition
and the dynamic boundary condition. The kinematic
boundary condition states that the fluid particles on the
free surface move always along the surface, i.e.,

∂ f
∂ t

+u
∂ f
∂x

= w, (4)

where f (x, t) is the vertical displacement of the free
surface. The dynamic boundary condition describes the
continuity of the stress at the free surface, i.e.,

p = p0 +
Bo
Fr2 κ, (5)

where p0 is the atmospheric pressure and κ is the
curvature of the free surface. Since we assume an
inviscid fluid in this study, Eq. (5) describes simply the
continuity of normal stress. As the initial condition,
impulsive start is used, i.e., the velocity (u,w) = (U,0) is
instantly applied at t = 0.

We use the body-fitted curvilinear coordinates in
which the grid lines are adjacent to the bottom obstacle
and also to the free surface. The bottom obstacle has
a fixed shape, while the free surface evolves according
to Eq. (4). We rewrite the governing equations in the
transformed curvilinear coordinates and discretize them
by the finite difference method, and solve them by the
Marker and Cell method. To avoid the computational
instability in the numerical solution of inviscid Euler
equations, we use a third-order upwind scheme for the
convection term, while all the other spatial derivatives
are discretized by the central difference of second-
order accuracy. For the time integration, the second-
order Adams–Bashforth method is used for the Euler
equations, while the Crank–Nicolson method is used for
the kinematic boundary condition at the free surface.

The obstacle shape is given by z = h(x), where the
function h(x) is given by

h(x) =
1

100
sech2(0.3x). (6)

An example of the grid for solving the Euler
equations, which has the total number of grid points
12 000 (horizontal) × 150 (vertical), is demonstrated
in Fig. 2. The minimum horizontal resolution is
∆x = 0.02, corresponding to the shortest wavelength
(∼ 1) that appears upstream of the obstacle. The grid
is concentrated near the free-surface and the bottom
boundary, giving the minimum vertical resolution (∆z =
0.005) there.

Numerical accuracy is assured by checking the
dependence of the solution on the computational grid
size. Free-surface displacements for the case of
Bo = 0.18, obtained from two computational grids, are
presented in Fig. 3, where the 24 000 × 300 grid
has twice the resolution of the 12 000 × 150 grid
(Fig. 2) everywhere. Despite the different resolution, the
difference in the free-surface displacements is negligibly
small not only in the overall description of the wave
(Fig. 3a) but also in the enlarged figures of upstream
short waves (Fig. 3b) and downstream short waves in the
depression region (Fig. 3c). Since the wavelength of the
short waves is minimum at Bo = 0.18 and increases with
Bo, the accuracy at Bo = 0.18 assures the accuracy for
larger values of Bo. Then, we have used the 12 000 × 150
grid (Fig. 2) for the computation for Bo< 0.3. For higher
Bond numbers (Bo ≥ 0.3) the 6000 × 150 grid, which
has minimum intervals ∆x = 0.04 and ∆z = 0.005, was
found to be large enough to obtain sufficient accuracy.

(a)

(b)

Fig. 2. Grid used for the computation. Total number of grid
points is 12 000 (horizontal) × 150 (vertical). (a) Whole region
of the computation. Only every 100 grid points are depicted in
the horizontal direction and only every two points are depicted
in the vertical direction. (b) Enlarged image of the grid near
the obstacle. Only every 20 grid points are depicted in the
horizontal direction.
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Fig. 3. Comparison of the free-surface heights obtained from the Euler equations using grids with different resolutions 12 000 × 150
and 24 000 × 300 (t = 400, Bo = 0.18). (a) Whole region. (b) Upstream region. (c) Downstream depression region.

The time increment is ∆t = 2.0 × 10−4, and the
computation was continued until t = 400 for Bo > 0 and
t = 500 for Bo = 0.

Most of the computational results were obtained
using the NEC-SX9 and NEC-SX-ACE computer in the
Cybermedia Center of Osaka University.

2.2. Weakly nonlinear theories

The fKdV equation has been proposed to describe
the weakly nonlinear wave near the resonant condition
(Fr ≃ 1). It is applicable to the cases with strong
capillary effects (Bo > 1/3) [7] or without capillary
effects (Bo = 0) [8,9]. The equation can be derived if
the wave amplitude a and the wavelength L are scaled as

a/D = ε, (7)

