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Abstract. Run-up of solitary waves of different bell-like shapes (solitary-like and Lorentz-like waves and sine-like pulses) is 
studied in a linearly inclined bay of parabolic cross-section. Their maximum run-up heights, maximum water flow velocities, and 
parameters of wave breaking on the beach are calculated, compared, and discussed. It is shown that these parameters for different 
pulses of the same height and characteristic wavelength coincide with an acceptable accuracy, hence allowing parameterization of 
the corresponding formulas for run-up characteristics. 
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1. INTRODUCTION 

*** 
Reliable estimation of the tsunami run-up characteristics 
on a beach is the key problem of the tsunami warning, 
prevention, and mitigation, as it would allow defining 
the tsunami inundation zone and impact on port and 
coastal structures. 

Theoretically, the most studied is wave run-up on a 
plane beach. First rigorous mathematical results for long 
wave run-up were obtained by Carrier and Greenspan 
(1958) for the beach of a constant slope. After their study, 
several exact analytical solutions to this problem for 
various shapes of incident waves have been found 
(Spielvogel, 1975; Pedersen and Gjevik, 1983; Synolakis, 
1987; Pelinovsky and Mazova, 1992; Tadepalli and 
Synolakis, 1994; Brocchini and Gentile, 2001; Carrier 
et al., 2003; Kânoğlu, 2004; Tinti and Tonini, 2005; 
Kânoğlu and Synolakis, 2006; Antuono and Brocchini, 
2007, 2008, 2010; Didenkulova et al., 2007b; Madsen 
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and Fuhrman, 2008; Didenkulova, 2009). However, in 
practice the shape of the incoming tsunami wave is 
usually unknown and its parameters (wave height and 
wavelength) are either pre-computed using different 
hydrodynamic models or estimated from the first wave 
measurements, such as DART buoys. That is why it is 
extremely important to have formulas that could give fast 
and reliable estimates of the inundation zone and flow 
velocity on the beach based on these rough preliminary 
data of the incoming wave characteristics. 

Following this idea, the influence of an incident 
wave shape on tsunami run-up characteristics (maximal 
run-up height, shoreline velocity, and breaking para-
meter) has been studied (Didenkulova et al., 2007a; 
Didenkulova and Pelinovsky, 2008). It was shown that 
symmetric bell-shaped pulses of slightly different shape, 
such as sinusoidal, solitary-like, and Lorentz-like pulses, 
produce similar tsunami run-up characteristics; so the 
influence on the wave shape can be parameterized.  

However, estimates of run-up characteristics, 
calculated for a plane beach, are not always optimal as it 
was observed during the Samoa 2009 and Japan 2011 
tsunamis, where the observed run-up height signifi-
cantly exceeded the one estimated by the formulas for a 
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plane beach (Okal et al., 2010). In both these cases the 
tsunami was propagating in a U-shaped bay. Later 
(Didenkulova, 2013) it was shown that estimates of run-
up characteristics performed using the U-shaped bay 
approach are in a good agreement with observations of 
tsunami run-up height in Pago-Pago during the Samoa 
2009 tsunami. Hence, it is necessary to consider  
U-shaped bays separately and develop the correspond-
ing explicit estimates of tsunami run-up characteristics. 

In this paper we study the run-up of bell-shaped 
waves on the coast of an inclined bay of parabolic cross-
section in the framework of nonlinear shallow water 
theory. The paper is organized as follows. In Sections 2 
and 3, following Didenkulova and Pelinovsky (2011a, 
2011b) we briefly describe long wave propagation and 
run-up in a parabolic bay. Parameterization of major 
run-up characteristics is introduced and discussed in 
Section 4. Main results are summarized in the Con-
clusions. 

 
 

2. LONG  WAVE  DYNAMICS  IN  A  
    PARABOLIC  BAY 
 
Let us consider a bay of parabolic cross-section (Fig. 1). 

The geometry of the bay, shown in Fig. 1, is 
described by the following formula 
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where ( ) 0h x   is the undisturbed water depth along the 
main channel axis, where х-axis is directed offshore,   
is the beach slope along the main channel axis, and 0y  
is the effective width of the channel. 

We underline that this type of the bay is also often 
observed in the Nature in fjords and underwater 
canyons. Examples of such bays were shown by Diden-
kulova and Pelinovsky (2011b). 

Nonlinear shallow water equations for a bay of para-
bolic cross-section are (Didenkulova and Pelinovsky, 
2011a) 
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where ( , ) ( , ) ( )H x t x t h x   is the total depth along 
the main channel axis, ( , )x t  is water surface dis- 
 

 
 

Fig. 1. Linearly inclined bay of parabolic cross-section. 

placement, ( , )u x t  is water flow averaged over channel 
cross-section, and g  is gravitational acceleration. 

Equations (2) differ from classical ID shallow water 
equations (Didenkulova, 2009) only by an additional 
coefficient 2/3 in the first equation, which is determined 
by the parabolic shape of the channel cross-section.  

Using Riemann invariants for parabolic channel, 
 

6 ,I u gH gt                          (3) 
 

and hodograph transformation, the system of nonlinear 
hyperbolic Eqs (2) can be reduced to a linear wave 
equation 
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Then all desired variables are expressed through the 
function ,  
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Detailed derivation of Eqs (4)–(6) is given in 
(Didenkulova and Pelinovsky, 2011a). New variables 
  and   represent generalized coordinates. From 
Eqs (5)–(6) it is possible to define the physical meaning 
of .  It is always positive and directly related to the 
total water depth along the main channel axis 

6 .gH   Thus, Eq. (4) should be solved at semi-axis 
0.   The physical meaning of   is not so trans-

parent, but for the initial condition of zero-velocity the 
time moment 0t   also corresponds to 0.   

We remind that Eqs (4)–(6), which describe wave 
dynamics in a parabolic channel, deal with variables 
averaged over channel cross-section. At the same time, 
the distribution of water surface in space can be found 
from Eq. (1): 

 

0( , ) ( , ).y x t y H x t                       (7) 
 

Natural boundary conditions for the description of 
wave run-up on a beach are boundedness of the wave 
field (water flow velocity and displacement) far off-
shore (   or )H   and at the coast ( 0   or 

0).H   Initial conditions for the function   depend 
on the initial conditions for water flow velocity and 
displacement. If at the initial time moment the velocity 
field is zero ( , 0) 0,u x t    the initial time 0t   also 
corresponds to zero value of the variable 0.   
Therefore, the initial conditions for the function   are 

 

0
0,                                  (8) 
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where 
0

( )x    is the initial state of the water surface, 
which can be found by knowing the total water depth at 
the initial moment of time ( , 0)H x  and using 

6 .gH   
The solution of the wave equation for the corres-

ponding initial and boundary conditions can be found in 
the following form:  
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where  
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and 1( )  is the Heaviside function. 
Formulas (10)–(11) allow explicit description for 

nonlinear dynamics of the moving shoreline. The major 
difference of the described wave dynamics in a para-
bolic bay from the case of a plane beach (Carrier and 
Greenspan, 1958) is that in a linearly inclined bay of 
parabolic cross-section waves propagate without inner 
reflection from the sea bottom (travelling waves in the 
nonlinear problem) and reflection occurs only from the 
coast (shoreline). Therefore, all changes of wave 
dynamics, including transformation of the wave and its 
characteristics, also occur only in the immediate vicinity 
of the shoreline. This feature, characteristic for all non-
reflecting geometries, leads to abnormal wave ampli-
fication at the coast (Didenkulova et al., 2006, 2008; 
Didenkulova and Pelinovsky, 2011b). 

 
 

3. WAVE  RUN-UP  IN  A  PARABOLIC  BAY 
 

In the linear approach, wave run-up on a beach in a bay 
of parabolic cross-section simply depends on the time 
derivative from the initial water displacement in  
(Didenkulova and Pelinovsky, 2011a), 
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where L  is the distance from the initial wave location 
to the coast, 0h  is water depth at the distance L  from 
the coast, and g  is gravity acceleration. 