D/L = ε1/2, (8)

where ε is a small parameter. Under the exact resonance
condition (Fr = 1), the fKdV equation becomes

ft −
3
2

f fx −
1
6
(1−3Bo) fxxx =

1
2

hx, (9)

where the variables in Eq. (9) are non-dimensionalized
by D and U(=

√
gD) in the same way as the Euler

equations.
In the limit of Bo → 1/3, the dispersive term fxxx

in Eq. (9) vanishes so that the fKdV equation no longer
contains the dispersion term. This suggests that the
inclusion of a higher-order dispersion term becomes

necessary to avoid the overturning of the waves. Indeed,
in this parameter region (Bo ≃ 1/3), a 5th-order forced
KdV (5th-order fKdV) equation with the 5th-order
derivative term ( fxxxxx) has been proposed [10]. For
the derivation of the 5th-order fKdV equation, different
scalings

a/D = ε, (10)

D/L = ε1/4, (11)

must be used. Under the exact resonant condition
(Fr = 1), the equation reduces to

ft −
3
2

f fx −
1
6
(1−3Bo) fxxx −

1
90

fxxxxx =
1
2

hx. (12)

We have solved the fKdV equation and the 5th-order
fKdV equation numerically. The spectral method and the
4th-order Runge–Kutta method are used for the space
and time discretization, respectively. The computed
horizontal range is −768≤ x≤ 768, and the computation
was continued until t = 400 for Bo > 0, and t = 500 for
Bo = 0.

For the test of spatial resolution, we have varied the
cut-off wave number N in the spectral method. The
solutions of the 5th-order fKdV equation at t = 400 for
Bo = 0.3, using N = 1536 and N = 3072, are presented
in Fig. 4. It turns out that the two solutions have almost
no difference (two lines overlap), thus we use N = 1536
for all the computations of the 5th-order fKdV equation
and the fKdV equation, with the time increment of ∆t =
5.0×10−3.
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Fig. 4. Comparison of the free-surface displacements obtained from the 5th-order fKdV equation using different cut-off
wavenumbers N = 1536 and 3072 (t = 400, Bo = 0.30).

3. RESULTS

3.1. Numerical results of the Euler equations

We now demonstrate numerical solutions of the Euler
equations for different Bond numbers. Without capillary
effects (Bo = 0) (Fig. 5), solitary waves are generated
by the obstacle and they propagate upstream at a
constant speed, while a flat depression region appears
and elongates downstream proportional to time, and
modulated cnoidal waves emerge downstream of the
depression.

When the Bond number becomes non-zero (Bo =
0.18, 0.25; cf. Fig. 6a and 6b), a short-wave train whose
wavelength is comparable to the water depth appears
both upstream of the solitary waves and downstream
of the obstacle in the depression region. Upstream
short waves appear as the amplitude of the solitary
wave becomes high with time. They have a constant
wavelength and their appearing region constantly spreads
upstream, although their amplitudes decrease in the
upstream direction. On the contrary, downstream short
waves show irregular behaviours, both in space and time.

As the Bond number further increases (Bo ≥ 0.30),
solitary waves gradually deform into a flat elevated
wave, and the downstream cnoidal waves disappear. The

counterpart of short waves observed at Bo= 0.18 appears
even at large Bond numbers (Bo & 0.30), with larger
wavelength and amplitude as the Bond number increases.

At the highest Bond number investigated in this
study (Bo = 2/3; cf. Fig. 6f), the original short waves
become long nonlinear waves with larger wavelengths.
Namely, the upstream short waves finally become convex
cnoidal waves, while the downstream short waves in
the depression region become downstream-advancing
solitary waves with negative displacement. This actually
reflects the fact that the wave pattern at Bo = 2/3 has a
rotation symmetry to the pattern observed at Bo = 0. We
can easily verify that the fKdV equation (9) is invariant
by the simultaneous change of the variables’ sign (η →
−η ′, x →−x′) and the parameter (Bo → 2/3−Bo′).

We now examine the behaviour of short waves
upstream of the solitary wave. Figure 7a shows the phase
speed cp of the upstream short wave and the upstream-
advancing speed cn of the solitary wave (or that of the
flat elevated wave for Bo & 0.30). These speeds were
measured by tracking one of the wave crests, although we
could not measure the values of cn at large Bond numbers
(Bo & 0.4) because the nearly flat elevated wave does not
have a clear peak which can be tracked accurately. We
note that the phase speed of the upstream short wave is
nearly equal to the speed of the solitary wave (cp ≃ cn)
at least up to Bo ∼ 0.4.

Fig. 5. Time development of the free-surface displacement a(x, t) obtained by the numerical solution of the Euler equations without
capillary effects (Bo = 0).
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Fig. 6. Time development of the free-surface displacement a(x, t) obtained by the numerical solution of the Euler equations.

Fig. 7. (a) Phase speed cp of the upstream short wave and the propagation speed cn of the solitary wave or the flat elevated wave.
(b) Wavelength λ of the short wave measured at t = 400 and the wavelength λl estimated from cp given in Fig. 4a using the linear
dispersion relation (13).