The horizontal velocity of the moving shoreline 
( )U t  can be found from 
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Note that even though formulas (12)–(13) describe 
wave height on a beach in the linear approximation, they 
are also basic for the calculation of run-up characteristics 
within a nonlinear framework (Didenkulova and Peli-
novsky, 2011a). As it is demonstrated in (Didenkulova 
and Pelinovsky, 2011a), maxima of wave run-up heights 
and shoreline velocities in linear and nonlinear problems 
coincide. Since in this study we are interested only in 
maximal values of run-up characteristics, it is enough to 
find maxima of functions (12) and (13). 

One of the major parameters characterizing long 
wave run-up on a beach is the wave breaking parameter 

.Br  It is expressed through time derivative from the 
shoreline velocity found in linear approximation 

 

1
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g dt
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                    (14) 

 

and 1Br   for non-breaking waves and 1Br   for 
breaking waves. 

 
 

4. PARAMETERIZATION  FORMULAS  FOR  
    WAVE  RUN-UP  CHARACTERISTICS  IN  A  
    PARABOLIC  BAY 

 
For our analysis we consider the same types of initial 
bell-shaped waves as in (Didenkulova and Pelinovsky, 
2008), which are soliton-like waves 
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sinusoidal pulses 
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and Lorentz-like waves 
 

in 2
( ) , 1, 2, , 20.
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To study the possibility of parameterization of wave 
run-up characteristics for impulses (15)–(17), we intro-
duce numerical coefficients ,R  ,U   and ,Br  which 
depend on the shape of each particular wave, so that Eqs 
(12)–(14) for extreme wave run-up characteristics can 
be rewritten in the following way: 

 

max 0 0
0 eff

3
, 4 ,

2R
AL

R R R
gh T

          (18) 

 

max 0 min 0 0 2
0 eff

3
, , 4 ,

2U U
AL

U U U U U
gh T

 
   

 (19) 
 



O. Didenkulov et al.: Parameterization of wave run-up characteristics in the bay 237

0 0 2 3
0 eff

3
 , 4 ,

2Br
AL

Br Br Br
g gh T




        (20) 

 

where effT  is the effective duration of the wave defined 
at the 2/3 level of the maximal initial wave height, 
which is similar to the definition of the significant wave 
in oceanography, maxR  is maximal run-up height, and 

maxU  and minU  are maximal run-up and back-wash 
velocities, respectively. Note that the maximal back-
wash in a parabolic bay coincides with max .R  

Thus, the influence of the initial wave shape on run-
up characteristics is concentrated in the parameters ,R  

,U   and .Br  Calculations of these parameters for 
different sets of bell-shaped pulses (15)–(17) are shown 
in Figs 2–4. 
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Fig. 2. Wave shape parameter for maximal run-up height: 
circles correspond to initial pulses of sinusoidal shape, grey 
triangles to Lorentz-like waves, and squares to soliton-like 
waves. 
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Fig. 3. Wave shape parameter for maximal run-up and run-
down velocities: circles correspond to initial pulses of 
sinusoidal shape, grey triangles to Lorentz-like waves, and 
squares to soliton-like waves. 
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Fig. 4. Wave shape parameter for the breaking parameter Br: 
circles correspond to initial pulses of sinusoidal shape, grey 
triangles to Lorentz-like waves, and squares to soliton-like 
waves. 
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Fig. 5. Shapes of the initial waves approaching the coast for 
n = 3 (a) and n = 20 (b): solid lines correspond to impulses of 
sinusoidal shape, grey dashed lines to Lorentz-like waves, and 
dash-dotted lines to soliton-like waves. 