We can directly measure the wavelength of upstream
short waves λ using the data at t = 400. On the other
hand, the wavelength can also be ‘estimated’ from the
phase speed cp of the same wave if we assume that the
short wave satisfies the linear dispersion relation

cp = 1−
√( λ

2π
+Bo

2π
λ

)
tanh

2π
λ

. (13)

The wavelengths estimated from the value of cp
in Fig. 7a using the linear dispersion relation (13)
are denoted by λl , and they are given in Fig. 7b for
comparison with λ . In this process, we have to solve
Eq. (13) for λl when cp is provided. The solution
could be obtained by Newton’s method. We note that λl
agrees well with λ for Bo ≤ 0.4, while some differences
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appear for larger Bo. This means that the upstream
short waves are almost linear waves, although their
amplitude becomes larger for larger Bo, and nonlinear
effects should become more significant.

These results show that the upstream short waves
are linear waves whose phase speeds are equal to
the upstream solitary waves. These characteristics are
similar to those discussed by Karpman [11] as ‘soliton
radiation’, in which a soliton emits dispersive waves
whose phase speed is equal to that of the soliton.

The motions of downstream short waves appearing
in the depression region are much more irregular and
complex than the upstream waves. This might be attribut-
able to the wave interactions of short waves radiated by
large-amplitude nonlinear waves. However, this is still a
conjecture.

3.2. Comparison between the Euler equations and
the weakly nonlinear theories

We first compare the solution of the Euler equations with
that of the fKdV equation (Fig. 8). Since the fKdV
equation would be applicable to the cases with large Bo
(≫ 1/3) and very small Bo as discussed in Section 3, we
compare the results for the case of Bo= 2/3 (and Fr = 1)
in Fig. 6. Two solutions are in good agreement, showing
that the fKdV equation is a good approximation to the
Euler equation at the resonant condition.

We next compare the solution of the Euler equations
with that of the 5th-order fKdV equation (Fig. 9). Since
the 5th-order fKdV equation would be applicable to
the cases of Bo ∼ 1/3 as discussed in Section 3, we
compare the results for the case of Bo = 0.3 (and

Fr = 1). Two solutions give qualitative agreement in
the generation of the flat elevated wave and the short
waves upstream of the obstacle and the downstream short
waves in the depression region. A major quantitative
difference is in that the 5th-order fKdV equation predicts
longer wavelengths of the upstream and downstream
short waves than the Euler equations. Since the 5th-order
fKdV equation assumes a long wave, it is natural that
the nearly flat elevated wave is predicted well including
its propagation speed, while the short waves, especially
their ‘short’ wavelengths and the corresponding ‘slow’
propagation speed, are not predicted well.

4. CONCLUSIONS

We have investigated the capillary gravity waves excited
by an obstacle by solving the Euler equations. It was
found that the capillary effects excite short waves further
upstream of the upstream solitary waves. Irregular short
waves also appear downstream of the obstacle in the
depression region. The observed phase speed of the
upstream waves is equal to the speed of the solitary wave,
in agreement with the soliton radiation theory.

Comparison of results with the weakly nonlinear
theories reveals that the fKdV equation is applicable to
the cases with strong capillary effects (Bo ≫ 1/3), while
the 5th-order fKdV equation with a 5th-order dispersion
term is qualitatively applicable to the case of Bo ≃ 1/3,
for which the fKdV equation is not applicable. We note,
however, that the 5th-order fKdV equation is derived
under the assumption of a long wave, and it generally
overestimates the wavelength and the propagation speed
of the upstream short waves.

Fig. 8. Surface displacements for Bo = 2/3 (Fr = 1) obtained from the Euler equations and the fKdV equation.

Fig. 9. Surface displacements for Bo = 0.30 (Fr = 1) obtained from the Euler equations and the 5th-order fKdV equation.
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Madalas vees paikneva takistuse tekitatud kapillaarlainete numbriline
rekonstrueerimine

Motonori Hirata, Shinya Okino ja Hideshi Hanazaki

Numbriliste meetoditega on analüüsitud madalas vees paikneva takistuse ümber tekkivaid kapillaarlaineid juhul, kui
hoovuse kiirus on kriitiline ja Kortewegi-de Vriesi võrrandi ning selle üldistuste raames genereeritakse solitonilaadsed
häiritused. On näidatud, et Euleri võrrandite raames tekivad lisaks lühikesed lained takistusest nii alla- kui ka
ülesvoolu. Nende lainete parameetreid kirjeldab rahuldavalt nõrgalt mittelineaarne teooria, mis aga ülehindab
ülesvoolu levivate lühikeste lainete pikkust.