 
 
It follows from Fig. 2 that with an increase in ,n  the 

parameter R  for pulses of all considered types tends to 
the same value 1.1  with maximum spread of values 
below 15%. At the same time, maximal differences in 

R  are observed for small ,n  when differences in wave 
shape are maximal. This is well demonstrated in Fig. 5, 
where shapes of the initial waves approaching the coast 
for 3n   and 20n   are illustrated. It can be seen that 
all considered wave types tend to a certain unified wave 
shape with an increase in .n  

Parameters U   for maximal run-up and run-down 
velocities also tend to the same values for all three  
sets of pulses, which are equal to 1.4  and 3.2,  
respectively (Fig. 3). It can also be seen from Fig. 3 that 
the run-down velocity is more than twice higher and at 
the same time more stable than the run-up velocity. So, 
the spread of the values of the parameter –U  for run-
down velocity does not exceed 12%, while the corres-
ponding spread of the values for run-up velocity is 56%. 
This means that even small changes in the shape of the 
wave approaching the beach may significantly influence 
the run-up velocity. 

Finally, as it has been expected, Br  for the 
breaking parameter for large n  also tends to the unique 
constant value 8.1  with the maximum spread of the 
values of 24% (Fig. 4). As it is known, the first wave 
breaking always occurs at the run-down stage (Peli-
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novsky, 1982). Hence, it is expected that Br  for the 
breaking parameter behaves similarly to the parameter 

–U  for the maximal run-down velocity. 
 
 
5. CONCLUSIONS 

 
Run-up of different bell-shaped pulses propagating in a 
linearly inclined bay of parabolic cross-section has been 
studied analytically in the framework of shallow water 
theory. It is shown that characteristics of the tsunami 
run-up on the coast (maximal run-up height, shoreline 
velocity, and breaking parameter) are within the same 
limits for all considered bell-shaped waves and can be 
parameterized. For example, the variation in the 
maximal tsunami run-up height and back-wash velocity 
does not exceed 15% and 12%, respectively. Therefore, 
definition of wave length (wave duration) at the 2/3 
level of maximum wave height (similar to the definition 
of significant wave in oceanography) is optimal for the 
parameterization of run-up formulas in both a plane 
beach and a parabolic bay. 

The final parameterized formulas for tsunami run-up 
characteristics in U-shaped bays with values for ,  
taken from Figs 2–4, are 
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0 eff 0 eff

min 2 2 3
0 eff 0 eff

5.4 , 6.8 ,

15.7 , 39.7 .

AL AL
R U

gh T gh T

AL AL
U Br

gh T g gh T



 

 

 
 (21) 

 

For comparison we reproduce here the correspond-
ing parameterized formulas for a plane beach (Diden-
kulova and Pelinovsky, 2008): 
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Since the general solution for wave run-up on a plane 
beach differs from the one in a U-shaped bay and is 
expressed through Bessel functions (see, Didenkulova, 
2009 for details), the parameterization in Eqs (22) is 
also different. 
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Kellakujuliste  madala  vee  üksiklainete  lainerünnaku  omadused  
 paraboolse  ristlõikega  lahtedes 

  
Oleg Didenkulov, Ira Didenkulova ja Efim Pelinovsky 

  
On analüüsitud klassikalise kellakujulise profiiliga üksiklainete lainerünnaku omadusi kaldpõhja ja paraboolse 
ristlõikega lahes. Vaatluse all on Kortewegi-de Vriesi solitoni, siinusekujulise profiiliga ja algebralise profiiliga (nn 
Lorentzi tüüpi) üksiklainete üldistused. On arvutatud lainerünnaku maksimaalne kõrgus, vee liikumise maksimaalne 
kiirus ja laine murdumist iseloomustavad suurused kõnesolevate profiilide naturaalarvuliste astmete jaoks. On 
näidatud, et need suurused on praktiliselt võrdsed ja ühesuguse algkõrguse ning ruumilise ulatusega, kuid erineva 
kujuga solitonide jaoks, ja on tuletatud solitonide kujust sõltumatud seosed lainerünnaku mitmesuguste parameetrite 
jaoks. 

  
  

 


